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Many model search strategies involve trading off model fit with model complexity in a penalized

goodness of fit measure. Asymptotic properties for these types of procedures in settings like

linear regression and ARMA time series have been studied, but these do not naturally extend to

non-standard situations such as mixed effects models, where simple definition of the sample size

is not meaningful. This paper introduces a new class of strategies, known as fence methods,

for mixed model selection, which includes linear and generalized linear mixed models. The

idea involves a procedure to isolate a subgroup of what are known as correct models (of which

the optimal model is a member). This is accomplished by constructing a statisticalfence, or

barrier, to carefully eliminate incorrect models. Once the fence is constructed, the optimal

model is selected from amongst those within the fence according to a criterion which can be

made flexible. We describe a variety of fence methods, based on the same principle but applied

to different situations, including clustered and non-clustered data, linear or generalized linear

mixed models, and Gaussian or non-Gaussian random effects. We show the broad applicability

and study the performance of fence methods by giving a number of examples, each supported

by simulation results or applied data analysis. In addition, we propose two variations of the

basic fence method, one utilizes a stepwise procedure to handle situations of many predictors;

the other introduces an adaptive approach of choosing a tuning constant involved in the fence

method. We give sufficient conditions for consistency of fence and its variations, a desirable

property for a good model selection procedure.

Key Words. Clustered Data, Consistency, Generalized Linear Mixed Models, Mixed Model

Selection, Non-clustered Data.
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1 Introduction

Many model search strategies involve trading off model fit with model complexity in a penalized

goodness of fit measure. Such procedures usually amount to minimizing a criterion function, which

may be expressed as

D̂M + λn|M |, (1)

whereM represents a candidate model,D̂M is a measure of lack of fit byM , and|M | denotes the

dimension ofM , usually in terms of the number of estimated parameters underM (see Remark in

section 2.2). The main difference between procedures is made byλn, wheren is the sample size.

This is called a “penalizer”, although some authors referλn|M | as the penalizer. For example, con-

necting the relative Kullback-Liebler discrepancy and the empirical log-likelihood function yields

the Akaike’s information criterion (AIC; Akaike 1973, 1974) whereλn = 2. The idea has allowed

major practical and theoretical advances in model selection and related fields (e.g., de Leeuw 1992).

A number of similar criteria have since been proposed, for instance, the Bayesian information cri-

terion (BIC; Schwarz 1978) in whichλn = log(n); a criterion due to Hannan and Quinn (HQ;

Hannan and Quinn 1979) in whichλn = c log{log(n)} andc is a constant> 2; and the generalized

information criterion (GIC; Nishii 1984, Shibata 1984) in whichλn assumes other values.

Although these criteria are widely used, difficulties are often encountered, especially in some

non-conventional situations. A broad class of such non-conventional cases are mixed effects mod-

els, including linear and generalized linear mixed models. For example, consider the following

linear mixed model,yij = x′ijβ + ui + vj + eij , i = 1, . . . ,m1, j = 1, . . . ,m2, wherexij is a

vector of known covariates,β is a vector of unknown regression coefficients (the fixed effects),ui,

vj are random effects, andeij is an additional error term. It is assumed thatui’s, vj ’s andeij ’s
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are independent, and that, for the moment,ui ∼ N(0, σ2
u), vj ∼ N(0, σ2

v), eij ∼ N(0, σ2
e). It is

well-known (e.g., Hartley and Rao 1967, Harville 1977, Miller 1977) that, in this case, the effective

sample size for estimatingσ2
u andσ2

v is not the total sample sizem1 ·m2, butm1 andm2, respec-

tively. Now suppose that one wishes to select the fixed covariates, which are components ofxij ,

under the assumed model structure, using BIC. Then, it is not clear what should be in place ofn in

(1), whereλn = log(n) (it does not make sense to letn = m1 ·m2). In fact, in cases of correlated

observations, such as the example here, the definition of “sample size” is often unclear.

Furthermore, suppose that normality is not assumed in the above linear mixed model. In fact,

the only distributional assumptions are that the random effects and errors are independent, and that

they have means zero and variancesσ2
u, σ2

v andσ2
e , respectively. Now, suppose that one, again,

wishes to select the fixed covariates using AIC, BIC, or HQ. It is not clear how to do this because

the likelihood is unknown under the assumed model.

Even in conventional cases, there are still some practical issues regarding the use of these model

selection criteria. For example, the BIC is known to have the tendency of overly penalizing bigger

models. In other words, the penalizer,log(n), may be a little too much in some cases (see, for

example, section 4 below). In such a case, one may wish to replace the penalizer byc log(n), where

c is a constant less than one. Question is: Whatc? Asymptotically, the choice ofc does not make a

difference in terms of consistency so long asc > 0. Here consistency means that, asn → ∞, the

probability that the procedure selects the optimal model (i.e., a true model with minimal dimension;

see below) goes to one. However, practically, the choice ofc does matter. For example, comparing

BIC with HQ, the penalizer of the latter is lighter in its order (log{log(n)} vs log(n)), but there is a

constantc involved in HQ. Ifn = 100, we havelog(n) = 4.6 andlog{log(n)} = 1.5, hence, if the

constantc in HQ is chosen as3, BIC and HQ are almost the same.
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In a way, model selection and estimation are viewed as two components of a process called

model identification. While there is extensive literature on parameter estimation in linear and gen-

eralized linear mixed models, the other component, that is, mixed model selection, has received

much less attention. Only recently have some results emerge in the area of linear mixed model

selection. Datta and Lahiri (2001) discussed a model selection method based on computation of the

frequentist’s Bayes factor in choosing between a fixed effects model and a random effects model.

They focused on the following one-way balanced random effects model for the sake of simplicity:

yij = µ + ui + eij , i = 1, . . . ,m, j = 1, . . . , k, where theui’s andeij ’s are normally distributed

with mean zero and variancesσ2
u andσ2

e , respectively. As noted by the authors, the choice between

a fixed effects model and a random effects one in this case is equivalent to testing the following

one-sided hypothesisH0: σ2
u = 0 vs H1: σ2

u > 0. In fact, hypothesis testing may be regarded as

a special case of model selection, but not all model selection problems can be formulated as hy-

pothesis testing (see further discussion in subsection 8.1). Jiang and Rao (2003) developed various

GIC’s suitable for linear mixed model selection and proved consistency of their procedures. The

authors also studied finite sample performance of their procedures by simulations. Meza and Lahiri

(2005) demonstrated the limitations of Mallows’Cp statistic in selecting the fixed covariates in a

nested error regression model which is a special case of the linear mixed models. The nested error

regression model is defined asyij = x′ijβ + ui + eij , i = 1, . . . ,m, j = 1, . . . , ni, whereyij is the

observation,xij is a vector of fixed covariates,β is a vector of unknown regression coefficients, and

ui’s andeij ’s are the same as in the model above considered by Datta and Lahiri (2001). Simulation

studies carried out by Meza and Lahiri (2005) showed that theCp method without modification does

not work well in the current mixed model setting when the varianceσ2
u is large; on the other hand,

a modifiedCp criterion developed by these latter authors by adjusting the intra-cluster correlations
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performs similarly as theCp in regression settings. Another related paper is that of Vaida and Blan-

chard (2005) who proposed a conditional AIC where the penalty term in this CAIC is related to

the effective degrees of freedom for a linear mixed model proposed by Hodges and Sargent (2001)

which reflects an intermediate level of model complexity between a full fixed effects model and a

corresponding mixed model conditional on the random effects variances.

It should be pointed out that all these studies are limited to linear mixed models, while model

selection in generalized linear mixed models (GLMMs) has never been seriously addressed in the

literature. In fact, our earlier simulation results suggested that in the case of GLMM selection, a

procedure like GIC is much more sensitive to the choice ofλn than in linear mixed model selection.

See further discussion in the sequel. It is these concerns, such as the above, that motivated the

development of a new principle for model selection that is potentially less subjective, and applicable

to both linear mixed models and GLMMs.

The rest of the paper is organized as follows. In section 2 we describe in detail a new procedure

for mixed model selection, calledfencemethod. A variation of the procedure known as F-B fence is

also proposed. In section 3 we consider estimation of a standard deviation, which plays an important

role in the fence method, and show how to utilize the fence in various situations involving clustered

and non-clustered data. In sections 4 and 5 we give a number of examples, each supported by

results of simulations or real data analyses, to illustrate the application of fence in various situations.

The examples include linear mixed models and GLMMs with clustered and non-clustered data.

In section 6 we propose an adaptive method of choosing a tuning constant involved in the fence

procedure. In section 7 we address the issue of consistency of different fence methods. Some

further discussion and concluding remarks are made in section 8. The proofs are given in section 9.
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2 The fence method

The essential part of this procedure is a quantityQM = QM (y, θM ), whereM indicates the

candidate model,y is ann× 1 vector of observations,θM represents the vector of parameters under

M , such thatE(QM ) is minimized whenM is a true model andθM the true parameter vector under

M . Here by true model we mean thatM is a correct model but not necessarily the most efficient

one. In this paper, we use the terms “true model” and “correct model” interchangeably. Below are

some examples ofQM .

1. Maximum likelihood (ML) model selection.If the model specifies the full distribution ofy up

to the parameter vectorθM , an example ofQM is the negative of the log-likelihood underM , i. e.,

QM = − log{fM (y|θM )}, wherefM (·|θM ) is the joint pdf ofy with respect to a measureν under

M , given thatθM is the true parameter vector. To see thatE(QM ) is minimized whenM is a true

model andθM the true parameter vector underM , let f(y) denote the true pdf ofy. We have

−E(QM ) =
∫

log{fM (y|θM )}f(y)ν(dy)

=
∫

log{f(y)}f(y)ν(dy) +
∫

log
{
fM (y|θM )
f(y)

}
f(y)ν(dy)

≤
∫

log{f(y)}f(y)ν(dy) + log
{∫

fM (y|θM )
f(y)

f(y)ν(dy)
}

=
∫

log{f(y)}f(y)ν(dy), (2)

using the concave-function inequality. The lone term on the right side of (2) is equal to−E(QM )

whenM is a true model andθM the true parameter vector.

2. Mean and variance/covariance (MVC) model selection.If the model is only specified by

the mean and covariance matrix ofy, it is called a mean and variance/covariance model, or MVC

model. In this case, we may considerQM = |(T ′V −1
M T )−1T ′V −1

M (y − µM )|2, whereµM andVM

are the mean vector and covariance matrix underM , andT is a givenn × s matrix of full rank
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s ≤ n. To see thatE(QM ) is minimized whenµM = µ, VM = V , whereµ andV denote the true

mean vector and covariance matrix, note that

E(QM ) = tr{(T ′V −1
M T )−1T ′V −1

M V V −1
M T (T ′V −1

M T )−1}

+|(T ′V −1
M T )−1T ′V −1

M (µM − µ)|2. (3)

The first term is the trace of the covariance matrix of the weighted least squares (WLS) estimator

of β with the weight matrixW = V −1
M in the linear regressiony = Tβ + ε, whereE(ε) = 0 and

Var(ε) = V . Since the covariance matrix of the WLS estimator is minimized whenW = V −1, i.

e.,VM = V , the first term on the right side of (3) is minimized whenVM = V . On the other hand,

the second term is zero whenµM = µ.

3. Extended GLMM selection.Jiang and Zhang (2001) proposed an extension of GLMM, in

which only the conditional mean of the response given the random effects is parametrically speci-

fied. It is assumed that, given a vectorα of random effects, the responsesy1, . . . , yn are condition-

ally independent such thatE(yi|α) = h(x′iβ + z′iα), 1 ≤ i ≤ n, whereh(·) is a known function,

β is a vector of unknown fixed effects, andxi, zi are known vectors. Furthermore, it is assumed

thatα ∼ N(0,Σ), where the covariance matrixΣ depends on a vectorψ of variance components.

Let βM andψM denoteβ andψ underM , andgM,i(βM , ψM ) = E{hM (x′iβM + z′iΣ
1/2
M ξ)}, where

hM is the functionh underM , ΣM is the covariance matrix underM evaluated atψM , and the

expectation is taken with respect toξ ∼ N(0, Im) (which does not depend onM ). Herem is the

dimension ofα andIm them-dimensional identity matrix. We consider the following

QM =
n∑

i=1

{yi − gM,i(βM , ψM )}2. (4)

It is easy to see that theQM given above satisfies the basic requirement, i.e.,E(QM ) is minimized

whenM is a true model andθM = (β′M , ψ
′
M )′ is the true parameter vector underM . In fact,
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(4) corresponds to theQM in MVC model selection just discussed withT = I, the identity matrix.

Note that, sinceV is not parametrically specified under the assumed model, it needs not get involved

in QM . Therefore, (4) is a natural choice forQM in this case.

