FENCE METHODS FOR MIXED MODEL SELECTION

Jiming Jiang ${ }^{\dagger}$, J. Sunil Rao ${ }^{\ddagger}$, Zhonghua Gu ${ }^{\dagger}$ and Thuan Nguyen ${ }^{\dagger}$ University of California, Davis ${ }^{\dagger}$ and Case Western Reserve University ${ }^{\ddagger}$

Many model search strategies involve trading off model fit with model complexity in a penalized goodness of fit measure. Asymptotic properties for these types of procedures in settings like linear regression and ARMA time series have been studied, but these do not naturally extend to non-standard situations such as mixed effects models, where simple definition of the sample size is not meaningful. This paper introduces a new class of strategies, known as fence methods, for mixed model selection, which includes linear and generalized linear mixed models. The idea involves a procedure to isolate a subgroup of what are known as correct models (of which the optimal model is a member). This is accomplished by constructing a statistical fence, or barrier, to carefully eliminate incorrect models. Once the fence is constructed, the optimal model is selected from amongst those within the fence according to a criterion which can be made flexible. We describe a variety of fence methods, based on the same principle but applied to different situations, including clustered and non-clustered data, linear or generalized linear mixed models, and Gaussian or non-Gaussian random effects. We show the broad applicability and study the performance of fence methods by giving a number of examples, each supported by simulation results or applied data analysis. In addition, we propose two variations of the basic fence method, one utilizes a stepwise procedure to handle situations of many predictors; the other introduces an adaptive approach of choosing a tuning constant involved in the fence method. We give sufficient conditions for consistency of fence and its variations, a desirable property for a good model selection procedure.

Key Words. Clustered Data, Consistency, Generalized Linear Mixed Models, Mixed Model Selection, Non-clustered Data.

1 Introduction

Many model search strategies involve trading off model fit with model complexity in a penalized goodness of fit measure. Such procedures usually amount to minimizing a criterion function, which may be expressed as

$$
\begin{equation*}
\hat{D}_{M}+\lambda_{n}|M|, \tag{1}
\end{equation*}
$$

where M represents a candidate model, \hat{D}_{M} is a measure of lack of fit by M, and $|M|$ denotes the dimension of M, usually in terms of the number of estimated parameters under M (see Remark in section 2.2). The main difference between procedures is made by λ_{n}, where n is the sample size. This is called a "penalizer", although some authors refer $\lambda_{n}|M|$ as the penalizer. For example, connecting the relative Kullback-Liebler discrepancy and the empirical log-likelihood function yields the Akaike's information criterion (AIC; Akaike 1973, 1974) where $\lambda_{n}=2$. The idea has allowed major practical and theoretical advances in model selection and related fields (e.g., de Leeuw 1992). A number of similar criteria have since been proposed, for instance, the Bayesian information criterion (BIC; Schwarz 1978) in which $\lambda_{n}=\log (n)$; a criterion due to Hannan and Quinn (HQ; Hannan and Quinn 1979) in which $\lambda_{n}=c \log \{\log (n)\}$ and c is a constant >2; and the generalized information criterion (GIC; Nishii 1984, Shibata 1984) in which λ_{n} assumes other values.

Although these criteria are widely used, difficulties are often encountered, especially in some non-conventional situations. A broad class of such non-conventional cases are mixed effects models, including linear and generalized linear mixed models. For example, consider the following linear mixed model, $y_{i j}=x_{i j}^{\prime} \beta+u_{i}+v_{j}+e_{i j}, i=1, \ldots, m_{1}, j=1, \ldots, m_{2}$, where $x_{i j}$ is a vector of known covariates, β is a vector of unknown regression coefficients (the fixed effects), u_{i}, v_{j} are random effects, and $e_{i j}$ is an additional error term. It is assumed that $u_{i}{ }^{\prime}$'s, v_{j} 's and $e_{i j}$'s
are independent, and that, for the moment, $u_{i} \sim N\left(0, \sigma_{u}^{2}\right), v_{j} \sim N\left(0, \sigma_{v}^{2}\right), e_{i j} \sim N\left(0, \sigma_{e}^{2}\right)$. It is well-known (e.g., Hartley and Rao 1967, Harville 1977, Miller 1977) that, in this case, the effective sample size for estimating σ_{u}^{2} and σ_{v}^{2} is not the total sample size $m_{1} \cdot m_{2}$, but m_{1} and m_{2}, respectively. Now suppose that one wishes to select the fixed covariates, which are components of $x_{i j}$, under the assumed model structure, using BIC. Then, it is not clear what should be in place of n in (1), where $\lambda_{n}=\log (n)$ (it does not make sense to let $n=m_{1} \cdot m_{2}$). In fact, in cases of correlated observations, such as the example here, the definition of "sample size" is often unclear.

Furthermore, suppose that normality is not assumed in the above linear mixed model. In fact, the only distributional assumptions are that the random effects and errors are independent, and that they have means zero and variances $\sigma_{u}^{2}, \sigma_{v}^{2}$ and σ_{e}^{2}, respectively. Now, suppose that one, again, wishes to select the fixed covariates using AIC, BIC, or HQ. It is not clear how to do this because the likelihood is unknown under the assumed model.

Even in conventional cases, there are still some practical issues regarding the use of these model selection criteria. For example, the BIC is known to have the tendency of overly penalizing bigger models. In other words, the penalizer, $\log (n)$, may be a little too much in some cases (see, for example, section 4 below). In such a case, one may wish to replace the penalizer by $c \log (n)$, where c is a constant less than one. Question is: What c ? Asymptotically, the choice of c does not make a difference in terms of consistency so long as $c>0$. Here consistency means that, as $n \rightarrow \infty$, the probability that the procedure selects the optimal model (i.e., a true model with minimal dimension; see below) goes to one. However, practically, the choice of c does matter. For example, comparing BIC with HQ, the penalizer of the latter is lighter in its order $(\log \{\log (n)\}$ vs $\log (n))$, but there is a constant c involved in HQ. If $n=100$, we have $\log (n)=4.6$ and $\log \{\log (n)\}=1.5$, hence, if the constant c in HQ is chosen as $3, \mathrm{BIC}$ and HQ are almost the same.

In a way, model selection and estimation are viewed as two components of a process called model identification. While there is extensive literature on parameter estimation in linear and generalized linear mixed models, the other component, that is, mixed model selection, has received much less attention. Only recently have some results emerge in the area of linear mixed model selection. Datta and Lahiri (2001) discussed a model selection method based on computation of the frequentist's Bayes factor in choosing between a fixed effects model and a random effects model. They focused on the following one-way balanced random effects model for the sake of simplicity: $y_{i j}=\mu+u_{i}+e_{i j}, i=1, \ldots, m, j=1, \ldots, k$, where the u_{i} 's and $e_{i j}$'s are normally distributed with mean zero and variances σ_{u}^{2} and σ_{e}^{2}, respectively. As noted by the authors, the choice between a fixed effects model and a random effects one in this case is equivalent to testing the following one-sided hypothesis $\mathrm{H}_{0}: \sigma_{u}^{2}=0$ vs $\mathrm{H}_{1}: \sigma_{u}^{2}>0$. In fact, hypothesis testing may be regarded as a special case of model selection, but not all model selection problems can be formulated as hypothesis testing (see further discussion in subsection 8.1). Jiang and Rao (2003) developed various GIC's suitable for linear mixed model selection and proved consistency of their procedures. The authors also studied finite sample performance of their procedures by simulations. Meza and Lahiri (2005) demonstrated the limitations of Mallows' C_{p} statistic in selecting the fixed covariates in a nested error regression model which is a special case of the linear mixed models. The nested error regression model is defined as $y_{i j}=x_{i j}^{\prime} \beta+u_{i}+e_{i j}, i=1, \ldots, m, j=1, \ldots, n_{i}$, where $y_{i j}$ is the observation, $x_{i j}$ is a vector of fixed covariates, β is a vector of unknown regression coefficients, and u_{i} 's and $e_{i j}$'s are the same as in the model above considered by Datta and Lahiri (2001). Simulation studies carried out by Meza and Lahiri (2005) showed that the C_{p} method without modification does not work well in the current mixed model setting when the variance σ_{u}^{2} is large; on the other hand, a modified C_{p} criterion developed by these latter authors by adjusting the intra-cluster correlations
performs similarly as the C_{p} in regression settings. Another related paper is that of Vaida and Blanchard (2005) who proposed a conditional AIC where the penalty term in this CAIC is related to the effective degrees of freedom for a linear mixed model proposed by Hodges and Sargent (2001) which reflects an intermediate level of model complexity between a full fixed effects model and a corresponding mixed model conditional on the random effects variances.

It should be pointed out that all these studies are limited to linear mixed models, while model selection in generalized linear mixed models (GLMMs) has never been seriously addressed in the literature. In fact, our earlier simulation results suggested that in the case of GLMM selection, a procedure like GIC is much more sensitive to the choice of λ_{n} than in linear mixed model selection. See further discussion in the sequel. It is these concerns, such as the above, that motivated the development of a new principle for model selection that is potentially less subjective, and applicable to both linear mixed models and GLMMs.

The rest of the paper is organized as follows. In section 2 we describe in detail a new procedure for mixed model selection, called fence method. A variation of the procedure known as F-B fence is also proposed. In section 3 we consider estimation of a standard deviation, which plays an important role in the fence method, and show how to utilize the fence in various situations involving clustered and non-clustered data. In sections 4 and 5 we give a number of examples, each supported by results of simulations or real data analyses, to illustrate the application of fence in various situations. The examples include linear mixed models and GLMMs with clustered and non-clustered data. In section 6 we propose an adaptive method of choosing a tuning constant involved in the fence procedure. In section 7 we address the issue of consistency of different fence methods. Some further discussion and concluding remarks are made in section 8 . The proofs are given in section 9 .

2 The fence method

The essential part of this procedure is a quantity $Q_{M}=Q_{M}\left(y, \theta_{M}\right)$, where M indicates the candidate model, y is an $n \times 1$ vector of observations, θ_{M} represents the vector of parameters under M, such that $\mathrm{E}\left(Q_{M}\right)$ is minimized when M is a true model and θ_{M} the true parameter vector under M. Here by true model we mean that M is a correct model but not necessarily the most efficient one. In this paper, we use the terms "true model" and "correct model" interchangeably. Below are some examples of Q_{M}.

1. Maximum likelihood (ML) model selection. If the model specifies the full distribution of y up to the parameter vector θ_{M}, an example of Q_{M} is the negative of the \log-likelihood under M, i. e., $Q_{M}=-\log \left\{f_{M}\left(y \mid \theta_{M}\right)\right\}$, where $f_{M}\left(\cdot \mid \theta_{M}\right)$ is the joint pdf of y with respect to a measure ν under M, given that θ_{M} is the true parameter vector. To see that $\mathrm{E}\left(Q_{M}\right)$ is minimized when M is a true model and θ_{M} the true parameter vector under M, let $f(y)$ denote the true pdf of y. We have

$$
\begin{align*}
-\mathrm{E}\left(Q_{M}\right) & =\int \log \left\{f_{M}\left(y \mid \theta_{M}\right)\right\} f(y) \nu(d y) \\
& =\int \log \{f(y)\} f(y) \nu(d y)+\int \log \left\{\frac{f_{M}\left(y \mid \theta_{M}\right)}{f(y)}\right\} f(y) \nu(d y) \\
& \leq \int \log \{f(y)\} f(y) \nu(d y)+\log \left\{\int \frac{f_{M}\left(y \mid \theta_{M}\right)}{f(y)} f(y) \nu(d y)\right\} \\
& =\int \log \{f(y)\} f(y) \nu(d y), \tag{2}
\end{align*}
$$

using the concave-function inequality. The lone term on the right side of (2) is equal to $-\mathrm{E}\left(Q_{M}\right)$ when M is a true model and θ_{M} the true parameter vector.
2. Mean and variance/covariance (MVC) model selection. If the model is only specified by the mean and covariance matrix of y, it is called a mean and variance/covariance model, or MVC model. In this case, we may consider $Q_{M}=\left|\left(T^{\prime} V_{M}^{-1} T\right)^{-1} T^{\prime} V_{M}^{-1}\left(y-\mu_{M}\right)\right|^{2}$, where μ_{M} and V_{M} are the mean vector and covariance matrix under M, and T is a given $n \times s$ matrix of full rank
$s \leq n$. To see that $\mathrm{E}\left(Q_{M}\right)$ is minimized when $\mu_{M}=\mu, V_{M}=V$, where μ and V denote the true mean vector and covariance matrix, note that

$$
\begin{align*}
\mathrm{E}\left(Q_{M}\right)= & \operatorname{tr}\left\{\left(T^{\prime} V_{M}^{-1} T\right)^{-1} T^{\prime} V_{M}^{-1} V V_{M}^{-1} T\left(T^{\prime} V_{M}^{-1} T\right)^{-1}\right\} \\
& +\left|\left(T^{\prime} V_{M}^{-1} T\right)^{-1} T^{\prime} V_{M}^{-1}\left(\mu_{M}-\mu\right)\right|^{2} \tag{3}
\end{align*}
$$

The first term is the trace of the covariance matrix of the weighted least squares (WLS) estimator of β with the weight matrix $W=V_{M}^{-1}$ in the linear regression $y=T \beta+\epsilon$, where $\mathrm{E}(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=V$. Since the covariance matrix of the WLS estimator is minimized when $W=V^{-1}$, i. e., $V_{M}=V$, the first term on the right side of (3) is minimized when $V_{M}=V$. On the other hand, the second term is zero when $\mu_{M}=\mu$.
3. Extended GLMM selection. Jiang and Zhang (2001) proposed an extension of GLMM, in which only the conditional mean of the response given the random effects is parametrically specified. It is assumed that, given a vector α of random effects, the responses y_{1}, \ldots, y_{n} are conditionally independent such that $\mathrm{E}\left(y_{i} \mid \alpha\right)=h\left(x_{i}^{\prime} \beta+z_{i}^{\prime} \alpha\right), 1 \leq i \leq n$, where $h(\cdot)$ is a known function, β is a vector of unknown fixed effects, and x_{i}, z_{i} are known vectors. Furthermore, it is assumed that $\alpha \sim N(0, \Sigma)$, where the covariance matrix Σ depends on a vector ψ of variance components. Let β_{M} and ψ_{M} denote β and ψ under M, and $g_{M, i}\left(\beta_{M}, \psi_{M}\right)=\mathrm{E}\left\{h_{M}\left(x_{i}^{\prime} \beta_{M}+z_{i}^{\prime} \Sigma_{M}^{1 / 2} \xi\right)\right\}$, where h_{M} is the function h under M, Σ_{M} is the covariance matrix under M evaluated at ψ_{M}, and the expectation is taken with respect to $\xi \sim N\left(0, I_{m}\right)$ (which does not depend on M). Here m is the dimension of α and I_{m} the m-dimensional identity matrix. We consider the following

$$
\begin{equation*}
Q_{M}=\sum_{i=1}^{n}\left\{y_{i}-g_{M, i}\left(\beta_{M}, \psi_{M}\right)\right\}^{2} \tag{4}
\end{equation*}
$$

It is easy to see that the Q_{M} given above satisfies the basic requirement, i.e., $\mathrm{E}\left(Q_{M}\right)$ is minimized when M is a true model and $\theta_{M}=\left(\beta_{M}^{\prime}, \psi_{M}^{\prime}\right)^{\prime}$ is the true parameter vector under M. In fact,
(4) corresponds to the Q_{M} in MVC model selection just discussed with $T=I$, the identity matrix. Note that, since V is not parametrically specified under the assumed model, it needs not get involved in Q_{M}. Therefore, (4) is a natural choice for Q_{M} in this case.

2.1 Building the fence

Given a specific Q_{M}, let $\hat{Q}_{M}=Q_{M}\left(y, \hat{\theta}_{M}\right)$, where $\hat{\theta}_{M}$ is the minimizer of Q_{M} over $\theta_{M} \in \Theta_{M}$, the parameter space under M, that is, $\hat{Q}_{M}=\inf _{\theta_{M} \in \Theta_{M}} Q_{M}\left(\theta_{M}, y\right)$. A model is called optimal if it is a true model with the smallest dimension. Here the dimension of a model $M,|M|$, is understood as the dimension of θ_{M}. However, it will be seen later that the method developed here is, in fact, flexible in this regard. Notice carefully that the optimal model would be selected by minimizing Q_{M} if one knew the true value of θ_{M}. However, Q_{M} is something we do not have the luxury of knowing and thus must base our selection on \hat{Q}_{M}. The initial thought was to consider something similar to (1), that is, a criterion function of the form

$$
\begin{equation*}
\hat{Q}_{M}+\lambda_{n}|M| . \tag{5}
\end{equation*}
$$

However, we encountered the same problem as described earlier for a procedure based on (1). Although we know that, under regularity conditions, as long as $\lambda_{n} / n \rightarrow 0$ and $\lambda_{n} / \sqrt{n} \rightarrow \infty$, the procedure based on (5) is consistent, this only gives the order of λ_{n}. In other words, there is a constant involved, which in case of moderate sample size could make a bigger difference than n itself (see our earlier discussion regarding BIC and HQ). It took us some time to figure out an alternate solution. We arrived at the following thought.

Let $\tilde{M} \in \mathcal{M}$ be such that $\hat{Q}_{\tilde{M}}=\min _{M \in \mathcal{M}} \hat{Q}_{M}$, where \mathcal{N} represents the set of candidate models. We assume that \mathcal{N} contains a true model. Note that in many cases, \tilde{M} can be determined without
any calculation. For example, if \mathcal{M} contains a full model, say M_{f}, that is, a model such that all other models in \mathcal{M} are submodels of M_{f}, then, clearly, $\tilde{M}=M_{\mathrm{f}}$ and, since \mathcal{M} contains a true model, M_{f} is also a true model. In general, \mathcal{M} may not contain a full model, but the following lemma shows that, at least in large sample, \tilde{M} is expected to be a correct model.

Lemma 1. Under the assumptions A1-A5 in section 7, we have with probability tending to one that \tilde{M} is a true model.

The proof of Lemma 1 follows directly from that of Theorem 1 in the sequel.
However, the main question is, "Are there other correct models in \mathcal{M} with smaller dimension than $\tilde{M} ?$? ${ }^{\prime}$ To answer this question, we need to know what the difference $\hat{Q}_{M}-\hat{Q}_{\tilde{M}}$ is likely to be when M is a true model, and how the difference might be different when M is an incorrect model. Suppose that M^{*} is a correct model. As it turns out (see arguments in the next section), if M is also a correct model, an appropriate measure of the difference $\hat{Q}_{M}-\hat{Q}_{M^{*}}$ is its standard deviation, denoted by $\sigma_{M, M^{*}}$. On the other hand, if M is an incorrect model, the difference $\hat{Q}_{M}-\hat{Q}_{M^{*}}$ is expected to be much larger. This leads to the following procedure. For simplicity, let us first consider the case that \tilde{M} is unique.

