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Femtosecond transition-state spectroscopy (FTS) of elementary reactions [M. Dantus, M. J.
Rosker, and A. H. Zewail, J. Chem. Phys. 87, 2395 (1987) ] provides real-time observations of

photofragments in the process of formation. A classical mechanical description of the time-
dependent absorption of fragments during photodissociation [R. Bersohn and A. H. Zewail,
Ber. Bunsenges. Phys. Chem. 92, 373 (1988) ] forms the basis for the present scheme for
relating observations to the potential energy surface. A direct inversion scheme is presented
that allows the difference in the two relevant excited-state potential curves to be deduced from
observed transients at different probe wavelength tunings. In addition, from the shape and
dependence of the transients on pump wavelength, information on the lower of the two
potential curves (i.e., that of the dissociating molecule) is obtained. The methodology is
applied to the experimental FTS data (Dantus ef al.) on the CN photofragment from the ICN

photodissociation.

I. INTRODUCTION

Femtosecond transition-state spectroscopy (FTS) has
been reported for several elementary reactions involving di-
rect dissociation or trapping (resonances) of photofrag-
ments en route to dissociation.'~ The general concept of the
experiment is simple: a pump femtosecond pulse at 4, excites
atarget molecule, say ABC, at ¢ = O, to arepulsive electronic
state and the probe femtosecond pulse at A,, delayed by a
variable time ¢, detects the photofragment (product), say
BC, asitis being formed, in the process of separation from A.
The probe laser is first tuned to a wavelength 4 ° corre-
sponding to a known excitation resonance of the stable BC
(i.e., at essentially infinite separation from A ) species induc-
ing either fluorescence (LIF)'~* or multiphoton ionization
time of flight (MPI-TOF),* allowing its detection. The re-
sulting photon or photoion signal is recorded as one point on
a curve of I(1). The delay is altered systematically until an
entire curve of I(t) at A = A 5 is obtained. The I(¢) curve
shows an induction period indicative of the time required for
the BC species to separate effectively from the force field of
A and attain asymptotically its “normal” identity as BC in
its final state. At this point of separation, the fragment
achieves its asymptotic recoil velocity governed by E [, the
final translational energy, which, in turn, is determined by
the total available energy E,,, minus the internal energy of
the products.

The wavelength of the laser is detuned by a small incre-
ment A to the red (or the blue) of this value of 4 5° to a new
value A ¥ and the 7(#;A ;) curve is recorded. This curve goes
through a maximum at short delays and then decays to
asymptotically constant intensities, dependent upon the par-
ticular chosen value of the detuning increment A,. When a
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series of such experiments is carried out at selected values of
A,, the resulting body of data constitute a surface,
I(t,A,;4,4,). Such adata base contains a great deal of infor-
mation on the potential energy surface (or its 2D projection,
the relevant potential curve) for the formation of BC from
the excited state ABC, which leads to the detected BC photo-
fragment.

Before going into a detailed theoretical discussion, we
consider the gross features of the experimental observa-
tions,' taking the ICN reaction as an example:

ICN* - [I---CN]¥" -1 4 CN(v,/) + E},.

Shown in Fig. 1 is the on-resonance (A; =0) curve,
I(t;A £). There is a 205 fs delay*™® before the CN has “es-
caped” from the I atom and its energy levels become those of
the isolated CN molecule, so it can absorb the A 3 photon at
388.5 nm. For curve (b), I(t;A ¥) where A¥ =45 + A,
the signal rises at an earlier time at the separation R = R *
[corresponding to 4 ¥ in Fig. 1(a)]. At R *, the wavelength
A ¥is just correct for the excitation of the CN fragment from
V, to ¥, [as seen in Fig. 1(a)], i.e., the photon energy
he/A % = V,(R*) — V(R *). Thesignal falls to a finite val-
ue because the bandwidth of the laser pulse is finite and so
the free CN has some residual absorption (i.e., absorption of
the blue wing of the probe laser pulse). This spectral band-
width is actually the “window” onto the potential for frag-
ment separation. Typically, for pulses of 40 to 200 fs, the
corresponding transform-limited widths are 330 to 66 cm !,
respectively.

Bersohn and Zewail have presented a classical mechani-
cal theory® for the time-dependent absorption of the frag-
ments in the course of the reaction. Assuming the usual qua-
sidiatomic model and simple analytical functional forms for
the relevant excited-state potential curves V,(R) and
V,(R), and taking the laser wavelength profile to be Lorent-
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FIG. 1. Schematic diagram (see Ref. 2) showing the relevant pseudodiato-
mic potentials for ICN that explicate the experimental FTS data of Ref. 2.
The pump-laser wavelength is A, and the probe-laser wavelength is A,.
When the probe-laser wavelength is set at 4 5°, it detects free CN, but when
red detuned to A 2, it detects the transition states [I---CN]*" at separation
R *. The inset shows smoothed experimental transients from Ref. 2(a), one
on-resonance probe at A ¥ = 388.59 nm (A = 0), one detuned by A =40
cm™~ ' to the red. The pump-laser wavelength was ~ 306 nm.
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zian, they derived explicit equations for the functions 7(#,4)
in terms of the assumed potential parameters and the Lor-
entzian half-width y.

For the simplest case in which V; (R) is a pure exponen-
tial repulsion, V,(R) = V,exp( — R/L,) and assuming
that the upper potential is flat, i.e., V,(R) = ¥, (at least for
R > R *), they obtained a simple result for /(z,4) that can be
expressed analytically in the form

I(t,t*) = n[¥* + E*(sech? x —sech? x*)?]~', (1)

where 7 is a constant carrying units of intensity. Here
E=E] =}’ is the terminal value of the relative transla-
tional energy, v the final relative velocity of the fragments
(of reduced mass u), while x=vt /2L, and x*=uvt*/2L,,
with 7 *defined as  * = #(R *), the time corresponding to the
separation R *. The Lorentzian half-width y has the same
units as E (typically, wave numbers).

Applying this equation to the ICN data led to a value of
the potential constant L,. The general shape of the I(z,A)
experiment curves was qualitatively reproduced by the func-
tional form of Eq. (1), and it was found to be sensitive to the
shape of the potential.

The goal of the present work is to provide a procedure
for direct “inversion” of such experimental data on detuned
transients in order to yield quantitative information on the

relevant excited-state potential surfaces without making as-
sumptions about their functional form, or about the spectral
line shape of the probe laser. In addition, it is of interest to
ascertain the influence of the pump-laser photon energy
upon the experimentally observable I(#,4) data and thus de-
rive independent information on the lowest excited state of
the ABC molecule.