2.1 Building the fence

Given a specificQM , let Q̂M = QM (y, θ̂M ), whereθ̂M is the minimizer ofQM overθM ∈ ΘM ,

the parameter space underM , that is,Q̂M = infθM∈ΘM
QM (θM , y). A model is calledoptimalif it

is a true model with the smallest dimension. Here the dimension of a modelM , |M |, is understood

as the dimension ofθM . However, it will be seen later that the method developed here is, in fact,

flexible in this regard. Notice carefully that the optimal model would be selected by minimizing

QM if one knew the true value ofθM . However,QM is something we do not have the luxury of

knowing and thus must base our selection onQ̂M . The initial thought was to consider something

similar to (1), that is, a criterion function of the form

Q̂M + λn|M |. (5)

However, we encountered the same problem as described earlier for a procedure based on (1).

Although we know that, under regularity conditions, as long asλn/n → 0 andλn/
√
n → ∞,

the procedure based on (5) is consistent, this only gives the order ofλn. In other words, there is

a constant involved, which in case of moderate sample size could make a bigger difference than

n itself (see our earlier discussion regarding BIC and HQ). It took us some time to figure out an

alternate solution. We arrived at the following thought.

LetM̃ ∈ M be such that̂QM̃ = minM∈M Q̂M , whereM represents the set of candidate models.

We assume thatM contains a true model. Note that in many cases,M̃ can be determined without



Fence methods for mixed model selection 9

any calculation. For example, ifM contains a full model, sayMf , that is, a model such that all other

models inM are submodels ofMf , then, clearly,M̃ = Mf and, sinceM contains a true model,Mf

is also a true model. In general,M may not contain a full model, but the following lemma shows

that, at least in large sample,̃M is expected to be a correct model.

Lemma 1. Under the assumptions A1 - A5 in section 7, we have with probability tending to

one thatM̃ is a true model.

The proof of Lemma 1 follows directly from that of Theorem 1 in the sequel.

However, the main question is, “Are there other correct models inM with smaller dimension

thanM̃?” To answer this question, we need to know what the differenceQ̂M − Q̂M̃ is likely to be

whenM is a true model, and how the difference might be different whenM is an incorrect model.

Suppose thatM∗ is a correct model. As it turns out (see arguments in the next section), ifM is

also a correct model, an appropriate measure of the differenceQ̂M − Q̂M∗ is its standard deviation,

denoted byσM,M∗ . On the other hand, ifM is an incorrect model, the differencêQM − Q̂M∗

is expected to be much larger. This leads to the following procedure. For simplicity, let us first

consider the case that̃M is unique.

1. FindM̃ such thatQ̂M̃ = minM∈M Q̂M . (See the remark following the definition of̃M .)

2. For eachM ∈ M such that|M | < |M̃ |, computeσ̂M,M̃ , an estimator ofσM,M̃ . Then,M

belongs toM̃−, the set of “true” models with|M | < |M̃ | if

Q̂M ≤ Q̂M̃ + σ̂M,M̃ . (6)

3. LetM̃ = {M̃} ∪ M̃−, m0 = minM∈M̃ |M |, andM0 = {M ∈ M̃ : |M | = m0}. LetM0 be

the model inM0 such thatQ̂M0 = minM∈M0 Q̂M . M0 is the selected model.

The quantityQ̂M̃ + σ̂M,M̃ serves as a “fence” to confine the true models (with dimensions
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smaller than|M̃ |) and exclude the incorrect ones. For such a reason, the procedure is calledfence.

Note that the fence depends onM , i.e., for differentM the fence is different.

2.2 The fence algorithm

The following outlines an effective algorithm for fence, where we letd1 < d2 < · · · < dL be all

the different dimensions of the modelsM ∈ M.

i) Find M̃ .

ii) Computeσ̂M,M̃ for all M ∈ M such that|M | = d1; let M1 = {M ∈ M : |M | = d1 and (6)

holds}; if M1 6= ∅, stop (no need for any more computation!). LetM0 be the model inM1 such that

Q̂M0 = minM∈M1 Q̂M ; M0 is the selected model.

iii) If M1 = ∅, computêσM,M̃ for all M ∈ M such that|M | = d2; let M2 = {M ∈ M : |M | = d2

and (6) holds}; if M2 6= ∅, stop. LetM0 be the model inM2 such thatQ̂M0 = minM∈M2 Q̂M ; M0

is the selected model.

iv) Continue until the program stops (it will at some point).

In short, the algorithm may be described as follows: Check the candidate models, from the

simplest to the most complex. Once one has discovered a model that falls within the fence and

checked all the other models of the same simplicity(for membership within the fence), one stops.

In case thatM̃ is not unique, all one has to do is to redefineM̃ in step 3 of fence as̃M = {M ∈

M : |M | = |M̃ |, Q̂M = Q̂M̃} ∪ M̃−.

Remark: The notion of model simplicity (or complexity) deserves further attention. Most

generally, we refer to theeffective degrees of freedomused in fitting a particular model. Ye (1998)

uses the term generalized degrees of freedom (GDF) defined as the sum over data cased of the

average sensitivity of changes in the fit of the estimated model mean to a small change in the
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response, and thus measures the flexibility of a particular model or modeling procedure. Since this

definition can literally apply to any type of model, GDF might not have a closed form expression

but can be computed by simulation. Hodges and Sargent (1998) presented an effective degrees of

freedom developed for hierarchical and other richly parameterized models, which for the case of

linear mixed models and conditional on the random effect variances coincides with Ye’s GDF.

2.3 Extension and variation

An extension of fence that takes into account the issue of consistency is given by the same steps

1-3 above with (6) replaced by

Q̂M ≤ Q̂M̃ + cnσ̂M,M̃ , (7)

wherecn is a sequence that→∞ slowly asn→∞. A similar effective algorithm can be outlined.

It might appear that, likeλn, the choice ofcn is also subjective. However, there are some major

differences. In BIC, for example, the criterion is to choose a single modelthat minimizes (1). In

other words, one has to be “exactly right”, therefore the constantλn is important. In contrast, in

fence one only needs to separate a subset of models. In other words, one only needs to be “about

right”, therefore the constantcn is less important. Furthermore, the influence ofcn is not to the same

extent asλn. To put it in a different way, the choice ofλn is a first-order problem, while that ofcn

is a second-order one. For example, typically,Q̂M , is of the ordern. Thus, the order ofλn in (5) is

somewhere between
√
n andn (see the discussion below (5)). On the other hand, the order ofcn in

(7) is, essentially, that of(Q̂M − Q̂M̃ )/σ̂M,M̃ , which isO(1) if M is correct. In other words, the

new procedure is less sensitive with respect tocn than the previous ones toλn, which is confirmed

by our simulation studies (see section 4). Nevertheless, in a finite sample situation the choice ofcn
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may still make a difference. The issue of how to choosecn will be addressed in section 6.

As mentioned, fence has the computational advantage that it starts with the simplest models and

therefore may not need to search the entire model space in order to determine the optimal model.

On the other hand, such a procedure may still involve a lot of evaluations when the model space is

large. For example, in quantitative trait loci (QTL) mapping, variance components arising from the

trait genes, polygenic and environmental effects are often used to model the covariance structure

of the phenotypes given the identity by descent (IBD) sharing matrix (e.g., Almsay and Blangero

1998). Such a model is usually complex due to the large number of putative trait loci. To make

the fence procedure computationally more attractive to large and complex models, we propose the

following variation of fence for situations of complex models with many predictors.

To be more specific, we focus on the extended GLMMs introduced earlier in this section. Let

X = (x′i)1≤i≤n andZ = (z′i)1≤i≤n. We assume that there is a collection of covariate vectors

X1, . . . , XK , from which the columns ofX are to be selected. Furthermore, we assume that there

is a collection of matricesZ1, . . . , ZL such thatZα =
∑

s∈S Zsαs, whereS ⊂ {1, . . . , L}, and

eachαs is a vector of i.i.d. random effects with mean0 and varianceσ2
s . The subsetS is subject

to selection. The parameters under an extended GLMM are the fixed effects and variances of the

random effects. Note that in this case the full model corresponding toXβ + Zα =
∑K

k=1Xkβk +∑L
l=1 Zlαl is among the candidate models. Thus, we letM̃ be the full model. The idea is to use a

forward-backward procedure to generate a sequence of candidate models, among which the optimal

model is selected using the fence method. We begin with a forward procedure. LetM1 be the model

that minimizesQ̂M among all models with a single parameter; ifM1 is within the fence, stop the

forward procedure; otherwise, letM2 be the model that minimizeŝQM among all models that add

one more parameter toM1; if M2 is within the fence, stop the forward procedure; and so on. The
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forward procedure stops when the first model is discovered within the fence. The procedure is then

followed by a backward elimination. LetMk be the final model of the forward procedure. If no

submodel ofMk with one less parameter is within the fence,Mk will be our selection; otherwise,

Mk is replaced byMk+1 which is a submodel ofMk with one less parameter and is within the

fence, and so on. We call such a variation of fence the forward-backward (F-B) fence.

The theoretical properties of fence and F-B fence will be explored in section 7, where consis-

tency of both procedures will be established.

3 Estimation of σM,M∗

An important step of the fence method is the calculation ofσ̂M,M̃ . Although for consistency (see

section 7) it is not required that̂σM,M∗ be a consistent estimator ofσM,M∗ , as long as the former

has the correct order, in practice, it is desirable to use a consistent estimator whenever possible. This

is because, even if̂σM,M∗ has the correct order, there is always a constant involved, which may be

difficult to choose. A smaller constant is apparently to the benefit of larger models and thus results

in overfitting; on the other hand, a larger constant would be in favor of smaller models, and hence

prompts underfitting. Therefore, to balance the two sides, the best way would be to use a consistent

estimator ofσM,M∗ , so that one can be less worried about the constant. Here consistency is in the

sense that̂σM,M∗ = σM,M∗ + o(σM,M∗) or, equivalently,̂σM,M∗/σM,M∗ → 1, in a suitable sense

(e. g., in probability). We first consider the case of clustered data.
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3.1 Clustered observations

Clustered data arise naturally in many fields, including analysis of longitudinal data (e. g., Diggle

et al. 1994) and small area estimation (e. g., Rao 2003). Letyi = (yij)1≤j≤ki
represent the vector

of observations in theith cluster, andy = (yi)1≤i≤m. We assume thaty1, . . . , ym are independent.

Examples of linear mixed models and GLMMs with clustered data are given in sections 4 and 5.

Furthermore, we assume thatQM is additivein the sense that

QM =
m∑

i=1

QM,i, (8)

whereQM,i = QM,i(yi, θM ). We consider some examples.

Example 1. For ML model selection (see section 2), sincefM (y|θM ) =
∏m

i=1 fM,i(yi|θM )

when the data is clustered, wherefM,i(·|θM ) is the joint pdf ofyi underM and θM , we have

QM = −
∑m

i=1 log{fM,i(yi|θM )}. Thus, (8) holds withQM,i = − log{fM,i(yi|θM )}.

Example 2.Consider MVC model selection (see section 2). LetT = diag(T1, . . . .Tm), where

Ti is ki × si and1 ≤ si ≤ ki, we haveQM =
∑m

i=1 |(T ′
iV

−1
M,iTi)−1T ′

iV
−1
M,i(yi − µM,i)|2, where

µM,i andVM,i are the mean vector and covariance matrix ofyi underM andθM . Thus, (8) holds

with QM,i = |(T ′
iV

−1
M,iTi)−1T ′

iV
−1
M,i(yi − µM,i)|2.

Example 3. Note that theQM defined for extended GLMM selection (see section 2) always

satisfies (8), even if the data is not clustered.

Denote, with a little abuse of the notation, the minimizer ofE(QM ) overθM ∈ ΘM by θM . Let

M∗ denote a correct model. We give approximations toE(Q̂M − Q̂M∗)2 in two different situations.

Lemma 2. Suppose that the following regularity conditions are satisfied: i)E(∂QM/∂θM ) = 0,

andtr{Var(∂QM,i/∂θM )} ≤ c for some constantc; ii) there is a constantBM such thatQM (θ̃M ) >

QM (θM ), if |θ̃M | > BM ; iii) there are constantscj > 0, j = 1, 2, 3 such thatE(|θ̂M − θM |8) ≤
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c1m
−4, E(|∂QM/∂θM |4) ≤ c2m

2, andE(sup|θ̃M |≤BM
‖∂2Q̃M/∂θM∂θ

′
M‖4) ≤ c3m

4; iv) there

are constantsa, b > 0 such thatam ≤ var(QM − QM∗) ≤ bm, if M 6= M∗; v) for any incorrect

modelM , we haveE(QM −QM∗) = O(m). Then, we haveE(Q̂M − Q̂M∗) = O(1), var(Q̂M −

Q̂M∗) = var(QM −QM∗){1+o(1)} = O(m), if M is correct; andE(Q̂M − Q̂M∗)2 = var(QM −

QM∗) +O(m2) = O(m2), if M is incorrect.