1. Find \tilde{M} such that $\hat{Q}_{\tilde{M}}=\min _{M \in \mathcal{M}} \hat{Q}_{M}$. (See the remark following the definition of \tilde{M}.)
2. For each $M \in \mathcal{M}$ such that $|M|<|\tilde{M}|$, compute $\hat{\sigma}_{M, \tilde{M}}$, an estimator of $\sigma_{M, \tilde{M}}$. Then, M belongs to $\tilde{\mathcal{M}}_{-}$, the set of "true" models with $|M|<|\tilde{M}|$ if

$$
\begin{equation*}
\hat{Q}_{M} \leq \hat{Q}_{\tilde{M}}+\hat{\sigma}_{M, \tilde{M}} \tag{6}
\end{equation*}
$$

3. Let $\tilde{\mathcal{M}}=\{\tilde{M}\} \cup \tilde{\mathcal{M}}_{-}, m_{0}=\min _{M \in \tilde{\mathcal{M}}}|M|$, and $\mathcal{M}_{0}=\left\{M \in \tilde{\mathcal{M}}:|M|=m_{0}\right\}$. Let M_{0} be the model in \mathcal{M}_{0} such that $\hat{Q}_{M_{0}}=\min _{M \in \mathcal{M}_{0}} \hat{Q}_{M} . M_{0}$ is the selected model.

The quantity $\hat{Q}_{\tilde{M}}+\hat{\sigma}_{M, \tilde{M}}$ serves as a "fence" to confine the true models (with dimensions
smaller than $|\tilde{M}|$) and exclude the incorrect ones. For such a reason, the procedure is called fence. Note that the fence depends on M, i.e., for different M the fence is different.

2.2 The fence algorithm

The following outlines an effective algorithm for fence, where we let $d_{1}<d_{2}<\cdots<d_{L}$ be all the different dimensions of the models $M \in \mathcal{M}$.
i) Find \tilde{M}.
ii) Compute $\hat{\sigma}_{M, \tilde{M}}$ for all $M \in \mathcal{M}$ such that $|M|=d_{1}$; let $\mathcal{M}_{1}=\left\{M \in \mathcal{M}:|M|=d_{1}\right.$ and (6) holds $\}$; if $\mathcal{M}_{1} \neq \emptyset$, stop (no need for any more computation!). Let M_{0} be the model in \mathcal{N}_{1} such that $\hat{Q}_{M_{0}}=\min _{M \in \mathfrak{M}_{1}} \hat{Q}_{M} ; M_{0}$ is the selected model.
iii) If $\mathcal{M}_{1}=\emptyset$, compute $\hat{\sigma}_{M, \tilde{M}}$ for all $M \in \mathcal{M}$ such that $|M|=d_{2}$; let $\mathcal{M}_{2}=\left\{M \in \mathcal{M}:|M|=d_{2}\right.$ and (6) holds $\}$; if $\mathcal{M}_{2} \neq \emptyset$, stop. Let M_{0} be the model in \mathcal{M}_{2} such that $\hat{Q}_{M_{0}}=\min _{M \in \mathcal{M}_{2}} \hat{Q}_{M} ; M_{0}$ is the selected model.
iv) Continue until the program stops (it will at some point).

In short, the algorithm may be described as follows: Check the candidate models, from the simplest to the most complex. Once one has discovered a model that falls within the fence and checked all the other models of the same simplicity (for membership within the fence), one stops. In case that \tilde{M} is not unique, all one has to do is to redefine $\tilde{\mathcal{M}}$ in step 3 of fence as $\tilde{\mathcal{M}}=\{M \in$ $\left.\mathcal{M}:|M|=|\tilde{M}|, \hat{Q}_{M}=\hat{Q}_{\tilde{M}}\right\} \cup \tilde{\mathcal{M}}_{-}$.

Remark: The notion of model simplicity (or complexity) deserves further attention. Most generally, we refer to the effective degrees of freedom used in fitting a particular model. Ye (1998) uses the term generalized degrees of freedom (GDF) defined as the sum over data cased of the average sensitivity of changes in the fit of the estimated model mean to a small change in the
response, and thus measures the flexibility of a particular model or modeling procedure. Since this definition can literally apply to any type of model, GDF might not have a closed form expression but can be computed by simulation. Hodges and Sargent (1998) presented an effective degrees of freedom developed for hierarchical and other richly parameterized models, which for the case of linear mixed models and conditional on the random effect variances coincides with Ye's GDF.

2.3 Extension and variation

An extension of fence that takes into account the issue of consistency is given by the same steps 1-3 above with (6) replaced by

$$
\begin{equation*}
\hat{Q}_{M} \leq \hat{Q}_{\tilde{M}}+c_{n} \hat{\sigma}_{M, \tilde{M}} \tag{7}
\end{equation*}
$$

where c_{n} is a sequence that $\rightarrow \infty$ slowly as $n \rightarrow \infty$. A similar effective algorithm can be outlined.
It might appear that, like λ_{n}, the choice of c_{n} is also subjective. However, there are some major differences. In BIC, for example, the criterion is to choose a single model that minimizes (1). In other words, one has to be "exactly right", therefore the constant λ_{n} is important. In contrast, in fence one only needs to separate a subset of models. In other words, one only needs to be "about right", therefore the constant c_{n} is less important. Furthermore, the influence of c_{n} is not to the same extent as λ_{n}. To put it in a different way, the choice of λ_{n} is a first-order problem, while that of c_{n} is a second-order one. For example, typically, \hat{Q}_{M}, is of the order n. Thus, the order of λ_{n} in (5) is somewhere between \sqrt{n} and n (see the discussion below (5)). On the other hand, the order of c_{n} in (7) is, essentially, that of $\left(\hat{Q}_{M}-\hat{Q}_{\tilde{M}}\right) / \hat{\sigma}_{M, \tilde{M}}$, which is $O(1)$ if M is correct. In other words, the new procedure is less sensitive with respect to c_{n} than the previous ones to λ_{n}, which is confirmed by our simulation studies (see section 4). Nevertheless, in a finite sample situation the choice of c_{n}
may still make a difference. The issue of how to choose c_{n} will be addressed in section 6 .
As mentioned, fence has the computational advantage that it starts with the simplest models and therefore may not need to search the entire model space in order to determine the optimal model. On the other hand, such a procedure may still involve a lot of evaluations when the model space is large. For example, in quantitative trait loci (QTL) mapping, variance components arising from the trait genes, polygenic and environmental effects are often used to model the covariance structure of the phenotypes given the identity by descent (IBD) sharing matrix (e.g., Almsay and Blangero 1998). Such a model is usually complex due to the large number of putative trait loci. To make the fence procedure computationally more attractive to large and complex models, we propose the following variation of fence for situations of complex models with many predictors.

To be more specific, we focus on the extended GLMMs introduced earlier in this section. Let $X=\left(x_{i}^{\prime}\right)_{1 \leq i \leq n}$ and $Z=\left(z_{i}^{\prime}\right)_{1 \leq i \leq n}$. We assume that there is a collection of covariate vectors X_{1}, \ldots, X_{K}, from which the columns of X are to be selected. Furthermore, we assume that there is a collection of matrices Z_{1}, \ldots, Z_{L} such that $Z \alpha=\sum_{s \in S} Z_{s} \alpha_{s}$, where $S \subset\{1, \ldots, L\}$, and each α_{s} is a vector of i.i.d. random effects with mean 0 and variance σ_{s}^{2}. The subset S is subject to selection. The parameters under an extended GLMM are the fixed effects and variances of the random effects. Note that in this case the full model corresponding to $X \beta+Z \alpha=\sum_{k=1}^{K} X_{k} \beta_{k}+$ $\sum_{l=1}^{L} Z_{l} \alpha_{l}$ is among the candidate models. Thus, we let \tilde{M} be the full model. The idea is to use a forward-backward procedure to generate a sequence of candidate models, among which the optimal model is selected using the fence method. We begin with a forward procedure. Let M_{1} be the model that minimizes \hat{Q}_{M} among all models with a single parameter; if M_{1} is within the fence, stop the forward procedure; otherwise, let M_{2} be the model that minimizes \hat{Q}_{M} among all models that add one more parameter to M_{1}; if M_{2} is within the fence, stop the forward procedure; and so on. The
forward procedure stops when the first model is discovered within the fence. The procedure is then followed by a backward elimination. Let M_{k} be the final model of the forward procedure. If no submodel of M_{k} with one less parameter is within the fence, M_{k} will be our selection; otherwise, M_{k} is replaced by M_{k+1} which is a submodel of M_{k} with one less parameter and is within the fence, and so on. We call such a variation of fence the forward-backward (F-B) fence.

The theoretical properties of fence and F-B fence will be explored in section 7, where consistency of both procedures will be established.

3 Estimation of $\sigma_{M, M^{*}}$

An important step of the fence method is the calculation of $\hat{\sigma}_{M, \tilde{M}}$. Although for consistency (see section 7) it is not required that $\hat{\sigma}_{M, M^{*}}$ be a consistent estimator of $\sigma_{M, M^{*}}$, as long as the former has the correct order, in practice, it is desirable to use a consistent estimator whenever possible. This is because, even if $\hat{\sigma}_{M, M^{*}}$ has the correct order, there is always a constant involved, which may be difficult to choose. A smaller constant is apparently to the benefit of larger models and thus results in overfitting; on the other hand, a larger constant would be in favor of smaller models, and hence prompts underfitting. Therefore, to balance the two sides, the best way would be to use a consistent estimator of $\sigma_{M, M^{*}}$, so that one can be less worried about the constant. Here consistency is in the sense that $\hat{\sigma}_{M, M^{*}}=\sigma_{M, M^{*}}+o\left(\sigma_{M, M^{*}}\right)$ or, equivalently, $\hat{\sigma}_{M, M^{*}} / \sigma_{M, M^{*}} \rightarrow 1$, in a suitable sense (e. g., in probability). We first consider the case of clustered data.

3.1 Clustered observations

Clustered data arise naturally in many fields, including analysis of longitudinal data (e. g., Diggle et al. 1994) and small area estimation (e. g., Rao 2003). Let $y_{i}=\left(y_{i j}\right)_{1 \leq j \leq k_{i}}$ represent the vector of observations in the i th cluster, and $y=\left(y_{i}\right)_{1 \leq i \leq m}$. We assume that y_{1}, \ldots, y_{m} are independent. Examples of linear mixed models and GLMMs with clustered data are given in sections 4 and 5 .

Furthermore, we assume that Q_{M} is additive in the sense that

$$
\begin{equation*}
Q_{M}=\sum_{i=1}^{m} Q_{M, i}, \tag{8}
\end{equation*}
$$

where $Q_{M, i}=Q_{M, i}\left(y_{i}, \theta_{M}\right)$. We consider some examples.
Example 1. For ML model selection (see section 2), since $f_{M}\left(y \mid \theta_{M}\right)=\prod_{i=1}^{m} f_{M, i}\left(y_{i} \mid \theta_{M}\right)$ when the data is clustered, where $f_{M, i}\left(\cdot \mid \theta_{M}\right)$ is the joint pdf of y_{i} under M and θ_{M}, we have $Q_{M}=-\sum_{i=1}^{m} \log \left\{f_{M, i}\left(y_{i} \mid \theta_{M}\right)\right\}$. Thus, (8) holds with $Q_{M, i}=-\log \left\{f_{M, i}\left(y_{i} \mid \theta_{M}\right)\right\}$.

Example 2. Consider MVC model selection (see section 2). Let $T=\operatorname{diag}\left(T_{1}, \ldots T_{m}\right)$, where T_{i} is $k_{i} \times s_{i}$ and $1 \leq s_{i} \leq k_{i}$, we have $Q_{M}=\sum_{i=1}^{m}\left|\left(T_{i}^{\prime} V_{M, i}^{-1} T_{i}\right)^{-1} T_{i}^{\prime} V_{M, i}^{-1}\left(y_{i}-\mu_{M, i}\right)\right|^{2}$, where $\mu_{M, i}$ and $V_{M, i}$ are the mean vector and covariance matrix of y_{i} under M and θ_{M}. Thus, (8) holds with $Q_{M, i}=\left|\left(T_{i}^{\prime} V_{M, i}^{-1} T_{i}\right)^{-1} T_{i}^{\prime} V_{M, i}^{-1}\left(y_{i}-\mu_{M, i}\right)\right|^{2}$.

Example 3. Note that the Q_{M} defined for extended GLMM selection (see section 2) always satisfies (8), even if the data is not clustered.

Denote, with a little abuse of the notation, the minimizer of $\mathrm{E}\left(Q_{M}\right)$ over $\theta_{M} \in \Theta_{M}$ by θ_{M}. Let M^{*} denote a correct model. We give approximations to $\mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M^{*}}\right)^{2}$ in two different situations.

Lemma 2. Suppose that the following regularity conditions are satisfied: i) $\mathrm{E}\left(\partial Q_{M} / \partial \theta_{M}\right)=0$, and $\operatorname{tr}\left\{\operatorname{Var}\left(\partial Q_{M, i} / \partial \theta_{M}\right)\right\} \leq c$ for some constant c; ii) there is a constant B_{M} such that $Q_{M}\left(\tilde{\theta}_{M}\right)>$ $Q_{M}\left(\theta_{M}\right)$, if $\left|\tilde{\theta}_{M}\right|>B_{M}$; iii) there are constants $c_{j}>0, j=1,2,3$ such that $\mathrm{E}\left(\left|\hat{\theta}_{M}-\theta_{M}\right|^{8}\right) \leq$
$c_{1} m^{-4}, \mathrm{E}\left(\left|\partial Q_{M} / \partial \theta_{M}\right|^{4}\right) \leq c_{2} m^{2}$, and $\mathrm{E}\left(\sup _{\left|\tilde{\theta}_{M}\right| \leq B_{M}}\left\|\partial^{2} \tilde{Q}_{M} / \partial \theta_{M} \partial \theta_{M}^{\prime}\right\|^{4}\right) \leq c_{3} m^{4}$; iv) there are constants $a, b>0$ such that $a m \leq \operatorname{var}\left(Q_{M}-Q_{M^{*}}\right) \leq b m$, if $M \neq M^{*}$; v) for any incorrect model M, we have $\mathrm{E}\left(Q_{M}-Q_{M^{*}}\right)=O(m)$. Then, we have $\mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M^{*}}\right)=O(1)$, $\operatorname{var}\left(\hat{Q}_{M}-\right.$ $\left.\hat{Q}_{M^{*}}\right)=\operatorname{var}\left(Q_{M}-Q_{M^{*}}\right)\{1+o(1)\}=O(m)$, if M is correct; and $\mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M^{*}}\right)^{2}=\operatorname{var}\left(Q_{M}-\right.$ $\left.Q_{M^{*}}\right)+O\left(m^{2}\right)=O\left(m^{2}\right)$, if M is incorrect.

The proof is given in subsection 9.1. Note that i$)$ is satisfied if $\mathrm{E}\left(Q_{M}\right)$ can be differentiated inside the expectation, that is, $\partial \mathrm{E}\left(Q_{M}\right) / \partial \theta_{M}=\mathrm{E}\left(\partial Q_{M} / \partial \theta_{M}\right)$. Also note that ii) implies that $\left|\hat{\theta}_{M}\right| \leq B_{M}$. Since a measure of the difference $\hat{Q}_{M}-\hat{Q}_{M^{*}}$ is $\sqrt{\mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{\left.M^{*}\right)^{2}}\right.}$, Lemma 2 suggests a difference between a true model and an incorrect one: If M is a true model, $\hat{Q}_{M}-\hat{Q}_{M^{*}}$ may be measured by $\sigma_{M, M^{*}}=\operatorname{sd}\left(\hat{Q}_{M}-\hat{Q}_{M^{*}}\right) \approx \operatorname{sd}\left(Q_{M}-Q_{M^{*}}\right)$; otherwise, $\hat{Q}_{M}-\hat{Q}_{M^{*}}$ is expected to be much larger since $\operatorname{sd}\left(Q_{M}-Q_{M^{*}}\right)=O(\sqrt{m})$.

It is not difficult to obtain an estimator of $\sigma_{M, M^{*}}$. By (8) and independence, it is easy to show that $\operatorname{var}\left(Q_{M}-Q_{M^{*}}\right)=\mathrm{E}\left[\sum_{i=1}^{m}\left(Q_{M, i}-Q_{M^{*}, i}\right)^{2}-\sum_{i=1}^{m}\left\{\mathrm{E}\left(Q_{M, i}\right)-\mathrm{E}\left(Q_{M^{*}, i}\right)\right\}^{2}\right]$. Thus, an estimator of $\sigma_{M, M^{*}}^{2}$ is the observed variance given by

$$
\begin{equation*}
\hat{\sigma}_{M, M^{*}}^{2}=\sum_{i=1}^{m}\left(\hat{Q}_{M, i}-\hat{Q}_{M^{*}, i}\right)^{2}-\sum_{i=1}^{m}\left\{\hat{\mathrm{E}}\left(Q_{M, i}\right)-\hat{\mathrm{E}}\left(Q_{M^{*}, i}\right)\right\}^{2}, \tag{9}
\end{equation*}
$$

where $\hat{Q}_{M, i}=Q_{M, i}\left(y_{i}, \hat{\theta}_{M}\right), \hat{Q}_{M^{*}, i}=Q_{M^{*}, i}\left(y_{i}, \hat{\theta}_{M^{*}}\right), \hat{\mathrm{E}}\left(Q_{M, i}\right)=\mathrm{E}_{M^{*}, \hat{\theta}_{M^{*}}}\left\{Q_{M, i}\left(y_{i}, \hat{\theta}_{M}\right)\right\}$, and $\hat{\mathrm{E}}\left(Q_{M^{*}, i}\right)=\mathrm{E}_{M^{*}, \hat{\theta}_{M^{*}}}\left\{Q_{M^{*}, i}\left(y_{i}, \hat{\theta}_{M^{*}}\right)\right\}$, in which the expectations are with respect to y_{i} under model M^{*} and evaluated at $\hat{\theta}_{M^{*}}$.

It should be pointed out that (9) only gives an estimator of $\sigma_{M, M^{*}}^{2}$ in the most general situation. In some special cases there may be better ways of estimating $\sigma_{M, M^{*}}^{2}$ that give more accurate results. See Example 4 in the sequel.

