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We investigate theoretically and numerically the thermodynamics of gold nanoparticles immersed in water
and illuminated by a femtosecond-pulsed laser at their plasmonic resonance. The spatiotemporal evolution of
the temperature profile inside and outside is computed using a numerical framework based on a Runge-Kutta
algorithm of the fourth order. The aim is to provide a comprehensive description of the physics of heat release
of plasmonic nanoparticles under pulsed illumination, along with a simple and powerful numerical algorithm. In
particular, we investigate the amplitude of the initial instantaneous temperature increase, the physical differences
between pulsed and cw illuminations, the time scales governing the heat release into the surroundings, the
spatial extension of the temperature distribution in the surrounding medium, the influence of a finite thermal
conductivity of the gold/water interface, the influence of the pulse repetition rate of the laser, the validity of the
uniform temperature approximation in the metal nanoparticle, and the optimum nanoparticle size (∼40 nm) to
achieve a maximum temperature increase.
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I. INTRODUCTION

Gold nanoparticles (NPs) can act as efficient nanosources
of heat under visible or infrared illumination at the plas-
monic resonance due to enhanced light absorption.1 The
ability to locally heat at the nanoscale opens the path for
promising achievements in nanotechnology and especially
for nanoscale control of temperature distribution,2 chemical
reactions,3 phase transition,4 material growth,5 photothermal
cancer therapy,6–8 and drug release.9,10

The use of femtosecond-pulsed illumination on gold NPs
expands the range of applications compared to continuous
(cw) illumination. First, it can lead to nonlinear optical
processes such as two-photon luminescence or second har-
monic generation with applications mainly in bioimaging.11,12

Then, it can trigger a sudden temperature increase at the
subnanosecond scale and subsequent effects such as acoustic
waves used for optoacoustic imaging13,14 or bubble formation
for nanosurgery.15 A sharp and brief temperature increase of
a NP generated by a femtosecond laser can also contribute to
confine the temperature increase at the close vicinity of the
NP to avoid extended heating of the whole medium when not
desired.16

Several experimental and numerical approaches aimed
at studying the internal processes of heat generation under
pulsed illumination and the subsequent effects observed in
the surrounding medium, e.g., temperature and pressure varia-
tions,17–19 acoustic wave generation,18 vibration modes,20–22

cell apoptosis,11 drug release9,23 nanosurgery,15,24 bubble
formation,25–28 NP shape modification29 and melting,29–31

nanosecond pulses for biomedical applications,32,33 and ex-
treme thermodynamics conditions.33–37 However, to the best
of our knowledge, there is still a lack of investigation
regarding questions such as the temperature spatial extension
in the surrounding medium or the efficiency compared to cw
illumination. Some investigations have been carried out but
are usually restricted to a particular NP geometry or using
approximations such as a perfect interface conductivity. In
other words, questions related to fs-pulsed heating of NPs have

not been investigated in the whole space of parameters (size
of the nanoparticle, interface conductivity, and illumination
conditions). Such information is though fundamental since
any experiment is characterized by different experimental
conditions.

In this paper, we present and use a versatile numerical
framework to investigate theoretically and numerically the
evolution of the temperature distribution of a gold NP
immersed in water when illuminated by a femtosecond-pulsed
laser. We aim at providing a comprehensive description of
the problem spanning the whole space of variables (NP size,
interface conductivity, and illumination conditions). Various
degrees of complexity exist to describe theoretically such a
problem. We chose a progressive approach consisting in going
from simple to more sophisticated considerations: We shall
start with the more basic description of the problem, a pointlike
source of heat to model the NP, and then refine the description
of the system by taking into account successive refinements,
namely, a finite-size structure, a gold-water interface conduc-
tivity, and a nonuniform NP inner temperature. In each case, the
physics and the associated constitutive equations are detailed
and the approximations discussed. The aim is to answer all the
questions related to characteristic time, space, and temperature
increase in fs-pulsed optical heating of a gold NP.

Details regarding the numerical algorithm we developed
are given in the Appendix.

II. RESULTS AND DISCUSSION

A. Physical system

We consider a system with spherical symmetry consisting
of a gold nanosphere of radius R immersed in water (Fig. 1).
This nanoparticle is uniformly illuminated by a laser light at
its plasmonic resonance angular frequency ω = 2π c0/λ0 =
k c0/nw, where c0 is the speed of light and nw is the optical
index of water. No mass transfer such as fluid convection
or bubble formation is considered. We shall focus on a
moderate temperature increase (typically a few tens of degrees)
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FIG. 1. (Color online) System investigated: A spherical gold NP
immersed in water illuminated by a femtosecond-pulsed laser.

and do not consider extreme thermodynamic conditions.
For this reason, all the parameters describing the materials
(water and gold) are assumed to remain constant within
the temperature range investigated. Whenever a femtosecond
pulse is mentioned, it has to be understood as a pulse, the
duration of which is smaller than the characteristic time of
electron-phonon scattering τe-ph ∼ 1.7 ps. For instance, this
can correspond to the use of a Ti:sapphire laser, which usually
provides a pulse duration of ∼100 fs.

In the following, any mentioned temperature T stands
for a temperature increase above this initial ambient
temperature T∞.

Anywhere in the system, we can define the thermal energy
density and thermal current density that read, respectively,
uth(r,t) = ρ c T (r,t) and jth(r,t) = −κ∇T (r,t) where ρ is
the mass density, c is the specific heat capacity at constant
pressure, and κ is the thermal conductivity of the system
at the position r . From the energy conservation equation
∂t uth(r,t) + ∇ · jth(r,t) = p(r,t), one obtains the heat diffusion
equation

ρc ∂t T (r,t) = κ∇2T (r,t) + p(r,t) (1)

where p(r,t) is the heat power density [nonzero only inside
the NP (r < R), where the light is absorbed].

For the system under consideration in this work, this yields
a set of two differential equations, one for each medium (gold
and water), along with two boundary conditions at the gold-
water interface:





Diffusion equations:

ρAucAu ∂t T (r,t) = κAu∇2T (r,t) + p(r,t) for r < R,

ρwcw ∂t T (r,t) = κw∇2T (r,t) for r > R.