Il. THE INVERSION METHOD

What follows is a hierarchy of treatments of the “gen-
eric” transient detuning experiment, starting from the sim-
plest model approach and then dealing with successively
more realistic systems. Throughout, we limit our treatment
to a classical mechanical description of the half-collision
(i.e., the fragment recoil velocities). For most of what fol-
lows, we assume a diatomic or quasidiatomic system where
the BC fragment is considered “structureless” and therefore
noted as B. Thus, instead of ABC* - A + BC, we shall use
AB*-A + B.

We require only a knowledge of the available energy
E,, =E,  — D%;, obtained from the laser excitation pho-
ton energy E,,. (and any initial energy in AB) and the bond
dissociation energy of AB, and the excited-state potential
energy curve V,(R). Energy conservation is expressed

2
E. = V,[R(D] + w(d—R) : - 2)
dt
SO
%z 2/w)""{E,, — V,[R(H)]"*}

=U{1 - VI[R(t)]/Eavl}l/z’ (3)

where the terminal velocity is v = (2E,,, /) "/%

For many cases, the available energy is much larger than
the potential energy V,(R *) at the minimum separation
R*(=R?%,)probed at¢*, by the probe laser pulse, so Eq.
(3) reduces to

d—sz (for t>t*.) 4)
dt
so that
R() =Ry, +v(t—1t50n), (5)
ie.,
R = vt + const., (6)

in the region of R probed. Thus, in this large-R domain, the
shapes of V(R) and V(t) are identical, with only a scale
change for the abscissa. In most of what follows, we will deal
entirely with the time domain, seeking to evaluate V()
from the experimental observations.

A. Inversion from probe-laser wavelength detuning
experiments

Here, we consider the detection process, in which the
probe laser excites the separating-fragment system AB* to a
higher excited state of AB, namely ¥,(R), where fluores-
cence allows detection in the LIF mode (or what is the
“doorway state” in the MPI detection mode).
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FIG. 2. Similar to Fig. 1, but more detailed schematic diagram, appropriate
to a quasidiatomic molecule AB, showing the several “windows” to the po-
tential ¥, for the probe laser detuned successively to the red by amounts A,
(i=0,a,b,and c), correspondingtoR * = o, R*, R ¥, and R *, as shown.
Note that the upper potential, V,, is assumed to be flat for R> R *.

Case 1. Single repulsive surface

Figure 2 shows a set of potential curves appropriate for
illustrations of the model at the most primitive level, with the
lower excited state V| purely repulsive, and the upper one ¥,
essentially flat in the region of the separations probed. De-
tuning by linearly increasing A, (i = 0,a,b,c), as shown,
probes R values from asymptotic (R— o )toR=R* R%,
and R¥*, respectively. For sufficiently sharp (temporal)
probe pulses and extremely sharp pump laser pulses, as-
sumed throughout, one would expect a sequence of I(#,A)
curves in which each rises to a sharp peak at time
t;(R¥*)=t?*, all peaks of the same height, say I,,. For
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FIG. 3. Simulated FTS data for the model system. The potential V,(?) is
assumed be given by ¥, = 300 exp[ — (¢ — 200)/100] cm ', with ¢ in fs.
The probe-laser spectral profile is taken to be Lorentzian, with y = 40
cm ™. The upper potential ¥,(¢) is assumed flat, as in Figs. 1 and 2. The left
ordinate scale shows ¥ (¢); the right one displays the calculated FTS tran-
sients for A = 0, 40, and 80 cm ™' (calculated directly from the Lorentzian
line shape, as described in the text). The zero of time here is arbitrary (Ref.
6).

A =0, the intensity should rise monotonically to approach
I ... This behavior is illustrated in Fig. 3.

In the case where the spectral bandwidth of the fs probe
laser is greater than the typical detuning increment A, the
situation is different. The pulse probes a range of ¢ values
around ¢;. The temporal response, i.e., I(#;A), will directly
reflect the projection of the spectral bandwidth of the probe
laser onto the potential; it will be the weighted sum (i.e.,
superposition) of the absorptions of an infinite set of delta
functions (in frequency) whose envelope is the spectral pro-
file of the probe laser.

Figure 4 displays the I(#,A) surface taken from the “raw
data”® of Ref. 2, i.e., I(¢) for probe detunings (to the red of
the wavelength for the free CN fragment) of zero, 40 and 106
cm™'.2 The asymptotic values of the normalized signal lev-
els reflect the near-Lorentzian probe laser spectral line
shape. Thus for A = 0, the intensity rises after a delay time
sufficient for the CN to have become essentially “free” of the
I fragment, to its asymptotic final value, say, unity. For
A =40 cm™', i.e., the nominal probe wavelength offset by
40 cm ™' to the red, the peak signal occurs earlier (achieving
unit intensity) but then declines to a finite asymptotic value
corresponding to that expected from the contribution of the
(blue) wing of the probe laser, the fractional value of the
spectral line intensity 40 cm ™' to the blue of the nominal
wavelength, i.e., at A 5 for the free CN in the chosen state.
Thus a pulsed laser wavelength scan, recorded at “long
times” after the excitation pulse, portrays the effective ab-
sorption line shape of the free CN in the “detected” state. It
is essentially an independent measurement of the laser pulse
line shape: here it is found to be essentially Lorentzian with a
half-width of =38 cm~". Thus the expected transform-
limited FWHM 7 of the probe pulse would be expected to be
~ 185 fs. The experimental probe laser pulse width, convo-
luted with the pump width, was in this range,” consistent
with this value. Thus, by “looking inward” from large ¢ at
different A, values, we are mapping out the long-range po-
tential V,(¢) from such an I(¢,4) surface.
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FIG. 4. Three-dimensional representation of a(#;,A ) surface for FTS data of
Ref. 2(a). The asymptotic signals are fitted by a Lorentzian with y~38
cm ™' as shown. The zero of time is arbitrary in this case.
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Now let us be a little more quantitative. Suppose the
spectral line shape of the probe is

8a (8) = g4 (0)f(9), (7D

where g, (0) is the peak intensity at the nominal probe laser
frequency for the given detuning A, and 6 is the deviation (in
wave numbers) from this nominal frequency. The line shape
function is £(6), with 0<f(8) <f(0) = 1. We note here that,
for the special case of a Lorentzian line shape,

L&) =vV/(¥ +8), (8)
where ¥ is the half-width (in cm™'), i.e., when +8=1,
f(8) =14

The absorption (and thus the fluorescence intensity),
say I(t¥*), of the separating fragment system at time ¢ * [ cor-
responding to a potential V(¢ *) ] is proportional to the line
shape function f(8), where § now represents the deviation D
from the nominal probe frequency, i.e., §=D,, when the
probe laser has been set at a nominal detuning A. Thus,

I(t;A)EI(t:.)zlmaxf(DA)' (9)

The deviance from the nominal probe frequency can be ex-
pressed in terms of the potential by

D,=V,(t¥) — A, (10)

with ¥, in cm ™" units. Note that D, is implicitly a function
of time through V(¢ *); i.e., D, (¢) evaluated at r =t ¥.