3.2 Non-clustered observations

We now consider the situations where the observations cannot be divided into independent clusters. Such data arise, for example, in linear mixed models and GLMMs with crossed random effects. We consider three such cases: Gaussian mixed models, non-Gaussian linear mixed models and extended GLMMs. Some examples are given in sections 4 and 5.

1. Gaussian mixed models. A Gaussian model is characterized by its mean vector μ_{M} and covariance matrix V_{M}, hence Gaussian model selection is all about selecting μ_{M} and V_{M}. A Gaussian mixed model can be expressed as $y=X \beta+Z \alpha+\epsilon$, where X is a matrix of known covariates, β is a vector of unknown fixed effects, Z is a known matrix, α is a vector of random effects, and ϵ is a vector of errors. It is assumed that α and ϵ are jointly normally distributed with $\operatorname{Var}(\alpha)=G, \operatorname{Var}(\epsilon)=R$ and $\operatorname{cov}(\alpha, \epsilon)=0$, where G and R are the covariance matrices under the assumed model. It is clear that Gaussian mixed model is a special case of Gaussian model with $\mu_{M}=X_{M} \beta_{M}$ and $V_{M}=R_{M}+Z_{M} G_{M} Z_{M}^{\prime}$, where $X_{M}, \beta_{M}, Z_{M}, G_{M}$ and R_{M} are the corresponding matrices or vector under model M. Nevertheless, the result of this subsection applies to Gaussian models in general. Both ML and MVC methods (see section 2) apply to this case.

Lemma 3. For ML model selection, we have

$$
\operatorname{var}\left(Q_{M}-Q_{M^{*}}\right)=\frac{1}{2} \operatorname{tr}\left\{\left(V_{M}^{-1} V_{M^{*}}-I\right)^{2}\right\}+\left(\mu_{M}-\mu_{M^{*}}\right)^{\prime} V_{M}^{-1} V_{M^{*}} V_{M}^{-1}\left(\mu_{M}-\mu_{M^{*}}\right) .
$$

For MVC model selection, we have

$$
\begin{aligned}
\operatorname{var}\left(Q_{M}-Q_{M^{*}}\right)= & 2\left(\operatorname{tr}\left[\left\{\left(T^{\prime} V_{M}^{-1} T\right)^{-2} T^{\prime} V_{M}^{-1} V_{M^{*}} V_{M}^{-1} T\right\}^{2}\right]-\operatorname{tr}\left\{\left(T^{\prime} V_{M^{*}}^{-1} T\right)^{-2}\right\}\right) \\
& +4\left(\mu_{M}-\mu_{M^{*}}\right)^{\prime} C_{M} V_{M^{*}} C_{M}\left(\mu_{M}-\mu_{M^{*}}\right),
\end{aligned}
$$

where $C_{M}=V_{M}^{-1} T\left(T^{\prime} V_{M}^{-1} T\right)^{-2} T^{\prime} V_{M}^{-1}$.

The proof follows directly from the covariance properties of multivariate normal distribution (e.g., Searle 1971, section 2.5). $\hat{\sigma}_{M, M^{*}}^{2}$ is then obtained by replacing $\mu_{M}, V_{M}, \mu_{M^{*}}$ and $V_{M^{*}}$ by $\hat{\mu}_{M}, \hat{V}_{M}, \hat{\mu}_{M^{*}}$ and $\hat{V}_{M^{*}}$, respectively., where $\hat{\mu}_{M}$ is μ_{M} with θ_{M} replaced by $\hat{\theta}_{M}$, etc.
2. Non-Gaussian linear mixed models. Consider a non-Gaussian linear mixed model (e. g., Jiang 1996). Since normality is not assumed, Lemma 3 is not valid. The main difference is that, unlike the Gaussian case, under a non-Gaussian linear mixed model, the expressions for $\operatorname{var}\left(Q_{M}-\right.$ $Q_{M^{*}}$) may involve higher (3rd and 4th) moments of the random effects and errors, which are not part of θ_{M}. As a result, estimators of these higher moments are not directly available. However, we can use a method known as partially observed information developed by Jiang (2005) to obtain an estimate of $\operatorname{var}\left(Q_{M}-Q_{M^{*}}\right)$, hence $\hat{\sigma}_{M, M^{*}}^{2}$. The detail is omitted.
3. Extended GLMMs. Consider the Q_{M} introduced by (4). Write $\xi_{M, i}=g_{M, i}^{2}\left(\beta_{M}, \psi_{M}\right)-$ $2 y_{i} g_{M, i}\left(\beta_{M}, \psi_{M}\right), \xi_{M^{*}, i}=\xi_{M, i}$ with M replaced by M^{*}, and $d_{i}=\xi_{M, i}-\xi_{M^{*}, i}$. Also, let $\delta_{i}=g_{M, i}\left(\beta_{M}, \psi_{M}\right)-g_{M^{*}, i}\left(\beta_{M^{*}}, \psi_{M^{*}}\right)$. Here θ_{M} represents the vector that minimizes $\mathrm{E}\left(Q_{M}\right)$ over Θ_{M} and $\theta_{M^{*}}$ the true parameter vector under M^{*}, a true model.

Lemma 4. Suppose that the following conditions are satisfied: i) $\mathrm{E}\left(y_{i}^{2}\right), 1 \leq i \leq n$ are bounded; and there is a sequence $a_{n}>0$ such that $\mathrm{E}\left(\left|\hat{\theta}_{M}-\theta_{M}\right|^{8}\right)=O\left(a_{n}^{-4}\right), M \in \mathcal{M}$; ii) Condition ii) of Lemma 2; iii) $\xi_{M, i}$ is continuously differentiable with respect to $\theta_{M}, 1 \leq i \leq n$, and the following holds: $\mathrm{E}\left(\sup _{\left|\tilde{\theta}_{M}\right| \leq B_{M}}\left\|\partial^{2} \xi_{M, i} / \partial \theta_{M} \partial \theta_{M}^{\prime} \mid \tilde{\theta}_{M}\right\|^{4}\right)=O(1), M \in \mathcal{M}$; iv) there is a constant $c>0$ such that $\sum_{z_{i}^{\prime} \Sigma z_{j} \neq 0} \delta_{i} \delta_{j} \operatorname{cov}\left(y_{i}, y_{j}\right) \geq c|S|$, where $S=\left\{(i, j): z_{i}^{\prime} \Sigma z_{j} \neq 0\right\}, \Sigma$ is the true covariance matrix of α and $|A|$ the cardinality of $A ; \Sigma_{M^{*}}$ is positive definite and $z_{i} \neq 0$ for
any i, and $n^{2} / a_{n}^{2}|S| \rightarrow 0$, as $n \rightarrow \infty$. Then, we have $\sigma_{M, M^{*}}^{2}=\operatorname{var}\left(\sum_{i=1}^{n} d_{i}\right)\{1+o(1)\}$ and

$$
\begin{align*}
\operatorname{var}\left(\sum_{i=1}^{n} d_{i}\right)= & 4\left\{\mathrm{E}\left(\sum_{i=1}^{n} \delta_{i}^{2} y_{i}^{2}\right)+\sum_{i \neq j} \delta_{i} \delta_{j} g_{M^{*}, i, j}\left(\beta_{M^{*}}, \psi_{M^{*}}\right) 1_{\left(z_{i}^{\prime} \Sigma_{M^{*}} z_{j} \neq 0\right)}\right. \\
& \left.-\sum_{i, j} \delta_{i} \delta_{j} g_{M^{*}, i}\left(\beta_{M^{*}}, \psi_{M^{*}}\right) g_{M^{*}, j}\left(\beta_{M^{*}}, \psi_{M^{*}}\right) 1_{\left(z_{i}^{\prime} \Sigma_{M^{*}} z_{j} \neq 0\right)}\right\} \tag{10}
\end{align*}
$$

where $g_{M^{*}, i, j}\left(\beta_{M^{*}}, \psi_{M^{*}}\right)=\mathrm{E}\left\{h_{M^{*}}\left(x_{i}^{\prime} \beta_{M^{*}}+z_{i}^{\prime} \Sigma_{M^{*}}^{1 / 2} \xi\right) h_{M^{*}}\left(x_{j}^{\prime} \beta_{M^{*}}+z_{j}^{\prime} \Sigma_{M^{*}}^{1 / 2} \xi\right)\right\}, \xi \sim N\left(0, I_{m}\right)$.
The proof is given in subsection 9.2. $\hat{\sigma}_{M, M^{*}}^{2}$ is then obtained as a partially observed variance:

$$
\begin{align*}
\hat{\sigma}_{M, M^{*}}^{2}= & 4\left\{\sum_{i=1}^{n} \hat{\delta}_{i}^{2} y_{i}^{2}+\sum_{i \neq j} \hat{\delta}_{i} \hat{\delta}_{j} g_{M^{*}, i, j}\left(\hat{\beta}_{M^{*}}, \hat{\psi}_{M^{*}}\right) 1_{\left(z_{i}^{\prime} \hat{\Sigma}_{M^{*}} z_{j} \neq 0\right)}\right. \\
& \left.-\sum_{i \neq j} \hat{\delta}_{i} \hat{\delta}_{j} g_{M^{*}, i}\left(\hat{\beta}_{M^{*}}, \hat{\psi}_{M^{*}}\right) g_{M^{*}, j}\left(\hat{\beta}_{M^{*}}, \hat{\psi}_{M^{*}}\right) 1_{\left(z_{i}^{\prime} \hat{\Sigma}_{M^{*}} z_{j} \neq 0\right)}\right\}, \tag{11}
\end{align*}
$$

where $\hat{\delta}_{i}$ is δ_{i} with $\beta_{M}, \psi_{M}, \beta_{M^{*}}$ and $\psi_{M^{*}}$ replaced by $\hat{\beta}_{M}, \hat{\psi}_{M}, \hat{\beta}_{M^{*}}$ and $\hat{\psi}_{M^{*}}$, respectively, and $\hat{\Sigma}_{M^{*}}$ is $\Sigma_{M^{*}}$ with $\psi_{M^{*}}$ replaced by $\hat{\psi}_{M^{*}}$.

4 Simulations

In this section, we study the performance of the fence methods through a number of simulated examples. These examples include linear mixed models and GLMMs, and are classified as clustered data and non-clustered data. Subsections 4.1, 4.2 are examples of clustered data, while subsection 4.3 is an example of non-clustered data.

4.1 Linear mixed models (clustered data)

We consider selection in the following linear mixed model (see Jiang and Rao 2003),

$$
\begin{equation*}
y_{i j}=x_{i j}^{\prime} \beta+\alpha_{i}+\epsilon_{i j} \tag{12}
\end{equation*}
$$

$i=1, \ldots, m, j=1, \ldots, K$, where $x_{i j}$ is a vector of covariates and β a vector of unknown regression coefficients (the fixed effects). It is assumed that the random effects $\alpha_{1}, \ldots, \alpha_{m}$ are uncorrelated with mean 0 and variance σ^{2}. Furthermore, assume that the errors $\epsilon_{i j}$'s have the following exchangeable correlation structure: Let $\epsilon_{i}=\left(\epsilon_{i j}\right)_{1 \leq j \leq K}$. Then, $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{i^{\prime}}\right)=0$ if $i \neq i^{\prime}$, and $\operatorname{Var}\left(\epsilon_{i}\right)=\tau^{2}\{(1-\rho) I+\rho J\}$, where I is the identity matrix and J matrix of 1 's. Finally, the random effects are uncorrelated with the errors.

We examine by simulation the probability of correct selection and also the overfitting and underfitting probabilities of various GIC's developed in Jiang and Rao (2003), which are similar to (1) for this problem. Two GIC's with different choices of λ_{n} are considered: (1) $\lambda_{n}=2$, which corresponds to the C_{p} method; (2) $\lambda_{n}=\log n$ where $n=m K$ which corresponds to the BIC method. The latter choice satisfies the conditions of Theorem 1 in Jiang and Rao (2003) for consistent model selection for the case of a single random effect factor in the true underlying model with bounded cluster size, which includes the current case. A total of 100 realizations of each simulation were run. The first column of X is $\mathbf{1}$ and the other four columns of X are generated randomly from $N(0,1)$ distributions but are fixed throughout the simulation. Three β^{\prime} s are considered: $(2,0,0,4,0),(2,9,0,4,8)$ and $(1,2,3,2,3)$.

We consider the case where the errors have varying degrees of exchangeable structure. Four values of ρ were considered: $0,0.2,0.5,0.8$. The random effects and errors were simulated from Normal distributions with σ and τ both taken to be equal to 1 . We set the number of clusters (m) to be 100 and the number of observations within a cluster to be $K=5$. The ML fence method is applied for this simulation with $c_{n}=1.1$ for all situations.

Summary: The results are presented in Table 1. The fence method has robust selection performance in most situations considered. In cases where the true model was relatively small in
dimension, the fence method suffers some from overfitting. The overfitting proneness in these few situations is less than that found when using C_{p} but more than that found when using BIC. Selection performance in the second situation with a larger true model with high signal is solid for the fence method. However, in the last situation with the optimal model being the full model with all weak covariates, both BIC and C_{p} tend to underfit. The fence method still shines having excellent performance with comparatively little or no underfitting empirically observed (note that overfitting is not possible in this situation since the true model is the model with the full complement of fixed effects). The effect of increasing correlation in the errors (i. e., clustering) is to act as a means of reducing effective sample size for selection. The end result is that as the correlation between observations within a cluster increases, selection performance for all methods degrades somewhat.

4.2 Generalized linear mixed models (clustered data)

Consider the following simulated example of GLMM selection with three candidate models.
Model I: Given the random effects $\alpha_{1}, \ldots, \alpha_{m}$, binary responses $y_{i j}, i=1, \ldots, m, j=$ $1, \ldots, k$ are conditionally independent such that, $\operatorname{logit}\left(p_{i j}\right)=\beta_{0}+\beta_{1} x_{i}+\alpha_{i}$, where $p_{i j}=\mathrm{P}\left(y_{i j}=\right.$ $1 \mid \alpha) ; \beta_{0}, \beta_{1}$ are fixed parameters; $x_{i}=0,1 \leq i \leq[m / 2]$ and $x_{i}=1,[m / 2]+1 \leq i \leq m([x]$ is the integer part of $x)$. The random effects are independent and distributed as $N\left(0, \sigma^{2}\right)$.

Model II: Same as Model I except that $\beta_{1}=0$.
Model III: Same as Model I except that $\beta_{0}=\beta_{1}=0$.
We first study consistency of the MVC and ML model selection procedures in the situation where the data is generated from one of the candidate models. In other words, a true model belongs to the class of candidate models. Throughout the simulation, T was chosen as a block-diagonal matrix (see Example 2) with $T_{i}=T_{1}, 1 \leq i \leq m$, where T_{1} is a $k \times l$ matrix with $l=[k / 2]$, whose

Table 1: Simulation Results: Linear Mixed Model Selection. Reported are probabilities of correct selection(underfitting, overfitting) as percentages estimated empirically from 100 realizations of the simulation. C_{p} and BIC results for models 1 and 2 were taken from Jiang and Rao (2003).

True Model	ρ	C_{p}	BIC	Fence (ML)
$\beta^{\prime}=(2,0,0,4,0)$	0	$64(0,36)$	$97(0,3)$	$94(0,6)$
	0.2	$57(0,43)$	$94(0,6)$	$91(0,9)$
	0.5	$58(0,42)$	$96(1,3)$	$86(0,14)$
	0.8	$61(0,39)$	$96(0,4)$	$72(0,28)$
$\beta^{\prime}=(2,9,0,4,8)$	0	$87(0,13)$	$99(0,1)$	$100(0,0)$
	0.2	$87(0,13)$	$99(0,1)$	$100(0,0)$
	0.5	$80(0,20)$	$99(0,1)$	$99(0,1)$
	0.8	$78(1,21)$	$96(1,3)$	$94(0,6)$
$\beta^{\prime}=(1,2,3,2,3)$	0	$85(15,0)$	$81(19,0)$	$100(0,0)$
	0.2	$79(21,0)$	$73(27,0)$	$100(0,0)$
	0.5	$74(26,0)$	$64(36,0)$	$97(3,0)$
	0.8	$44(56,0)$	$26(74,0)$	$94(6,0)$

Table 2: Simulation Results: Consistency. The columns for MVC and ML are probabilities of correct selection, reported as percentages estimated empirically from 100 realizations of the simulation. The numbers in parentheses are the percentages of selection of the other two models in order of increasing index of the model.

True Model	m	k	1	β_{0}	β_{1}	σ	c_{n}	MVC	ML
I	100	4	2	-.5	1	1	1	$82(5,13)$	$94(3,3)$
I	200	4	2	-.5	1	1	1.1	$97(1,2)$	$99(0,1)$
II	100	4	2	-.5	NA	1	1	$87(4,9)$	$88(5,7)$
II	200	4	2	-.5	NA	1	1.1	$93(4,3)$	$98(2,0)$
III	100	4	2	NA	NA	1	1	$87(3,10)$	$91(2,7)$
III	200	4	2	NA	NA	1	1.1	$96(0,4)$	$91(1,8)$

entries are generated from a Uniform $[0,1]$ distribution, and then fixed. The simulation results are summarized in Table 2, with each result based on 100 simulations.

We next study robustness of the MVC and ML fence procedures in the case where no true model (with respect to ML) is among the candidate models. We consider such a case, in which the binary responses $y_{i j}$ are generated as follows. Suppose that $\left(X_{1}, \ldots, X_{k}\right)$ has a multivariate normal distribution such that $\mathrm{E}\left(X_{j}\right)=\mu, \operatorname{var}\left(X_{j}\right)=1,1 \leq j \leq k$ and $\operatorname{cor}\left(X_{s}, X_{t}\right)=\rho, 1 \leq s \neq t \leq k$. Then, let $Y_{j}=1_{\left(X_{j}>0\right)}, 1 \leq j \leq k$. Denote the joint distribution of $\left(Y_{1}, \ldots, Y_{k}\right)$ by $\mathrm{NB}(\mu, \rho)$ (here NB refers to "Normal-Bernoulli"). We then generate the data such that y_{1}, \ldots, y_{m} are independent, and the distribution of $y_{i}=\left(y_{i j}\right)_{1 \leq j \leq k}$ follows one of the following models.

Model A: $y_{i} \sim \operatorname{NB}\left(\mu_{1}, \rho_{1}\right), i=1, \ldots,[m / 2]$, and $y_{i} \sim \operatorname{NB}\left(\mu_{2}, \rho_{2}\right), i=[m / 2]+1, \ldots, m$, where $\mu_{j}, \rho_{j}, j=1,2$ are chosen to match the means, variances and covariances under Model I.