Boundary conditions at r = R:
κw∂rT (R+,t) = κAu∂rT (R−,t),
T (R+,t) = T (R−,t).

(2)

The Au and w subscripts refer to gold and water. The first
boundary condition ensures heat flux conservation at the NP
interface.

It has been demonstrated experimentally that an interface
resistivity at the gold/water interface exists and can play a
significant role in the heat release.38–41 The interface resistivity

can reach appreciable values when the liquid does not wet the
solid. The wetting depends on the nature of the interface, and,
in particular, a possible molecular coating. Namely, hydropho-
bic coatings are associated with poor thermal conductivities.
The direct consequence of a finite interface conductivity g (or
resistivity 1/g) is a temperature drop/jump/discontinuity (T
at the NP interface such that

P(t) = 4πR2g(T (t), (3)

where (T is defined as

(T (t) ≡ T (R−,t) − T (R+,t) (4)

(in this work, the symbol ≡ symbolizes a definition). The
released heat power P(t) is also related to the temperature
gradient on the NP surface through the energy conservation
equation

P(t) = −4πR2κw ∂rT (R,t). (5)

Equations (3) and (5) yield a modification of the second
boundary condition of system (2) at the nanoparticle interface
r = R:

−∂rT (R+,t) = 1
lK
(T (t), (6)

where lK = κw/g is named the Kapitza length and 1/g is the
associated Kapitza resistivity.

Let us define from now the two dimensionless constants
that we shall often use in the following,

β ≡ ρwcw

ρAucAu
≈ 1.680, (7)

γ ≡ κAu

κw
≈ 512, (8)

and one dimensionless parameter

λK ≡ κw

gR
= lK

R
(9)

that is the Kapitza length normalized by the NP radius R.
We also introduce dimensionless space ρ and time τ variables
defined as

ρ ≡ r/R, (10)

τ ≡ awt/R2, (11)

where a = κ/ρc is called the thermal diffusivity. R and R2/aw
are indeed the natural space and time units associated with
the system. Within this work, we will make an extensive
use of dimensionless variables and constants, first because
it yields simpler, more natural formulas and more general
results, and then because it shows how the algorithm can be
properly written, i.e., working with numbers close to 1 and not
unnecessary powers of 10. However, for the sake of simplicity,
even when using normalized variables, we shall keep the same
function names, e.g., T (r,t) and T (ρ,τ ). But this mathematical
digression should not cause any clarity issue.
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TABLE I. Physical constants used in this work associated with
gold and water.a

Name Gold Water Unit

Thermal conductivity κ 317 0.60 W/m/K
Specific heat capacityb c 129 4187 J/kg/K
Mass density ρ 19.32 1.00 ×103 kg/m3

Thermal diffusivity a 127 0.143 ×10−6 m2/s

aValues at ∼25 ◦C taken from Ref. 42.
bAt constant pressure.

Using these dimensionless variables, parameters, and con-
stants, the set of Eqs. (2) along with the additional boundary
condition (6) read then





Diffusion equations:

∂τT (ρ,τ ) = γβ
ρ2 ∂ρ[ρ2∂ρT (ρ,τ )] + p(ρ,τ ) for ρ < 1,

∂τT (ρ,τ ) = 1
ρ2 ∂ρ[ρ2∂ρT (ρ,τ )] for ρ > 1.

Boundary conditions at ρ = 1:

∂ρT (1+,τ ) = γ ∂ρT (1−,τ ) = − 1
λK
(T (τ ),

(12)

where the Laplacian operator ∇2 has been reformulated using
spherical coordinates.

From now on, the use of a dimensionless formalism will
not be systematic but preferred when it simplifies the notations
and makes the results more general.

B. Numerical method

The set of Eq. (12) has no simple analytical solution. We
chose to solve it numerically by developing a finite differ-
ence method (FDM) and a Runge-Kutta (RK) algorithm.43

Basically, it is based on a spatiotemporal discretization of the
system of Eqs. (12) according to

ρi ≡ i × δρ, i ∈ [0,N ],

τj ≡ j × δτ, j ∈ [0,M],

Ti,j ≡ T (ρi ,τj ), (13)

∂ρ T (ρ,τ ) → Ti+1,j − Ti,j

δρ
,

∂τ T (ρ,τ ) → Ti,j+1 − Ti,j

δτ
.

This discretization procedure is associated with a RK al-
gorithm of the fourth order (RK4) that ensures a higher
accuracy—compared to regular Euler algorithms of the first
order—in the estimation of Ti,j at each spatiotemporal step.

Further details regarding the numerical algorithm are given
in the Appendix.

C. cw illumination

Before studying what occurs under fs-pulsed illumination,
it is worth describing first what happens under cw illumination.
We consider here a uniform cw illumination of irradiance I
and wavelength λ0.

Under cw illumination, the establishment of the steady-state
temperature profile will be preceded by a transient evolution.

By dimensional analysis of the two diffusion equations of
system (2), one finds that two time scales come into play:

τw
d = ρwcw

κw
R2 = R2

aw
, (14)

τAu
d = ρAucAu

κAu
R2 = R2

aAu
. (15)

τw
d is the characteristic time associated with the evolution

of the temperature profile in the surrounding water while
τAu

d characterizes the temperature evolution inside the gold
NP. Since aAu + aw, the thermalization inside the NP occurs
much faster. Consequently, one can consider that the global
establishment of the temperature profile of the overall system
is governed by the time scale τw

d .
We consider now the final steady-state regime. The set of

equations now reads





κAu∇2T (r) = −p(r) for r < R,

κw∇2T (r) = 0 for r > R,

κw∂rT (R+) = κAu∂rT (R−)
= −g(T ,

(16)

where (T ≡ T (R−) − T (R+). If one considers an average
power density p0 = P0/V , the solution has a simple form and
reads

T cw(r) = P0

4πκwr
for r > R, (17)