The proof is given in subsection 9.1. Note that i) is satisfied ifE(QM ) can be differentiated

inside the expectation, that is,∂E(QM )/∂θM = E(∂QM/∂θM ). Also note that ii) implies that

|θ̂M | ≤ BM . Since a measure of the differencêQM − Q̂M∗ is
√

E(Q̂M − Q̂M∗)2, Lemma 2

suggests a difference between a true model and an incorrect one: IfM is a true model,̂QM − Q̂M∗

may be measured byσM,M∗ = sd(Q̂M − Q̂M∗) ≈ sd(QM − QM∗); otherwise,Q̂M − Q̂M∗ is

expected to be much larger sincesd(QM −QM∗) = O(
√
m).

It is not difficult to obtain an estimator ofσM,M∗ . By (8) and independence, it is easy to show

thatvar(QM − QM∗) = E[
∑m

i=1(QM,i − QM∗,i)2 −
∑m

i=1{E(QM,i) − E(QM∗,i)}2]. Thus, an

estimator ofσ2
M,M∗ is theobserved variancegiven by

σ̂2
M,M∗ =

m∑
i=1

(Q̂M,i − Q̂M∗,i)2 −
m∑

i=1

{Ê(QM,i)− Ê(QM∗,i)}2, (9)

whereQ̂M,i = QM,i(yi, θ̂M ), Q̂M∗,i = QM∗,i(yi, θ̂M∗), Ê(QM,i) = EM∗,θ̂M∗{QM,i(yi, θ̂M )}, and

Ê(QM∗,i) = EM∗,θ̂M∗{QM∗,i(yi, θ̂M∗)}, in which the expectations are with respect toyi under

modelM∗ and evaluated at̂θM∗ .

It should be pointed out that (9) only gives an estimator ofσ2
M,M∗ in the most general situation.

In some special cases there may be better ways of estimatingσ2
M,M∗ that give more accurate results.

See Example 4 in the sequel.
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3.2 Non-clustered observations

We now consider the situations where the observations cannot be divided into independent clus-

ters. Such data arise, for example, in linear mixed models and GLMMs with crossed random effects.

We consider three such cases: Gaussian mixed models, non-Gaussian linear mixed models and ex-

tended GLMMs. Some examples are given in sections 4 and 5.

1. Gaussian mixed models.A Gaussian model is characterized by its mean vectorµM and

covariance matrixVM , hence Gaussian model selection is all about selectingµM and VM . A

Gaussian mixed model can be expressed asy = Xβ + Zα + ε, whereX is a matrix of known

covariates,β is a vector of unknown fixed effects,Z is a known matrix,α is a vector of random

effects, andε is a vector of errors. It is assumed thatα andε are jointly normally distributed with

Var(α) = G, Var(ε) = R andcov(α, ε) = 0, whereG andR are the covariance matrices under

the assumed model. It is clear that Gaussian mixed model is a special case of Gaussian model with

µM = XMβM andVM = RM + ZMGMZ
′
M , whereXM , βM , ZM , GM andRM are the corre-

sponding matrices or vector under modelM . Nevertheless, the result of this subsection applies to

Gaussian models in general. Both ML and MVC methods (see section 2) apply to this case.

Lemma 3. For ML model selection, we have

var(QM −QM∗) =
1
2
tr{(V −1

M VM∗ − I)2}+ (µM − µM∗)′V −1
M VM∗V −1

M (µM − µM∗).

For MVC model selection, we have

var(QM −QM∗) = 2
(
tr
[
{(T ′V −1

M T )−2T ′V −1
M VM∗V −1

M T}2
]
− tr

{
(T ′V −1

M∗T )−2
})

+4(µM − µM∗)′CMVM∗CM (µM − µM∗),

whereCM = V −1
M T (T ′V −1

M T )−2T ′V −1
M .
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The proof follows directly from the covariance properties of multivariate normal distribution

(e.g., Searle 1971, section 2.5).σ̂2
M,M∗ is then obtained by replacingµM , VM , µM∗ andVM∗ by

µ̂M , V̂M , µ̂M∗ andV̂M∗ , respectively., wherêµM is µM with θM replaced bŷθM , etc.

2. Non-Gaussian linear mixed models.Consider a non-Gaussian linear mixed model (e. g.,

Jiang 1996). Since normality is not assumed, Lemma 3 is not valid. The main difference is that,

unlike the Gaussian case, under a non-Gaussian linear mixed model, the expressions forvar(QM −

QM∗) may involve higher (3rd and 4th) moments of the random effects and errors, which are not

part ofθM . As a result, estimators of these higher moments are not directly available. However, we

can use a method known as partially observed information developed by Jiang (2005) to obtain an

estimate ofvar(QM −QM∗), hencêσ2
M,M∗ . The detail is omitted.

3. Extended GLMMs.Consider theQM introduced by (4). WriteξM,i = g2
M,i(βM , ψM ) −

2yigM,i(βM , ψM ), ξM∗,i = ξM,i with M replaced byM∗, anddi = ξM,i − ξM∗,i. Also, let

δi = gM,i(βM , ψM ) − gM∗,i(βM∗ , ψM∗). HereθM represents the vector that minimizesE(QM )

overΘM andθM∗ the true parameter vector underM∗, a true model.

Lemma 4. Suppose that the following conditions are satisfied: i)E(y2
i ), 1 ≤ i ≤ n are

bounded; and there is a sequencean > 0 such thatE(|θ̂M − θM |8) = O(a−4
n ), M ∈ M; ii)

Condition ii) of Lemma 2; iii)ξM,i is continuously differentiable with respect toθM , 1 ≤ i ≤ n,

and the following holds:E(sup|θ̃M |≤BM
‖∂2ξM,i/∂θM∂θ

′
M |θ̃M

‖4) = O(1), M ∈ M; iv) there is a

constantc > 0 such that
∑

z′iΣzj 6=0 δiδjcov(yi, yj) ≥ c|S|, whereS = {(i, j) : z′iΣzj 6= 0}, Σ is

the true covariance matrix ofα and|A| the cardinality ofA; ΣM∗ is positive definite andzi 6= 0 for
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anyi; andn2/a2
n|S| → 0, asn→∞. Then, we haveσ2

M,M∗ = var(
∑n

i=1 di){1 + o(1)} and

var

(
n∑

i=1

di

)
= 4

E

(
n∑

i=1

δ2i y
2
i

)
+
∑
i6=j

δiδjgM∗,i,j(βM∗ , ψM∗)1(z′iΣM∗zj 6=0)

−
∑
i,j

δiδjgM∗,i(βM∗ , ψM∗)gM∗,j(βM∗ , ψM∗)1(z′iΣM∗zj 6=0)

 , (10)

wheregM∗,i,j(βM∗ , ψM∗) = E{hM∗(x′iβM∗ + z′iΣ
1/2
M∗ξ)hM∗(x′jβM∗ + z′jΣ

1/2
M∗ξ)}, ξ ∼ N(0, Im).

The proof is given in subsection 9.2.σ̂2
M,M∗ is then obtained as apartially observed variance:

σ̂2
M,M∗ = 4


n∑

i=1

δ̂2i y
2
i +

∑
i6=j

δ̂iδ̂jgM∗,i,j(β̂M∗ , ψ̂M∗)1(z′iΣ̂M∗zj 6=0)

−
∑
i6=j

δ̂iδ̂jgM∗,i(β̂M∗ , ψ̂M∗)gM∗,j(β̂M∗ , ψ̂M∗)1(z′iΣ̂M∗zj 6=0)

 , (11)

whereδ̂i is δi with βM , ψM , βM∗ andψM∗ replaced bŷβM , ψ̂M , β̂M∗ andψ̂M∗ , respectively, and

Σ̂M∗ is ΣM∗ with ψM∗ replaced byψ̂M∗ .

4 Simulations

In this section, we study the performance of the fence methods through a number of simulated

examples. These examples include linear mixed models and GLMMs, and are classified as clustered

data and non-clustered data. Subsections 4.1, 4.2 are examples of clustered data, while subsection

4.3 is an example of non-clustered data.

4.1 Linear mixed models (clustered data)

We consider selection in the following linear mixed model (see Jiang and Rao 2003),

yij = x′ijβ + αi + εij , (12)
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i = 1, . . . ,m, j = 1, . . . ,K, wherexij is a vector of covariates andβ a vector of unknown

regression coefficients (the fixed effects). It is assumed that the random effectsα1, . . . , αm are

uncorrelated with mean0 and varianceσ2. Furthermore, assume that the errorsεij ’s have the

following exchangeable correlation structure: Letεi = (εij)1≤j≤K . Then,Cov(εi, εi′) = 0 if

i 6= i′, andVar(εi) = τ2{(1 − ρ)I + ρJ}, whereI is the identity matrix andJ matrix of 1’s.

Finally, the random effects are uncorrelated with the errors.

We examine by simulation the probability of correct selection and also the overfitting and un-

derfitting probabilities of various GIC’s developed in Jiang and Rao (2003), which are similar to

(1) for this problem. Two GIC’s with different choices ofλn are considered: (1)λn = 2, which

corresponds to the Cp method; (2)λn = log n wheren = mK which corresponds to the BIC

method. The latter choice satisfies the conditions of Theorem 1 in Jiang and Rao (2003) for con-

sistent model selection for the case of a single random effect factor in the true underlying model

with bounded cluster size, which includes the current case. A total of 100 realizations of each

simulation were run. The first column ofX is 1 and the other four columns ofX are generated ran-

domly fromN(0, 1) distributions but are fixed throughout the simulation. Threeβ′s are considered:

(2, 0, 0, 4, 0), (2, 9, 0, 4, 8) and(1, 2, 3, 2, 3).

We consider the case where the errors have varying degrees of exchangeable structure. Four

values ofρ were considered:0, 0.2, 0.5, 0.8. The random effects and errors were simulated from

Normal distributions withσ andτ both taken to be equal to 1. We set the number of clusters (m)

to be 100 and the number of observations within a cluster to beK = 5. The ML fence method is

applied for this simulation withcn = 1.1 for all situations.

Summary: The results are presented in Table 1. The fence method has robust selection per-

formance in most situations considered. In cases where the true model was relatively small in
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dimension, the fence method suffers some from overfitting. The overfitting proneness in these few

situations is less than that found when usingCp but more than that found when using BIC. Selection

performance in the second situation with a larger true model with high signal is solid for the fence

method. However, in the last situation with the optimal model being the full model with all weak

covariates, both BIC andCp tend to underfit. The fence method still shines having excellent perfor-

mance with comparatively little or no underfitting empirically observed (note that overfitting is not

possible in this situation since the true model is the model with the full complement of fixed effects).

The effect of increasing correlation in the errors (i. e., clustering) is to act as a means of reducing

effective sample size for selection. The end result is that as the correlation between observations

within a cluster increases, selection performance for all methods degrades somewhat.

4.2 Generalized linear mixed models (clustered data)

Consider the following simulated example of GLMM selection with three candidate models.

Model I: Given the random effectsα1, . . . , αm, binary responsesyij , i = 1, . . . ,m, j =

1, . . . , k are conditionally independent such that,logit(pij) = β0 +β1xi +αi, wherepij = P(yij =

1|α); β0, β1 are fixed parameters;xi = 0, 1 ≤ i ≤ [m/2] andxi = 1, [m/2] + 1 ≤ i ≤ m ([x] is

the integer part ofx). The random effects are independent and distributed asN(0, σ2).

Model II: Same as Model I except thatβ1 = 0.

Model III: Same as Model I except thatβ0 = β1 = 0.

We first study consistency of the MVC and ML model selection procedures in the situation

where the data is generated from one of the candidate models. In other words, a true model belongs

to the class of candidate models. Throughout the simulation,T was chosen as a block-diagonal

matrix (see Example 2) withTi = T1, 1 ≤ i ≤ m, whereT1 is ak× l matrix with l = [k/2], whose
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Table 1:Simulation Results: Linear Mixed Model Selection.Reported are probabilities of cor-

rect selection(underfitting, overfitting) as percentages estimated empirically from 100 realizations

of the simulation.Cp and BIC results for models 1 and 2 were taken from Jiang and Rao (2003).

True Model ρ Cp BIC Fence (ML)

β′ = (2, 0, 0, 4, 0) 0 64(0,36) 97(0,3) 94(0,6)

0.2 57(0,43) 94(0,6) 91(0,9)

0.5 58(0,42) 96(1,3) 86(0,14)

0.8 61(0,39) 96(0,4) 72(0,28)

β′ = (2, 9, 0, 4, 8) 0 87(0,13) 99(0,1) 100(0,0)

0.2 87(0,13) 99(0,1) 100(0,0)

0.5 80(0,20) 99(0,1) 99(0,1)

0.8 78 (1,21) 96(1,3) 94(0,6)

β′ = (1, 2, 3, 2, 3) 0 85(15,0) 81(19,0) 100(0,0)

0.2 79(21,0) 73(27,0) 100(0,0)

0.5 74(26,0) 64(36,0) 97(3,0)

0.8 44(56,0) 26(74,0) 94(6,0)
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Table 2: Simulation Results: Consistency.The columns for MVC and ML are probabilities of

correct selection, reported as percentages estimated empirically from 100 realizations of the simu-

lation. The numbers in parentheses are the percentages of selection of the other two models in order

of increasing index of the model.