Note that one can do so because the means, variances and covariances under Model I depend only on three parameters, while there are four parameters under Model A.

Model B: $y_{i} \sim \operatorname{NB}(\mu, \rho), i=1, \ldots, m$, where μ and ρ are chosen to match the mean, variance and covariance under Model II. Note that, under Model II, the mean, variance and covariance depend on two parameters.

Model C: Same as Model B except that μ and ρ are chosen to match the mean, variance and covariance under Model III. Note that, under Model III, the mean is equal to $1 / 2$, the variance is $1 / 4$, while the covariance depends on a single parameter σ.

If the data is generated from Model A, Model I is a correct model with respect to MVC; similarly, if the data is generated from Model B, both Model I and II are correct with respect to MVC; and, if the data is generated from Model C, Models I - III are all correct in the sense of MVC. However, no model (I, II or III) is correct from an ML standpoint. The simulation results are summarized in Table 3, in which $\beta_{0}^{*}, \beta_{1}^{*}$ and σ^{*} correspond to the parameters under the models in Table 2 with the matching mean(s), variance(s) and covariance(s). Again, each result is based on 100 simulations.

Summary: It is seen in Table 2 and Table 3 that the numbers increase as m increases (and c_{n} slowly increases), a good indication of consistency. In Table 2, with the exception of one case (III/200), ML outperforms MVC, which is not surprising. What is a bit of surprise is that ML also seems quite robust in the situation where the true model is not among the candidate models (therefore the objective is to select a candidate model that is closest to the reality). In fact, Table 3 shows that even in the latter case, ML still outperforms MVC (again with the exception of one case III/200). However, one has to keep in mind that there are many ways of model misspecification, and here we only considered one of them (which misspecifies a NB as a GLMM). Furthermore, MVC has computational advantage over ML, which is important in cases such as GLMM selection. Note

Table 3: Simulation Results: Robustness. The columns for MVC and ML are probabilities of correct selection, reported as percentages estimated empirically from 100 realizations of the simulation. The numbers in parentheses are the percentages of selection of the other two models in order of increasing index of the model. $\beta_{0}^{*}, \beta_{1}^{*}$ and σ^{*} are the matching parameters.

True Model	m	k	1	β_{0}^{*}	β_{1}^{*}	σ^{*}	c_{n}	MVC	ML
A	100	4	2	-.5	1	1	1	$83(7,10)$	$91(5,4)$
A	200	4	2	-.5	1	1	1.1	$97(2,1)$	$99(0,1)$
B	100	4	2	-.5	NA	1	1	$80(3,17)$	$91(4,5)$
B	200	4	2	-.5	NA	1	1.1	$95(3,2)$	$97(3,0)$
C	100	4	2	NA	NA	1	1	$83(8,9)$	$86(4,10)$
C	200	4	2	NA	NA	1	1.1	$91(1,8)$	$90(1,9)$

that the computational burden usually increases with the sample size; on the other hand, the larger sample performance of MVC $(m=200)$ is quite close to that of ML.

A compromise would be to use MVC in cases of large sample, and ML in cases of small or moderate sample. Alternatively, one may use MVC for an initial round of model selection to narrow down the number of candidate models, and ML for a final round of model selection. For example, one may use MVC for steps 1 and 2 of fence (see section 2) to identify the subclass $\tilde{\mathcal{M}}$, and then apply ML (with steps 1-3) within $\tilde{\mathcal{M}}$ to identify the optimal model.

4.3 Gaussian mixed model selection (non-clustered data)

We consider the problem of selecting a Gaussian linear mixed model for non-clustered observations. There are three candidate models. These are:

Model I. $y_{i j}=\beta_{0}+\beta_{1} x_{i j}+u_{i}+v_{j}+e_{i j}, i=1, \ldots, a, j=1, \ldots, b$, where β_{0} and β_{1} are unknown coefficients, u_{i}, v_{j} are random effects, and $e_{i j}$ is an error. It is assumed that u_{i} 's, v_{j} 's and $e_{i j}$'s are independent with $u_{i} \sim N\left(0, \sigma_{1}^{2}\right), v_{j} \sim N\left(0, \sigma_{2}^{2}\right)$ and $e_{i j} \sim N\left(0, \sigma_{0}^{2}\right)$.

Model II. $y_{i j}=\beta_{0}+u_{i}+v_{j}+e_{i j}$, where everything is the same as in Model I.

In the simulation, the $x_{i j}$'s are generated from a Poisson(1) distribution and, once generated, fixed throughout the simulation.

We consider the fence ML model selection (see section 2), which seems to be the natural choice in this case. We consider fence without c_{n} (or $c_{n}=1$). Four sample size configurations are considered: (i) $a=b=10$; (ii) $a=10, b=20$; (iii) $a=20, b=10$; and (iv) $a=b=20$. Note that the effective sample sizes here are a and b, not the product $a b$, so these correspond to situations of relatively small sample size. For each sample size configuration, three cases are considered. In the first case, the data is generated under Model I with the following true parameters: $\beta_{0}=0.5$, $\beta_{1}=0.2, \sigma_{j}^{2}=1.0, j=0,1,2$. In this case, Model I is the only true model and therefore the optimal model. In the second case, the data is generated under Model II with the following true parameters: $\beta_{0}=0.5, \sigma_{j}^{2}=1.0, j=0,1,2$. In this case, Model I and Model II are both true models with Model II being the optimal model. In the third case, the data is generated under Model III with the following true parameters: $\beta_{0}=0.5, \beta_{1}=0.2, \sigma_{j}^{2}=1.0, j=0,2$. In this case, Model I and Model III are both true models with Model III being the optimal model.

Summary: For each combination of sample size configuration and case, 100 simulations were run. Table 4 reports the percentages of simulations (out of the 100) in which fence has selected the optimal model. For comparison purposes, the method of Jiang and Rao (2003) (Case 2) was also run for each setting. Their method is based on minimizing an information criterion which

Table 4: Gaussian Model Selection. Reported are probabilities of correct selection as percentages estimated empirically from 100 realizations of the simulation. Table entries correspond to the fence method with $c_{n}=1$, and the method of Jiang and Rao (2003) Case 2 using $\lambda_{t, n}=2, \log (n)$ and $n / \log (n)$ respectively in parentheses.

Optimal Model	$a=b=10$	$a=10, b=20$	$a=20, b=10$	$a=b=20$
Model I	$34(35,14,0)$	$92(67,42,0)$	$85(64,34,0)$	$97(87,71,0)$
Model II	$97(31,25,0)$	$80(56,52,0)$	$79(56,63,0)$	$96(63,82,0)$
Model III	$92(38,27,0)$	$98(74,53,0)$	$98(46,38,0)$	$99(71,81,0)$

trades off a goodness-of-fit measure with a (penalized) model complexity term. Consistency of selection was proved by imposing specific requirements on the penalty term. In this simulation, three different penalty terms were entertained: $\lambda_{t, n}=2, \log (n), n / \log (n)$. The last two of these satisfy the conditions for consistency. Note that only the empirical percentages of correct selection of both random and fixed effects is presented in Table 4. Clearly, there are many types of potential selection errors that can be made. These will be discussed model by model in turn. Models I and II represent situations where the true model includes the full complement of random effects but Model II includes only the intercept fixed effect term. What is evident with the Jiang and Rao (2003) method using $\lambda_{t, n}=2$, is that selection performance for Model I tends to be uniformly better than that for Model II across all settings of a and b. This is because overfitting of random effects is not an issue and underfitting of random effects structure vanishes quite quickly in a or b even at these smallish sample sizes. However with Model II, selection performance degrades across all settings of a and b. This can actually be attributed to overfitting in the fixed effects part of the model. Contrast this to the performance using $\lambda_{t, n}=n / \log (n)$. Here the misses can be attributed
to underfitting primarily in the random effects and to a lesser extent in the fixed effects. Clearly, meeting consistency requirements has not translated into good finite sample performance. Model III represents a situation with the full complement of fixed effects but only one of the random effects related to a. Here again performance of the Jiang and Rao (2003) methods is not much improved. With $\lambda_{t, n}=2$, the sensitivity to overfitting (in the random effects) starts to become a little apparent. With the other choices, underfitting in the fixed effects is still an issue due to the small signal to noise ratio in this simulation. A synopsis of these three Models under these four settings leads one to conclude that the choice of the penalty term makes a difference on selection performance, a point we made earlier in section 1 , and how this plays out really depends on the underlying true model.

What is lovely about running these comparisons is that it helps to illuminate the robustness of the fence method. It is seen that, despite the relatively small sample size, the low signal to noise ratio, and the variety of potential selection errors, the performance of fence is quite good in all but one case. The exception occurs when $a=b=10$ and data is generated from Model I. A closer look at this case reveals that all the misses went to Model II, which has the same random effect factors but no covariates (i.e., $\beta_{1}=0$). Some possible explanations are: (1) weak signal/noise ratio (note that the true $\beta_{1}=0.2$, while all three variance components are equal to 1.0); (2) small sample size. In this case, $\sigma_{M, \tilde{M}}$ is estimated using the Gaussian formula derived in subsection 3.2.1. Since all the variance components are involved in this formula, they have to be estimated. As mentioned, the effective sample size for estimating σ_{1}^{2} is $a=10$, and that for estimating σ_{2}^{2} is $b=10$. With such small sample sizes, these estimators are not expected to be accurate.

5 Real data analyses

In this section, we give a number of examples, each supported by results of real data analysis, to illustrate the application of fence to various problems of mixed model selection. As in the previous section, the examples are classified as clustered data (subsections 5.1 and 5.2) and non-clustered data (subsection 5.3).

5.1 Analysis of Gc genotype data

Human group-specific component (Gc) is the plasma transport protein for Vitamin D. Polymorphic electrophoretic variants of Gc are found in all human populations. Daiger et al. (1984) presented data involving a series of monozygotic (MZ) and dizygotic (DZ) twins of known Gc genotypes to determine the heritability of quantitative variation in Gc. These included 31 MZ twin pairs, 13 DZ twin pairs, and 45 unrelated controls. For each individual, the concentration of Gc was available along with additional information about the sex, age and Gc genotype of the individual. The genotypes are distinguishable at the Gc structural locus, classified as 1-1, 1-2 and 2-2.

Lange (2002) considered three statistical models for the Gc genotype data. Let $y_{i j}$ represent the Gc concentration measured for the j th person who is one of the i th identical twin pair, $i=1, \ldots, 31$, $j=1,2$. Furthermore, let $y_{i j}$ represent the Gc concentration measured for the j th person who is one of the $(i-31)$ th fraternal twin pairs, $i=32, \ldots, 44, j=1,2$. Finally, Let y_{i} represent the Gc concentration for the $(i-44)$ th person among the unrelated controls, $i=45, \ldots, 89$. Then, the first model, Model I, can be expressed as $y_{i j}=\mu_{1-1} 1_{\left(g_{i j}=1-1\right)}+\mu_{1-2} 1_{\left(g_{i j}=1-2\right)}+\mu_{2-2} 1_{\left(g_{i j}=2-2\right)}+$ $\mu_{\text {male }} 1_{\left(s_{i j}=\text { male }\right)}+\mu_{\text {age }} a_{i j}+\epsilon_{i j}, i=1, \ldots, 44, j=1,2$, where $g_{i j}, s_{i j}$ and $a_{i j}$ represent the genotype, sex and age of the j th person in the i twin pair (identical or fraternal), and $\epsilon_{i j}$ is an
error which will be further specified later. If we let $x_{i j}$ denote the vector whose components are $1_{\left(g_{i j}=1-1\right)}, 1_{\left(g_{i j}=1-2\right)}, 1_{\left(g_{i j}=2-2\right)}, 1_{\left(s_{i j}=\text { male }\right)}$ and $a_{i j}$, and β denote the vector whose components are $\mu_{1-1}, \mu_{1-2}, \mu_{2-2}, \mu_{\text {male }}$ and $\mu_{\text {age }}$, then the model can be expressed as $y_{i j}=x_{i j}^{\prime} \beta+\epsilon_{i j}, \quad i=$ $1, \ldots, 44, j=1,2$. Similarly, we have $y_{i}=\mu_{1-1} 1_{\left(g_{i}=1-1\right)}+\mu_{1-2} 1_{\left(g_{i}=1-2\right)}+\mu_{2-2} 1_{\left(g_{i}=2-2\right)}+$ $\mu_{\text {male }} 1_{\left(s_{i}=\text { male }\right)}+\mu_{\text {age }} a_{i}+\epsilon_{i}, i=45, \ldots, 89$, where g_{i}, s_{i} and a_{i} are the genotype, sex and age of the $(i-44)$ th person in the unrelated control group, and ϵ_{i} is an error which will be further specified. Let x_{i} denote the vector whose components are $1_{\left(g_{i}=1-1\right)}, 1_{\left(g_{i}=1-2\right)}, 1_{\left(g_{i}=2-2\right)}, 1_{\left(s_{i}=\text { male }\right)}$ and a_{i}, and β be the same as above, then we have $y_{i}=x_{i}^{\prime} \beta+\epsilon_{i}, \quad i=45, \ldots, 89$.

We now specify the distributions for the errors. Let $\epsilon_{i}=\left(\epsilon_{i 1}, \epsilon_{i 2}\right)^{\prime}, i=1, \ldots, 44$. We assume that $\epsilon_{i}, i=1, \ldots, 89$ are independent. Furthermore, we assume that ϵ_{i} is bivariate normal with means zero, variance $\sigma_{\text {tot }}^{2}$ and correlation coefficient $\rho_{\text {ident }}, i=1, \ldots, 31$, where $\sigma_{\text {tot }}^{2}$ is the unknown total variance, and $\rho_{\text {ident }}$ the unknown correlation coefficient between identical twins. Similarly, we assume that ϵ_{i} is bivariate normal with means zero, variance $\sigma_{\text {tot }}^{2}$ and correlation coefficient $\rho_{\text {frat }}, i=32, \ldots, 44$, where $\rho_{\text {frat }}$ is the unknown correlation coefficient between fraternal twins. Finally, we assume that $\epsilon_{i} \sim N\left(0, \sigma_{\text {tot }}^{2}\right), i=45, \ldots, 89$.

The second model, Model II, is the same as Model I except under the constraint $\rho_{\text {frat }}=\rho_{\text {ident }} / 2$. The third model, Model III, is the same as Model I except under the constraints $\mu_{1-1}=\mu_{1-2}=$ μ_{2-2}. It is clear that all three models are Gaussian models. We apply the fence method to this dataset to select an optimal model from the candidate models. More specifically, we consider ML model selection (see section 2) with $c_{n}=1$. Note that, since Model II and III are submodels of Model I (in other words, Model I is the full model), we may take \tilde{M} as Model I. The analysis resulted in the following values for $\hat{Q}_{M}: \hat{Q}_{\mathrm{I}}=337.777, \hat{Q}_{\mathrm{II}}=338.320$ and $\hat{Q}_{\mathrm{III}}=352.471$. Furthermore, we obtained $\hat{\sigma}_{\text {II,I }}=1.367$ and $\hat{\sigma}_{\text {III,I }}=4.899$. Thus, Model II is in the fence while Model III is out. In
conclusion, the analysis has selected Model II as the optimal model. This result is consistent with the finding of Lange (2002), who indicated that a "likelihood ratio test shows that there is virtually no evidence against the assumption $\rho_{\text {frat }}=\rho_{\text {ident }} / 2$. ."

5.2 Prenatal care for pregnancy

This real-data example is an application of the F-B fence procedure (see section 2). Rodriguez and Goldman (2001) considered a dataset from a survey conducted in Guatemala regarding the use of modern prenatal care for pregnancies where some form of care was used (Pebley et al. 1996). While Rodriguez and Goldman focused on assessing the performance of the approximation method they developed in fitting a three-level variance component logistic model, we consider applying the fence method in selection of the fixed covariates in the variance component logistic model. The models are described as follows.

Suppose that given the random effects at community levels $u_{i}, 1 \leq i \leq m$ and random effects at family levels $v_{i j}, 1 \leq i \leq m, 1 \leq j \leq n_{i}$, binary responses $y_{i j k}, 1 \leq i \leq m, 1 \leq j \leq n_{i}, 1 \leq$ $k \leq n_{i j}$ are conditionally independent with $\pi_{i j k}=\mathrm{E}\left(y_{i j k} \mid u, v\right)=\mathrm{P}\left(y_{i j k}=1 \mid u, v\right)$. Furthermore, suppose that the random effects are independent with $u_{i} \sim N\left(0, \sigma^{2}\right)$ and $v_{i j} \sim N\left(0, \tau^{2}\right)$. The following models for the conditional means are considered such that under model $M, \operatorname{logit}\left(\pi_{i j k}\right)=$ $X_{M, i j k}^{\prime} \beta_{M}+u_{i}+v_{i j}$, where $X_{M, i j k}$ is a subvector of the full set of fixed covariates and β_{M} the corresponding vector of regression coefficients.

Let $\psi=\left(\sigma^{2}, \tau^{2}\right)^{\prime}$. The vector of parameters under model M is $\theta_{M}=\left(\beta_{M}^{\prime}, \psi^{\prime}\right)^{\prime}$. Define

$$
\begin{equation*}
Q_{M}=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} \sum_{k=1}^{n_{i j}}\left\{y_{i j k}-g_{M, i j k}\left(\theta_{M}\right)\right\}^{2} \tag{13}
\end{equation*}
$$

where $g_{M, i j k}\left(\theta_{M}\right)=\mathrm{E}\left\{h\left(X_{M, i j k}^{\prime} \beta_{M}+u_{i}+v_{i j}\right)\right\}$ and $h(x)=e^{x} /\left(1+e^{x}\right)$. Using the method devel-
oped in subsection 3.2.3, an estimate of $\sigma_{M, M^{*}}^{2}$ can be obtained (detail omitted). The expectations involved in Q_{M} are evaluated by numerical integration. Since the number of covariates considered is quite large, to keep the computational time manageable we apply the F-B fence procedure introduced in section 2 (with $c_{n}=1$).