T cw(r) = P0

4πκwR

[
1 + 1

2γ

(
1 − r2

R2

)
+ λK

]
for r < R,

(18)

where P0 is the heat power dissipated in the NP. Note that
the temperature profile outside the NP does not depend on
the NP surface conductivity.44 Since γ + 1, one can usually
consider—whatever the NP size—that the inner temperature
of the NP is uniform and equals

T cw
NP = P0

4πκwR
(1 + λK) = σabsI

4πκwR
(1 + λK), (19)

where σabs is the optical absorption cross section of the NP.2,45

For spherical nanoparticle smaller than 2R ∼ 30 nm, a good
approximation can be used:46,47

σabs = k Im(α) − k4

6π
|α|2, (20)

where

α = 4πR3 εAu − εw

εAu + 2εw
, (21)

with εAu the gold permittivity and εw the water permittivity.
From Eq. (19), we obtain a simple and very useful formula

that gives the steady-state temperature of small spherical NP
(R < 15 nm) under cw illumination:

T cw
NP = kIR2

κw
Im

(
εAu − εw

εAu + 2εw

)
, (22)

T cw
NP ≈ 2.00

kIR2

κw
. (23)
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The latter formula applies for λ0 = 520 nm. No interface
resistivity is assumed in this formula (λK = 0). If the NP
is not necessarily smaller than 2R = 30 nm, the previous
formalism becomes inappropriate and the more sophisticated
and general Mie theory has to be used.46,47 Within this model,
the absorption cross section reads

σabs = 2π
k2

∞∑

j=1

(2j + 1)(|aj |2 + |bj |2),

where

aj =
mψj (w)ψ ′

j (v) − ψj (v)ψ ′
j (w)

mψj (w)ξ ′
j (v) − ξj (v)ψ ′

j (w)
,

bj =
ψj (w)ψ ′

j (v) − mψj (v)ψ ′
j (w)

ψj (w)ξ ′
j (v) − mξj (v)ψ ′

j (w)
,

and m2 = εAu/εw, v = kR, and w = mv. The primes indicates
differentiation with respect to the argument in parentheses. ψj

and ξj are Ricatti-Bessel functions defined as

ψj (x) =
√
πx

2
Jj+ 1

2
(x),

ξj (x) =
√
πx

2

[
Jj+ 1

2
(x) + iYj+ 1

2
(x)

]
.

Jν and Yν are the Bessel functions of first and second order,
respectively. The derivatives can be expressed as follows:

ψ ′
j (x) = ψj−1(x) − j

x
ψj (x),

ξ ′
j (x) = ξj−1(x) − j

x
ξj (x).

In the following, the Mie theory will be used whenever a
calculation of the absorption cross section is required.

D. Pulsed illumination and initial temperature increase

We consider now a fs-pulsed illumination of average
irradiance 〈I 〉, pulse repetition rate f , fluence F = 〈I 〉/f ,
and wavelength λ0.

The absorption of a fs pulse by a metal nanoparticle can
be described as a three-step process48,49 that involves different
time scales:

1. Electronic absorption. During the interaction with the fs
pulse, part of the incident pulse energy is absorbed by the gas
of free electrons of the NP, much lighter and reactive than the
ions of the lattice. The electronic gas thermalizes very fast to a
Fermi-Dirac distribution over a time scale τe ∼100 fs.49 This
leads to a state of nonequilibrium within the NP: The electronic
temperature Te of the electronic gas has increased while the
temperature of the lattice (phonons) Tp remains unchanged.
The absorbed energy E0 reads

E0 = σabs〈I 〉/f = σabsF = P0/f. (24)

2. Electron-phonon thermalization. Subsequently this hot
electronic gas relaxes (cools down), through internal electron-
phonon interaction characterized by a time scale τe-ph to
thermalize with the ions of the gold lattice. This time scale
is not dependent on the size of the NP except for NP smaller

than 5 nm due to confinement effects.50 For a larger NP and
for moderate pulse energy, the time scale is constant and
equals τe-ph ∼ 1.7 ps.51–53 At this point, the NP is in internal
equilibrium at a uniform temperature (Te = Tp), but is not in
equilibrium with the surrounding medium that is still at the
initial ambient temperature.

3. External heat diffusion. The energy diffusion to the
surroundings usually occurs at higher characteristic time scale
τd, which leads to a cooling of the NP and a heating of the
surrounding liquid. The time scale of this process depends on
the size of the NP and ranges from 100 ps to a few ns. For
small NP (<20 nm), this third step can overlap in time with
the electron-phonon thermalization19 (as discussed hereafter).

If one considers that the electron-phonon thermalization
(step 2) occurs much faster than the external heat diffusion
(step 3), the NP temperature reaches an initial maximum
temperature T 0

NP that is straightforward to estimate by energy
consideration. It is related to the absorbed energy through the
relation

E0 = VρAucAuT
0

NP, (25)

where V is the volume of the NP and VρAucAu is its heat
capacity. Using Eq. (24), we find that the maximum initial NP
temperature is

T 0
NP = σabsF

VρAucAu
. (26)

This formula is not restricted to spherical nanoparticles. As
an example, for a gold nanorod, 50 nm long and 12 nm
in diameter, at the plasmonic resonance (λ0 = 800 nm),
considering a random orientation f = 86 MHz and 〈I 〉 =
1.0 mW/µm2, we obtain T 0

NP ≈ 30 ◦C. Note that for a given
laser power, the temperature increase does not depend on the
pulse duration, but only on the pulse energy 〈I 〉/f .