True Model m k l β0 β1 σ cn MVC ML

I 100 4 2 -.5 1 1 1 82(5,13) 94(3,3)

I 200 4 2 -.5 1 1 1.1 97(1,2) 99(0,1)

II 100 4 2 -.5 NA 1 1 87(4,9) 88(5,7)

II 200 4 2 -.5 NA 1 1.1 93(4,3) 98(2,0)

III 100 4 2 NA NA 1 1 87(3,10) 91(2,7)

III 200 4 2 NA NA 1 1.1 96(0,4) 91(1,8)

entries are generated from a Uniform[0, 1] distribution, and then fixed. The simulation results are

summarized in Table 2, with each result based on 100 simulations.

We next study robustness of the MVC and ML fence procedures in the case where no true

model (with respect to ML) is among the candidate models. We consider such a case, in which the

binary responsesyij are generated as follows. Suppose that(X1, . . . , Xk) has a multivariate normal

distribution such thatE(Xj) = µ, var(Xj) = 1, 1 ≤ j ≤ k andcor(Xs, Xt) = ρ, 1 ≤ s 6= t ≤ k.

Then, letYj = 1(Xj>0), 1 ≤ j ≤ k. Denote the joint distribution of(Y1, . . . , Yk) by NB(µ, ρ) (here

NB refers to “Normal-Bernoulli”). We then generate the data such thaty1, . . . , ym are independent,

and the distribution ofyi = (yij)1≤j≤k follows one of the following models.

Model A: yi ∼ NB(µ1, ρ1), i = 1, . . . , [m/2], andyi ∼ NB(µ2, ρ2), i = [m/2] + 1, . . . ,m,

whereµj , ρj , j = 1, 2 are chosen to match the means, variances and covariances under Model I.
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Note that one can do so because the means, variances and covariances under Model I depend only

on three parameters, while there are four parameters under Model A.

Model B: yi ∼ NB(µ, ρ), i = 1, . . . ,m, whereµ andρ are chosen to match the mean, variance

and covariance under Model II. Note that, under Model II, the mean, variance and covariance depend

on two parameters.

Model C: Same as Model B except thatµ andρ are chosen to match the mean, variance and

covariance under Model III. Note that, under Model III, the mean is equal to1/2, the variance is

1/4, while the covariance depends on a single parameterσ.

If the data is generated from Model A, Model I is a correct model with respect to MVC; simi-

larly, if the data is generated from Model B, both Model I and II are correct with respect to MVC;

and, if the data is generated from Model C, Models I - III are all correct in the sense of MVC. How-

ever, no model (I, II or III) is correct from an ML standpoint. The simulation results are summarized

in Table 3, in whichβ∗0 , β∗1 andσ∗ correspond to the parameters under the models in Table 2 with the

matching mean(s), variance(s) and covariance(s). Again, each result is based on 100 simulations.

Summary: It is seen in Table 2 and Table 3 that the numbers increase asm increases (and

cn slowly increases), a good indication of consistency. In Table 2, with the exception of one case

(III/200), ML outperforms MVC, which is not surprising. What is a bit of surprise is that ML

also seems quite robust in the situation where the true model is not among the candidate models

(therefore the objective is to select a candidate model that is closest to the reality). In fact, Table 3

shows that even in the latter case, ML still outperforms MVC (again with the exception of one case -

III/200). However, one has to keep in mind that there are many ways of model misspecification, and

here we only considered one of them (which misspecifies a NB as a GLMM). Furthermore, MVC

has computational advantage over ML, which is important in cases such as GLMM selection. Note
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Table 3: Simulation Results: Robustness.The columns for MVC and ML are probabilities of

correct selection, reported as percentages estimated empirically from 100 realizations of the simu-

lation. The numbers in parentheses are the percentages of selection of the other two models in order

of increasing index of the model.β∗0 , β∗1 andσ∗ are the matching parameters.

True Model m k l β∗0 β∗1 σ∗ cn MVC ML

A 100 4 2 -.5 1 1 1 83(7,10) 91(5,4)

A 200 4 2 -.5 1 1 1.1 97(2,1) 99(0,1)

B 100 4 2 -.5 NA 1 1 80(3,17) 91(4,5)

B 200 4 2 -.5 NA 1 1.1 95(3,2) 97(3,0)

C 100 4 2 NA NA 1 1 83(8,9) 86(4,10)

C 200 4 2 NA NA 1 1.1 91(1,8) 90(1,9)

that the computational burden usually increases with the sample size; on the other hand, the larger

sample performance of MVC (m = 200) is quite close to that of ML.

A compromise would be to use MVC in cases of large sample, and ML in cases of small or

moderate sample. Alternatively, one may use MVC for an initial round of model selection to narrow

down the number of candidate models, and ML for a final round of model selection. For example,

one may use MVC for steps 1 and 2 of fence (see section 2) to identify the subclassM̃, and then

apply ML (with steps 1 - 3) withinM̃ to identify the optimal model.

4.3 Gaussian mixed model selection (non-clustered data)

We consider the problem of selecting a Gaussian linear mixed model for non-clustered observa-

tions. There are three candidate models. These are:
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Model I. yij = β0 + β1xij + ui + vj + eij , i = 1, . . . , a, j = 1, . . . , b, whereβ0 andβ1 are

unknown coefficients,ui, vj are random effects, andeij is an error. It is assumed thatui’s, vj ’s and

eij ’s are independent withui ∼ N(0, σ2
1), vj ∼ N(0, σ2

2) andeij ∼ N(0, σ2
0).

Model II. yij = β0 + ui + vj + eij , where everything is the same as in Model I.

Model III. yij = β0 + β1xij + ui + eij , where everything is the same as in Model I.

In the simulation, thexij ’s are generated from a Poisson(1) distribution and, once generated,

fixed throughout the simulation.

We consider the fence ML model selection (see section 2), which seems to be the natural choice

in this case. We consider fence withoutcn (or cn = 1). Four sample size configurations are

considered: (i)a = b = 10; (ii) a = 10, b = 20; (iii) a = 20, b = 10; and (iv)a = b = 20. Note

that the effective sample sizes here area andb, not the productab, so these correspond to situations

of relatively small sample size. For each sample size configuration, three cases are considered. In

the first case, the data is generated under Model I with the following true parameters:β0 = 0.5,

β1 = 0.2, σ2
j = 1.0, j = 0, 1, 2. In this case, Model I is the only true model and therefore the

optimal model. In the second case, the data is generated under Model II with the following true

parameters:β0 = 0.5, σ2
j = 1.0, j = 0, 1, 2. In this case, Model I and Model II are both true

models with Model II being the optimal model. In the third case, the data is generated under Model

III with the following true parameters:β0 = 0.5, β1 = 0.2, σ2
j = 1.0, j = 0, 2. In this case, Model

I and Model III are both true models with Model III being the optimal model.

Summary: For each combination of sample size configuration and case, 100 simulations were

run. Table 4 reports the percentages of simulations (out of the 100) in which fence has selected

the optimal model. For comparison purposes, the method of Jiang and Rao (2003) (Case 2) was

also run for each setting. Their method is based on minimizing an information criterion which
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Table 4:Gaussian Model Selection.Reported are probabilities of correct selection as percentages

estimated empirically from 100 realizations of the simulation. Table entries correspond to the fence

method withcn = 1, and the method of Jiang and Rao (2003) Case 2 usingλt,n = 2, log(n) and

n/log(n) respectively in parentheses.

Optimal Model a = b = 10 a = 10, b = 20 a = 20, b = 10 a = b = 20

Model I 34 (35, 14, 0) 92 (67, 42, 0) 85 (64, 34, 0) 97 (87, 71, 0)

Model II 97 (31, 25, 0) 80 (56, 52, 0) 79 (56, 63, 0) 96 (63, 82, 0)

Model III 92 (38, 27, 0) 98 (74, 53, 0) 98 (46, 38, 0) 99 (71, 81, 0)

trades off a goodness-of-fit measure with a (penalized) model complexity term. Consistency of

selection was proved by imposing specific requirements on the penalty term. In this simulation,

three different penalty terms were entertained:λt,n = 2, log(n), n/log(n). The last two of these

satisfy the conditions for consistency. Note that only the empirical percentages of correct selection

of both random and fixed effects is presented in Table 4. Clearly, there are many types of potential

selection errors that can be made. These will be discussed model by model in turn. Models I and

II represent situations where the true model includes the full complement of random effects but

Model II includes only the intercept fixed effect term. What is evident with the Jiang and Rao

(2003) method usingλt,n = 2, is that selection performance for Model I tends to be uniformly

better than that for Model II across all settings ofa andb. This is because overfitting of random

effects is not an issue and underfitting of random effects structure vanishes quite quickly ina or b -

even at these smallish sample sizes. However with Model II, selection performance degrades across

all settings ofa andb. This can actually be attributed to overfitting in the fixed effects part of the

model. Contrast this to the performance usingλt,n = n/log(n). Here the misses can be attributed
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to underfitting primarily in the random effects and to a lesser extent in the fixed effects. Clearly,

meeting consistency requirements has not translated into good finite sample performance. Model III

represents a situation with the full complement of fixed effects but only one of the random effects

related toa. Here again performance of the Jiang and Rao (2003) methods is not much improved.

With λt,n = 2, the sensitivity to overfitting (in the random effects) starts to become a little apparent.

With the other choices, underfitting in the fixed effects is still an issue due to the small signal to

noise ratio in this simulation. A synopsis of these three Models under these four settings leads one

to conclude that the choice of the penalty term makes a difference on selection performance, a point

we made earlier in section 1, and how this plays out really depends on the underlying true model.

What is lovely about running these comparisons is that it helps to illuminate the robustness of

the fence method. It is seen that, despite the relatively small sample size, the low signal to noise

ratio, and the variety of potential selection errors, the performance of fence is quite good in all but

one case. The exception occurs whena = b = 10 and data is generated from Model I. A closer look

at this case reveals that all the misses went to Model II, which has the same random effect factors

but no covariates (i.e.,β1 = 0). Some possible explanations are: (1) weak signal/noise ratio (note

that the trueβ1 = 0.2, while all three variance components are equal to1.0); (2) small sample size.

In this case,σM,M̃ is estimated using the Gaussian formula derived in subsection 3.2.1. Since all

the variance components are involved in this formula, they have to be estimated. As mentioned, the

effective sample size for estimatingσ2
1 is a = 10, and that for estimatingσ2

2 is b = 10. With such

small sample sizes, these estimators are not expected to be accurate.
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5 Real data analyses

In this section, we give a number of examples, each supported by results of real data analysis, to

illustrate the application of fence to various problems of mixed model selection. As in the previous

section, the examples are classified as clustered data (subsections 5.1 and 5.2) and non-clustered

data (subsection 5.3).

5.1 Analysis of Gc genotype data

Human group-specific component (Gc) is the plasma transport protein for Vitamin D. Poly-

morphic electrophoretic variants of Gc are found in all human populations. Daigeret al. (1984)

presented data involving a series of monozygotic (MZ) and dizygotic (DZ) twins of known Gc

genotypes to determine the heritability of quantitative variation in Gc. These included 31 MZ twin

pairs, 13 DZ twin pairs, and 45 unrelated controls. For each individual, the concentration of Gc was

available along with additional information about the sex, age and Gc genotype of the individual.

The genotypes are distinguishable at the Gc structural locus, classified as 1-1, 1-2 and 2-2.

Lange (2002) considered three statistical models for the Gc genotype data. Letyij represent the

Gc concentration measured for thejth person who is one of theith identical twin pair,i = 1, . . . , 31,

j = 1, 2. Furthermore, letyij represent the Gc concentration measured for thejth person who is

one of the(i− 31)th fraternal twin pairs,i = 32, . . . , 44, j = 1, 2. Finally, Letyi represent the Gc

concentration for the(i−44)th person among the unrelated controls,i = 45, . . . , 89. Then, the first

model, Model I, can be expressed asyij = µ1−11(gij=1−1) + µ1−21(gij=1−2) + µ2−21(gij=2−2) +

µmale1(sij=male) + µageaij + εij , i = 1, . . . , 44, j = 1, 2, wheregij , sij andaij represent the

genotype, sex and age of thejth person in thei twin pair (identical or fraternal), andεij is an
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error which will be further specified later. If we letxij denote the vector whose components are

1(gij=1−1), 1(gij=1−2), 1(gij=2−2), 1(sij=male) andaij , andβ denote the vector whose components

areµ1−1, µ1−2, µ2−2, µmale andµage, then the model can be expressed asyij = x′ijβ + εij , i =

1, . . . , 44, j = 1, 2. Similarly, we haveyi = µ1−11(gi=1−1) + µ1−21(gi=1−2) + µ2−21(gi=2−2) +

µmale1(si=male) + µageai + εi, i = 45, . . . , 89, wheregi, si andai are the genotype, sex and age of

the(i−44)th person in the unrelated control group, andεi is an error which will be further specified.