The data analysis has selected the following variables (in the order that they were selected in the forward procedure): Proportion indigenous (1981), Modern toilet in household, Husband's education secondary or better, Husband's education primary, Television watched daily, Distance to nearest clinic, Mother's education primary, Television not watched daily, Mother's education secondary or better, Indigenous (no Spanish), Indigenous (Spanish), Mother age, Husband agriculture employee, Husband agriculture self-employee, Child age, Birth order 4-6, and Husband's education missing. There are some interesting differences between the fixed effects discovered by the fence versus those found by standard maximum likelihood analysis using a 5% significance level as reported in Rodriguez and Goldman (2001). First, Husband's education overall (primary or higher relative to the reference group of no education for the husband) was found to be an important predictor whereas Rodriguez and Goldman found that only Husband's secondary education was important. Our more uniform finding is also in line with the finding for Mother's education. The implication is that education of some kind is important for both the mother and husband to have. A similar kind of finding was observed for variables corresponding to husband's profession. We found that regardless of what type of agricultural employment the husband had, it was an important predictor overall. Rodriguez and Goldman report that only non-self employed agricultural jobs for the husband mattered. The fence method also uniquely found that watching television (daily or not) was an important predictor. This can be intuitively justified since it provides a medium for women to learn more about modern prenatal health care methods and thus make it more likely for them to choose to use such methods.

Other findings were in line with those of Rodriguez and Goldman.

5.3 Modeling the salamander-mating experiments (non-clustered data)

Finally, we consider the well-known salamander-mating data originally reported by McCullagh and Nelder (1989, section 14.5). The data was collected from mating experiments involving two populations of salamanders, Rough Butt (RB) and White Side (WS). These populations, which are geographically isolated from one another, are found in the southern Appalachian mountains of the eastern United States. The question whether the geographic isolation had created barriers to the animals' interbreeding was thus of great interest to biologists studying speciation.

The data was studied extensively by fitting GLMMs (e.g., Breslow and Clayton 1993, Drum and McCullagh 1993, Lin and Breslow 1996, Jiang 1998 and Booth and Hobert 1999). However, in most studies it has been assumed that a different group of animals (20 for each sex) are used in each mating experiment, although, in reality, the same group of animals were repeatedly used in two of the three experiments. The GLMMs used in these studies assumed that no further correlation among the data exists given the random effects. However, the responses in this case should be considered longitudinal, because repeated measures were collected from the same subjects (once in the summer and once in the fall). Therefore, serial correlation may still exist among the repeated responses given the random effects. Alternatively, one could pool the responses from the two experiments involving the same group of animals, as suggested by McCullagh and Nelder (1989, section 4.1), so let $y_{i j}$. $=y_{i j 1}+y_{i j 2}$, where $y_{i j 1}$ and $y_{i j 2}$ represent the responses from the summer and first fall experiments, respectively, that involved the same (i th) female and (j th) male. This avoids the issue of conditional independence, but brings in a new problem: The pooled response $y_{i j}$. may not be binomial given the random effects.

In general, pooling the responses from the repeated measures over time will maintain conditional independence, but may destroy the (conditional) exponential family, another key assumption of GLMM. To address such concerns, Jiang and Zhang (2001) proposed an extended version of GLMM, in which the (conditional) exponential family assumption is dropped. The authors considered two models for the conditional means, with logit or probit links, respectively, which correspond to models I and III below, and fitted both models to the data. Following the latter approach, we pool the data from the two experiments involving the same group of salamanders, so let $y_{i j 1}$ be the observed proportion of successful matings between the i th female and j th male in the two experiments. Let $y_{i j 2}$ be the indicator of successful mating between the i th female and j th male in the last experiment involving a new set of animals.

We assume that given the random effects, $u_{k, i}, v_{k, j}, k=1,2, i, j=1, \ldots, 20$, which are independent and normally distributed with mean 0 and variances σ^{2} and τ^{2}, respectively, the responses $y_{i j k},(i, j) \in P, k=1,2$ are conditionally independent, where P represents the set of pairs (i, j) determined by the design, which is partially crossed; u and v represent the female and male, respectively $1, \ldots, 10$ correspond to RB, and $11, \ldots, 20$ to WS. Furthermore, we consider the following models for the conditional means.

Model I: $\mathrm{E}\left(y_{i j k} \mid u, v\right)=h_{1}\left(\beta_{0}+\beta_{1} \mathrm{WS}_{\mathrm{f}}+\beta_{2} \mathrm{WS}_{\mathrm{m}}+\beta_{3} \mathrm{WS}_{\mathrm{f}} \times \mathrm{WS}_{\mathrm{m}}+u_{k, i}+v_{k, j}\right),(i, j) \in P$, $k=1,2$, where $h_{1}(x)=e^{x} /\left(1+e^{x}\right) ; \mathrm{WS}_{\mathrm{f}}$ is an indicator for WS female (1 for WS and 0 for RB), WS_{m} is an indicator for WS male and $\mathrm{WS}_{\mathrm{f}} \times \mathrm{WS}_{\mathrm{m}}$ represents the interaction.

Model II: Same as Model I except dropping the interaction term.
Model III: Same as Model I with h_{1} replaced by h_{2}, where $h_{2}(x)=\Phi(x)$, the cdf of $N(0,1)$.
Model IV: Same as Model III except dropping the interaction term.
The models are special cases of the extended GLMMs introduced in section 2 (also see sub-
section 3.2.3). We apply the fence method therein (with $c_{n}=1$) to this case. The analysis has yielded the following values of \hat{Q}_{M} for $M=$ I, II, III and IV: 39.5292, 44.3782, 39.5292, 41.6190, hence $\tilde{M}=\mathrm{I}$ or III. If $\tilde{M}=\mathrm{I}$, then $\hat{\sigma}_{M, \tilde{M}}=1.7748$ for $M=\mathrm{II}$ and $\hat{\sigma}_{M, \tilde{M}}=1.1525$ for $M=$ IV. Therefore, neither $M=\mathrm{II}$ nor $M=\mathrm{IV}$ fall within the fence. If $\tilde{M}=\mathrm{III}$, then $\hat{\sigma}_{M, \tilde{M}}=1.68$ for $M=\mathrm{II}$ and $\hat{\sigma}_{M, \tilde{M}}=1.3795$ for $M=\mathrm{IV}$. Thus, once again, neither $M=\mathrm{II}$ nor $M=\mathrm{IV}$ are inside the fence. In conclusion, the fence method has selected both Model I and Model III (either one) as the optimal model. Interestingly, these are exactly the ones fitted by Jiang and Zhang (2001) using a different method, although the authors had not considered it a model selection problem. The eliminations of Model II and Model IV are consistent with many of the previous studies (e.g., Karim and Zeger 1992, Breslow and Clayton 1993, Lin and Breslow 1996), which have found the interaction term significant, although the majority of these studies have focused on logit models.

6 Adaptive fence procedure

In this section we address the issue of choosing the tuning constant c_{n} involved in (7). According to Theorem 1 in the sequel, for consistency of the fence one needs $c_{n} \rightarrow \infty$ at a certain rate, but there are many c_{n} 's that satisfy this requirement. Also note that although for the consistency it is not required that $\hat{\sigma}_{M, M^{*}}$ be a consistent estimator of $\sigma_{M, M^{*}}$ as long as it has the right order (see the first paragraph of section 3), there is always a constant involved which may make a difference in a finite sample situation. Therefore, the focus here is finite sample performance.

We now introduce the idea of an adaptive procedure. Recall that \mathcal{M} denotes the set of candidate models, which includes a true model. To be more specific, we assume that there is a full model $M_{\mathrm{f}} \in$ \mathcal{M}, hence $\tilde{M}=M_{\mathrm{f}}$ in (7); and that every model in $\mathcal{M} \backslash\left\{M_{\mathrm{f}}\right\}$ is a submodel of a model in \mathcal{N} with one
less parameter than M_{f}. Let M_{*} denote a model with minimum dimension among $M \in \mathcal{M}$. First note that, ideally, one wishes to select c_{n} that maximizes the probability of choosing the optimal model. Here for simplicity the optimal model is defined as a true model that has the minimum dimension among all true models. This means that one wishes to choose c_{n} that maximizes

$$
\begin{equation*}
P=\mathrm{P}\left(M_{0}=M_{\mathrm{opt}}\right), \tag{14}
\end{equation*}
$$

where $M_{\text {opt }}$ represents the optimal model, and $M_{0}=M_{0}\left(c_{n}\right)$ is the model selected by the fence procedure with the given c_{n}. However, two things are unknown in (14): (i) under what distribution should the probability P be computed; and (ii) what is $M_{\text {opt }}$?

To solve problem (i), note that the assumptions above on \mathcal{M} imply that M_{f} is a true model. Therefore, it is possible to bootstrap under M_{f}. For example, one may estimate the parameters under M_{f}, then use a model-based bootstrap to draw samples under M_{f}. This allows us to approximate the probability distribution P on the right side of (14).

To solve problem (ii), we use the idea of maximum likelihood. Namely, let $p^{*}(M)=\mathrm{P}^{*}\left(M_{0}=\right.$ $M)$, where $M \in \mathcal{M}$ and P^{*} denotes the empirical probability obtained by bootstrapping. Let $p^{*}=\max _{M \in \mathcal{M}} p^{*}(M)$. Note that p^{*} depends on c_{n}. The idea is to choose c_{n} that maximizes p^{*}. It should be kept in mind that the maximization is not without restriction. To see this, note that if $c_{n}=0$ then $p^{*}=1$ (because when $c_{n}=0$ the procedure always chooses M_{f}). Similarly, $p^{*}=1$ for very large c_{n}, if M_{*} is unique (because when c_{n} is large enough the procedure always chooses $\left.M_{*}\right)$. Therefore, what one looks for is "the peak in the middle" of the plot of p^{*} against c_{n}.

Here is another look at the method. Typically, the optimal model is the model from which the data is generated, then this model should be the most likely given the data. Thus, given c_{n}, one is looking for the model (using the fence procedure) that is most supported by the data or, in other
words, one that has the highest (posterior) probability. The latter is estimated by a bootstrapping procedure. Note that although the bootstrap samples are generated under the full model, they are almost the same as those generated under the optimal model. This is because the estimates corresponding to the zero parameters are expected to be close to zero, provided that the parameter estimators under the full model are consistent. One then pulls off the c_{n} that maximizes the (posterior) probability and this is the optimal choice, denoted by c_{n}^{*}.

The procedure does not work, however, if there is no peak in the middle. Typically, this happens when the optimal model is one of the extreme cases - either M_{f} or M_{*}. To handle such cases we run screen tests for the extreme cases before searching for the peak in the middle. The first is called full model test. The idea is the following. Define $\mathcal{M}_{\mathrm{f}-1}$ as the set of all models with one less parameter than M_{f} (see above). Suppose that when M_{f} is the optimal model, we have $\mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M_{\mathrm{f}}}\right) \sim a_{n}, \forall M \in \mathcal{M}_{\mathrm{f}-1}$. Here $u_{n} \sim v_{n}$ means that both u_{n} / v_{n} and v_{n} / u_{n} are bounded. On the other hand, if M_{f} is not the optimal model, there is $M \in \mathcal{M}_{\mathrm{f}-1}$ which is a true model, hence $\mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M_{\mathrm{f}}}\right)=O\left(b_{n}\right)$, where $b_{n}=o\left(a_{n}\right)$. It follows that $\min _{M \in \mathcal{M}_{\mathrm{f}-1}} \mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M_{\mathrm{f}}}\right)=O\left(b_{n}\right)$. Therefore, we consider

$$
\begin{equation*}
q_{n}=\frac{\left\{\min _{M \in \mathcal{M}_{\mathrm{f}-1}} \mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M_{\mathrm{f}}}\right)\right\}^{2}}{a_{n} b_{n}} . \tag{15}
\end{equation*}
$$

In practice, q_{n} is replaced by its bootstrap estimate, q_{n}^{*}, obtained as above. If $q_{n}^{*}<1$, the full model test passes; otherwise, the full model test fails, in which case we assign $c_{n}^{*}=0$. In case the full model test passes, we follow with a minimum model test. For simplicity, we assume that there is a unique $M_{*} \in \mathcal{M}$ that has the minimum dimension. Note that this is not a serious restriction because in most cases one can add a (trivial) model to \mathcal{M}, if necessary, which then becomes the unique M_{*}. Suppose that $\mathrm{E}\left(\hat{Q}_{M_{*}}-\hat{Q}_{M_{\mathrm{f}}}\right)=O\left(g_{n}\right)$ if M_{*} is incorrect; and the order becomes $O\left(h_{n}\right)$ if M_{*} is
correct (hence optimal), where $h_{n}=o\left(g_{n}\right)$. We then consider

$$
\begin{equation*}
r_{n}=\frac{\left\{\mathrm{E}\left(\hat{Q}_{M_{*}}-\hat{Q}_{M_{\mathrm{f}}}\right)\right\}^{2}}{g_{n} h_{n}} . \tag{16}
\end{equation*}
$$

Let r_{n}^{*} be the bootstrap version of r_{n}. If $r_{n}^{*}>1$ the minimum model test passes; otherwise, the minimum model test fails, in which case we assign c_{n}^{*} as the upper bound of a sequence of values considered (see below). In case both tests pass, we start searching for the peak in the middle. Quite often there are more than one c_{n} 's at which p^{*} reaches the peak. Let c_{n}^{*} be the median of those c_{n} 's.

The last thing one needs to determine is at which values of c_{n} to evaluate p^{*}. Theoretically, the range of c_{n} is $[0, \infty)$, but practically one needs an upper bound. This can be determined as follows. Note that any c_{n} greater than or equal to $B=\left(\hat{Q}_{M_{*}}-\hat{Q}_{M_{\mathrm{f}}}\right) / \hat{\sigma}_{M_{*}, M_{\mathrm{f}}}$ makes no difference to the fence procedure. This is because then (7) is satisfied by M_{*}, hence $M_{0}=M_{*}$ (recall that M_{*} is unique by our simplicity assumption). Therefore, we choose the upper bound of c_{n} as the smallest integer $\geq B$, i.e., $B^{*}=[B]+1$. We then divide the interval $\left[0, B^{*}\right]$ by subintervals of equal length, and consider the end points, for example, $c_{n}=0.5(k-1), k=1,2, \ldots, 2 B^{*}+1$.

To demonstrate the method, we consider a special class of simple mixed models that are of strong practical interest in small area estimation (e.g., Rao 2003).

Example 4. (Fay-Herriot model) the Fay-Herriot model is widely used in small area estimation. It was first proposed to estimate the per-capita income of small places with population less than 1000 (Fay and Herriot 1979). The model can expressed as $y_{i}=x_{i}^{\prime} \beta+v_{i}+e_{i}, i=1, \ldots, m$, where x_{i} is a vector of known covariates, β is a vector of unknown regression coefficients, v_{i} 's are areaspecific random effects and e_{i} 's represent sampling errors. It is assumed that v_{i}, e_{i} are independent with $v_{i} \sim N(0, A)$ and $e_{i} \sim N\left(0, D_{i}\right)$. The variance A is unknown, but the sampling variances D_{i} 's are assumed known.

Let $X=\left(x_{i}^{\prime}\right)_{1 \leq i \leq m}$, so that the model can be expressed as $y=X \beta+v+e$, where $y=$ $\left(y_{i}\right)_{1 \leq i \leq m}, v=\left(v_{i}\right)_{1 \leq i \leq m}$ and $e=\left(e_{i}\right)_{1 \leq i \leq m}$. The first column of X is assumed to be 1_{m} which corresponds to the intercept. The rest of the columns of X are to be selected from a set of candidate covariate vectors X_{2}, \ldots, X_{K}, which include the true covariate vectors. First note that by applying the following transformation we can simplify the problem to the case $D_{i}=1$. Let $D=1+\max _{1 \leq i \leq m} D_{i}$. Draw independent samples u_{1}, \ldots, u_{m} independent with the v_{i} 's and e_{i} 's such that $u_{i} \sim N\left(0, D-D_{i}\right), 1 \leq i \leq m$. Then, let $\tilde{y}_{i}=\left(y_{i}+u_{i}\right) / \sqrt{D}, \tilde{x}_{i}=x_{i} / \sqrt{D}, \tilde{v}_{i}=v_{i} / \sqrt{D}$ and $\tilde{e}_{i}=\left(e_{i}+u_{i}\right) / \sqrt{D}$. Consider \tilde{y}_{i} 's as the new observations. Then, we have $\tilde{y}_{i}=\tilde{x}_{i}^{\prime} \beta+\tilde{v}_{i}+\tilde{e}_{i}$, $i=1, \ldots, m$, where $\tilde{v}_{i}, \tilde{e}_{i}, i=1, \ldots, m$ are independent with $\tilde{v}_{i} \sim N(0, \tilde{A}), \tilde{A}=A / D$ and $\tilde{e}_{i} \sim N(0,1)$. Thus, without loss of generality, we let $D_{i}=1,1 \leq i \leq m$.

Consider the fence ML model selection (see section 2). It is easy to show that, in this case, $\hat{Q}_{M}=(m / 2)\left\{1+\log (2 \pi)+\log \left(\left|P_{X \perp} y\right|^{2} / m\right)\right\}$, where $P_{X^{\perp}}=I_{m}-P_{X}$ and $P_{X}=X\left(X^{\prime} X\right)^{-1} X^{\prime}$. Here we assume for simplicity that X is of full rank. It follows that

$$
\hat{Q}_{M}-\hat{Q}_{M_{\mathrm{f}}}=\frac{m}{2} \log \left(\frac{\left|P_{X^{\perp}} y\right|^{2}}{\left|P_{X_{\mathrm{f}}^{\perp}} y\right|^{2}}\right) .
$$

Furthermore, it can be shown that, when M is a true model, we have

$$
\hat{Q}_{M}-\hat{Q}_{M_{\mathrm{f}}}=\frac{m}{2} \log \left(1+\frac{K-p}{m-K-1} F\right),
$$

where $p+1$ is the number of columns of X, and $F \sim F_{K-p, m-K-1}$. Therefore, $\sigma_{M, M_{\mathrm{f}}}$ is completely known given $|M|$ and can be evaluated accurately (e. g., by numerical integration).

We carry out a simulation study to evaluate the performance of the adaptive method. We consider a (relatively) small sample situation with $m=30$. With $K=5, X_{2}, \ldots, X_{5}$ were generated from the $N(0,1)$ distribution, and then fixed throughout the simulation. The candidate models include all possible models with at least an intercept (thus there are $2^{4}=16$ candidate models). We

Table 5: Fence methods with different c_{n} 's in the Fay-Herriot model

Optimal Model	1	2	3	4	5
Adaptive c_{n}	100	100	100	99	100
$c_{n}=\log \log (n)$	52	63	70	83	100
$c_{n}=\log (n)$	96	98	99	96	100
$c_{n}=\sqrt{n}$	100	100	100	100	100
$c_{n}=n / \log (n)$	100	91	95	90	100
$c_{n}=n / \log \log (n)$	100	0	0	0	6

consider five cases in which the data y is generated from the model $y=\sum_{j=1}^{5} \beta_{j} X_{j}+v+e$, where $\beta^{\prime}=\left(\beta_{1}, \ldots, \beta_{5}\right)=(1,0,0,0,0),(1,2,0,0,0),(1,2,3,0,0),(1,2,3,2,0)$ and $(1,2,3,2,3)$, denoted by Model $1,2,3,4,5$, respectively. The true value of A is 1 in all cases. The number of bootstrap samples for the evaluation of the $p^{* \prime}$ s is set at 100 .