Here, I,,, is the maximum value of /(¢) that obtains
when D, = 0 (and f= 1). For simplicity, we define a rela-
tive signal intensity a(A)=I(;A)/I,,, and note that
a(t,A) = f(D, ), where fis the line shape function of Eq.
(7). (Recall that I, , the peak intensity, should be indepen-
dent of the probe laser detuning A.)

Let us consider the asymptotic conditions, for long
times ¢, after @ (#;A) has become constant, i.e.,

a(td) »a(w;d)=a,, (A). (11)

Measured values of @ (A) should reflect the absorption
profile of the separated fragments, essentially the shape
function f(A); i.e., we equate

a, (A) =f(4), (12)

the laser wavelength profile. [From the experimental
asymptotic values a  (A), one can then reconstruct f(A},
i.e., the “effective” line shape function of the probe laser. ]

We now recall from Eq. (9) that the temporal behavior
of the detuned transient is given by that of D, through
S(D,). Since a(,A) = f[ D, ()], we can evaluate D, (#)
directly from the experimental a(£;A). We now outline the
algorithm for the inversion product. First, construct the in-
verse function of f(8), say A(f). This will yield D, as a
function of a(#;A). By definition of the inverse,

D,y (1) =h[a(5d)], (13)
so that from Eq. (10),

Vi) — A= hla(54)]. (14)
Thus the desired potential is given by

Vi(e) = A+ h(a,), (15)

where we use the abbreviation a,=a(f;A). [Note that
h(a,) can be of positive or negative sign.] Equation (15) is

an explicit formula yielding the excited-state potential ¥/, (in
the region of large R; i.e., small detunings) directly from the
a(r,A) data base.

For the Lorentzian line shape case, using Eq. (8), Eq.
(15) becomes

Vit =Aty(e ' — D2 (16)

From Eq. (6), the ¥,(R) curve is immediately obtainable
from the V(1) points but with an abscissa defined only to
within an unknown constant; i.e., the abscissa is a relative
separation R or a “difference in R ”’; i.e., R + const.

We now illustrate the concept of the inversion proce-
dure by a simple graphical example, shown in Fig. 5. As a
data base, we employ the uncorrected “raw data”® FTS
curves of Ref. 2;i.e., I(£;A) for A = 0,40, and 106 cm ~ !, and
plot them as smoothed curves of a(fA). The asymptotic
values @, (A) were fitted (see above) by a Lorentzian func-
tion [Eq. (8)] with =38 cm™'; we take this as the line
shape f; (6). First, we analyze the on-resonance transient
(A =0) in Fig. 5(a). The smoothed a, graph is aligned with
the line shape function f; (6), where we identify the §’s with
deviances D, [Eq. (10)]; here, D, = V(¢ ¥). Taking a set
of points @ at convenient (e.g., equal) time intervals, we
obatin a set of corresponding D, values ranging from essen-

(a)

viem-1

{b)

Deagem-t

Viem-1

FIG. 5. Graphical analysis of FTS dataof Ref. 2(a). (a) A =0, (b) A =40
cm ™' Upper left: a(1); upper right: £, ; lower: derived ¥V, (1) (see the text).
The zero of time is arbitrary in this case.
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tially zero to ~200cm ™!, so that the results can be plotted in
the form of V(¢ *) for each of the chosen 7 *’s, shown below,
defining a smooth curve of the desired potential V| (¢) over
the range 0-200 cm ~'. Next, we take the data set for A = 40
cm™! [Fig. 5(b)]. Here, the line shape function (D, _ )
is plotted vs D, + A;i.e., displaced by 40 cm ~ ' such that the
abscissa is ¥, [via Eq. (10) }. Once again, a set of points a is
taken at convenient ¢ }; reading across to the f graph, we
locate the values of ¥, (t¥), which are then plotted as ¥, (2),
below. Note that here are two “branches” of the a, graph
corresponding to the two branches of the f graph; for
t <., @, Points correspond to positive values of D, and
fort> t,,.., tonegative D, . Because of the detuning (A = 40
cm™'), this experiment probes ¥, up to a higher range of
repulsions, roughly higher by the amount of the detuning, 40
cm ™. Thus, the derived potential now extends to smaller ¢
and larger V; the more so for larger detunings A (to thered).
A composite V,(¢) is shown in Fig. 6. It is clear that the
spectral breadth of the probe laser is advantageous, in a lim-
ited way, because of the redundancy in the deduced ¥, (1)
from the inversion procedure, which makes use of (at the
very least) the entire FWHM in A, to probe V,(¢).

A somewhat more instructive illustration of the present
inversion scheme is presented in what follows: a computer
simulation of experimental “data” of the form of 7(£;A), to

200 4

100 1

Viem-1

50 4

20 1

10 T T
0 200 400 600 800 1000

t'/fs

FIG. 6. Composite graph of V'(¢) (semilog presentation), based on results
of Fig. 5 for the FTS data for A = 0 and 40 cm ™. Because the time axes of
the raw data curves were not related, a shift of 80 fs was arbitrarily applied
to one of the ¥(¢) curves of Fig. 5 to bring both experiments into consisten-
cy. The resulting overall ¥(¢) graph shows the desired redundancy and ex-
tended range, up to about 300 cm ~'. The composite line drawn through the
points is an exponential, ¥ = 300 exp[ — (¢ — 200)/230] cm !, withzinfs
(Ref. 6).

which is added a random noise component to mimic typical
experimental points. The resulting “data base” is inverted by
an objective, bias-free computer algorithm to yield “experi-
mentally derived” V,(¢) points to compare with the origin-
ally assumed V,(?).