Let xi denote the vector whose components are1(gi=1−1), 1(gi=1−2), 1(gi=2−2), 1(si=male) andai,

andβ be the same as above, then we haveyi = x′iβ + εi, i = 45, . . . , 89.

We now specify the distributions for the errors. Letεi = (εi1, εi2)′, i = 1, . . . , 44. We as-

sume thatεi, i = 1, . . . , 89 are independent. Furthermore, we assume thatεi is bivariate normal

with means zero, varianceσ2
tot and correlation coefficientρident, i = 1, . . . , 31, whereσ2

tot is the

unknown total variance, andρident the unknown correlation coefficient between identical twins.

Similarly, we assume thatεi is bivariate normal with means zero, varianceσ2
tot and correlation co-

efficientρfrat, i = 32, . . . , 44, whereρfrat is the unknown correlation coefficient between fraternal

twins. Finally, we assume thatεi ∼ N(0, σ2
tot), i = 45, . . . , 89.

The second model, Model II, is the same as Model I except under the constraintρfrat = ρident/2.

The third model, Model III, is the same as Model I except under the constraintsµ1−1 = µ1−2 =

µ2−2. It is clear that all three models are Gaussian models. We apply the fence method to this dataset

to select an optimal model from the candidate models. More specifically, we consider ML model

selection (see section 2) withcn = 1. Note that, since Model II and III are submodels of Model I

(in other words, Model I is the full model), we may takẽM as Model I. The analysis resulted in the

following values forQ̂M : Q̂I = 337.777, Q̂II = 338.320 andQ̂III = 352.471. Furthermore, we

obtainedσ̂II,I = 1.367 andσ̂III,I = 4.899. Thus, Model II is in the fence while Model III is out. In
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conclusion, the analysis has selected Model II as the optimal model. This result is consistent with

the finding of Lange (2002), who indicated that a “likelihood ratio test shows that there is virtually

no evidence against the assumptionρfrat = ρident/2.”

5.2 Prenatal care for pregnancy

This real-data example is an application of the F-B fence procedure (see section 2). Rodriguez

and Goldman (2001) considered a dataset from a survey conducted in Guatemala regarding the use

of modern prenatal care for pregnancies where some form of care was used (Pebleyet al. 1996).

While Rodriguez and Goldman focused on assessing the performance of the approximation method

they developed in fitting a three-level variance component logistic model, we consider applying the

fence method in selection of the fixed covariates in the variance component logistic model. The

models are described as follows.

Suppose that given the random effects at community levelsui, 1 ≤ i ≤ m and random effects

at family levelsvij , 1 ≤ i ≤ m, 1 ≤ j ≤ ni, binary responsesyijk, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤

k ≤ nij are conditionally independent withπijk = E(yijk|u, v) = P(yijk = 1|u, v). Furthermore,

suppose that the random effects are independent withui ∼ N(0, σ2) andvij ∼ N(0, τ2). The

following models for the conditional means are considered such that under modelM , logit(πijk) =

X ′
M,ijkβM + ui + vij , whereXM,ijk is a subvector of the full set of fixed covariates andβM the

corresponding vector of regression coefficients.

Letψ = (σ2, τ2)′. The vector of parameters under modelM is θM = (β′M , ψ
′)′. Define

QM =
m∑

i=1

ni∑
j=1

nij∑
k=1

{yijk − gM,ijk(θM )}2, (13)

wheregM,ijk(θM ) = E{h(X ′
M,ijkβM +ui+vij)} andh(x) = ex/(1+ex). Using the method devel-



Fence methods for mixed model selection 31

oped in subsection 3.2.3, an estimate ofσ2
M,M∗ can be obtained (detail omitted). The expectations

involved inQM are evaluated by numerical integration. Since the number of covariates consid-

ered is quite large, to keep the computational time manageable we apply the F-B fence procedure

introduced in section 2 (withcn = 1).

The data analysis has selected the following variables (in the order that they were selected in the

forward procedure): Proportion indigenous (1981), Modern toilet in household, Husband’s educa-

tion secondary or better, Husband’s education primary, Television watched daily, Distance to nearest

clinic, Mother’s education primary, Television not watched daily, Mother’s education secondary or

better, Indigenous (no Spanish), Indigenous (Spanish), Mother age, Husband agriculture employee,

Husband agriculture self-employee, Child age, Birth order 4-6, and Husband’s education missing.

There are some interesting differences between the fixed effects discovered by the fence versus those

found by standard maximum likelihood analysis using a5% significance level as reported in Ro-

driguez and Goldman (2001). First, Husband’s education overall (primary or higher relative to the

reference group of no education for the husband) was found to be an important predictor whereas

Rodriguez and Goldman found that only Husband’s secondary education was important. Our more

uniform finding is also in line with the finding for Mother’s education. The implication is that edu-

cation of some kind is important for both the mother and husband to have. A similar kind of finding

was observed for variables corresponding to husband’s profession. We found that regardless of what

type of agricultural employment the husband had, it was an important predictor overall. Rodriguez

and Goldman report that only non-self employed agricultural jobs for the husband mattered. The

fence method also uniquely found that watching television (daily or not) was an important predictor.

This can be intuitively justified since it provides a medium for women to learn more about modern

prenatal health care methods and thus make it more likely for them to choose to use such methods.



Fence methods for mixed model selection 32

Other findings were in line with those of Rodriguez and Goldman.

5.3 Modeling the salamander-mating experiments (non-clustered data)

Finally, we consider the well-known salamander-mating data originally reported by McCullagh

and Nelder (1989, section 14.5). The data was collected from mating experiments involving two

populations of salamanders, Rough Butt (RB) and White Side (WS). These populations, which are

geographically isolated from one another, are found in the southern Appalachian mountains of the

eastern United States. The question whether the geographic isolation had created barriers to the

animals’ interbreeding was thus of great interest to biologists studying speciation.

The data was studied extensively by fitting GLMMs (e.g., Breslow and Clayton 1993, Drum

and McCullagh 1993, Lin and Breslow 1996, Jiang 1998 and Booth and Hobert 1999). However, in

most studies it has been assumed that a different group of animals (20 for each sex) are used in each

mating experiment, although, in reality, the same group of animals were repeatedly used in two of

the three experiments. The GLMMs used in these studies assumed that no further correlation among

the data exists given the random effects. However, the responses in this case should be considered

longitudinal, because repeated measures were collected from the same subjects (once in the summer

and once in the fall). Therefore, serial correlation may still exist among the repeated responses

given the random effects. Alternatively, one could pool the responses from the two experiments

involving the same group of animals, as suggested by McCullagh and Nelder (1989, section 4.1),

so letyij· = yij1 + yij2, whereyij1 andyij2 represent the responses from the summer and first fall

experiments, respectively, that involved the same (ith) female and (jth) male. This avoids the issue

of conditional independence, but brings in a new problem: The pooled responseyij· may not be

binomialgiven the random effects.
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In general, pooling the responses from the repeated measures over time will maintain condi-

tional independence, but may destroy the (conditional) exponential family, another key assumption

of GLMM. To address such concerns, Jiang and Zhang (2001) proposed an extended version of

GLMM, in which the (conditional) exponential family assumption is dropped. The authors consid-

ered two models for the conditional means, withlogit or probit links, respectively, which correspond

to models I and III below, and fitted both models to the data. Following the latter approach, we pool

the data from the two experiments involving the same group of salamanders, so letyij1 be the

observed proportion of successful matings between theith female andjth male in the two experi-

ments. Letyij2 be the indicator of successful mating between theith female andjth male in the last

experiment involving a new set of animals.

We assume that given the random effects,uk,i, vk,j , k = 1, 2, i, j = 1, . . . , 20, which are inde-

pendent and normally distributed with mean0 and variancesσ2 andτ2, respectively, the responses

yijk, (i, j) ∈ P , k = 1, 2 are conditionally independent, whereP represents the set of pairs(i, j)

determined by the design, which is partially crossed;u andv represent the female and male, respec-

tively; 1, . . . , 10 correspond to RB, and11, . . . , 20 to WS. Furthermore, we consider the following

models for the conditional means.

Model I: E(yijk|u, v) = h1(β0 +β1WSf +β2WSm +β3WSf×WSm +uk,i +vk,j), (i, j) ∈ P ,

k = 1, 2, whereh1(x) = ex/(1 + ex); WSf is an indicator for WS female (1 for WS and 0 for RB),

WSm is an indicator for WS male andWSf ×WSm represents the interaction.

Model II: Same as Model I except dropping the interaction term.

Model III: Same as Model I withh1 replaced byh2, whereh2(x) = Φ(x), the cdf ofN(0, 1).

Model IV: Same as Model III except dropping the interaction term.

The models are special cases of the extended GLMMs introduced in section 2 (also see sub-
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section 3.2.3). We apply the fence method therein (withcn = 1) to this case. The analysis has

yielded the following values of̂QM for M = I, II, III and IV: 39.5292, 44.3782, 39.5292, 41.6190,

henceM̃ = I or III. If M̃ = I, then σ̂M,M̃ = 1.7748 for M = II and σ̂M,M̃ = 1.1525 for M =

IV. Therefore, neitherM = II nor M = IV fall within the fence. IfM̃ = III, then σ̂M,M̃ = 1.68

for M = II and σ̂M,M̃ = 1.3795 for M = IV. Thus, once again, neitherM = II nor M = IV are

inside the fence. In conclusion, the fence method has selected both Model I and Model III (either

one) as the optimal model. Interestingly, these are exactly the ones fitted by Jiang and Zhang (2001)

using a different method, although the authors had not considered it a model selection problem.

The eliminations of Model II and Model IV are consistent with many of the previous studies (e.g.,

Karim and Zeger 1992, Breslow and Clayton 1993, Lin and Breslow 1996), which have found the

interaction term significant, although the majority of these studies have focused on logit models.

6 Adaptive fence procedure

In this section we address the issue of choosing the tuning constantcn involved in (7). According

to Theorem 1 in the sequel, for consistency of the fence one needscn → ∞ at a certain rate, but

there are manycn’s that satisfy this requirement. Also note that although for the consistency it is

not required that̂σM,M∗ be a consistent estimator ofσM,M∗ as long as it has the right order (see the

first paragraph of section 3), there is always a constant involved which may make a difference in a

finite sample situation. Therefore, the focus here is finite sample performance.

We now introduce the idea of an adaptive procedure. Recall thatM denotes the set of candidate

models, which includes a true model. To be more specific, we assume that there is a full modelMf ∈

M, henceM̃ = Mf in (7); and that every model inM\{Mf} is a submodel of a model inM with one
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less parameter thanMf . LetM∗ denote a model with minimum dimension amongM ∈ M. First

note that, ideally, one wishes to selectcn that maximizes the probability of choosing the optimal

model. Here for simplicity the optimal model is defined as a true model that has the minimum

dimension among all true models. This means that one wishes to choosecn that maximizes

P = P(M0 = Mopt), (14)

whereMopt represents the optimal model, andM0 = M0(cn) is the model selected by the fence

procedure with the givencn. However, two things are unknown in (14): (i) under what distribution

should the probabilityP be computed; and (ii) what isMopt?

To solve problem (i), note that the assumptions above onM imply thatMf is a true model.

Therefore, it is possible to bootstrap underMf . For example, one may estimate the parameters under

Mf , then use a model-based bootstrap to draw samples underMf . This allows us to approximate

the probability distributionP on the right side of (14).

To solve problem (ii), we use the idea of maximum likelihood. Namely, letp∗(M) = P∗(M0 =

M), whereM ∈ M and P∗ denotes the empirical probability obtained by bootstrapping. Let

p∗ = maxM∈M p∗(M). Note thatp∗ depends oncn. The idea is to choosecn that maximizesp∗.

It should be kept in mind that the maximization is not without restriction. To see this, note that if

cn = 0 thenp∗ = 1 (because whencn = 0 the procedure always choosesMf ). Similarly, p∗ = 1

for very largecn, if M∗ is unique (because whencn is large enough the procedure always chooses

M∗). Therefore, what one looks for is “the peak in the middle” of the plot ofp∗ againstcn.

Here is another look at the method. Typically, the optimal model is the model from which the

data is generated, then this model should be the most likely given the data. Thus, givencn, one

is looking for the model (using the fence procedure) that is most supported by the data or, in other
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words, one that has the highest (posterior) probability. The latter is estimated by a bootstrapping pro-

cedure. Note that although the bootstrap samples are generated under the full model, they are almost

the same as those generated under the optimal model. This is because the estimates corresponding

to the zero parameters are expected to be close to zero, provided that the parameter estimators under

the full model are consistent. One then pulls off thecn that maximizes the (posterior) probability

and this is the optimal choice, denoted byc∗n.