It is worth comparing the instantaneous temperature
increase T 0

NP after a single fs pulse and the steady-state
temperature T cw

NP achieved under cw illumination. From
Eqs. (19) and (26), we obtain a dimensionless number η0 that
quantifies the gain obtained when using pulsed illumination:

η0 ≡ T 0
NP

T cw
NP

= 3βaw

f R2(1 + λK)
. (27)

Figure 2 illustrates what η0, T 0
NP, and T cw

NP represent for a
particular example. This useful formula is only valid for large
values of η0. When R or f tends to be high, successive pulses
may overlap (as explained later in Sec. II H), which makes the
assumption of a single-pulse illumination wrong. Furthermore,
for very small particles, a temperature damping effect occurs
(by a typical factor 2) and T 0

NP is not the initial temperature,
as explained hereafter. Consequently, this formula is a good
approximation of the temperature gain achieved under fs-
pulsed illumination compared to cw illumination as far as η0
remains large and the NP radius not too small (R > 10 nm).
The true values of η0, i.e. whatever the NP radius R and surface
conductivity g and without approximations, is numerically
computed and discussed in Sec. II G.
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FIG. 2. (Color online) Evolution of the temperature of a NP
with a radius R = 50 nm under cw illumination (dashed line) and
after a single-pulse illumination (solid line) for a given irradiance
〈I 〉 = 0.1 mW/µm2. This figure aims at visually defining the initial
temperature increase T 0

NP under pulsed illumination and the steady-
state temperature T cw

NP under cw illumination. For this particular case,
T 0

NP = 31 ◦C while T cw
NP = 9.2 ◦C.

E. Subsequent evolution of the temperature profile

We discuss now the subsequent evolution of the temperature
field T (r,t) after a single-pulse illumination, i.e., after an initial
temperature increase T 0

NP.
In the ideal case consisting of a pointlike NP (R → 0), the

heat power density can be described by a Dirac distribution

ρwcw ∂t T (r,t) = κw∇2T (r,t) + E0δ(r)δ(t). (28)

This ideal problem has a simple analytical solution that reads

T (r,t) = E0

cwρw

1
(4πawt)3/2

exp
(

− r2

4πawt

)
. (29)

Then, the envelope Tmax(r) ≡ maxt [T (r,t)] of the temperature
profile over time can be easily obtained by using formula
(29) and calculating the time t for which ∂t T (r,t) = 0 for any
position r . It yields a temperature envelope

Tmax(r) = 1

3
√

3

E0

cwρw

1
r3

.

Interestingly, the temperature profile under pulsed illumination
follows a 1/r3 spatial decrease, which makes a real difference
compared to continuous illumination characterized by a
steady-state profile of 1/r [see Eq. (17)]. This is a first clue
that pulsed illumination achieves a much higher-temperature
confinement around the NP.

We consider now the more general and realistic case of a
spherical NP defined by a finite radius R 0= 0. In this case,
no simple analytical solution exists but some approximations
can be done. First, the initial temperature profile T (r,0) can
be considered as uniform (equals T 0

NP) inside the NP since
the electron-phonon thermalization usually occurs much faster
than the external heat diffusion. Then, one can also suppose
that the NP temperature remains uniform during the evolution
of the system since κAu + κw. Hence,

∀t, T (r,t) = TNP(t) for r < R. (30)

The validity of these two approximations will be investigated
and discussed in more detail in Sec. II G. Under these
assumptions, the system of Eq. (2) can be simplified:





Diffusion equation:

ρwcw∂t T (r,t) = κw
1
r2 ∂r t[r2 ∂rT (r,t)] for r > R.

Boundary conditions:

VρAucAu
dTNP(t)

dt
= κw4πR2∂rT (R,t) = −g4πR2(T (t).

(31)

The first equation is the heat diffusion equation outside the NP.
The two other equations come from considerations of energy
conservation and will control the boundary condition at the
NP interface (r = R).

Interestingly, two new characteristic times arise from the
boundary equations. They read

τNP
d = R2 ρAucAu

3κw
, (32)

τ s
d = RρAucAu

3g
. (33)

These characteristic times are associated to the evolution of the
nanoparticle average temperature, i.e., the heat energy stored in
the NP. When the surface resistivity 1/g is high (respectively
small), the evolution is governed by τ s

d (respectively τNP
d ).

These new time scales differ from τAu
d and τw

d that were
respectively the characteristic times associated to the estab-
lishment of the internal temperature equilibrium inside the NP
and the temperature diffusion outside the NP. If the surface
conductivity g is small enough, the evolution of the NP
temperature is governed by τ s

d . If the surface resistivity is
negligible, the evolution is governed by τNP

d . The temperature
evolution inside and outside the NP is thus governed by a
subtle interplay between four time scales. Three of them are
linked by the relation

τw
d = γβτAu

d = 3βτNP
d , (34)

which yields

τw
d ≈ τNP

d + βτAu
d . (35)

Regarding the fourth time scale τ s
d , it can be dominant or

negligible depending on the values of R and g.
Using dimensionless time τ and space ρ variables, the

system of equations (31) can be recast into this simpler form:





Diffusion equation:

∂τT (ρ,τ ) = 1
ρ2 ∂ρ[ρ2 ∂ρT (ρ,τ )] for ρ > 1.

Boundary conditions:
dTNP(τ )

dτ
= 3β ∂ρT (1,τ ) = − 3β

λK
(T (τ ),

(36)

where (T (τ ) = TNP(τ ) − T (1,τ ).
Using the RK4 algorithm, system (36) was resolved nu-

merically. The discretization parameters are (δρ,δτ,N,M) =
(15 × 10−3, 4 × 10−6, 400,106). The interface resistivity 1/g
was set to zero (nonzero values are discussed in the next
section). The result is presented in Fig. 3 that displays the
universal normalized evolution of the temperature of a NP.
This profile applies for any particle size since it uses the
normalized variables (ρ,τ ): For a given particle size R, the

035415-5
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FIG. 3. (Color online) Result of a numerical simulation showing
the universal evolution of the temperature profile for a NP of radius R

at different normalized time τ = awt/R2. No interface resistivity is
considered (1/g = 0). The inset shows the evolution of the NP inner
temperature as function of time.

normalized coordinate ρ has to be multiplied by R and the
normalized time τ by R2/aw to recover the actual coordinate r
and time t . Hu and Hartland19 have shown experimentally that
the NP temperature can be conveniently fitted using a stretched
exponential function

F (τ ) = e−(τ/τ0)n . (37)

We used this function to fit the evolution of the NP temperature
as represented in the inset of Fig. 3 (dashed line). The
optimized fit parameters are n = 0.39 and τ0 = 0.041. This
yields a useful formula giving the normalized NP inner
temperature evolution for any particle radius R:

FR(t) = exp

[

−
(

awt

0.041R2

)0.39
]

. (38)

Note that this useful formula assumes a zero interface
resistivity 1/g. For a finite value of g, the values of the fit
parameters τ0 and n are different and have to be recalculated
using the FDM.