We take a simple analytical potential for V,(¢), namely

V,(t) = A exp( — Bt) 17

with constants chosen such that ¥V, (¢) is somewhat “realis-
tic” (cf. Fig. 6). For simplicity, we assume a simple Lorent-
zian functional form for the spectral profile of the probe
laser, Eq. (8), with ¥ = 40 cm . Recall that,

a(tA)y =f[V(1) — Al (18)

For the Lorentzian profile, utilizing Eq. (8) for f(§), we
obtain

a(tA)y ={1+[(V—-A)/y}*} (19)
Given the potential constants A and B, and the chosen 7, we

t/1s

300 q

250

V/em-!
g

t/fs

FIG. 7. Computer simulation of FTS data from an assumed V,(¢), with
computer inversion of each detunig “data set™ to lead to the pointwise po-
tential ¥, (¢}). (a) Solid curves: calculations [via Eq. (19)} of a(;,A) fora
model problem [flat ¥,; exponential V,(¢) from Eq. (17) with 4 = 10°
em™', B=10"2 (fs) '], at specified detunings A toward the red. Points:
simulated experimental points obtained from smooth calculated curves by
the addition of random noise with & = 0.02. (b} Inversion of the simulation
to yield ¥, (¢) from Eq. (16). Symbols for points correspond to individual
data points from panel (a}. Solid curve: the input to the calculation, i.e.,
V(1)
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use Eq. (19) to compute the surface a(#;A) in the form of
curves of a(t), 0 < t<750fs, for A = 0, 25, 50, 100, and 150
cm~ . Tosimulate data points, random noise increments 8a,
chosen to yield a standard deviation o = 0.02, are applied to
a(t) at suitable values of ¢. Figure 7(a) displays the exactly
calculated a(r) curves with typical set of simulated data
points superimposed. It is these discrete data points are are
now used in the inversion procedure.

From Eq. (19), we obtain experimental points V,(¢;)
from

Vit)=A+y@ '—1)? (16"

for each experimental data point &, (=a(¢;);A). Results are
plotted in Fig. 7(b), showing the reduncancy associated
with the overlapping data from differing detuning incre-
ments A. It is seen that the inverted V,(¢; ) points are a satis-
factory representation of the assumed V,(¢), plotted as a
smooth curve. The “noise” in the data is transmitted
through the inversion procedure but is not significantly am-
plified in the resulted inverted potential; i.e., there is no dele-
terious “leverage” operating against the inversion. (This has
been verified by a number of similar computer experiments
with different level of random noise built into the data base.)

In all that has preceded, there has been an unrealistic
assumption about the “flatness” of the second excited-state
potential curve V,(¢) in the long-range region; i.e., suffi-
ciently large R such that R is linear in ¢ [Eq. (6)]. Next, we
consider the influence of a more realistic ¥,(?).

Case 2. Two repulsive surfaces

Figure 8 shows the simplest example of relevant poten-
tial curves, with both V() and V,(¢) being monotonic, re-
pulsive functions. For the analysis that follows, we define a
difference potential AV (¢):

AV(t) = V(1) — V,(1) + w5, (20)
VoVi Vo
i A+ B*
w EXC flwz
g =
0 P AT B
)‘\
—Das —

AB

FIG. 8. Schematic potentials for case 2: two repulsive potentials V,(R),
V,(R) as shown; also AV,(R) as defined by Eq. (20). ¥, and ¥, are the
same as in Fig. 2. Vertical lines denote A4 %,, etc., indicate the probe-laser
wavelengths required to excite the separating system at the specified separa-
tion R *, etc. Because of the nonzero slope of ¥,, the valuesof R ¥, R %, and
R *, etc., here are all smaller than those for the flat case ¥, (case 1) shownin
Fig. 2. Here the probe “penetrates” to shorter separations and thus shorter
separation times.

which governs the detuning; i.e., a given detuning increment
A now corresponds to the difference potential AV (¢) rather
than to ¥, (¢) as before {[when V, () =fiws for time t>¢,;, ].
Thus, the present inversion procedure now yields AV(?),
rather than V,(¢) itself. It is important to realize that the
dynamics of the half-collision are governed entirely by E,,
and V(1) it is only that the detection procedure (whether
LIF or MPI) involves the energy difference V,(t) — V,(t)
and thus (at least in the simple example of Fig. 8) a given
detuning A will now probe smaller values of  and thus larger
values of V,(t). Note that, if V,(R) is “too similar” to
V,(R), that at even small detunings A we are no longer prob-
ing in the long-range region of ¥, (R) and thus may have lost
the linearity of R vs ¢ and thereby the congruence between
V(R) and V(z). However, if the smallest R probed, say R *,
is such that V,[¢(R *)] €E,,,, then the inversion procedure
will yield A¥V(z), where the conversion from A¥F(z) to
AV(R) is governed only by the linearity R vs ¢ of Eq. (6)
with v calculated for the lower; i.e., the dynamically relevant,
excited-state potential, ¥,(R). [Thus we employ the R(¢)
relation for ¥, (R) to convert AV (z) to AV(R), regardless of
the (irrelevant) possibility that R(¢) is nonlinear on V,(R)
in the R range probed; only the trajectory on the lower curve
V,(R) determines the lower limit of R for which the inver-
sion procedure is valid.] As discussed later, when the pump
pulse is tuned instead of the probe, information on ¥,(¢) is
obtained.

Case 3. Repulsion with an attractive van der Waals well

Next we consider the more realistic situation in which
V,(R) [and possibly ¥,(R) as well] contains a long-range
attractive (van der Waals) well. First let us examine the
consequence of such a well in ¥, (R) [with a flat potential
V,(R)1; Fig. 9 shows an example. The main new feature is

Vo ViV
T A+B*
> —F -
£ e Moo |\ Xan YA i ez
w - B U Lt
W ) [N IO [ =0
L e N
R R b Y A+
R(0) R R®
)‘1
—Das & ]
AB

FIG. 9. Schematic potentials for case 3: ¥,(R) has a van der Waals well.
Here we assume a flat V,(R), Vertical lines as before indicate the probe
wavelengths for exciting the separating system at the specified separations.
Note that the zero crossing of ¥, (R) leads to an on-resonance detection at a
finite delay time at R(0Q); for longer times, detection requires detuning to
the blue. There is a maximum blue detuning corresponding to the van der
Waals minimum, i.e., — A<e (see the text), here shown as a’(4 %, ). De-
tuning further to the blue results in the disappearance of any transient sig-
nal.