In addition to the adaptive method, we consider five different (non-adaptive) c_{n} 's ($n=m$ in this case), which satisfy the consistency requirements given in Theorem 1 in the sequel (note that these requirements reduce to $c_{n} \rightarrow \infty$ and $c_{n} / n \rightarrow 0$ in this case). These are $c_{n}=\log \log (n)$, $\log (n), \sqrt{n}, n / \log (n)$ and $n / \log \log (n)$. Reported in Table 5 are percentage of times, out of 100 simulations, that the optimal model was selected by each method.

It seems that performance of the fence with $c_{n}=\log (n), \sqrt{n}$ or $n / \log (n)$ is fairly close to that of the adaptive fence. In any particular situation, one might get lucky to find a good c_{n} value by chance, but one may not be lucky all the time. For example, we have observed that in the case of a mixed \log istic model (e. g., subsection 4.2) $c_{n}=\log (n)$ may not work as well as $c_{n}=1$ in a finite sample situation even though the latter does not satisfy the consistency requirements. Furthermore,
as mentioned in section 1 , for more complicated mixed models the definition of the sample size may not simply be the total number of observations (or the number of clusters). In such cases something like $\log (n)$ or $n / \log (n)$ may not make sense. See subsections 4.1 and 4.3 for our simulation results. In the next section we show that the adaptive fence procedure is indeed consistent, as expected.

The top figure of Figure 1 shows a plot of p^{*} against c_{n} in the adaptive procedure based on the first simulated dataset generated under Model 4. To show an overall picture, the plot was extended beyond the upper bound B^{*} in the adaptive procedure, which was 24 in this case. A smoothed version is also plotted. The plot shows two peaks in the middle, which is not unusual. In practice, when there are multiple peaks in the middle, one should pick the highest one. This is supported by our theoretical result, namely, Theorem 3 in the sequel, which shows that c_{n}^{*} is an approximate global maximum of p^{*}. On the other hand, this strategy does not always work in a finite sample situation. For example, the strategy is responsible for the only failure of the adaptive c_{n} out of a total of 500 simulations (100 under each model; see Table 5). A closer examination shows that, in this case, there were two peaks in the middle; unfortunately, the higher peak led one to the wrong choice - Model 3 instead of Model 4 (the lower peak led to the right choice). The bottom figure shows parallel boxplots of the c_{n}^{*} 's obtained from the simulations under the five models.

Remark: It turns out that requiring the existence of a full model or other known true model from which to draw bootstrap samples is not much of a practical problem, because in essence the adaptive fence can be done in two steps. In the first step, one could use the fence with a fixed c_{n} (e. g., $c_{n}=1$) to select a true model (which may not be optimal). Then in the second step, one applies the adaptive fence procedure with bootstrap samples drawn under the true model selected in the first step. Note that in the first step, one does not need c_{n} to increase in order to select (with probability tending to one) a true model. In fact, we applied this very procedure to the same simulated datasets
as above and found the exact same result - that we found the optimal model 499 out of 500 times and the time we missed, was the very same time we missed above.

7 Consistency of fence, F-B fence and adaptive fence

We assume that the following A1-A4 hold for each $M \in \mathcal{M}$, where, as before, θ_{M} represents a parameter vector at which $\mathrm{E}\left(Q_{M}\right)$ attains its minimum, and $\partial Q_{M} / \partial \theta_{M}$, etc. represent derivatives evaluated at θ_{M}. Similarly, $\partial \tilde{Q}_{M} / \partial \theta_{M}$, etc. represent derivatives evaluated at $\tilde{\theta}_{M}$.

Al. Q_{M} is three-times continuously differentiable with respect to θ_{M}; and

$$
\begin{equation*}
\mathrm{E}\left(\frac{\partial Q_{M}}{\partial \theta_{M}}\right)=0 . \tag{17}
\end{equation*}
$$

A2. Condition ii) of Lemma 2.
A3. The equation $\partial Q_{M} / \partial \theta_{M}=0$ has an unique solution.
A4. There is a sequence of positive numbers $a_{n} \rightarrow \infty$ and $0 \leq \gamma<1$ such that
$\partial Q_{M} / \partial \theta_{M}-\mathrm{E}\left(\partial Q_{M} / \partial \theta_{M}\right)=O_{\mathrm{P}}\left(a_{n}^{\gamma}\right)$,
$\partial^{2} Q_{M} / \partial \theta_{M} \partial \theta_{M}^{\prime}-\mathrm{E}\left(\partial^{2} Q_{M} / \partial \theta_{M} \partial \theta_{M}^{\prime}\right)=O_{\mathrm{P}}\left(a_{n}^{\gamma}\right)$,
$\liminf a_{n}^{-1} \lambda_{\min }\left\{\mathrm{E}\left(\partial^{2} Q_{M} / \partial \theta_{M} \partial \theta_{M}^{\prime}\right)\right\}>0$,
$\limsup a_{n}^{-1} \lambda_{\max }\left\{\mathrm{E}\left(\partial^{2} Q_{M} / \partial \theta_{M} \partial \theta_{M}^{\prime}\right)\right\}<\infty$, and there is $\delta_{M}>0$ such that $\sup _{\left|\tilde{\theta}_{M}-\theta_{M}\right| \leq \delta_{M}}\left|\partial^{3} \tilde{Q}_{M} / \partial \theta_{M, j} \partial \theta_{M, k} \partial \theta_{M, l}\right|=O_{\mathrm{P}}\left(a_{n}\right), 1 \leq j, k, l \leq p_{M}$, where $p_{M}=\operatorname{dim}\left(\theta_{M}\right)$.

In addition, we assume the following. Recall that c_{n} is the constant in (7).
A5. $c_{n} \rightarrow \infty$; for any true model M^{*} and incorrect model M, we have $\mathrm{E}\left(Q_{M}\right)>\mathrm{E}\left(Q_{M^{*}}\right)$, $\liminf \left(\sigma_{M, M^{*}} / a_{n}^{2 \gamma-1}\right)>0$ and $c_{n} \sigma_{M, M^{*}} /\left\{\mathrm{E}\left(Q_{M}\right)-\mathrm{E}\left(Q_{M^{*}}\right)\right\} \rightarrow 0$.

A6. $\hat{\sigma}_{M, M^{*}}>0$ and $\hat{\sigma}_{M, M^{*}}=\sigma_{M, M^{*}} O_{\mathrm{P}}(1)$ if M^{*} is true and M incorrect; and $\sigma_{M, M^{*}} \vee$ $a_{n}^{2 \gamma-1}=\hat{\sigma}_{M, M^{*}} O_{\mathrm{P}}(1)$ if both M and M^{*} are true.

Figure 1: Top figure: Plot of p^{*} versus c_{n} for the adaptive procedure for choosing c_{n} based on the first simulated dataset generated under Model 4. Notice the peak in the middle of the range of c_{n} from which the optimal value, c_{n}^{*}, is determined. Bottom figure: Parallel boxplots of the c_{n}^{*} 's based on the repeated simulations under the five different models under consideration.

Note. See the remark following Lemma 2 regarding (17) and A2. To illustrate A4 and A5, consider the case of clustered responses (see subsection 3.1). Then, under regularity conditions, A4 holds with $a_{n}=m$ and $\gamma=1 / 2$. Furthermore, we have $\sigma_{M, M^{*}}=O(\sqrt{m})$ and $\mathrm{E}\left(Q_{M}\right)-$ $\mathrm{E}\left(Q_{M^{*}}\right)=O(m)$, provided that M^{*} is true, M is incorrect and some regularity conditions hold. Thus, A5 holds with $\gamma=1 / 2$ and c_{n} being any sequence satisfying $c_{n} \rightarrow \infty$ and $c_{n} / \sqrt{m} \rightarrow 0$. Finally, A6 does not require that $\hat{\sigma}_{M, M^{*}}$ be a consistent estimator of $\sigma_{M, M^{*}}$ - only that it has the same order as $\sigma_{M, M^{*}}$. However, see the discussion at the beginning of the previous section.

Lemma 5. Under A1-A4, we have $\hat{\theta}_{M}-\theta_{M}=O_{\mathrm{P}}\left(a_{n}^{\gamma-1}\right)$ and $\hat{Q}_{M}-Q_{M}=O_{\mathrm{P}}\left(a_{n}^{2 \gamma-1}\right)$.
Let M_{0} be the model selected by fence using (7). The following theorem establishes consistency of the fence procedure.

Theorem 1. Under assumptions A1-A6, we have with probability tending to one that M_{0} is a true model with minimum dimension.

The proofs of Lemma 5 and Theorem 1 are given in subsections 9.3 and 9.4, respectively.
The next theorem establishes consistency of the F-B fence proposed in section 2. Note that the method is introduced in the case of extended GLMMs (also see subsection 5.2). Let M_{0}^{\dagger} be the final model of the F-B fence procedure using (7).

Theorem 2. Under assumptions A1-A6, we have with probability tending to one that M_{0}^{\dagger} is a true model and no proper submodel of M_{0}^{\dagger} is a true model.

Note that the consistency of the F-B fence is in the sense that (w. p. $\rightarrow 1$) M_{0}^{\dagger} is a true model which cannot be further reduced or simplified. The proof is given in subsection 9.5.

Finally, we give sufficient conditions for the consistency of the adaptive fence procedure introduced in the previous section. For simplicity, assume that $M_{\text {opt }}$ is unique. Consider the ratios $r_{M}=\left(\hat{Q}_{M}-\hat{Q}_{M_{\mathrm{f}}}\right) / \hat{\sigma}_{M, M_{\mathrm{f}}}, M \in \mathcal{M}$. Let $\mathcal{M}_{\mathrm{w} \leq}$ denote the subset of incorrect models with dimen-
sion $\leq\left|M_{\mathrm{opt}}\right|$. Write $r_{\mathrm{opt}}=r_{M_{\mathrm{opt}}}$ and $r_{\mathrm{w} \leq}=\min _{M \in \mathcal{M}_{\mathrm{w} \leq} \leq} r_{M}$. Denote the cumulative distribution functions of r_{opt} and $r_{\mathrm{w} \leq}$ by F_{opt} and $F_{\mathrm{w} \leq}$, respectively. Let $M_{0}(x)$ be the model selected by the fence procedure using (7) with $c_{n}=x$, and $P(x)=\mathrm{P}\left(M_{0}(x)=M_{\text {opt }}\right)$. Let $P^{*}(x)$ be the bootstrap version of $P(x)$. Denote the bootstrap sample size by n^{*}. Recall the definitions of $a_{n}, b_{n}, q_{n}, q_{n}^{*}$ in (15), $g_{n}, h_{n}, r_{n}, r_{n}^{*}$ in (16), and B^{*} above Example 4. We make the following assumptions.

A7. (Asymptotic distributional separation) if $M_{\mathrm{opt}} \notin\left\{M_{\mathrm{f}}, M_{*}\right\}$, then for any $\epsilon>0$, there is $0<\delta \leq 0.1, x_{n, 1}<x_{n, 2}<x_{n, 3}$, and $N \geq 1$ such that when $n \geq N$ the following hold: $F_{\text {opt }}\left(x_{n, 1}\right)>1-\epsilon, F_{\mathrm{w} \leq} \leq\left(x_{n, 3}\right) \leq \epsilon, P\left(x_{n, 2}\right)>1-\delta, 1-4 \delta<P\left(x_{n, j}\right) \leq 1-3 \delta, j=1,3$; if $M_{\text {opt }}=M_{\mathrm{f}}$, we have $\mathrm{P}\left(\min _{M \in \mathcal{M}, M \neq M_{\mathrm{f}}} \hat{Q}_{M}>\hat{Q}_{M_{\mathrm{f}}}\right) \rightarrow 1$ as $n \rightarrow \infty$.

A8. (Good bootstrap approximation) if $M_{\mathrm{opt}} \notin\left\{M_{\mathrm{f}}, M_{*}\right\}$, then for any $\delta, \eta>0$, there are $N \geq 1, N^{*}=N^{*}(n)$ such that, when $n \geq N$ and $n^{*} \geq N^{*}$, we have $\mathrm{P}\left(\sup _{x>0}\left|P^{*}(x)-P(x)\right|<\right.$ $\delta)>1-\eta$; if $M_{\text {opt }}=M_{\mathrm{f}}$, we have $q_{n} / q_{n}^{*}=O_{\mathrm{P}}(1)$; if $M_{\mathrm{opt}}=M_{*}$, we have $q_{n}^{*} / q_{n}=O_{\mathrm{P}}(1)$ and $r_{n}^{*} / r_{n}=O_{\mathrm{P}}(1)$.

For the most part, assumption A7 says that there is an asymptotic separation between the optimal model and the incorrect ones that matter in that the peak of $P(x)$ is distant from the area where $r_{\mathrm{w} \leq}$ concentrates. This is reasonable because, typically, r_{opt} is of lower order than $r_{\mathrm{w} \leq} \leq$. Therefore, one can find an interval, $\left(x_{n, 1}, x_{n, 3}\right)$, such that (7) is almost always satisfied by $M=M_{\mathrm{opt}}$ when $c_{n} \in\left(x_{n, 1}, x_{n, 3}\right)$. On the other hand, $\left(x_{n, 1}, x_{n, 3}\right)$ is distant from the area where $r_{\mathrm{w} \leq} \leq$ concentrates, so that $r_{\text {opt }} \leq c_{n}, r_{\mathrm{w} \leq}>c_{n}$ with high probability, if $c_{n} \in\left(x_{n, 1}, x_{n, 3}\right)$. Thus, $P(x)$ is expected to peak in $\left(x_{n, 1}, x_{n, 3}\right)$ while $\left.F_{\mathrm{w} \leq} \leq x\right)$ stays low in the region.

Recall that p^{*} in the adaptive procedure is a function of c_{n}, i.e., $p^{*}=p^{*}\left(c_{n}\right)$. The following theorem establishes consistency of the adaptive fence. The proof is given in subsection 9.6.

Theorem 3. Under assumptions A7 and A8 the following hold.
(i) If $M_{\text {opt }} \notin\left\{M_{\mathrm{f}}, M_{*}\right\}$, then with probability tending to one there is $c_{n}^{*} \in(0, \infty)$ which is at least a local maximum and approximate global maximum of p^{*} in the sense that for any $\delta, \eta>0$, there is $N \geq 1$ and $N^{*}=N^{*}(n)$ such that $\mathrm{P}\left(p^{*}\left(c_{n}^{*}\right) \geq 1-\delta\right) \geq 1-\eta$, if $n \geq N$ and $n^{*} \geq N^{*}$.
(ii) In general, define c_{n}^{*} as

$$
\begin{cases}0, & \text { if } q_{n}^{*}>1 \\ B^{*}, & \text { if } q_{n}^{*} \leq 1, r_{n}^{*}<1 \\ \text { the } c_{n}^{*} \text { in (i), } & \text { if } q_{n}^{*} \leq 1, r_{n}^{*} \geq 1 \text { and such a } c_{n}^{*} \text { exists } \\ 1, & \text { otherwise }\end{cases}
$$

Let M_{0}^{*} be the model selected by the fence procedure using (7) with $\tilde{M}=M_{\mathrm{f}}$ and c_{n} replaced by c_{n}^{*}. Then M_{0}^{*} is consistent in the sense that for any $\eta>0$ there is $N \geq 1$ and and $N^{*}=N^{*}(n)$ such that $\mathrm{P}\left(M_{0}^{*}=M_{\text {opt }}\right) \geq 1-\eta$, if $n \geq N$ and $n^{*} \geq N^{*}$.

8 Further discussion and concluding remarks

8.1 A note on hypothesis testing

It is tempting to think of the fence method as similar to hypothesis testing for choosing between models. However, there are some clear and important differences. The fence method is sufficiently more general in nature. In many situations, models must be compared which are not related to one another by parameter restrictions (e. g., non-nested). There may be better ways to capture model complexity in these cases. In such situations, log-likelihood ratios (if a likelihood is available) of pairs of estimated models do not have a chi-square asymptotic distribution. As a result, pulling out appropriate critical values for testing can be quite complex often requiring much more restrictive assumptions about the underlying nature of the models being compared (Findley and Wei, 1989).

Even in the nested model situation, asymptotic null distribution approximations can be poor (e.g., in case of correlated responses or non-normality), or if a likelihood does not exist but some other goodness of fit measure is used, working out critical values for testing can prove problematic.

In addition, fence methods work when the true model does not exist or is not within the set of candidate or approximating models (see subsection 4.2). When such a class is misspecified, hypothesis testing procedures may lead to the simultaneous acceptance or rejection of multiple nonnested models. The former might be a consequence of lack of data, while the latter be indicative of the testing procedure being misspecified altogether (Gourierous and Monfort, 1995).

8.2 Concluding remarks

Fence is different from procedures like AIC, BIC in that there is no criterion function that is minimized. In other words, instead of trying to find an "optimal" model that minimizes a criterion function, fence proposes to carry out the optimization by two steps. The first step is to identify the set of true models (the ones that are in the fence) or, in case a true model does not exist, the models that best approximate the real-life problem. Note that although in this paper we have assumed the existence of a true model, the method can be easily extended to the situation where a true model does not exist, or is understood as the one that provides the best approximation (see subsection 4.2). On the other hand, the second step of fence, which identifies the model with minimal dimension within the fence, is quite flexible. For example, the dimension of a model may not be defined as the number of estimated parameters (e.g., Hastie and Tibshirani 1990, Ye 1998); or it may be replaced by some other considerations, such as economical concerns. In fact, practically speaking, optimality in model selection usually goes beyond statistics. Keeping this in mind, it appears that the fence procedure is easier to incorporate with other scientific or economical criteria than minimizing a
single criterion function determined before the scientific or economic problem.
A good feature of the fence algorithm is that one needs not check all the models for membership within the fence (see the remark following the fence algorithm in section 2). Furthermore, if the candidate models include a full model, the first step of fence, i.e., the identification of \tilde{M}, does not require any computation (see the remark following the definition of \tilde{M} in section 2). These features potentially save computational time, especially when the number of candidate models is large.

Finally, fence is conceptually simple. It takes knowledge about information theory and likelihood to understand the idea behind AIC, and Bayesian theory for BIC. But, apparently, everyone understands standard deviation. By the way, the name "fence" is also easily interpreted. In English, fence means a fence.