The procedure does not work, however, if there is no peak in the middle. Typically, this happens

when the optimal model is one of the extreme cases - eitherMf or M∗. To handle such cases

we run screen tests for the extreme cases before searching for the peak in the middle. The first

is called full model test. The idea is the following. DefineMf−1 as the set of all models with

one less parameter thanMf (see above). Suppose that whenMf is the optimal model, we have

E(Q̂M − Q̂Mf
) ∼ an, ∀M ∈ Mf−1. Hereun ∼ vn means that bothun/vn andvn/un are bounded.

On the other hand, ifMf is not the optimal model, there isM ∈ Mf−1 which is a true model, hence

E(Q̂M − Q̂Mf
) = O(bn), wherebn = o(an). It follows thatminM∈Mf−1

E(Q̂M − Q̂Mf
) = O(bn).

Therefore, we consider

qn =
{minM∈Mf−1

E(Q̂M − Q̂Mf
)}2

anbn
. (15)

In practice,qn is replaced by its bootstrap estimate,q∗n, obtained as above. Ifq∗n < 1, the full model

test passes; otherwise, the full model test fails, in which case we assignc∗n = 0. In case the full

model test passes, we follow with a minimum model test. For simplicity, we assume that there is a

uniqueM∗ ∈ M that has the minimum dimension. Note that this is not a serious restriction because

in most cases one can add a (trivial) model toM, if necessary, which then becomes the uniqueM∗.

Suppose thatE(Q̂M∗ − Q̂Mf
) = O(gn) if M∗ is incorrect; and the order becomesO(hn) if M∗ is
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correct (hence optimal), wherehn = o(gn). We then consider

rn =
{E(Q̂M∗ − Q̂Mf

)}2

gnhn
. (16)

Let r∗n be the bootstrap version ofrn. If r∗n > 1 the minimum model test passes; otherwise, the

minimum model test fails, in which case we assignc∗n as the upper bound of a sequence of values

considered (see below). In case both tests pass, we start searching for the peak in the middle. Quite

often there are more than onecn’s at whichp∗ reaches the peak. Letc∗n be the median of thosecn’s.

The last thing one needs to determine is at which values ofcn to evaluatep∗. Theoretically, the

range ofcn is [0,∞), but practically one needs an upper bound. This can be determined as follows.

Note that anycn greater than or equal toB = (Q̂M∗ − Q̂Mf
)/σ̂M∗,Mf

makes no difference to the

fence procedure. This is because then (7) is satisfied byM∗, henceM0 = M∗ (recall thatM∗ is

unique by our simplicity assumption). Therefore, we choose the upper bound ofcn as the smallest

integer≥ B, i.e.,B∗ = [B] + 1. We then divide the interval[0, B∗] by subintervals of equal length,

and consider the end points, for example,cn = 0.5(k − 1), k = 1, 2, . . . , 2B∗ + 1.

To demonstrate the method, we consider a special class of simple mixed models that are of

strong practical interest in small area estimation (e.g., Rao 2003).

Example 4. (Fay-Herriot model) the Fay-Herriot model is widely used in small area estimation.

It was first proposed to estimate the per-capita income of small places with population less than

1000 (Fay and Herriot 1979). The model can expressed asyi = x′iβ + vi + ei, i = 1, . . . ,m, where

xi is a vector of known covariates,β is a vector of unknown regression coefficients,vi’s are area-

specific random effects andei’s represent sampling errors. It is assumed thatvi, ei are independent

with vi ∼ N(0, A) andei ∼ N(0, Di). The varianceA is unknown, but the sampling variances

Di’s are assumed known.
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Let X = (x′i)1≤i≤m, so that the model can be expressed asy = Xβ + v + e, wherey =

(yi)1≤i≤m, v = (vi)1≤i≤m and e = (ei)1≤i≤m. The first column ofX is assumed to be1m

which corresponds to the intercept. The rest of the columns ofX are to be selected from a set of

candidate covariate vectorsX2, . . . , XK , which include the true covariate vectors. First note that

by applying the following transformation we can simplify the problem to the caseDi = 1. Let

D = 1 + max1≤i≤mDi. Draw independent samplesu1, . . . , um independent with thevi’s andei’s

such thatui ∼ N(0, D−Di), 1 ≤ i ≤ m. Then, let̃yi = (yi+ui)/
√
D, x̃i = xi/

√
D, ṽi = vi/

√
D

andẽi = (ei + ui)/
√
D. Consider̃yi’s as the new observations. Then, we haveỹi = x̃′iβ + ṽi + ẽi,

i = 1, . . . ,m, whereṽi, ẽi, i = 1, . . . ,m are independent with̃vi ∼ N(0, Ã), Ã = A/D and

ẽi ∼ N(0, 1). Thus, without loss of generality, we letDi = 1, 1 ≤ i ≤ m.

Consider the fence ML model selection (see section 2). It is easy to show that, in this case,

Q̂M = (m/2){1+log(2π)+log(|PX⊥y|2/m)}, wherePX⊥ = Im−PX andPX = X(X ′X)−1X ′.

Here we assume for simplicity thatX is of full rank. It follows that

Q̂M − Q̂Mf
=

m

2
log

(
|PX⊥y|2

|PX⊥
f
y|2

)
.

Furthermore, it can be shown that, whenM is a true model, we have

Q̂M − Q̂Mf
=

m

2
log
(

1 +
K − p

m−K − 1
F

)
,

wherep+1 is the number of columns ofX, andF ∼ FK−p,m−K−1. Therefore,σM,Mf
is completely

known given|M | and can be evaluated accurately (e. g., by numerical integration).

We carry out a simulation study to evaluate the performance of the adaptive method. We con-

sider a (relatively) small sample situation withm = 30. With K = 5, X2, . . . , X5 were generated

from theN(0, 1) distribution, and then fixed throughout the simulation. The candidate models in-

clude all possible models with at least an intercept (thus there are24 = 16 candidate models). We
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Table 5:Fence methods with differentcn’s in the Fay-Herriot model

Optimal Model 1 2 3 4 5

Adaptivecn 100 100 100 99 100

cn = log log(n) 52 63 70 83 100

cn = log(n) 96 98 99 96 100

cn =
√
n 100 100 100 100 100

cn = n/ log(n) 100 91 95 90 100

cn = n/ log log(n) 100 0 0 0 6

consider five cases in which the datay is generated from the modely =
∑5

j=1 βjXj + v+ e, where

β′ = (β1, . . . , β5) = (1, 0, 0, 0, 0), (1, 2, 0, 0, 0), (1, 2, 3, 0, 0), (1, 2, 3, 2, 0) and(1, 2, 3, 2, 3), de-

noted by Model 1, 2, 3, 4, 5, respectively. The true value ofA is 1 in all cases. The number of

bootstrap samples for the evaluation of thep∗’s is set at100.

In addition to the adaptive method, we consider five different (non-adaptive)cn’s (n = m in

this case), which satisfy the consistency requirements given in Theorem 1 in the sequel (note that

these requirements reduce tocn → ∞ andcn/n → 0 in this case). These arecn = log log(n),

log(n),
√
n, n/ log(n) andn/ log log(n). Reported in Table 5 are percentage of times, out of 100

simulations, that the optimal model was selected by each method.

It seems that performance of the fence withcn = log(n),
√
n or n/ log(n) is fairly close to that

of the adaptive fence. In any particular situation, one might get lucky to find a goodcn value by

chance, but one may not be lucky all the time. For example, we have observed that in the case of a

mixed logistic model (e. g., subsection 4.2)cn = log(n) may not work as well ascn = 1 in a finite

sample situation even though the latter does not satisfy the consistency requirements. Furthermore,
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as mentioned in section 1, for more complicated mixed models the definition of the sample size may

not simply be the total number of observations (or the number of clusters). In such cases something

like log(n) orn/ log(n) may not make sense. See subsections 4.1 and 4.3 for our simulation results.

In the next section we show that the adaptive fence procedure is indeed consistent, as expected.

The top figure of Figure 1 shows a plot ofp∗ againstcn in the adaptive procedure based on the

first simulated dataset generated under Model 4. To show an overall picture, the plot was extended

beyond the upper boundB∗ in the adaptive procedure, which was24 in this case. A smoothed

version is also plotted. The plot shows two peaks in the middle, which is not unusual. In practice,

when there are multiple peaks in the middle, one should pick the highest one. This is supported

by our theoretical result, namely, Theorem 3 in the sequel, which shows thatc∗n is an approximate

global maximum ofp∗. On the other hand, this strategy does not always work in a finite sample

situation. For example, the strategy is responsible for the only failure of the adaptivecn out of a

total of 500 simulations (100 under each model; see Table 5). A closer examination shows that, in

this case, there were two peaks in the middle; unfortunately, the higher peak led one to the wrong

choice - Model 3 instead of Model 4 (the lower peak led to the right choice). The bottom figure

shows parallel boxplots of thec∗n’s obtained from the simulations under the five models.

Remark: It turns out that requiring the existence of a full model or other known true model

from which to draw bootstrap samples is not much of a practical problem, because in essence the

adaptive fence can be done in two steps. In the first step, one could use the fence with a fixedcn (e.

g., cn = 1) to select a true model (which may not be optimal). Then in the second step, one applies

the adaptive fence procedure with bootstrap samples drawn under the true model selected in the first

step. Note that in the first step, one does not needcn to increase in order to select (with probability

tending to one) a true model. In fact, we applied this very procedure to the same simulated datasets
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as above and found the exact same result - that we found the optimal model 499 out of 500 times

and the time we missed, was the very same time we missed above.

7 Consistency of fence, F-B fence and adaptive fence

We assume that the following A1 - A4 hold for eachM ∈ M, where, as before,θM represents a

parameter vector at whichE(QM ) attains its minimum, and∂QM/∂θM , etc. represent derivatives

evaluated atθM . Similarly,∂Q̃M/∂θM , etc. represent derivatives evaluated atθ̃M .

A1.QM is three-times continuously differentiable with respect toθM ; and

E
(
∂QM

∂θM

)
= 0. (17)

A2. Condition ii) of Lemma 2.

A3. The equation∂QM/∂θM = 0 has an unique solution.

A4. There is a sequence of positive numbersan →∞ and0 ≤ γ < 1 such that

∂QM/∂θM − E(∂QM/∂θM ) = OP(aγ
n),

∂2QM/∂θM∂θ
′
M − E(∂2QM/∂θM∂θ

′
M ) = OP(aγ

n),

lim inf a−1
n λmin{E(∂2QM/∂θM∂θ

′
M )} > 0,

lim sup a−1
n λmax{E(∂2QM/∂θM∂θ

′
M )} <∞, and there isδM > 0 such that

sup|θ̃M−θM |≤δM
|∂3Q̃M/∂θM,j∂θM,k∂θM,l| = OP(an), 1 ≤ j, k, l ≤ pM , wherepM = dim(θM ).

In addition, we assume the following. Recall thatcn is the constant in (7).

A5. cn →∞; for any true modelM∗ and incorrect modelM , we haveE(QM ) > E(QM∗),

lim inf(σM,M∗/a2γ−1
n ) > 0 andcnσM,M∗/{E(QM )− E(QM∗)} → 0.

A6. σ̂M,M∗ > 0 and σ̂M,M∗ = σM,M∗OP(1) if M∗ is true andM incorrect; andσM,M∗ ∨

a2γ−1
n = σ̂M,M∗OP(1) if bothM andM∗ are true.



Fence methods for mixed model selection 42

●

●

●

●

●

●
●
●
●
●●

●
●●

●●●●●●●●●●●
●●

●
●
●

●
●

●

●

●

●
●

●
●
●
●
●
●●

●

●
●
●●

●
●
●

●

●

●

●

●
●
●●

●●●●
●●●●●●

Cn

p*

0 4 8 13 19 25 31

0.
4

0.
6

0.
8

1 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●
●
●
●●
●
●●
●●
●
●●●

●●●
●●
●

●
●
●

●
●
●

●
●●

●
●●●●●●

●●●●●●●●●

Cn

p*

0 5 11 18 25 32 39
0.

4
0.

6
0.

8
1

●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●

●●
●●●●●

●
●
●
●
●
●●●

●
●

●
●
●
●
●

●●
●

●
●●●●●●

●●●●●

Cn

p*

0 4 8 13 19 25 31

0.
4

0.
7

1

●●●●

●
●●

●●●●
●
●
●
●●●

●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●●

Cn

p*

0 3 6 9 12 16 20

0.
4

0.
7

1

Figure 1:Top figure: Plot of p∗ versus cn for the adaptive procedure for choosing cn based on the

first simulated dataset generated under Model 4. Notice the peak in the middle of the range of cn

from which the optimal value, c∗n, is determined. Bottom figure: Parallel boxplots of the c∗n’s based

on the repeated simulations under the five different models under consideration.



Fence methods for mixed model selection 43

Note. See the remark following Lemma 2 regarding (17) and A2. To illustrate A4 and A5,

consider the case of clustered responses (see subsection 3.1). Then, under regularity conditions,

A4 holds withan = m andγ = 1/2. Furthermore, we haveσM,M∗ = O(
√
m) andE(QM ) −

E(QM∗) = O(m), provided thatM∗ is true,M is incorrect and some regularity conditions hold.