J. Chem. Phys., Vol. 90, No. 2, 15 January 1989

Downloaded 11 Dec 2006 to 131.215.240.9. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



R. B. Bernstein and A. H. Zewail: Femtosecond Probing of reactions. il 835

E:

vi(t)

Vit) i
/_ZZZ'zfz’zZ}_ZZz"zzZ]J%EEZZJ.ZiC/AZzB f
R T A TR 77T S @
R A TR AT 7R 272 AT d
A AL T 7T A ©
FRLERR 7T TLELL T SAFED b
LI AR ,523 a

. o, 6 tl’

FIG. 10. Schematic potential ¥, (¢) exhibiting a minimum, with ¥,(¢) tak-
en to be flat. Here we assume a constant spectral bandwidth 5w and a con-
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the transient crossing of the zero of the potential at a time ¥,
so that, for on-resonance detection (A = 0), a sharp rise in
signal should occur but, instead of reaching consistancy,
there is a peak only near ¢ %, followed by a decay. Here we
also expect to be able to observe transient signals for blue
shifts, provided that the magnitude of the detuning shift is
less than the van der Waals well depth say e:

— A<e. 21

Tuning systematically to the blue, the disappearance of the
transient signal should thus reveal the depth of the wellin ¥/,.

Another feature of the expected transient behavior is
illustrated in Fig. 10, namely, the trend in temporal response
near the peak signals. As long as the time interval §f required
to traverse a region of ¥ of 8V governed by the probe laser
spectral bandwith (e.g., ¥ =2y, as shown) is longer than
the probe laser pulse duration &z, , then the signal peak
height should be constant, the same for all detunings A,
namely, @,,.,, = @,,,, = 1. Butfor ¢ < 8¢, , the peak intensi-
ty will be smaller:

apeak

(22)

=a L <1
max peske = ‘StL .
Here ap..« <1 because the time of passage of the recoiling
fragments through the increment of time ¢ (and thus of
separation 6R) corresponding to 8V is now shorter than the
probe laser pulse duration, so the “duty factor” is less than
unity. This fall-off of &, Will not occur if 61>6¢, .

Let us now work out the dependence of this “critical”
condition upon the potential. Since &t =&V /V,, where
V,=dV,(R)/dt,

(V)eie =8V /61,. (23)
Thus, “too-fast passage” will occur if ¥, > (V). =8V /
6t,. For the ideal case of a transform-limited pulse,

(hc 8E)St, =h, so that for Vincm ™', §¥ = 1/cét, . Thus,
Eq. (23) for (V). becomes

a

(V) ere = 1/¢(82,), (24)

inversely proportional to the square of the pulse duration.
[Thus, for &8t, =1 ps, ()i =33 cm~'ps—; for
6ty =40fs, (V) =2.1X10* cm™' ps! or a change of
840 cm ™! within one 40 fs pulse duration].

Making the connection to V(R), we note that

: av.\. :
v, = (d—R‘)R = F,(R)R=F,(R)v,

(25)
where F, (R) is the magnitude of the force at R, and v is the
terminal velocity [cf. Eq. (3) ], since R=v in the long-range
region of validity of Eq. (6). Thus,

(Fl)crit = [CU((SIL)Z].‘IEF““. (26)
Expressing the forceinecm=' A=, vinkm s~ ' and &t inps,

F/cm 1A'= 3.3[(v/kms™ ") (8¢, /ps)*] "
(27)

For 6t; =1 psand v=1kms™ !, F,, =33 cm~ 1A,
implying that the fast passage condition, @, <1, will apply
except for very “flat” regions of the potential. For ¢, = 40
fs (keeping v=1 kms™"), F, =2X10* cm™'A~}, a
much less restrictive condition, so the “useful” range of R *,
and thus of detunings A, over which a,.,, =1 is much
broader.

In summary, the problem of too-fast passage limits the
observability of the detuned transients; the shorter the probe
laser pulse duration, the larger the useful detuning range and
thus the range of V| probed.

Case 4. Two potentials with attractive van der Waals
wells

Finally, we consider the very general case in which both
V,(R) and V,(R) posses long-range attractive wells. Sever-
al possibilities can be examined, as shown schematically in
Figs. 11 and 12. Plotted in each panel are ¥,(#), V,(¢) and
the difference potential AV(¢), defined in Eq. (20). The
functional forms chosen were adaptations of Exp-6 poten-
tials, but with ¢ replacing R, i.e.,

V(t) =elexp(l — Z) —2Z ~9], (28)
where € is the well depth, Z = ¢ /t,, and ¢,,, the time at which
V(¢) is a minimum. The examples shown are for systems in
which the upper and lower curves are displaced and of une-
qual well depths. In one case, AV(¢) is positive at large ¢,
implying red-shift detection, while for the other, AV(?) is
negative at large 7, passing through a minimum and becom-
ing positive at smaller ¢ (as in Fig. 10), thus indicating that
blue-shift as well as red-shift detection will be successful.
The existence of maxima and minima in A¥(¢) implies
“rainbow-like” behavior, with double peaks and cutoff val-
ues of detunings A (either to the red or the blue).

Using the AV(¢) from Fig. 11(a), calculating the #,4
spectra yields the detuned transients a(#A) shown in Fig.
11(b). After the introduction of noise as before (¢ = 0.02),
these “simulated experiments” have been inverted by the
present method, characterized by Eq. (16). It is remarkable
that the inversion leads to a recovery of the nonmonotonic
AV(1) curves, as shown in Fig. 11(c). For the other case,
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with a different shape of AV(z), analogous results are pre-
sented in Figs. 12(a), 12(b), and 12(c).
B. Shapes of transients and the asymptotes

In FTS experiments, the spectral width of the probe la-
ser pulse is known at each value of the detuning A. In Fig. 13,
a schematic illustration is presented that shows three spec-
tral profiles (assumed to be Lorentzian, all of the same width

10,200

Valt)
10,100 1

10,000

2\

200 -

Viem-—1

100

R. B. Bernstein and A. H. Zewail: Femtosecond Probing of reactions. lil

in frequency, namely, ¥ = 50 cm ™), for the probe laser at
A =0, 50, and 150 cm~!, “looking in” at a potential that
possesses a minimum.

For on-resonance detection, A = 0, it is clear that there
will be a peak, with .., = 1, at #(R, ), and, after a fall,
another rise to a constant, asymptotic value of a = 1. Note
that, even for on-resonance detection (A = 0) of the speci-
fied photofragment, the red wing of the probe laser profile

(a)

FIG. 11. Schematic potentials and

-100

FTS calculations for case 4: ¥, and V,
with attractive van der Waals wells.
(a) V,(8), V,(¢8), and A¥(r), chosen
so the difference potential is repulsive

400
t/fs

200 250 300 350 450

500 at long range (note that it possesses a

maximum at shorter range, however).
(b) Calculated transients, i.e., simu-
lated FTS data similar to that of Fig. 7;
solid curves are exact, points are calcu-
lated by the addition of random noise
with 0 =0.02. (¢) Inversion of the
simulation to yield AV(¢), via Eq.
(16). As in Fig. 7, symbols for points
correspond to individual data points
from panel (b); solid curve is that
from panel (a).
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FIG. 11 (continued).