Figure 4 aims at comparing the temperature profiles under
pulsed and cw illuminations. It replots the series of temperature
profiles of Fig. 3 along with the temperature envelope and
the temperature profile of the steady state (cw illumination)
given by Eq. (17). As derived in the previous section, when
considering a pointlike (R → 0) source of heat, the envelope
of the temperature profile follows a 1/r3 profile outside the NP.
When considering now a finite-size NP, it appears that such
a simple law does not exist. Instead, a stretched exponential
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FIG. 4. (Color online) (a) Comparison between the steady-state
temperature profile under cw illumination and the envelope of the
temperature evolution under pulsed illumination. The inset shows the
fit of the NP temperature profile in the case of a pulsed illumination.
(b) Temperature profile around the NP under cw illumination.
(c) Envelope of the temperature profile over time around the NP
subsequent to a fs-pulse illumination.

function can also be conveniently used to fit the envelope of
the spatial temperature profile in the surrounding water:

F (ρ) = exp
[
−

(
ρ − 1
ρ0

)n]
. (39)

The fit parameters are n = 0.45 and ρ0 = 0.060. These results
illustrate to what extent pulsed illumination achieves a much
higher degree of temperature confinement compared to cw
illumination.

Note that the evolution of the system is characterized by
an energy conservation law. At any time t , the energy of the
system is constant and reads

E0 = 4
3
πR3ρAucAuTNP(t) +

∫ ∞

R

ρwcw4πr2T (r,t)dr, (40)

or using the normalized variables and constants defined above,
the normalized energy reads

ε0 = TNP(τ )
T 0

NP

+
∫ ∞

1
3βρ2 T (ρ,τ )

T 0
NP

dρ = 1. (41)
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FIG. 5. (Color online) (a)–(c) Temperature envelope of the
temperature evolution for three different values of normalized Kapitza
length λK. Temperature profiles are also represented at different times
(in gray). (d) Evolution of the NP inner temperature corresponding
to the three previous situations.

This conservation law can be conveniently used in numeri-
cal simulations as a verification of the consistency of the result.
For example, in the simulations shown in Fig. 3, it varied by
less than 0.2%.

F. Finite conductivity of the gold-water interface

In this section, we shall go one step further into the
refinement of the analytical description of the problem. We
still consider the NP temperature as uniform, but we take
into account a finite interface conductivity g. The set of
equations describing the system is given by (36). Figure 5
displays the evolution of the temperature profiles for a set of
different normalized Kapitza length (i.e., gold/water interface
conductivity). Usual values of the interface conductivity g
range from 50 to ∞ MW/(m2K).38,41,54 As an example,
gold nanorods coated with cetyltrimethylammonium bromide
(CTAB) molecules are endowed with a typical surface con-
ductivity of 130 MW/(m2K).38 For NP radii ranging from 5 to
50 nm, typical normalized Kapitza lengths λK are thus ranging
from ∼0 to 2.

For a large Kapitza length (high interface resistivity), the
heating of the surrounding fluid can be highly inefficient as
observed in Fig. 5(a). This is due to the fact that the high
resistivity of the NP interface tends to slow down the heat

release, which yields a weaker maximum temperature in water.
The same amount of energy is released in the surroundings but
more slowly.

G. Beyond the approximation of instantaneous
temperature increase

In the previous section, we used two approximations
regarding the NP temperature to simplify the problem.

First, we considered that the NP temperature increase T 0
NP

subsequent to the pulse of light was instantaneous and uniform
inside the NP. This was because the characteristic time of
electron-phonon scattering (τe-ph ∼ 1.7 ps) is usually shorter
than the diffusion time into the surrounding [see Eq. (32)], but
this may become nonvalid for small NPs.

Second, we assumed that the NP temperature remained
uniform inside the NP during the overall evolution. That was
because the thermal conductivity of gold is much larger than
the one of water.

Yet, the validity of these two approximations may depend
a priori on the size R and the interface conductivity g of the
NP. The numerical algorithm used in this work allows one to
consider the inner temperature of the NP as not necessarily
uniform and to investigate the step where the temperature
increases while the NP is being illuminated by the pulse.
We can thus investigate the validity of the two approxima-
tions mentioned above by simulating the evolution of the
inner temperature profile, both during the electron-phonon
thermalization and during the subsequent heat diffusion in
the surrounding medium. This is the purpose of this section.

During the electron-phonon thermalization, one can assume
that the heat power density p(r,t) is uniform all over the NP:

p(r,t) = p0(t) = E0

V τe-ph
exp(−t/τe-ph). (42)

Indeed, we have seen in Sec. II D that the electronic thermal-
ization (step 1) occurs much faster than the energy transfer
from the electrons to the lattice (step 2). The heating of the
lattice is thus performed by a uniformly hot electronic gas. The
dimensionless form reads

p0(τ ) = T 0
NP

τw
p

τe-ph
exp

(
− ττw

p /τe-ph
)
.

Note that under cw illumination, the heat generation density is
on the contrary highly nonuniform within the NP.55

Within this other approach characterized by an initial zero
temperature profile and a heat power density in the NP, the
energy conservation law now reads, at any normalized time τ ,
under cw illumination,

3βT cw
NP τ =

∫ 1

0
3ρ2T (ρ,τ )dρ +

∫ ∞

1
3ρ2βT (ρ,τ )dρ, (43)

and under pulsed illumination,

T 0
NP

[
1 − exp

(−ττw
d

τe−ph

)]
=

∫ 1

0
3ρ2T (ρ,τ )dρ

+
∫ ∞

1
3ρ2βT (ρ,τ )dρ . (44)