Thus, A5 holds withγ = 1/2 andcn being any sequence satisfyingcn → ∞ andcn/
√
m → 0.

Finally, A6 does not require that̂σM,M∗ be a consistent estimator ofσM,M∗ - only that it has the

same order asσM,M∗ . However, see the discussion at the beginning of the previous section.

Lemma 5. Under A1 - A4, we havêθM − θM = OP(aγ−1
n ) andQ̂M −QM = OP(a2γ−1

n ).

LetM0 be the model selected by fence using (7). The following theorem establishes consistency

of the fence procedure.

Theorem 1. Under assumptions A1 - A6, we have with probability tending to one thatM0 is a

true model with minimum dimension.

The proofs of Lemma 5 and Theorem 1 are given in subsections 9.3 and 9.4, respectively.

The next theorem establishes consistency of the F-B fence proposed in section 2. Note that the

method is introduced in the case of extended GLMMs (also see subsection 5.2). LetM †
0 be the final

model of the F-B fence procedure using (7).

Theorem 2.Under assumptions A1 - A6, we have with probability tending to one thatM †
0 is a

true model and no proper submodel ofM †
0 is a true model.

Note that the consistency of the F-B fence is in the sense that (w. p.→ 1) M †
0 is a true model

which cannot be further reduced or simplified. The proof is given in subsection 9.5.

Finally, we give sufficient conditions for the consistency of the adaptive fence procedure in-

troduced in the previous section. For simplicity, assume thatMopt is unique. Consider the ratios

rM = (Q̂M − Q̂Mf
)/σ̂M,Mf

,M ∈ M. Let Mw≤ denote the subset of incorrect models with dimen-
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sion≤ |Mopt|. Write ropt = rMopt andrw≤ = minM∈Mw≤ rM . Denote the cumulative distribution

functions ofropt andrw≤ by Fopt andFw≤, respectively. LetM0(x) be the model selected by the

fence procedure using (7) withcn = x, andP (x) = P(M0(x) = Mopt). LetP ∗(x) be the bootstrap

version ofP (x). Denote the bootstrap sample size byn∗. Recall the definitions ofan, bn, qn, q∗n in

(15),gn, hn, rn, r∗n in (16), andB∗ above Example 4. We make the following assumptions.

A7. (Asymptotic distributional separation) ifMopt /∈ {Mf ,M∗}, then for anyε > 0, there

is 0 < δ ≤ 0.1, xn,1 < xn,2 < xn,3, andN ≥ 1 such that whenn ≥ N the following hold:

Fopt(xn,1) > 1 − ε, Fw≤(xn,3) ≤ ε, P (xn,2) > 1 − δ, 1 − 4δ < P (xn,j) ≤ 1 − 3δ, j = 1, 3; if

Mopt = Mf , we haveP(minM∈M,M 6=Mf
Q̂M > Q̂Mf

) → 1 asn→∞.

A8. (Good bootstrap approximation) ifMopt /∈ {Mf ,M∗}, then for anyδ, η > 0, there are

N ≥ 1,N∗ = N∗(n) such that, whenn ≥ N andn∗ ≥ N∗, we haveP(supx>0 |P ∗(x)− P (x)| <

δ) > 1− η; if Mopt = Mf , we haveqn/q∗n = OP(1); if Mopt = M∗, we haveq∗n/qn = OP(1) and

r∗n/rn = OP(1).

For the most part, assumption A7 says that there is an asymptotic separation between the optimal

model and the incorrect ones that matter in that the peak ofP (x) is distant from the area whererw≤

concentrates. This is reasonable because, typically,ropt is of lower order thanrw≤. Therefore,

one can find an interval,(xn,1, xn,3), such that (7) is almost always satisfied byM = Mopt when

cn ∈ (xn,1, xn,3). On the other hand,(xn,1, xn,3) is distant from the area whererw≤ concentrates,

so thatropt ≤ cn, rw≤ > cn with high probability, ifcn ∈ (xn,1, xn,3). Thus,P (x) is expected to

peak in(xn,1, xn,3) while Fw≤(x) stays low in the region.

Recall thatp∗ in the adaptive procedure is a function ofcn, i.e., p∗ = p∗(cn). The following

theorem establishes consistency of the adaptive fence. The proof is given in subsection 9.6.

Theorem 3.Under assumptions A7 and A8 the following hold.
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(i) If Mopt /∈ {Mf ,M∗}, then with probability tending to one there isc∗n ∈ (0,∞) which is at

least a local maximum and approximate global maximum ofp∗ in the sense that for anyδ, η > 0,

there isN ≥ 1 andN∗ = N∗(n) such thatP(p∗(c∗n) ≥ 1− δ) ≥ 1− η, if n ≥ N andn∗ ≥ N∗.

(ii) In general, definec∗n as

0, if q∗n > 1;

B∗, if q∗n ≤ 1, r∗n < 1;

the c∗n in (i), if q∗n ≤ 1, r∗n ≥ 1 and such a c∗n exists;

1, otherwise.

LetM∗
0 be the model selected by the fence procedure using (7) withM̃ = Mf andcn replaced by

c∗n. ThenM∗
0 is consistent in the sense that for anyη > 0 there isN ≥ 1 and andN∗ = N∗(n)

such thatP(M∗
0 = Mopt) ≥ 1− η, if n ≥ N andn∗ ≥ N∗.

8 Further discussion and concluding remarks

8.1 A note on hypothesis testing

It is tempting to think of the fence method as similar to hypothesis testing for choosing between

models. However, there are some clear and important differences. The fence method is sufficiently

more general in nature. In many situations, models must be compared which are not related to one

another by parameter restrictions (e. g., non-nested). There may be better ways to capture model

complexity in these cases. In such situations, log-likelihood ratios (if a likelihood is available) of

pairs of estimated models do not have a chi-square asymptotic distribution. As a result, pulling out

appropriate critical values for testing can be quite complex often requiring much more restrictive

assumptions about the underlying nature of the models being compared (Findley and Wei, 1989).
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Even in the nested model situation, asymptotic null distribution approximations can be poor (e.g.,

in case of correlated responses or non-normality), or if a likelihood does not exist but some other

goodness of fit measure is used, working out critical values for testing can prove problematic.

In addition, fence methods work when the true model does not exist or is not within the set

of candidate or approximating models (see subsection 4.2). When such a class is misspecified,

hypothesis testing procedures may lead to the simultaneous acceptance or rejection of multiple non-

nested models. The former might be a consequence of lack of data, while the latter be indicative of

the testing procedure being misspecified altogether (Gourierous and Monfort, 1995).

8.2 Concluding remarks

Fence is different from procedures like AIC, BIC in that there is no criterion function that is

minimized. In other words, instead of trying to find an “optimal” model that minimizes a criterion

function, fence proposes to carry out the optimization by two steps. The first step is to identify the

set of true models (the ones that are in the fence) or, in case a true model does not exist, the models

that best approximate the real-life problem. Note that although in this paper we have assumed the

existence of a true model, the method can be easily extended to the situation where a true model

does not exist, or is understood as the one that provides the best approximation (see subsection 4.2).

On the other hand, the second step of fence, which identifies the model with minimal dimension

within the fence, is quite flexible. For example, the dimension of a model may not be defined as the

number of estimated parameters (e.g., Hastie and Tibshirani 1990, Ye 1998); or it may be replaced

by some other considerations, such as economical concerns. In fact, practically speaking, optimality

in model selection usually goes beyond statistics. Keeping this in mind, it appears that the fence

procedure is easier to incorporate with other scientific or economical criteria than minimizing a
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single criterion function determined before the scientific or economic problem.

A good feature of the fence algorithm is that one needs not check all the models for membership

within the fence (see the remark following the fence algorithm in section 2). Furthermore, if the

candidate models include a full model, the first step of fence, i.e., the identification ofM̃ , does not

require any computation (see the remark following the definition ofM̃ in section 2). These features

potentially save computational time, especially when the number of candidate models is large.

Finally, fence is conceptually simple. It takes knowledge about information theory and likeli-

hood to understand the idea behind AIC, and Bayesian theory for BIC. But, apparently, everyone

understands standard deviation. By the way, the name “fence” is also easily interpreted. In English,

fence means a fence.

In this paper, we have demonstrated the robust performance of fence in various situations of

linear or generalized linear mixed models as well as its broad applicability to problems in different

fields, ranging from genetics, medical care to biology and surveys. In addition, we have introduced

a stepwise fence procedure to handle situations of large number of predictors. Furthermore, we

have proposed an adaptive procedure for choosing a tuning constant involved in the fence method.

The adaptive procedure improves the finite sample performance of fence at a computational cost

for bootstrapping. On the theoretical side, we have established consistency of the different fence

procedures, with the proofs given in the next section.
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9 Proofs

9.1 Proof of Lemma 2

By i), (8) and the fact that the clusters are independent, we have

E
∣∣∣∣∂QM

∂θM

∣∣∣∣2 = tr

{
Var

(
m∑

i=1

∂QM,i

∂θM

)}

=
m∑

i=1

tr
{

Var
(
∂QM,i

∂θM

)}
= O(m).

Thus, we have

∂QM

∂θM
= OP(

√
m). (18)

By Taylor expansion, (18) and iii), we havêQM = QM + (∂QM/∂θM )′(θ̂M − θM ) + (1/2)(θ̂M −

θM )′{∂2QM/∂θM∂θ
′
M |θ̃M

}(θ̂M−θM ) = QM +R2, whereθ̃M lies betweenθM andθ̂M . Hereafter,

R2 represents a random variable whose second moment is bounded, but the definition ofR2 may

change from place to place. Since the above holds for anyM ∈ M, we also havêQM∗ = QM∗+R2,

henceQ̂M − Q̂M∗ = QM −QM∗ +R2. Therefore, by iv), we have

E(Q̂M − Q̂M∗) = E(QM −QM∗) +O(1), (19)

var(Q̂M − Q̂M∗) = var(QM −QM∗) +O(
√
m). (20)

Thus, ifM is correct, we haveE(QM ) = E(QM∗), henceE(Q̂M − Q̂M∗) = O(1), var(Q̂M −

Q̂M∗) = var(QM − QM∗){1 + O(1/
√
m)} = O(m). On the other hand, ifM is incorrect, we

have, by v) and (19), (20),E(Q̂M − Q̂M∗)2 = var(QM −QM∗) +O(m2) = O(m2).

9.2 Proof of Lemma 4

By Taylor expansion and conditions i) - iii), we haveξM,i = ξ̂M,i +∂ξM,i/∂θ
′
M |θ̂M

(θM − θ̂M )+

(1/2)(θM−θ̂M )′(∂2ξM,i/∂θM∂θ
′
M |θ̃M ,i)(θM−θ̂M ) = ξ̂M,i−(∂ξM,i/∂θ

′
M |θ̂M

)(θ̂M−θM )−RM,i,
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where θ̃M,i lies betweenθM and θ̂M and E(R2
M,i) ≤ ca−2

n for some constantc. Furthermore,

conditions ii) and iii) imply that∂Q̂M/∂θ
′
M =

∑n
i=1 ∂ξM,i/∂θ

′
M |θ̂M

= 0. Thus, we havêQM =∑n
i=1 y

2
i +
∑n

i=1 ξ̂M,i =
∑n

i=1 y
2
i +
∑n

i=1 ξM,i+(
∑n

i=1 ∂ξM,i/∂θ
′
M |θ̂M

)(θ̂M−θM )−
∑n

i=1RM,i =∑n
i=1 y

2
i +

∑n
i=1 ξM,i −

∑n
i=1RM,i. A similar expression is obtained for̂QM∗ . It follows that

Q̂M − Q̂M∗ =
∑n

i=1 di + R, whereR =
∑n

i=1(RM∗,i − RM,i). Thus, we haveσ2
M,M∗ =

var(
∑n

i=1 di)+2cov(
∑n

i=1 di, R)+var(R) = I1 +2I2 + I3. It is easy to show thatI3 ≤ c1n
2a−2

n

for some constantc1. Furthermore, we have, by condition iv),

I1 = 4
∑

z′iΣzj 6=0

δiδjcov(yi, yj) ≥ c2|S| (21)

for some constantc2 > 0. It follows, again by condition iv), thatI3 ≤ o(1)I1 and, by Cauchy-

Schwarz inequality,I2 ≤ o(1)I1. It follows thatσ2
M,M∗ = I1{1 + o(1)}.

We now derive (10) by using the first equation in (21). Note that ifz′iΣM∗zj = 0, z′iα and

z′jα are independent. Also,z′iΣM∗zj = 0 implies i 6= j, because otherwise one concludeszi = 0,

which contradicts condition iv). Thus, ifz′iΣM∗zj = 0, we haveE(yiyj) = E{E(yi|α)E(yj |α)} =

E{hM∗(x′iβM∗ + z′iα)hM∗(x′jβM∗ + z′jα)} = E(yi)E(yj), hencecov(yi, yj) = 0. On the other

hand, if z′iΣM∗zj 6= 0 but i 6= j, it is easy to show thatcov(yi, yj) = gM∗,i,j(βM∗ , ψM∗) −

gM∗,i(βM∗ , ψM∗)gM∗,j(βM∗ , ψM∗). Finally, note thatz′iΣM∗zi 6= 0, andvar(yi) = E(y2
i ) −

g2
M∗,i(βM∗ , ψM∗). It is then easy to derive the expression (10).