—200 T T
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will allow detection of the fragment at smaller separations R
and thus earlier times ¢. For the examples shown, a would
reach 1/10 at a time corresponding to R, and 1/2 at a time
t0,=t(R,).

Now consider detuning by A, as shown (choosing
A =y;i.e., 50 cm ™ to the red). Here, a will rise to its peak
value, @, = 1 (assuming the slow-passage limit) at a time
corresponding to R, ;i.e., at#(R,, ) =t$,, as defined above,
based on the A = 0 transient. Thereafter, a will decrease to

10,200

T T 1
500 550 600

its asymptotic value, say a( o0;A,;) governed by the relative
intensity of the blue wing of the probe laser, here 1/2 (since
A, happens to be equal to the half-width y of the frequency
profile).

Next we predict the behavior for the larger detuning,
A, = 3y. Here, a will rise to its peak value of unity at an
earlier time, £ = #(R,, ), which time also corresponds to the
attainment of a = 1/10 for the A = O transient. Thereafter,
a will decline to its asymptotic value a( o0;A,), here 1/10

Va(t)
10,100
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AN\

AN
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FIG. 12. Similar to Fig. 11, case 4, but
with ¥, (¢) and V,(#) chosenso A¥(¢)
has aminmum at long range (panela).
(b) Calculated transients, as in Fig.
11; solid curves are exact, points are
obtained by addition of noise with
o =0.02. (c¢) Inversion of the simula-
tion to yield AV(¢) as in Fig. 11.
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FIG. 12 (continued).
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(based on the relative intensity of the blue wing of the probe
laser detuned to A,, as seen in Fig. 13).

Thus, the asymptotic signal levels a( «;A,) simply map
out the spectral profile of the probe laser when tuned on
resonangce, i.e., f(8) of Eq. (7), for A = 0 (which is expected
to be very similar in shape for all A’s, as portrayed in Fig.
13). This is better illustrated in Fig. 4, based on the uncor-
rected experimental transients of Dantus ez al.2® (Asnoted
earlier, the asymptotic values of a are found to define a near-

T T 1
500 550 600

Lorentzian function with a best-fit half-width y =38 4+ 5
cm™ ')

The experimental implication of this subsection is that
one can interpret the asymptotic signal levels a( oc;A) as the
effective spectral line shape of the probe laser, i.e., f(5) in
Eq. (7), where 6 is now identified with A above.

As seen in Fig. 13, if the potential ¥, (more correctly,
the difference potential A¥') has a minimum, probing with
blue detuning out to the “rainbow edge” corresponding to
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FIG. 13. Schematic potential ¥,(R) with van der Waals minimum [assuming flat V,(R)]; probe laser spectral half-width taken to be ¥ = 50 cm ™',
detunings A = 0, 50, and 100 cm ™. For the on-resonance setting, i.e., A = 0, the peak signal of the transient would occur at z ¥ (R, ). However, at a shorter

time, for the on-resonance transient, t ¥ (R,, ), where V,(R, ) = ¥, the signal would reach a = 1/2 (half-maximum); at still shorter time ¢ ¥ (R, ), where
V,(R,,) = 3y, thesignal would reach 1/10 maximum, etc. Detuning by A = 50 cm ™' would result in a transient peaking (witha = 1) att¥(R,, ), declining
thereafter to an asymptotic valueof @ = 1/2. Detuningby A = 150 cm ™' would yield a transient peaking (with @ = 1) at¢#(R,, ), falling to an asymptotic

value of a® = 1/10, etc. (see the text.)

the conditions of Eq. (21) should make it possible to evalu-
ate the depth € of the well in AV. From on resonance to this
limit of the blue detuning, the asymptotic signals should be
governed as above simply by the spectral line shape f(§) of
the probe laser.

C. Influence of pump laser wavelength

In Sec. II A, we have seen how it is possible to acquire
information on the difference potential A¥(z) by the inver-
sion of the detuned transients. It would be desirable to “sepa-
rate out” the upper (¥,) from the lower (V;) potential,
since it is the latter, i.e., the potential for the dissociating
fragments, that is of fundamental interest for the purpose of
femtochemical dynamics. After all, in the photoinitiated
unimolecular reaction, the transition state is, by definition,
located on V,(R) at separations R>R, (cf. Fig. 2). The role
of V, is merely one of convenience for LIF detection (or, ina
slightly different sense, for MPT detection). To gain infor-
mation on V,(R), we can make use of on-resonance probe
laser detection, but with systematic variation of the pump
laser wavelength (i.e., variation of A, at constant A, = 4 5 in
Fig. 2).

In what follows, we treat the simple example of this kind
of pump-wavelength dependence study, and then consider
some possible complications, which can limit the informa-
tion obtainable from this pump-laser inversion scheme.

Case 1. Exponential repulsion

For simplicity, here we follow Bersohn and Zewail® and
assume an exponential repulsive potential for V| and a flat
potential for V,. Thus,

V.(R) = Aexp( — R /L), (29a)

SO

V,(Ry) = E=Aexp( — Ry/L), (29b)

ie.,
Vi(R) =Eexp[ — (R —Ry)/L]. (29¢)

From Fig. 2, it is recognized that E is simply E,,,, so Eq.
(3) has been written as R = v(1 — V,/E)"? We denote by
t¥(E,A) the time required for the separation of the frag-
ments from their initial value R to that, R *(A), interrogat-
ed by the probe laser at a chosen, constant value of the detun-
ing A. This is the observable “delay time” from the pump
pulse to the peak of the a(#;,A) signal. It can be evaluated via
the quadrature:

t*EA) = R‘d—R—i R'

o R

R, U Jgr,

dR /(1 — V,/E)'?,

(30)
where v = (2E /u)"*=v(E).
For the assumed potential of Eq. (29), this leads to

x*

t¥*(EA)v(E) =J. Ldx/(1 —e—%)"?, (31)

0
where x=(R — R,)/L and x* = x(R *). Thus, simplifying
the notation in an obvious way, and evaluating the integral,

tw=Lx*+2LIn[1+ (1 —e *)"?]
~(R*—Ry)) +2L n2=c(A) — R, (32)

where c(A) is a constant at the given detuning A of the probe
laser. However, both R, and v are functions of E.