Figure 6 presents the results of the numerical simulations
for two NP sizes R = 5 and R = 50 nm, and for 1/g = 0. It
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FIG. 6. (Color online) Temperature rise subsequent to a
femtosecond-pulsed illumination for a NP 100 nm in diameter (a)
and 10 nm in diameter (b) (interface resistivity 1/g = 0). The ideal
temperature profile that the NP would achieve if there were no
heat release in the surrounding is represented by a dashed line. (c)
Evolution of the temperature T (r = 0,t) for the two above-mentioned
cases along with the normalized heat power p0(t) (dark line) delivered
by the excited electronic gas to the phonons. The normalized
temperature does not reach 1 due to heat release during the NP heating.

shows the temperature evolution during the heating phase from
the initial zero uniform temperature up to the time when the NP
temperature reaches its maximum value. We can see that when
considering a possible heat leak into the surrounding during
the pulse illumination, the NP temperature does not reach
necessarily T 0

NP. For large NP, the inner temperature profile
suffers from some distortion when the temperature reaches its
highest value [Fig. 6(a)]. However, the maximum temperature
reaches practically the ideal maximum temperature T 0

NP.
Indeed, one can see that the heat diffusion into the surroundings
is almost absent. For a small NP [Fig. 6(b)], the temperature
diffusion into the surrounding medium during this initial step
is much more visible. The direct consequence is that the NP
temperature does not reach its maximum ideal value T 0

NP,
represented by dashed line in Fig. 6(b). The evolution of the NP

inner temperature [T (r = 0,t)] for the two above-mentioned
cases (R = 5 and R = 50 nm) is plotted in Fig. 6(c). The
temperature profiles are displayed along with the evolution
of the heat power p0(t) provided by the free electron gas. For
small particles, it is clear that the time scale τe-ph becomes of the
same magnitude as the characteristic time of the heat diffusion
in the surrounding. This explains why the NP temperature
cannot reach the maximum ideal temperature T 0

NP. Note that
the temperature T 0

NP used to normalize the curves in Fig. 6
depends on R [cf. Eq. (26)] and is thus not the same for the
two cases.

In any case, the temperature remains quasiuniform inside
the NP, which validates the usual assumption (30).

The maximum temperature achieved in the system is
discussed in more detail in Fig. 7. Temperatures are plotted as
function of NP size R and interface conductivity g. Figures 7(a)
and 7(b) represent the maximum temperature inside and
outside the NP:

T max
NP = maxt [T (r = 0,t)] , (45)

T max(R+) = maxt [T (r = R+,t)], (46)

normalized by the ideal temperature increase T 0
NP [Eq. (26)

and Fig. 7(g)]. When T max
NP /T 0

NP 2 1, it means that the heat
release outside the NP is too fast. The characteristic time τw

d
[Eq. (14)] becomes close to the characteristic time of the inner
thermalization and steps 2 and 3 occur almost simultaneously.
This happens when the particle is too small and when the
surface conductivity is not weak. When T max

w /T 0
NP 2 1, it

means that the water temperature increase is not optimum.
This happens when the NP is too small, or when g is too small,
giving rise to a large temperature drop at the NP interface.

Figures 7(c) and 7(d) represent the maximum tempera-
ture inside and outside the NP for a given irradiance I =
0.1 mW/µm2. Interestingly, we evidence an optimal NP size.
NPs at approximately 2R = 40 nm turn out to be the most
efficient nanosource of heat for a given laser irradiance. Below
this size, the cooling of the NP is too fast and the temperature
has no time to reach T 0

NP, as explained above. Above this
size, the absorption cross section is no longer proportional to
the volume of the nanoparticle, as seen in Fig. 7(f) and in
Eq. (20), which tends to damp the temperature increase. This
trend is also observed in Fig. 7(d), which plots the associated
temperature increase at the vicinity of the NP under the same
illumination conditions. Moreover, we can see that to achieve a
high-temperature increase inside (respectively outside) the NP,
a low (respectively high) surface conductivity g is preferred.

Figure 7(e) aims at comparing the efficiency of pulsed
versus cw illumination. In Eq. (2), we defined the gain η0 with
the approximation of an instantaneous temperature increase
and no interface resistivity. Now we can define the exact gain
η that takes into account the initial temperature damping and
a finite interface conductivity:

η = T max(R+)/T cw(R+). (47)

We observe that for small NPs and high surface conductivity
[upper left-hand corner of Fig. 7(e)], a fs-pulsed illumination
achieves a temperature rise of two orders of magnitude higher
than cw illumination of the same average irradiance. However,
depending on the NP size and surface conductivity, a pulsed
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FIG. 7. (Color online) (a) Numerical calculations of the temperature maximum of the NP normalized by the ideal temperature increase T 0
NP

for a set of different NP radii and surface conductivities. (b) Numerical calculations of the temperature maximum achieved in the surrounding
medium normalized by the ideal temperature increase T 0

NP. (c) NP maximum temperature when illuminated by a pulsed laser, at a pulse repetition
rate f = 86 MHz and an irradiance I = 0.1 mW/µm2. (d) Maximum temperature of the surrounding medium under the same illumination
conditions. (e) Ratio between the maximum temperature on the NP surface achieved under pulsed illumination and the temperature on the NP
surface under cw illumination [Eq. (17)]. (f) Absorption cross section of a spherical gold NP as function of radius obtained from Mie theory
[Eq. (24)] (solid line). The deviation from the R3 law is represented by a dashed line. (g) Ideal temperature increase T 0

NP as function of NP
radius. (h) Temperature on the NP surface under cw illumination [calculated from Eq. (17)]. The deviation from the R2 law [see Eq. (23)] is
represented by a dashed line.

illumination does not necessarily achieve a more pronounced
temperature increase in the surrounding medium. Namely,
for large NP of approximately 2R = 100 nm in diameter, it
appears that the use of pulsed illumination becomes inefficient
since the gain in temperature reaches a maximum value of
∼3. For low surface resistivity, the surrounding maximum
temperature can even be higher when using cw illumination
[lower right-hand corner of Fig. 7(e)]. Consequently, the
use of a fs-pulsed laser is not necessarily efficient if one
wants to achieve the highest temperature possible for a given
laser power. This result questions the usefulness of fs-pulse
illumination on lithographic structures, since it is usually larger
than 100 nm.