In this paper, we have demonstrated the robust performance of fence in various situations of linear or generalized linear mixed models as well as its broad applicability to problems in different fields, ranging from genetics, medical care to biology and surveys. In addition, we have introduced a stepwise fence procedure to handle situations of large number of predictors. Furthermore, we have proposed an adaptive procedure for choosing a tuning constant involved in the fence method. The adaptive procedure improves the finite sample performance of fence at a computational cost for bootstrapping. On the theoretical side, we have established consistency of the different fence procedures, with the proofs given in the next section.

9 Proofs

9.1 Proof of Lemma 2

By i), (8) and the fact that the clusters are independent, we have

$$
\begin{aligned}
\mathrm{E}\left|\frac{\partial Q_{M}}{\partial \theta_{M}}\right|^{2} & =\operatorname{tr}\left\{\operatorname{Var}\left(\sum_{i=1}^{m} \frac{\partial Q_{M, i}}{\partial \theta_{M}}\right)\right\} \\
& =\sum_{i=1}^{m} \operatorname{tr}\left\{\operatorname{Var}\left(\frac{\partial Q_{M, i}}{\partial \theta_{M}}\right)\right\}=O(m) .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\frac{\partial Q_{M}}{\partial \theta_{M}}=O_{\mathrm{P}}(\sqrt{m}) . \tag{18}
\end{equation*}
$$

By Taylor expansion, (18) and iii), we have $\hat{Q}_{M}=Q_{M}+\left(\partial Q_{M} / \partial \theta_{M}\right)^{\prime}\left(\hat{\theta}_{M}-\theta_{M}\right)+(1 / 2)\left(\hat{\theta}_{M}-\right.$ $\left.\theta_{M}\right)^{\prime}\left\{\partial^{2} Q_{M} /\left.\partial \theta_{M} \partial \theta_{M}^{\prime}\right|_{\tilde{\theta}_{M}}\right\}\left(\hat{\theta}_{M}-\theta_{M}\right)=Q_{M}+R_{2}$, where $\tilde{\theta}_{M}$ lies between θ_{M} and $\hat{\theta}_{M}$. Hereafter, R_{2} represents a random variable whose second moment is bounded, but the definition of R_{2} may change from place to place. Since the above holds for any $M \in \mathcal{M}$, we also have $\hat{Q}_{M^{*}}=Q_{M^{*}}+R_{2}$, hence $\hat{Q}_{M}-\hat{Q}_{M^{*}}=Q_{M}-Q_{M^{*}}+R_{2}$. Therefore, by iv), we have

$$
\begin{align*}
\mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M^{*}}\right) & =\mathrm{E}\left(Q_{M}-Q_{M^{*}}\right)+O(1), \tag{19}\\
\operatorname{var}\left(\hat{Q}_{M}-\hat{Q}_{M^{*}}\right) & =\operatorname{var}\left(Q_{M}-Q_{M^{*}}\right)+O(\sqrt{m}) \tag{20}
\end{align*}
$$

Thus, if M is correct, we have $\mathrm{E}\left(Q_{M}\right)=\mathrm{E}\left(Q_{M^{*}}\right)$, hence $\mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M^{*}}\right)=O(1)$, $\operatorname{var}\left(\hat{Q}_{M}-\right.$ $\left.\hat{Q}_{M^{*}}\right)=\operatorname{var}\left(Q_{M}-Q_{M^{*}}\right)\{1+O(1 / \sqrt{m})\}=O(m)$. On the other hand, if M is incorrect, we have, by v) and (19), (20), $\mathrm{E}\left(\hat{Q}_{M}-\hat{Q}_{M^{*}}\right)^{2}=\operatorname{var}\left(Q_{M}-Q_{M^{*}}\right)+O\left(m^{2}\right)=O\left(m^{2}\right)$.

9.2 Proof of Lemma 4

By Taylor expansion and conditions i) - iii), we have $\xi_{M, i}=\hat{\xi}_{M, i}+\partial \xi_{M, i} /\left.\partial \theta_{M}^{\prime}\right|_{\hat{\theta}_{M}}\left(\theta_{M}-\hat{\theta}_{M}\right)+$ $(1 / 2)\left(\theta_{M}-\hat{\theta}_{M}\right)^{\prime}\left(\partial^{2} \xi_{M, i} /\left.\partial \theta_{M} \partial \theta_{M}^{\prime}\right|_{\tilde{\theta}_{M}, i}\right)\left(\theta_{M}-\hat{\theta}_{M}\right)=\hat{\xi}_{M, i}-\left(\partial \xi_{M, i} /\left.\partial \theta_{M}^{\prime}\right|_{\hat{\theta}_{M}}\right)\left(\hat{\theta}_{M}-\theta_{M}\right)-R_{M, i}$,
where $\tilde{\theta}_{M, i}$ lies between θ_{M} and $\hat{\theta}_{M}$ and $\mathrm{E}\left(R_{M, i}^{2}\right) \leq c a_{n}^{-2}$ for some constant c. Furthermore, conditions ii) and iii) imply that $\partial \hat{Q}_{M} / \partial \theta_{M}^{\prime}=\sum_{i=1}^{n} \partial \xi_{M, i} /\left.\partial \theta_{M}^{\prime}\right|_{\hat{\theta}_{M}}=0$. Thus, we have $\hat{Q}_{M}=$ $\sum_{i=1}^{n} y_{i}^{2}+\sum_{i=1}^{n} \hat{\xi}_{M, i}=\sum_{i=1}^{n} y_{i}^{2}+\sum_{i=1}^{n} \xi_{M, i}+\left(\sum_{i=1}^{n} \partial \xi_{M, i} /\left.\partial \theta_{M}^{\prime}\right|_{\hat{\theta}_{M}}\right)\left(\hat{\theta}_{M}-\theta_{M}\right)-\sum_{i=1}^{n} R_{M, i}=$ $\sum_{i=1}^{n} y_{i}^{2}+\sum_{i=1}^{n} \xi_{M, i}-\sum_{i=1}^{n} R_{M, i}$. A similar expression is obtained for $\hat{Q}_{M^{*}}$. It follows that $\hat{Q}_{M}-\hat{Q}_{M^{*}}=\sum_{i=1}^{n} d_{i}+R$, where $R=\sum_{i=1}^{n}\left(R_{M^{*}, i}-R_{M, i}\right)$. Thus, we have $\sigma_{M, M^{*}}^{2}=$ $\operatorname{var}\left(\sum_{i=1}^{n} d_{i}\right)+2 \operatorname{cov}\left(\sum_{i=1}^{n} d_{i}, R\right)+\operatorname{var}(R)=I_{1}+2 I_{2}+I_{3}$. It is easy to show that $I_{3} \leq c_{1} n^{2} a_{n}^{-2}$ for some constant c_{1}. Furthermore, we have, by condition iv),

$$
\begin{equation*}
I_{1}=4 \sum_{z_{i}^{\prime} \Sigma z_{j} \neq 0} \delta_{i} \delta_{j} \operatorname{cov}\left(y_{i}, y_{j}\right) \geq c_{2}|S| \tag{21}
\end{equation*}
$$

for some constant $c_{2}>0$. It follows, again by condition iv), that $I_{3} \leq o(1) I_{1}$ and, by CauchySchwarz inequality, $I_{2} \leq o(1) I_{1}$. It follows that $\sigma_{M, M^{*}}^{2}=I_{1}\{1+o(1)\}$.

We now derive (10) by using the first equation in (21). Note that if $z_{i}^{\prime} \Sigma_{M^{*}} z_{j}=0, z_{i}^{\prime} \alpha$ and $z_{j}^{\prime} \alpha$ are independent. Also, $z_{i}^{\prime} \Sigma_{M^{*}} z_{j}=0$ implies $i \neq j$, because otherwise one concludes $z_{i}=0$, which contradicts condition iv). Thus, if $z_{i}^{\prime} \Sigma_{M^{*}} z_{j}=0$, we have $\mathrm{E}\left(y_{i} y_{j}\right)=\mathrm{E}\left\{\mathrm{E}\left(y_{i} \mid \alpha\right) \mathrm{E}\left(y_{j} \mid \alpha\right)\right\}=$ $\mathrm{E}\left\{h_{M^{*}}\left(x_{i}^{\prime} \beta_{M^{*}}+z_{i}^{\prime} \alpha\right) h_{M^{*}}\left(x_{j}^{\prime} \beta_{M^{*}}+z_{j}^{\prime} \alpha\right)\right\}=\mathrm{E}\left(y_{i}\right) \mathrm{E}\left(y_{j}\right)$, hence $\operatorname{cov}\left(y_{i}, y_{j}\right)=0$. On the other hand, if $z_{i}^{\prime} \Sigma_{M^{*}} z_{j} \neq 0$ but $i \neq j$, it is easy to show that $\operatorname{cov}\left(y_{i}, y_{j}\right)=g_{M^{*}, i, j}\left(\beta_{M^{*}}, \psi_{M^{*}}\right)-$ $g_{M^{*}, i}\left(\beta_{M^{*}}, \psi_{M^{*}}\right) g_{M^{*}, j}\left(\beta_{M^{*}}, \psi_{M^{*}}\right)$. Finally, note that $z_{i}^{\prime} \Sigma_{M^{*}} z_{i} \neq 0$, and $\operatorname{var}\left(y_{i}\right)=\mathrm{E}\left(y_{i}^{2}\right)-$ $g_{M^{*}, i}^{2}\left(\beta_{M^{*}}, \psi_{M^{*}}\right)$. It is then easy to derive the expression (10).

9.3 Proof of Lemma 5

A2 and A3 imply that $\hat{\theta}_{M}$ is the unique solution to $\partial Q_{M} / \partial \theta_{M}=0$, By Taylor expansion, we have, $\tilde{Q}_{M}-Q_{M}=\left(\partial Q_{M} / \partial \theta_{M}\right)^{\prime}\left(\tilde{\theta}_{M}-\theta_{M}\right)+(1 / 2)\left(\tilde{\theta}_{M}-\theta_{M}\right)^{\prime}\left(\partial^{2} Q_{M} / \partial \theta_{M} \partial \theta_{M}^{\prime}\right)\left(\tilde{\theta}_{M}-\right.$ $\left.\theta_{M}\right)+(1 / 6) \sum_{j, k, l}\left(\partial^{3} Q_{M}^{*} / \partial \theta_{M, j} \partial \theta_{M, k} \partial \theta_{M, l}\right)\left(\tilde{\theta}_{M, j}-\theta_{M, j}\right)\left(\tilde{\theta}_{M, k}-\theta_{M, k}\right)\left(\tilde{\theta}_{M, l}-\theta_{M, l}\right)=I_{1}+$
$(1 / 2) I_{2}+\frac{1}{6} I_{3}$ for any $\tilde{\theta}_{M}$, where $\partial^{3} Q_{M}^{*} / \cdots$ represents the third derivatives evaluated at θ_{M}^{*}, which lies between θ_{M} and $\tilde{\theta}_{M}$. For any $\epsilon>0$, by A1 and A4, there are $\delta>0$ and $N_{0} \geq 1$ such that $\lambda_{\text {min }}\left\{\mathrm{E}\left(\partial^{2} Q_{M} / \partial \theta_{M} \partial \theta_{M}^{\prime}\right)\right\} \geq \delta a_{n}, n \geq N_{0}$, and $L_{1}>0$ such that the probability is greater than $1-\epsilon$ that $\left|\partial Q_{M} / \partial \theta_{M}\right| \leq L_{1} a_{n}^{\gamma},\left\|\partial^{2} Q_{M} / \partial \theta_{M} \partial \theta_{M}^{\prime}-\mathrm{E}\left(\partial^{2} Q_{M} / \partial \theta_{M} \partial \theta_{M}^{\prime}\right)\right\| \leq$ $L_{1} a_{n}^{\gamma}, \max _{j, k, l} \sup _{\left|\tilde{\theta}_{M}-\theta_{M}\right| \leq \delta_{M}}\left|\partial^{3} \tilde{Q}_{M} / \partial \theta_{M, j} \partial \theta_{M, k} \partial \theta_{M, l}\right| \leq L_{1} a_{n}$. Now choose $L_{2}>0$ such that $\delta L_{2}>2 L_{1}$. Let $\Theta_{M, L_{2}}=\left\{\tilde{\theta}_{M}:\left|\tilde{\theta}_{M}-\theta_{M}\right| \leq L_{2} a_{n}^{\gamma-1}\right\}$, and $\bar{\Theta}_{M, L_{2}}$ be the boundary of $\Theta_{M, L_{2}}$, i. e., $\bar{\Theta}_{M, L_{2}}=\left\{\tilde{\theta}_{M}:\left|\tilde{\theta}_{M}-\theta_{M}\right|=L_{2} a_{n}^{\gamma-1}\right\}$. Then, choose $N_{1} \geq 1$ such that $L_{2} a_{n}^{\gamma-1} \leq \delta_{M}$, $n \geq N_{1}$. It follows that for $\tilde{\theta} \in \bar{\Theta}_{M, L_{2}}$, we have $\left|I_{1}\right| \leq L_{1} L_{2} a_{n}^{2 \gamma-1}, I_{2} \geq \delta L_{2}^{2} a_{n}^{2 \gamma-1}-L_{1} L_{2}^{2} a_{n}^{3 \gamma-2}$, $\left|I_{3}\right| \leq L_{1} a_{n}\left(\sum_{j}\left|\tilde{\theta}_{M, j}-\theta_{M, j}\right|\right)^{3} \leq L_{1} L_{2}^{3} p_{M}^{3 / 2} a_{n}^{3 \gamma-2}$, hence for all $\tilde{\theta} \in \bar{\Theta}_{M, L_{2}}$,

$$
\begin{equation*}
\tilde{Q}_{M}-Q_{M} \geq \frac{1}{2} L_{2} a_{n}^{2 \gamma-1}\left\{\delta L_{2}-2 L_{1}-L_{1} L_{2}\left(1+\frac{1}{3} L_{2} p_{M}^{3 / 2}\right) a_{n}^{\gamma-1}\right\} \tag{22}
\end{equation*}
$$

If we choose $N_{2} \geq 1$ such that, when $n \geq N_{2}$, the quantity inside $\{\cdots\}$ on the right side of (22) is positive, and let $N=N_{0} \vee N_{1} \vee N_{2}$, then we have, with probability greater than $1-\epsilon$, that $\tilde{Q}_{M}>Q_{M}, \forall \tilde{\theta} \in \bar{\Theta}_{M, L_{2}}$. It follows that $\mathrm{P}\left(\left|\hat{\theta}_{M}-\theta_{M}\right|<L_{2} a_{n}^{\gamma-1}\right) \geq 1-\epsilon$, if $n \geq N$. This proves that $\hat{\theta}_{M}-\theta_{M}=O_{\mathrm{P}}\left(a_{n}^{\gamma-1}\right)$.

By similar arguments, it can be shown that for any $\epsilon>0$, there are constants L, L_{1}, L_{2} and $N \geq 1$ such that, when $n \geq N, \hat{Q}_{M}-Q_{M} \leq L_{1} L_{2} a_{n}^{2 \gamma-1}+\frac{1}{2} L L_{2}^{2} a_{n}^{2 \gamma-1}+(1 / 2) L_{1} L_{2}^{2} a_{n}^{3 \gamma-2}+$ $(1 / 6) L_{1} L_{2}^{3} p_{M}^{3 / 2} a_{n}^{3 \gamma-2} \leq L_{2}\left\{L_{1}+(1 / 2)\left(L+L_{1}\right) L_{2}+\frac{1}{6} L_{1} L_{2}^{2} p_{M}^{3 / 2}\right\} a_{n}^{2 \gamma-1}$ with probability > $1-$ ϵ. This proves that $\hat{Q}_{M}-Q_{M}=O_{\mathrm{P}}\left(a_{n}^{2 \gamma-1}\right)$.

9.4 Proof of Theorem 1

For the most part, we show that, with probability tending to one (w. p. $\rightarrow 1$), all the true models (with $|M|<|\tilde{M}|$) are in the fence, and all the incorrect ones are out.

Let M be an incorrect model and M^{*} a true model. By Lemma 5 and A5, we have $\hat{Q}_{M}-$ $\hat{Q}_{M^{*}}=Q_{M}-Q_{M^{*}}+\hat{Q}_{M}-Q_{M}-\left(\hat{Q}_{M^{*}}-Q_{M^{*}}\right)=Q_{M}-Q_{M^{*}}+O_{\mathrm{P}}\left(a_{n}^{2 \gamma-1}\right)=\mathrm{E}\left(Q_{M}\right)-$ $\mathrm{E}\left(Q_{M^{*}}\right)+\left\{Q_{M}-Q_{M^{*}}-\mathrm{E}\left(Q_{M}-Q_{M^{*}}\right)\right\}+O_{\mathrm{P}}\left(a_{n}^{2 \gamma-1}\right)=\mathrm{E}\left(Q_{M}\right)-\mathrm{E}\left(Q_{M^{*}}\right)+\sigma_{M, M^{*}} O_{\mathrm{P}}(1)=$ $\left\{\mathrm{E}\left(Q_{M}\right)-\mathrm{E}\left(Q_{M^{*}}\right)\right\}\left\{1+o_{\mathrm{P}}(1)\right\}$. It follows that, w. p. $\rightarrow 1$, we have $\hat{Q}_{M}>\hat{Q}_{M^{*}}$. This implies that, w. p. $\rightarrow 1, \tilde{M}$ is a true model (because an incorrect model cannot be the minimizer).

Furthermore, it is seen from this argument that, if M is incorrect, we have

$$
\begin{equation*}
\hat{Q}_{M}-\hat{Q}_{M^{*}}=c_{n} \hat{\sigma}_{M, M^{*}}\left[\frac{c_{n} \sigma_{M, M^{*}}}{\mathrm{E}\left(Q_{M}\right)-\mathrm{E}\left(Q_{M^{*}}\right)}\left(\frac{\hat{\sigma}_{M, M^{*}}}{\sigma_{M, M^{*}}}\right)\left\{1+o_{\mathrm{P}}(1)\right\}^{-1}\right]^{-1} \tag{23}
\end{equation*}
$$

A5 and A6 imply that the quantity inside $[\cdots]$ in (23) is $o_{\mathrm{P}}(1)$. Therefore, w. p. $\rightarrow 1$, we have $\hat{Q}_{M}>\hat{Q}_{M^{*}}+c_{n} \hat{\sigma}_{M, M^{*}}$. It follows that $\mathrm{P}\left(|M|<|\tilde{M}|, M \in \tilde{\mathcal{M}}_{-}\right) \leq \mathrm{P}\left(\hat{Q}_{M} \leq \hat{Q}_{\tilde{M}}+c_{n} \hat{\sigma}_{M, \tilde{M}}\right) \leq$ $\sum_{M^{*} \text { is true }} \mathrm{P}\left(\hat{Q}_{M} \leq \hat{Q}_{M^{*}}+c_{n} \hat{\sigma}_{M, M^{*}}, \tilde{M}=M^{*}\right)+\mathrm{P}(\tilde{M}$ is incorrect $) \leq \sum_{M^{*} \text { is true }} \mathrm{P}\left(\hat{Q}_{M} \leq\right.$ $\left.\hat{Q}_{M^{*}}+c_{n} \hat{\sigma}_{M, M^{*}}\right)+\mathrm{P}(\tilde{M}$ is incorrect $) \rightarrow 0$. If we let $E_{1}=\cap_{M \text { is incorrect },|M|<|\tilde{M}|}\left\{M \notin \tilde{\mathcal{M}}_{-}\right\}$, then $E_{1}^{c}=\cup_{M \text { is incorrect }}\left\{|M|<|\tilde{M}|, M \in \tilde{\mathcal{M}}_{-}\right\}$, hence $\mathrm{P}\left(E_{1}^{c}\right) \rightarrow 0$. This proves the "out" part.