9.3 Proof of Lemma 5

A2 and A3 imply thatθ̂M is the unique solution to∂QM/∂θM = 0, By Taylor expansion,

we have,Q̃M − QM = (∂QM/∂θM )′(θ̃M − θM ) + (1/2)(θ̃M − θM )′(∂2QM/∂θM∂θ
′
M )(θ̃M −

θM ) + (1/6)
∑

j,k,l(∂
3Q∗

M/∂θM,j∂θM,k∂θM,l)(θ̃M,j − θM,j)(θ̃M,k − θM,k)(θ̃M,l − θM,l) = I1 +
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(1/2)I2 + 1
6I3 for any θ̃M , where∂3Q∗

M/ · · · represents the third derivatives evaluated atθ∗M ,

which lies betweenθM and θ̃M . For anyε > 0, by A1 and A4, there areδ > 0 andN0 ≥ 1

such thatλmin{E(∂2QM/∂θM∂θ
′
M )} ≥ δan, n ≥ N0, andL1 > 0 such that the probability

is greater than1 − ε that |∂QM/∂θM | ≤ L1a
γ
n, ‖∂2QM/∂θM∂θ

′
M − E(∂2QM/∂θM∂θ

′
M )‖ ≤

L1a
γ
n, maxj,k,l sup|θ̃M−θM |≤δM

|∂3Q̃M/∂θM,j∂θM,k∂θM,l| ≤ L1an. Now chooseL2 > 0 such that

δL2 > 2L1. Let ΘM,L2 = {θ̃M : |θ̃M − θM | ≤ L2a
γ−1
n }, andΘ̄M,L2 be the boundary ofΘM,L2 ,

i. e., Θ̄M,L2 = {θ̃M : |θ̃M − θM | = L2a
γ−1
n }. Then, chooseN1 ≥ 1 such thatL2a

γ−1
n ≤ δM ,

n ≥ N1. It follows that forθ̃ ∈ Θ̄M,L2 , we have|I1| ≤ L1L2a
2γ−1
n , I2 ≥ δL2

2a
2γ−1
n − L1L

2
2a

3γ−2
n ,

|I3| ≤ L1an

(∑
j |θ̃M,j − θM,j |

)3
≤ L1L

3
2p

3/2
M a3γ−2

n , hence for all̃θ ∈ Θ̄M,L2 ,

Q̃M −QM ≥ 1
2
L2a

2γ−1
n

{
δL2 − 2L1 − L1L2

(
1 +

1
3
L2p

3/2
M

)
aγ−1

n

}
. (22)

If we chooseN2 ≥ 1 such that, whenn ≥ N2, the quantity inside{· · · } on the right side of (22)

is positive, and letN = N0 ∨ N1 ∨ N2, then we have, with probability greater than1 − ε, that

Q̃M > QM , ∀θ̃ ∈ Θ̄M,L2 . It follows thatP(|θ̂M − θM | < L2a
γ−1
n ) ≥ 1− ε, if n ≥ N . This proves

that θ̂M − θM = OP(aγ−1
n ).

By similar arguments, it can be shown that for anyε > 0, there are constantsL, L1, L2 and

N ≥ 1 such that, whenn ≥ N , Q̂M − QM ≤ L1L2a
2γ−1
n + 1

2LL
2
2a

2γ−1
n + (1/2)L1L

2
2a

3γ−2
n +

(1/6)L1L
3
2p

3/2
M a3γ−2

n ≤ L2

{
L1 + (1/2)(L+ L1)L2 + 1

6L1L
2
2p

3/2
M

}
a2γ−1

n with probability> 1−

ε. This proves that̂QM −QM = OP(a2γ−1
n ).

9.4 Proof of Theorem 1

For the most part, we show that, with probability tending to one (w. p.→ 1), all the true models

(with |M | < |M̃ |) are in the fence, and all the incorrect ones are out.
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Let M be an incorrect model andM∗ a true model. By Lemma 5 and A5, we havêQM −

Q̂M∗ = QM − QM∗ + Q̂M − QM − (Q̂M∗ − QM∗) = QM − QM∗ + OP(a2γ−1
n ) = E(QM ) −

E(QM∗)+{QM −QM∗−E(QM −QM∗)}+OP(a2γ−1
n ) = E(QM )−E(QM∗)+σM,M∗OP(1) =

{E(QM )− E(QM∗)}{1 + oP(1)}. It follows that, w. p.→ 1, we haveQ̂M > Q̂M∗ . This implies

that, w. p.→ 1, M̃ is a true model (because an incorrect model cannot be the minimizer).

Furthermore, it is seen from this argument that, ifM is incorrect, we have

Q̂M − Q̂M∗ = cnσ̂M,M∗

[
cnσM,M∗

E(QM )− E(QM∗)

(
σ̂M,M∗

σM,M∗

)
{1 + oP(1)}−1

]−1

. (23)

A5 and A6 imply that the quantity inside[· · · ] in (23) is oP(1). Therefore, w. p.→ 1, we have

Q̂M > Q̂M∗ + cnσ̂M,M∗ . It follows thatP(|M | < |M̃ |,M ∈ M̃−) ≤ P(Q̂M ≤ Q̂M̃ + cnσ̂M,M̃ ) ≤∑
M∗ is true P(Q̂M ≤ Q̂M∗ + cnσ̂M,M∗ , M̃ = M∗) + P(M̃ is incorrect) ≤

∑
M∗ is true P(Q̂M ≤

Q̂M∗ + cnσ̂M,M∗) + P(M̃ is incorrect) → 0. If we letE1 = ∩M is incorrect,|M |<|M̃ |{M /∈ M̃−},

thenEc
1 = ∪M is incorrect{|M | < |M̃ |,M ∈ M̃−}, henceP(Ec

1) → 0. This proves the “out” part.

On the other hand, ifM andM∗ are both true models, then, by the property ofQM , we

haveE(QM ) = E(QM∗). Therefore, by similar arguments and A6, we haveQ̂M − Q̂M∗ =

QM − QM∗ + OP(a2γ−1
n ) = σ̂M,M∗OP(1). Sincecn → ∞, we have, w. p.→ 1, Q̂M ≤

Q̂M∗ + cnσ̂M,M∗ . It follows that P(|M | < |M̃ |,M /∈ M̃−) ≤ P(Q̂M > Q̂M̃ + cnσ̂M,M̃ ) ≤∑
M∗ is true P(Q̂M > Q̂M∗ + cnσ̂M,M∗ , M̃ = M∗) + P(M̃ is incorrect) ≤

∑
M∗ is true P(Q̂M >

Q̂M∗ + cnσ̂M,M∗) + P(M̃ is incorrect) → 0. If we letE2 = ∩M is true,|M |<|M̃ |{M ∈ M̃−}, then

Ec
2 = ∪M is true{|M | < |M̃ |,M /∈ M̃−}, henceP(Ec

2) → 0. This proves the “in” part.

Finally, note that{M0 is optimal} ⊃ E0 ∩ E1 ∩ E2, whereE0 = {M̃ is true}.
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9.5 Proof of Theorem 2

First note that, like the fence procedure, the F-B fence is guaranteed to stop at some point.

This is because, otherwise, one keeps adding the parameters until one gets the full model, which

automatically satisfies the fence inequality (note that in this caseM̃ is chosen as the full model).

Next we show that, w. p.→ 1, M †
0 is a true model. Suppose that this is not the case. Then,

there is an incorrect model, say,M , such that

P(M †
0 = M) ≥ δ, (24)

whereδ > 0 is a constant. SincẽM is a true model, we have by the proof of Theorem 1 that, w.

p. → 1, Q̂M > Q̂M̃ + cnσ̂M,M̃ . On the other hand,M †
0 = M implies thatQ̂M ≤ Q̂M̃ + cnσ̂M,M̃

(becauseM †
0 has to satisfy the fence inequality). Thus, we haveP(M †

0 = M) ≤ P(Q̂M ≤ Q̂M̃ +

cnσ̂M,M̃ ) → 0, which contradicts (24).

We next show that, w. p.→ 1, no proper submodel ofM †
0 is a true model. Suppose that this is

not true. Then there is a true modelM1 and a constantδ > 0 such thatP(M1 ⊂M †
0) ≥ δ. Hereafter

the notationM1 ⊆ M2 (M1 ⊂ M2) means thatM1 is a (proper) submodel ofM2. Suppose that

underM †
0 , Xβ + Zα =

∑
r∈R0

Xrβr +
∑

s∈S0
Zsαs, and, underM1, the same expression holds

with R0, S0 replaced byR1, S1, respectively. DefineR10 = R1 ∪ {r1, . . . , ra−1}, S10 = S0, if

R1 ⊂ R0, S1 ⊆ S0 andR0 \ R1 = {r1, . . . , ra}; R10 = R0, S10 = S1 ∪ {s1, . . . , sb−1}, if

R1 = R0, S1 ⊂ S0 andS0 \ S1 = {s1, . . . , sb}; andR10 = R1, S10 = S1 otherwise. LetM10 be

the model corresponding toR10 andS10. Then,M1 ⊂ M †
0 implies thatM10 ⊂ M †

0 with one less

parameter, hence we must haveQ̂M10 > Q̂M̃ + cnσ̂M10,M̃ by the definition ofM †
0 . It follows that

P(Q̂M10 > Q̂M̃ + cnσ̂M10,M̃ ) ≥ δ. (25)

On the other hand, we have by the proof of Theorem 1 that for any true modelM , w. p. → 1,
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Q̂M ≤ Q̂M̃ + cnσ̂M,M̃ . SinceM10 is always a true model, it follows thatP(Q̂M10 > Q̂M̃ +

cnσ̂M10,M̃ ) ≤
∑

M true P(Q̂M > Q̂M̃ + cnσ̂M,M̃ ) → 0, which contradicts (25).

9.6 Proof of Theorem 3

(i) For anyε, η > 0, let δ, xn,j , j = 1, 2, 3, N andN∗ be as in A7 and A8. Then, whenn ≥ N

andn∗ ≥ N∗, the following arguments hold with probability> 1− η.

For j = 1, 3, we haveP∗(xn,j) > P (xn,j) − δ > 1 − 5δ ≥ 1/2. It follows thatp∗(xn,j) =

maxM∈M P ∗(M0(xn,j) = M) = P ∗(xn,j) < P (xn,j) + δ ≤ 1 − 2δ. Similarly, p∗(xn,2) =

P ∗(xn,2) > P (xn,2) − δ > 1 − 2δ. Thus, there isc∗n ∈ (xn,1, xn,3) which is the maximum ofp∗

over[xn,1, xn,3]. Furthermore, we havep∗(c∗n) ≥ p∗(xn,2) > 1− 2δ.

(ii) If Mopt = Mf , thenqn ∼ an/bn, henceq−1
n = (bn/an)O(1) = o(1). Also, by A8, for any

η > 0, there isL > 0 such thatP(qn/q∗n > L) < η. ChooseN1 ≥ 1 such thatq−1
n < 1/L when

n ≥ N1. Then, whenn ≥ N1, we have, w. p.> 1− η, (q∗n)−1 = q−1
n (qn/q∗n) < 1, henceq∗n > 1,

hencec∗n = 0. On the other hand, by A7, there isN2 ≥ 1 such thatP(minM∈M,M 6=Mf
Q̂M >

Q̂Mf
) > 1− η, if n ≥ N2. LetN = N1 ∨N2, thenP(M∗

0 = Mf) > 1− 2η, if n ≥ N .

If Mopt = M∗, then, by similar arguments, it can be shown thatr∗n = oP(1) andq∗n = oP(1).

Thus, for anyη > 0, there isN ≥ 1 such that whenn ≥ N we have, w. p.> 1 − η, q∗n ≤ 1 and

r∗n < 1, hencec∗n = B∗, henceM∗
0 = M∗.

If Mopt /∈ {Mf ,M∗}, note that

{M∗
0 = Mopt} ⊃ {ropt ≤ c∗n, rw≤ > c∗n} ⊃ {ropt ≤ xn,1, rw≤ > xn,3},
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if c∗n ∈ (xn,1, xn,3). Therefore, by (i), for anyε, η > 0, we have

P(M∗
0 = Mopt) ≥ P(M∗

0 = Mopt, c
∗
n ∈ (xn,1, xn,3))

≥ P(ropt ≤ xn,1, rw≤ > xn,3, c
∗
n ∈ (xn,1, xn,3))

≥ Fopt(xn,1)− Fw≤(xn,3)− P(c∗n /∈ (xn,1, xn,3))

> 1− 2ε− η, n ≥ N,n∗ ≥ N∗.
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