H. Influence of the pulse repetition rate

When the relaxation time of the system is sufficiently long,
the temperature of the NP has no time to return to zero between

two successive pulses. This effect has not been considered
so far and is the purpose of this section. The parameter that
controls the appearance of such a regime is

ξ ≡ f τd = f
(
τNP

d + τ s
d

)
= f R2 ρAucAu

κw
(1 + λK). (48)

Let GR,g(t) be the NP temperature evolution after a single-
pulse illumination for a NP of radius R and interface
conductivity g. Note that a fit formula of GR,∞(t) for g → ∞,
assuming a top-hat initial temperature profile, is given by
Eq. (38). Due to the linearity of all the equations governing the
heat release and diffusion in the system, the NP temperature at
any time t after a series of N pulses at the repetition rate f is

TNP(t) =
N−1∑

j=0

GR,g(t − j/f ). (49)
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Figure 8 plots the results of numerical simulations for two
cases corresponding to two different NP radii. The interface
resistivity 1/g is assumed to be equal to zero. For a radius
of R = 50 nm [Fig. 8(a)], ξ is close to unity, which yields a
temperature offset: The NP temperature has no time to return
to zero between two successive pulses. For even larger NPs,
the temperature evolution would be even more smoothed and
would tend to T cw

NP . For weaker values of ξ , as shown in
Fig. 8(b), the successive temperature pulses do not overlap
and a regime of time localization can be achieved.

I. Extension to nonspherical nanoparticles

The numerical technique we have developed could be
extended to two-dimensional (2D) systems modeling a NP
with axial symmetry, such as nanorods. It would require a
2D mesh and longer computation times. However, most of
the results presented in this work can be easily extended to
nonspherical NPs without carrying out more sophisticated
calculations: While the optical properties of NP particles
depend very sensitively on the NP geometry—in particular,
the resonance frequency—thermal processes of NP are only
slightly dependent on the geometry.2 For nonspherical NPs,
we can define an effective radius Reff such that the NP volume
equals

V = 4
3
πR3

eff . (50)

Most of the reasonings we have done are also valid when
replacing R by this effective radius Reff .2 In particular, Eq. (26)
giving the ideal temperature increase T 0

NP remains exact
whatever the shape of the NP using Reff . For gold nanorods,
large aspect ratios would tend to make the cooling of the

NP slightly faster by increasing the surface-to-volume ratio.
However, all the orders of magnitude of time and space will
remain identical as long as the aspect ratio remains moderate
(less than ∼4).

III. SUMMARY AND CONCLUSION

To summarize, we have developed a versatile and yet
simple numerical framework to investigate femtosecond-
pulsed optical heating of spherical gold nanoparticles (NPs).
This approach enabled us to address different models, from
simple to more sophisticated, and to discuss the validity of
their approximations. Most of the reasonings and calculations
are made using dimensionless variables, parameters, and
constants, which enabled us to compute universal behaviors.
The constitutive equations governing the system are derived
and explained. We show how such a physical system turns out
to be governed by a subtle interplay between four characteristic
time scales.

We investigated the influence of the size of the NP: For
small NPs (diameter <30 nm), the temperature rise is not as
high as expected due to fast heat release. For bigger NPs, the
temperature rise is damped because large NPs are not efficient
absorbers. This leads to a particle size compromise of ∼40 nm
that optimizes the temperature increase (for a given laser
irradiance).

The role of a possible molecular coating is also investigated
in detail based on considerations on interface thermal resis-
tivity. For high interface resistivity, a temperature damping
is observed outside the NP while an enhanced temperature
increase is observed inside. A high interface resistivity tends
in parallel to slow down the heat release in the surrounding
medium, making the heating of the surroundings less efficient.

A detailed comparison between cw and pulsed illumination
was drawn and two main results were obtain: (i) While a tem-
perature profile in 1/r in the surrounding medium is observed
under cw illumination, a much more confined temperature
envelope in 1/r3 characterizes a pulsed illumination. A refined
model even further demonstrates a higher degree of confine-
ment with a spatial profile following a stretched exponential.
(ii) Unexpectedly, pulsed illumination does not necessarily
achieve much higher-temperature increase in the surroundings
compared to cw, especially for nanoparticles larger than
100 nm (typically lithographic plasmonic structures). It can
even be worse when the gold particle is endowed with a poor
thermal surface conductivity (due to an hydrophobic molecular
coating, for example).

Finally, the influence of the repetition rate is discussed and
two regimes are identified depending on the NP radius R and
the pulse repetition rate f : one time-localization regime, where
the temperature increase is confined spatially and temporally,
and one regime that tends to resemble to the regime observed
under cw illumination.

Within this work, we restricted ourselves to gold NPs
with spherical geometry (radius R), but most of the results
obtained herein are also valid for nonspherical particles when
considered as particles of characteristic size R. The numerical
techniques we developed could also be refined to address
problems with 2D symmetries requiring a longer computation
time. This versatile numerical technique could also take into
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account other materials than gold and water and various pulse
durations, from femtosecond to nanosecond scales.
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APPENDIX: NUMERICAL ALGORITHM

In this Appendix, we explain and detail how the physical
system was modeled using a FDM and in particular what the
RK4 algorithm consists in.

We shall specifically use in this Appendix the equations and
the formalism based on dimensionless space and time variables
(ρ and τ ) and dimensionless constants and parameters (β, γ ,
and λK).

1. Model assuming a uniform NP temperature

We consider in this part a spherical NP endowed with a
surface conductivity g and characterized by a uniform inner
temperature TNP(τ ). This problem is described by the set of
Eqs. (36). Since the NP temperature is assumed to be uniform,
only the surrounding medium has to be meshed (see Fig. 9).
The spatiotemporal meshing of the system is such that

ρi ≡ 1 + i × δρ, i ∈ [0,N ],

τj ≡ j × δτ, j ∈ [0,M],

Ti,j ≡ T (ρi ,τj ).

To simplify the notations and the explanations, we consider
here a regular spatiotemperal mesh. However, it would be wise
to use, for instance, a refined mesh close the NP interface and
a rougher mesh further.