On the other hand, if M and M^{*} are both true models, then, by the property of Q_{M}, we have $\mathrm{E}\left(Q_{M}\right)=\mathrm{E}\left(Q_{M^{*}}\right)$. Therefore, by similar arguments and A6, we have $\hat{Q}_{M}-\hat{Q}_{M^{*}}=$ $Q_{M}-Q_{M^{*}}+O_{\mathrm{P}}\left(a_{n}^{2 \gamma-1}\right)=\hat{\sigma}_{M, M^{*}} O_{\mathrm{P}}(1)$. Since $c_{n} \rightarrow \infty$, we have, w. p. $\rightarrow 1, \hat{Q}_{M} \leq$ $\hat{Q}_{M^{*}}+c_{n} \hat{\sigma}_{M, M^{*}}$. It follows that $\mathrm{P}\left(|M|<|\tilde{M}|, M \notin \tilde{\mathcal{M}}_{-}\right) \leq \mathrm{P}\left(\hat{Q}_{M}>\hat{Q}_{\tilde{M}}+c_{n} \hat{\sigma}_{M, \tilde{M}}\right) \leq$ $\sum_{M^{*} \text { is true }} \mathrm{P}\left(\hat{Q}_{M}>\hat{Q}_{M^{*}}+c_{n} \hat{\sigma}_{M, M^{*}}, \tilde{M}=M^{*}\right)+\mathrm{P}(\tilde{M}$ is incorrect $) \leq \sum_{M^{*} \text { is true }} \mathrm{P}\left(\hat{Q}_{M}>\right.$ $\left.\hat{Q}_{M^{*}}+c_{n} \hat{\sigma}_{M, M^{*}}\right)+\mathrm{P}(\tilde{M}$ is incorrect $) \rightarrow 0$. If we let $E_{2}=\cap_{M \text { is true },|M|<|\tilde{M}|}\left\{M \in \tilde{\mathcal{M}}_{-}\right\}$, then $E_{2}^{c}=\cup_{M \text { is true }}\left\{|M|<|\tilde{M}|, M \notin \tilde{\mathcal{M}}_{-}\right\}$, hence $\mathrm{P}\left(E_{2}^{c}\right) \rightarrow 0$. This proves the "in" part.

Finally, note that $\left\{M_{0}\right.$ is optimal $\} \supset E_{0} \cap E_{1} \cap E_{2}$, where $E_{0}=\{\tilde{M}$ is true $\}$.

9.5 Proof of Theorem 2

First note that, like the fence procedure, the F-B fence is guaranteed to stop at some point. This is because, otherwise, one keeps adding the parameters until one gets the full model, which automatically satisfies the fence inequality (note that in this case \tilde{M} is chosen as the full model).

Next we show that, w. p. $\rightarrow 1, M_{0}^{\dagger}$ is a true model. Suppose that this is not the case. Then, there is an incorrect model, say, M, such that

$$
\begin{equation*}
\mathrm{P}\left(M_{0}^{\dagger}=M\right) \geq \delta \tag{24}
\end{equation*}
$$

where $\delta>0$ is a constant. Since \tilde{M} is a true model, we have by the proof of Theorem 1 that, w. p. $\rightarrow 1, \hat{Q}_{M}>\hat{Q}_{\tilde{M}}+c_{n} \hat{\sigma}_{M, \tilde{M}}$. On the other hand, $M_{0}^{\dagger}=M$ implies that $\hat{Q}_{M} \leq \hat{Q}_{\tilde{M}}+c_{n} \hat{\sigma}_{M, \tilde{M}}$ (because M_{0}^{\dagger} has to satisfy the fence inequality). Thus, we have $\mathrm{P}\left(M_{0}^{\dagger}=M\right) \leq \mathrm{P}\left(\hat{Q}_{M} \leq \hat{Q}_{\tilde{M}}+\right.$ $\left.c_{n} \hat{\sigma}_{M, \tilde{M}}\right) \rightarrow 0$, which contradicts (24).

We next show that, w. p. $\rightarrow 1$, no proper submodel of M_{0}^{\dagger} is a true model. Suppose that this is not true. Then there is a true model M_{1} and a constant $\delta>0$ such that $\mathrm{P}\left(M_{1} \subset M_{0}^{\dagger}\right) \geq \delta$. Hereafter the notation $M_{1} \subseteq M_{2}\left(M_{1} \subset M_{2}\right)$ means that M_{1} is a (proper) submodel of M_{2}. Suppose that under $M_{0}^{\dagger}, X \beta+Z \alpha=\sum_{r \in R_{0}} X_{r} \beta_{r}+\sum_{s \in S_{0}} Z_{s} \alpha_{s}$, and, under M_{1}, the same expression holds with R_{0}, S_{0} replaced by R_{1}, S_{1}, respectively. Define $R_{10}=R_{1} \cup\left\{r_{1}, \ldots, r_{a-1}\right\}, S_{10}=S_{0}$, if $R_{1} \subset R_{0}, S_{1} \subseteq S_{0}$ and $R_{0} \backslash R_{1}=\left\{r_{1}, \ldots, r_{a}\right\} ; R_{10}=R_{0}, S_{10}=S_{1} \cup\left\{s_{1}, \ldots, s_{b-1}\right\}$, if $R_{1}=R_{0}, S_{1} \subset S_{0}$ and $S_{0} \backslash S_{1}=\left\{s_{1}, \ldots, s_{b}\right\} ;$ and $R_{10}=R_{1}, S_{10}=S_{1}$ otherwise. Let M_{10} be the model corresponding to R_{10} and S_{10}. Then, $M_{1} \subset M_{0}^{\dagger}$ implies that $M_{10} \subset M_{0}^{\dagger}$ with one less parameter, hence we must have $\hat{Q}_{M_{10}}>\hat{Q}_{\tilde{M}}+c_{n} \hat{\sigma}_{M_{10}, \tilde{M}}$ by the definition of M_{0}^{\dagger}. It follows that

$$
\begin{equation*}
\mathrm{P}\left(\hat{Q}_{M_{10}}>\hat{Q}_{\tilde{M}}+c_{n} \hat{\sigma}_{M_{10}, \tilde{M}}\right) \geq \delta . \tag{25}
\end{equation*}
$$

On the other hand, we have by the proof of Theorem 1 that for any true model M, w. p. $\rightarrow 1$,
$\hat{Q}_{M} \leq \hat{Q}_{\tilde{M}}+c_{n} \hat{\sigma}_{M, \tilde{M}}$. Since M_{10} is always a true model, it follows that $\mathrm{P}\left(\hat{Q}_{M_{10}}>\hat{Q}_{\tilde{M}}+\right.$ $\left.c_{n} \hat{\sigma}_{M_{10}, \tilde{M}}\right) \leq \sum_{M \text { true }} \mathrm{P}\left(\hat{Q}_{M}>\hat{Q}_{\tilde{M}}+c_{n} \hat{\sigma}_{M, \tilde{M}}\right) \rightarrow 0$, which contradicts (25).

9.6 Proof of Theorem 3

(i) For any $\epsilon, \eta>0$, let $\delta, x_{n, j}, j=1,2,3, N$ and N^{*} be as in A7 and A8. Then, when $n \geq N$ and $n^{*} \geq N^{*}$, the following arguments hold with probability $>1-\eta$.

For $j=1,3$, we have $\mathrm{P}^{*}\left(x_{n, j}\right)>P\left(x_{n, j}\right)-\delta>1-5 \delta \geq 1 / 2$. It follows that $p^{*}\left(x_{n, j}\right)=$ $\max _{M \in \mathcal{M}} P^{*}\left(M_{0}\left(x_{n, j}\right)=M\right)=P^{*}\left(x_{n, j}\right)<P\left(x_{n, j}\right)+\delta \leq 1-2 \delta$. Similarly, $p^{*}\left(x_{n, 2}\right)=$ $P^{*}\left(x_{n, 2}\right)>P\left(x_{n, 2}\right)-\delta>1-2 \delta$. Thus, there is $c_{n}^{*} \in\left(x_{n, 1}, x_{n, 3}\right)$ which is the maximum of p^{*} over $\left[x_{n, 1}, x_{n, 3}\right]$. Furthermore, we have $p^{*}\left(c_{n}^{*}\right) \geq p^{*}\left(x_{n, 2}\right)>1-2 \delta$.
(ii) If $M_{\mathrm{opt}}=M_{\mathrm{f}}$, then $q_{n} \sim a_{n} / b_{n}$, hence $q_{n}^{-1}=\left(b_{n} / a_{n}\right) O(1)=o(1)$. Also, by A8, for any $\eta>0$, there is $L>0$ such that $\mathrm{P}\left(q_{n} / q_{n}^{*}>L\right)<\eta$. Choose $N_{1} \geq 1$ such that $q_{n}^{-1}<1 / L$ when $n \geq N_{1}$. Then, when $n \geq N_{1}$, we have, w. p. $>1-\eta,\left(q_{n}^{*}\right)^{-1}=q_{n}^{-1}\left(q_{n} / q_{n}^{*}\right)<1$, hence $q_{n}^{*}>1$, hence $c_{n}^{*}=0$. On the other hand, by A7, there is $N_{2} \geq 1$ such that $\mathrm{P}\left(\min _{M \in \mathcal{M}, M \neq M_{\mathrm{f}}} \hat{Q}_{M}>\right.$ $\left.\hat{Q}_{M_{\mathrm{f}}}\right)>1-\eta$, if $n \geq N_{2}$. Let $N=N_{1} \vee N_{2}$, then $\mathrm{P}\left(M_{0}^{*}=M_{\mathrm{f}}\right)>1-2 \eta$, if $n \geq N$.

If $M_{\mathrm{opt}}=M_{*}$, then, by similar arguments, it can be shown that $r_{n}^{*}=o_{\mathrm{P}}(1)$ and $q_{n}^{*}=o_{\mathrm{P}}(1)$. Thus, for any $\eta>0$, there is $N \geq 1$ such that when $n \geq N$ we have, w. p. $>1-\eta, q_{n}^{*} \leq 1$ and $r_{n}^{*}<1$, hence $c_{n}^{*}=B^{*}$, hence $M_{0}^{*}=M_{*}$.

If $M_{\text {opt }} \notin\left\{M_{\mathrm{f}}, M_{*}\right\}$, note that

$$
\left\{M_{0}^{*}=M_{\mathrm{opt}}\right\} \supset\left\{r_{\mathrm{opt}} \leq c_{n}^{*}, r_{\mathrm{w} \leq}>c_{n}^{*}\right\} \supset\left\{r_{\mathrm{opt}} \leq x_{n, 1}, r_{\mathrm{w} \leq}>x_{n, 3}\right\}
$$

if $c_{n}^{*} \in\left(x_{n, 1}, x_{n, 3}\right)$. Therefore, by (i), for any $\epsilon, \eta>0$, we have

$$
\begin{aligned}
\mathrm{P}\left(M_{0}^{*}=M_{\mathrm{opt}}\right) & \geq \mathrm{P}\left(M_{0}^{*}=M_{\mathrm{opt}}, c_{n}^{*} \in\left(x_{n, 1}, x_{n, 3}\right)\right) \\
& \geq \mathrm{P}\left(r_{\mathrm{opt}} \leq x_{n, 1}, r_{\mathrm{w} \leq}>x_{n, 3}, c_{n}^{*} \in\left(x_{n, 1}, x_{n, 3}\right)\right) \\
& \geq F_{\mathrm{opt}}\left(x_{n, 1}\right)-F_{\mathrm{w} \leq}\left(x_{n, 3}\right)-\mathrm{P}\left(c_{n}^{*} \notin\left(x_{n, 1}, x_{n, 3}\right)\right) \\
& >1-2 \epsilon-\eta, \quad n \geq N, n^{*} \geq N^{*}
\end{aligned}
$$

Acknowledgments

Jiming Jiang is partially supported by NSF grants DMS - 0203676 and DMS - 0402824. J. Sunil Rao is partially supported by NSF grants DMS - 0203724, DMS - 0405072 and NIH grant K25-CA89868.

References

[1] Akaike, H. (1973), Information theory as an extension of the maximum likelihood principle, in Second International Symposium on Information Theory (B. N. Petrov and F. Csaki eds.), Akademiai Kiado, Budapest, 267-281.
[2] Akaike, H. (1974), A new look at the statistical model identification, IEEE Trans. on Automatic Control 19, 716-723.
[3] Almasy, L. and Blangero, J. (1998), Multipoint quantitative-trait linkage analysis in general pedigrees, Am. J. Hum. Genet. 62, 1198-1211.
[4] Booth, J. G. and Hobert, J. P. (1999), Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm, J. Roy. Statist. Soc. B 61, 265-285.
[5] Breslow, N. E. and Clayton, D. G. (1993), Approximate inference in generalized linear mixed models, J. Amer. Statist. Assoc. 88, 9-25.
[6] Daiger, S. P., Miller M. and Chakraborty (1984), Heritability of quantitative variation at the group-specific component (Gc) Locus, Amer. J. Hum. Genet. 36, 663-676.
[7] Datta, G. S. and Lahiri, P. (2001), Discussions on a paper by Efron and Gous, Model Selection, IMS Lecture Notes/Monograph 38.
[8] de Leeuw, J. (1992), Introduction to Akaike (1973) information theory and an extension of the maximum likelihood principle, in Breakthroughs in Statistics (S. Kotz and N. L. Johnson eds.), Springer, London, Vol. 1, 599-609.
[9] Diggle, P. J., Liang, K. Y. and Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford Univ. Press.
[10] Drum, M. L. and McCullagh, P. (1993), REML estimation with exact covariance in the logistic mixed model, Biometrics 49, 677-689.
[11] Fay, R. E. and Herriot, R. A. (1979), Estimates of income for small places: An application of James-Stein procedure to census data, J. Amer. Statist. Assoc. 74, 269-277.
[12] Findley, D. F. and Wei, C. Z. (1989), Likelihood ratio procedures for comparing non-nested, possibly incorrect regressors, Bureau of the Census Statistical Research Division Report Series: $R R-89 / 08$.
[13] Gourieroux, C. and Monfort, A. (1995), Statistics and Econometrics Models, Cambridge University Press.
[14] Hannan, E. J. and Quinn, B. G. (1979), The determination of the order of an autoregression, J. Roy. Statist. Soc. B 41, 190-195.
[15] Hartley, H. O. and Rao, J. N. K. (1967), Maximum likelihood estimation for the mixed analysis of variance model, Biometrika 54, 93-108.
[16] Hastie, T. and Tibshirani, R. (1990), Generalized Additive Models, Chapman \& Hall.
[17] Harville, D. A. (1977), maximum likelihood approaches to variance components estimation and related problems, J. Amer. Statist. Assoc. 72, 320-340.
[18] Hodges, J. S. and Sargent, D. J. (2001), Counting degrees of freedom in hierarchical and other richly-parameterised models, Biometrika 88, 367-379.
[19] Jiang, J. (1996), REML estimation: asymptotic behavior and related topics, Ann. Statist. 24, 255-286.
[20] Jiang, J. (1998), Consistent estimators in generalized linear mixed models, J. Amer. Statist. Assoc. 93, 720-729.
[21] Jiang, J. (2005), Partially observed information and inference about non-Gaussian mixed linear models, Ann. Statist. 33, 2695-2731.
[22] Jiang, J. and Zhang, W. (2001), Robust estimation in generalized linear mixed models, Biometrika 88, 753-765.
[23] Jiang, J. and Rao, J. S. (2003), Consistent procedures for mixed linear model selection, Sankhya A 65, 23-42.
[24] Karim, M. R. and Zeger, S. L. (1992), Generalized linear models with random effects: Salamander mating revisited, Biometrics 48, 631-644.
[25] Lange, K. (2002), Mathematical and Statistical Methods for Genetic Analysis, 2nd ed., Springer, New-York.
[26] Lin, X. and Breslow, N. E. (1996), Bias correction in generalized linear mixed models with multiple components of dispersion, J. Amer. Statist. Assoc. 91, 1007-1016.
[27] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed., London; Chapman and Hall.
[28] Meza, J. and Lahiri, P. (2005), A note on the Cp statistic under the nested error regression model, Survey Methodology 31, 105-109.
[29] Miller, J. J. (1977), Asymptotic properties of maximum likelihood estimates in the mixed model of analysis of variance, Ann. Statist. 5, 746-762.
[30] Nishii, R. (1984), Asymptotic properties of criteria for selection of variables in multiple regression, Ann. Statist. 12, 758-765.
[31] Pebley, A. R., Goldman, N. and Rodriguez, G. (1996), Prenatal and delivery care and childhood immunization in Guatamala; do family and community matter? Demography 33, 231247.
[32] Rao, J. N. K. (2003), Small Area Estimation, Wiley, New York.
[33] Rodriguez, G. and Goldman, N. (2001), Improved estimation procedure for multilevel models with binary responses: A case-study, J. Roy. Statist. Soc. A 164, 339-355.
[34] Schwarz, G. (1978), Estimating the dimension of a model, Ann. Statist. 6, 461-464.
[35] Searle, S. R. (1971), Linear Models, Wiley, New York.
[36] Shibata, R. (1984), Approximate efficiency of a selection procedure for the number of regression variables, Biometrika 71, 43-49.
[37] Vaida, F. and Blanchard, S. (2005), Conditional Akaike information for mixed effects models, Biometrika 92, 351-370.
[38] Ye, J. (1998), On measuring and correcting the effects of data mining and model selection, J. Amer. Statist. Assoc. 93, 120-131.