Here, we have made the usual assumption, as in Sec.
IT A, that E,,, > V(R *) [cf. Eq. (4)]. The result (32) is
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that the product fv depends linearly upon R *
have been expected.
We now express R, in terms of E by using Eq. (29b):

— R, asmight

Ry=LIn(4/E), (33)
$0

tv=R*—LIn(4/4) + LInE, (34)
or

tX(EA(EyY=LInE+a(h), (35)

where a(A)=R *(A) — LIn(A4 /4) is another constant at
the given detuning A, held fixed for the pump laser wave-
length dependence study under consideration.

Thus, a plot of vz vs in E should be nearly linear, with
slope L, i.e.,

d(vt)
dinE

irrespective of A. (This result is implicit in the work of Ber-
sohn and Zewail.?)
We recall that, for the assumed exponential potential,
= —dlnV/dRand R,=dIn A /E, so

=L, (36)

[ = __9Ro _ dwn) (37)
dmnE dhnE
or
_ dRONd(vt) (38)
dE dE

consistent with Eq. (32). Thus, we learn about the energy
dependence of R, [and thus the local slope (dV /dR), ]
from the observable dependence of vt upon E. Of course, for
a very steep potential [L € R,(E)], vt will be essentially con-
stant [cf. Eq. (36)] over a small range of E since, via Egs.
(32) or (39), tv is essentially measuring Ry(E) on a 1:1
basis.

In conclusion, from the slope of a plot of vt vs In E one
obtains essentially the logarithmic derivative of the potential
V,(R) in the neighborhood of R,(E). It can be conjectured
that this result is nearly independent of the shape of the po-
tential at larger separations; i.e., that small excursions in £
yield “local” information about the potential near R,, irre-
spective of the functional form of the potential. This will be
examined in the next case considered.

Before leaving this subsection, we can make contact
with an earlier general result {i.e., Eq. (6)]. Equation (34)
can be rewritten:

R*(A)=v(E)t¥(EA) + F(E),
where F(E) is an obvious function of E.
Thus, for a pair of experiments at fixed E,

R*(A,) —R*(A) =v(E)[t3(EA) —t3(EA)D]
(40a)

(39)

ie.,
R¥—R¥=v(t¥—1t¥)
(in simplified notation ), in accord with Eq. (6).

(40b)

Case 2. Linearized potential

As an extreme case, we consider a linearized potential
for V,, obtained by expanding in x around R, namely

Vi(R)
z (41)

x2
=1—-x+ 5 +
where, as before, x=(R — R;)/L, here assumed <1. Re-
taining only the linear term (neglecting the higher-order
terms in x), we have for the denominator of Eq. (30) simply
x. Thus we obtain, by integration,

w=2L"*(R*—Ry""?,
where, as before, R * = R *(A).

This result differs in a fundamental way from that of Eq.
(32), in which the product #v is linear in R * — R, as expect-

ed. The reason is apparently the too-early truncation of the
expansion of the potential [Eq. (41)].

(42)

Case 3. Inverse-power repulsive potential

Here, we consider an inverse-power repulsive potential
for V,(R) of the form

Vi/E= (Ry/R)". (43)
Thus, from Eq. (30),
R *
= J dR . (44)
Ry [1_(RO/R)"]1/2
Letting y = RO/R and y* = Ry/R *, this becomes
w=R, _(=dy (45)

1y 2(1 — ) 201 /2’
the only elementary solutlon of which is for n = 2. Here, we
find

(1 — y*2)1/2

w=R, = (R*®-R)'?
y*
= (R*—R))*(R*+R;)'"?, (46)
where, as before, R * = R *(A).
As for case 2, the result is nonlinear in R * — R,, so the

simple and near-intuitive result found for the exponential
repulsive potential (case 1) cannot be considered general.
Nevertheless, for case 3 as for case 2, pump-laser wavelength
variation experiments carried out at fixed probe-laser wave-
length (and thus at constant R *) do appear to be sensitive to
the energy dependence of R, and thus to the shape of the
repulsive potential near the separation Ry (E).

Such experiments should probably be analyzed accord-
ing to case 1, i.e., by examining the pump-laser energy de-
pendence of the vt product, which, to a zero-order approxi-
mation, should be constant. Deviations from constancy, if
detected, should indeed lead to information on V,(R) near
R,

ll. INFLUENCE OF OTHER DEGREES OF FREEDOM:
BEYOND THE SIMPLE DIATOMIC

Thus far, we have considered only the simplest situa-
tion, namely, the dissociation of a diatomic (or quasidiato-
mic) molecule proceeding via photoexcitation from an at-
tractive ground electronic state to the repulsive branch of an
accessible excited electronic state. For this case, the present
inversion procedure should be appropriate to the extent that
the motion of the separating atoms can be approximated by
classical mechanics. The conditions for the validity of the
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classical mechanical treatment of collisions and half-colli-
sions are well known. Recent quantum mechanical (wave
packet) simulation of the ICN experiments’ has actually
reproduced the main features of the classical mechanical
model.’

There are several classes of diatomics that fail to satisfy
the criterion of a single, simple repulsive state, e.g., cases
involving excitation to predissociating states or states that
involve curve crossing en route to dissociation. It goes with-
out saying that, for triatomic (or polyatomic) molecules, the
additional vibrational and rotational degrees of freedom will
significantly complicate any simple, one-dimensional classi-
cal approach. In what follows, we shall consider briefly the
influence of these complications with a view to preserving
some of the advantages of the present, simple inversion tech-
nique.

A. Diatomics

Here we consider two (related) sources of complica-
tions to the present inversion treatment for diatomics. Case 1
concerns the role of a predissociating excited state and case
2, to a repulsive one that involves curve crossing in the exit
channel.

Case 1: Predissociation and the interhalogens

There are many well-known examples of excited states
of diatomics that are predissociative, i.e., whose potential
curves V(R) have a well, followed by a (rotationless) bar-
rier en route to dissociation. This leads to the familiar
“breaking off”” of the emission spectrum at a definite value of
the vibrational quantum number as well as the appearance of
a few diffuse rotational lines in absorption associated with
tunneling through the barrier (near its maximum) (Ref. 8).
Well-studied examples include the B(Il,, ) states of the
diatomic interhalogen molecules, e.g., IBr, IC], and BrF
(Ref. 9). The origin of the barrier is the “intersection” or
avoided crossing at R = R, of two diabatic potential curves
of the same symmetry leading to a pair of adiabatic curves,
whose splitting is AE(R, ) =2H,(R, ), where H, is the
matrix element of the Hamiltonian coupling the two states.
The barrier height is related simply to the energy at the
crossing point by subtracting half the splitting; i.e., H, (R, )
(Ref. 10).