The boundary condition (36) at the NP interface reads

−T2,j − T1,j

δρ
= T0,j − T1,j

λK
. (A1)

τ = τj

ρ0

T

ρ

gold water

ρ1 ρN

interface

T1,j

TNP(τj)

ρ2

∆T

FIG. 9. (Color online) Schematic of the temperature profile at
time τj around a spherical gold NP as modeled in the FDM-
RK4 algorithm. In this first model, the NP temperature TNP(τj ) is
assumed to be uniform and a temperature discontinuity (T occurs
at the nanoparticle interface to take into account a finite interface
conductivity.

The temperature drop (T occurs between the coordinates
ρ0 and ρ1. The temperature gradient on the NP surface is
calculated between the coordinates ρ1 and ρ2 (see Fig. 9).

The initial temperature profile is set to

T0,0 = T 0
NP, (A2)

T1,0 =
T 0

NP

1 + δρ/λK
, (A3)

Ti,0 = 0 for i > 1. (A4)

This initial temperature profile corresponds to a zero temper-
ature outside the NP and fulfills the boundary condition (A1).

The numerical algorithm consists of a spatial loop over the
position i inside a temporal loop over the time j . At each time
j + 1, the procedure is as follows.

First, the NP temperature T0,j+1 is calculated from the
second equation of system (36):

T0,j+1 = T0,j + 3β δτ
T2,j − T1,j

δρ
. (A5)

Then, using Eq. (A1), one can compute the temperature on
the NP surface (i = 1):

T1,j+1 = lKT2,j + δρT0,j+1

λK + δρ
. (A6)

Finally, the computation of the temperature profile in the
surrounding medium (i > 2) is performed according to the
RK4 procedure43

Ti,j+1 = Ti,j + k1 + 2k2 + 2k3 + k4

6
, (A7)

where

k1 = δt K(Ti,j ),

k2 = δt K(Ti,j + k1/2),

k3 = δt K(Ti,j + k2/2),

k4 = δt K(Ti,j + k3),

and

K(Ti,j ) = 2
ρ

Ti+1,j − Ti,j

δρ
+ Ti+1,j − 2Ti,j + Ti−1,j

δρ2
.

(A8)

Note that the increments δρ and δτ cannot be chosen arbitrarily
and independently. To ensure a proper convergence, δρ and δτ
have to be chosen much smaller than unity while fulfilling as
well the convergence criteria:

δρ2/δτ + 1. (A9)

This ensures that the right-hand member of equation (A7)—the
variation of the NP temperature—is small compared to the NP
temperature Ti,j .

It is worth estimating the total energy of the system and its
conservation at each time step to check the consistency of the
calculations. The normalized energy at time τj expressed from
Eq. (40) reads

εj = T0,j

T0,0
+ 3βδρ

N∑

i=1

ρ2
i

Ti,j

T0,0
(A10)
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FIG. 10. (Color online) Schematic of the temperature profile at
time τj around a spherical gold NP as modeled in the FDM-RK4
algorithm. In this second model, the temperature inside the NP is also
meshed.

and should remain close to unity at any step j of the numerical
procedure.

2. Model including a nonuniform NP temperature and a zero
initial temperature profile

We assume in this section that the inner temperature of
the NP is not necessarily uniform. We shall also explain how
both the heating and cooling of the NP can be investigated
numerically.

In this context, the normalized coordinate now reads

ρi ≡ i × δρ, i ∈ [0,N1 + N2 − 1],

and in particular ρN1 = N1 × δρ = 1. N1 is the number of
mesh points in the NP and N2 in the surrounding medium (see
Fig. 10).

To simplify the notations and the explanations, we consider
here a regular mesh. However, it would make sense to use, for
instance, a rough mesh inside the NP and a refined mesh in the
surrounding medium, close to the NP interface.

The discretized boundary conditions of system (12) yield
this time
TN1+2,j − TN1+1,j

δρ
= −TN1,j − TN1+1,j

λK
= γ TN1,j − TN1−1,j

δρ
.

(A11)

At time τ0, the initial temperature profile is set to zero:

∀i, Ti,0 = 0.

At time τj+1, the calculation of the temperature profile
inside the NP (i < N1) is performed using the RK pro-
cedure [Eq. (A7)] and replacing the RK function K(Ti,j )
with

KAu(Ti,j ) = βγK(Ti,j ) + p0(τj ).

This source term p0(τj ) has to be added when one wants to
take into account a heat generation in the NP. For a pulsed
illumination, it reads

p0(τj ) = T 0
NP
τp

τe-ph
exp(−τjτp/τe-ph).

And for a cw illumination

p0 = 3βT cw
NP .

The convergence criteria is now

δρ2/δτ + βγ ≈ 860. (A12)

This means that while investigating the dynamics of the
NP temperature, the convergence criteria is more drastic.
However, this is expected and not an issue since the as-
sociated time scale of the temperature diffusion inside the
NP is much faster. Consequently, δτ can be chosen much
smaller.

Then the temperatures at the nanoparticle interface TN1,j

and TN1+1,j have to be calculated using the boundary condi-
tions (A11). This yields

TN1,j+1 = γ (δρ + λK)TN1−1,j + δρTN1+2,j

γ λK + δρ + γ δρ
,

TN1+1,j+1 = TN1+2,j + γ (TN1−1,j − TN1,j+1).

Finally the temperature profile within the surrounding medium
(i > N1 + 1) is computed using the RK4 procedure [Eq. (A7)]
and the regular RK function K(Ti,j ) [Eq. (A8)].

When considering an initial zero temperature profile, the
energy conservation laws (43) and (44) now reads for cw
illumination

3βT wc
NP jδτ =

N1∑

i=0

3ρ2
i Ti,jδρ +

N1+N2∑

i=N1+1

3βρ2
i Ti,jδρ .

And with pulsed illumination

T 0
NP

[
1 − exp

(−τjτw
d

τe−ph

)]

=
N1∑

i=0

3ρ2
i Ti,jδρ +

N1+N2∑

i=N1+1

3βρ2
i Ti,jδρ .
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