Oscillatory behavior in the predissociation behavior in
the spectra of diatomics is also observed and interpreted in
terms of resonances (quasibound states below the barrier
and in the neighborhood of the barrier maximum) (Ref.
11). From the present viewpoint, provided that the barrier
maximum is located at relatively small R and its height ex-
ceeds the greatest red detuning (A) value of the probe laser,
it should be possible to carry out FTS experiments and exe-
cute the present scheme to yield information on the long-
range part of the repulsive B(*I1,_ ) potential. This implies
feasibility for the three above-mentioned interhalogens,
whose barriers are all > 550 cm™".

Case 2. Curve crossing and alkali halides

Of more immediate relevance is another class of diatom-
ics, namely, the alkali halides (MX), two of which, Nal and

NaBr, have now been studied using the FTS method.? Here
the femtosecond pump pulse excites the salt molecule to a
repulsive, covalent state. As the MX falls apart, reaching
internuclear distances close to the crossing point R, between
the covalent (M + X products) and ionic (M* + X~ prod-
ucts) diabats, depending upon the relative velocity at R,
there is a finite probability of continuing along the diabat to
form M + X or being trapped within the adiabatic well.

The experimental results® show convincing evidence of
‘“trapping resonances.” A semiquantitative analysis con-
firms the interpretation, based on fairly well-known poten-
tials and standard Landau-Zener curve-crossing theory. A
simple wave-packet theory seems well suited for the descrip-
tion of the overall process,'? and the present classical me-
chanical inversion procedure for these “curve-crossing sys-
tems” can easily be extended.

B. Triatomics

The first molecule to be studied experimentally using
FTS was the triatomic ICN,"? and the detuning experiments
interpreted” using a quasidiatomic approximation (which
treatment formed the basis for the present approach to the
inversion problem). Obviously, the presence of a diatomic
fragment, here CN, forces one to consider the additional
degrees of freedom of CN.

First of all, even at the classical mechanical level, there
are a variety of trajectories of the separating particles asso-
ciated with the formation of the CN in different vibrational
and rotational states (for the given electronic state). These
originate from the different initial configurations and phases
of the intramolecular motions of the triatomic.

There are classical models that contain the essential
physics of the process.'? They relate the initial bond angle of
the electronically excited triatomic to an impact parameter b
and to the final rotational angular momentum of the diatom-
ic fragment, also taking into account the initial rotational
angular momentum (if any) of the ground-state triatomic.
For the simplest case of a linear excited state, and for a rota-
tionally cold triatomic, there should be negligible rotational
excitation in the product so the centrifugal potential will be
small and the effective potential
[View (R,b) = V,(R) + Eb?/R?] not very much different
from ¥V, (R), so the present analysis would still be appropri-
ate.

Even for situations in which the diatomic is substantial-
ly rotationally excited, as long as a specific J state is being
probed and thus a specified relative velocity v used in the
analysis, the results may yield information on the effective
potential ¥V, (R) for a fairly well-defined b, from which
V1 (R) might be deduced. In other words, by careful analysis
of the I(z,A) surface for different rotational states, one may
be able to construct the angular dependence of the poten-
tial.2¢© A full classical trajectory (or better, quantal) simu-
lation like those of Ref. 14, a posteriori, would be helpful to
“close the loop” and confirm the potentials that establish the
dynamics of the half-collision.

C. Symmetric tops and larger molecules

Photofragmentation dynamics of symmetric-top mole-
cules, like the alkyl halides, have been studied by many
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workers.!> As early as 1937, Fink, Porret, and Goodeve'®
showed that the continuum absorption spectra of the methyl
halides could be well explained by a simple quasidiatomic
approximation involving repulsive excited-state “pseudo’-
potentials ¥, (R) with R theseparation between the center of
mass of the methyl radical and the halogen atom. This model
was extended to isotopic methyl halides'” and checked for
consistency by measurements of isotope effects in the photo-
lysis of methyl bromide.'® To the extent that the diatomic
model is appropriate to describe the photofragmentation,
the present inversion technique is applicable.

Recently, picosecond transient detuning experiments in
molecular beams have been reported* for CH;I and, al-
though the transients were too fast to be resolved on the ps
scale, both the red- and blue-shift asymptotic signal levels,
a{ «;A), showed the expected behavior, i.e., mirroring the
effective spectral line shape of the probe laser.

A more reasonable approximation for the methyl ha-
lides is the pseudotriatomic model used by Shapiro and Ber-
sohn,'? in which the three H atoms are assumed to remain in
aplane and to vibrate with respect to the carbon (and thus to
the halogen). The near-resonant Raman observations of
Imre et al.*° require a model of at least triatomic character
where the dissociating coordinate and the umbrella motion
are considered explicitly. FT'S experiments on these systems
should reveal the coupling among the different degrees of
freedom in a manner similar to the studies made for alkali
halide systems.?

IV. CONCLUDING REMARKS

In this paper, we have presented a method for inverting
femtosecond transition-state spectral data to obtain the po-
tential energy surface (curve) for the dissociating mole-
cules, making use of the key FTS observables: the I(;1)
surface and the asymptotic wavelength dependence of the
intensity of the transient signals. Illustrative inversion pro-
cedures have been demonstrated using the “raw” experi-
mental FTS data® of Dantus ef al.,>®® on ICN and comput-
er-simulated ‘“‘experiments” for model systems. (Because
the recoil velocity of fragments is typically of the order of 1
km s~, FTS experiments promise subangstrom “inversion
resolution” on the PES.)

The analysis presented in this paper represents an entrée
into the more general treatments of FTS data to deal with
angular-dependent potentials and the PESs of larger sys-
tems.

The coherence of the system was considered only
through the ¥ of the probe laser, but in the future it may be
possible to separate the coherence of the laser and the de-
phasing of the transition at 4 3 or A ¥, using well-known
techniques such as correlation functions or density matri-
ces.”!

Our goal has been to develop and illustrate a pracitcal
process of inversion and to discuss its possible applications
to present and future experiments. The simple method of
inversion presented here demonstrates that FTS is indeed a
direct probe of the potential at different interfragment sepa-
rations.
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