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The microstructure and magnetic properties of sputtered permalloy films and FeNi(170 nm)/X/

FeNi(170 nm) (X¼Co, Fe, Gd, Gd-Co) sandwiches were studied. Laminating of the thick FeNi film

with various spacers was done in order to control the magnetic softness of FeNi-based multilayers. In

contrast to the Co and Fe spacers, Gd and Gd-Co magnetic spacers improved the softness of the FeNi/

X/FeNi sandwiches. The magnetoimpedance responses were measured for [FeNi/Ti(6 nm)]2/FeNi and

[FeNi/Gd(2 nm)]2/FeNi multilayers in a frequency range of 1–500 MHz: for all frequencies under

consideration the highest magnetoimpedance variation was observed for [FeNi/Gd(2 nm)]2/FeNi

multilayers.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704984]

Magnetic softness is an important issue for thin films as

a material for magnetic sensors. However, it is not easy to

achieve adequate softness in FeNi films prepared by sputter-

ing when their thickness is greater than the critical thickness.

This is the so-called “transcritical” state of thin magnetic

films characterized by the presence of an out-of-plane mag-

netization component, stripe domains and increased coerciv-

ity.1,2 The perpendicular anisotropy responsible for the

formation of the “transcritical” state in FeNi films prepared

by sputtering might be a consequence of strain-caused mag-

netostriction and/or the columnar structure of the films.3 The

critical thickness value (tc) usually corresponds to the inter-

val of 100 to 350 nm and strongly depends on deposition

conditions and characteristics of the sputtering equipment.3–9

One way to tackle this problem is to laminate the thick FeNi

film with thin nonmagnetic spacers, while keeping the indi-

vidual FeNi layer thickness below the critical thickness cor-

responding to a transition into a “transcritical” state. For

example, Ag,10 Ta and Cr,4 Cu,11 Ti,12 and Mo (Ref. 9) have

been used as the spacer materials. Limited studies were done

for magnetic spacers in case the materials of the spacer and

the magnetic layer had different crystalline structure.13 It

was shown that this interrupted the growth of principal layers

and preserved magnetic coupling throughout the multilayer

structure.

It should also be noted that the lamination by a nonmag-

netic spacer may further improve the softness of the multi-

layer structure. In case of strong magnetostatic interactions

between the domain walls situated in different magnetic

layers, these domain walls form structures with a partially

closed magnetic flux. Thus, the reduced energy of paired do-

main walls diminishes the coercivity in multilayer films.14

However, the dependence of the coercive force (Hc) of two-

layer magnetic films on the thickness of a nonmagnetic

spacer (LX) is non-monotonic: Hc falls rapidly with the LX
increase, but after LX� 1 nm the coercive force rises again.15

It was shown that the pairs of the domain walls with low

magnetostatic energy can be formed with a higher probability

in the case of a positive coupling over the interface between

the layers.14,15 For nonmagnetic spacers, this positive cou-

pling may be due to magnetostatic coupling such as “orange

rind”16 and magnetostatic coupling through “magnetization

ripple.”17 With the increase of the nonmagnetic spacer thick-

ness, the magnetic interaction becomes gradually weaker

resulting in the appearance of non-doubled walls, a rise of the

average wall energy, and an increase of Hc. Thus, the mecha-

nisms of positive coupling between layers together with the

magnetostatic interaction of the domain walls mainly deter-

mine the hysteretic properties of the sandwiches.15 One can

therefore expect that magnetic spacers, when used for lami-

nating the thick FeNi film, can lead to an additional advant-

age. On one hand, the magnetic spacer can interrupt the

growth of FeNi layers and prevent the transition into a

“transcritical” state if the spacer has a different lattice con-

stant or crystalline structure. On the other hand, an appropri-

ate magnetic interaction between FeNi layers separated by

magnetic spacers can be an instrument to obtain a less pro-

nounced minimum in the Hc(LX) dependence.

In this work, we studied magnetic properties of permal-

loy films with different types of spacers prepared by dc mag-

netron sputtering in order to gain insight on the role of

different spacers in the formation of magnetically soft FeNi

multilayers and their magnetoimpedance (MI). We chose

Co, Fe, Gd, and amorphous Gd21Co79 alloy as the magnetic

spacers, which have a crystallography different from that of

the fcc structure of the permalloy. In addition, their Curie

temperatures (TC) and hence the interaction exchange con-

stants were quite different.

The samples were grown onto glass substrates at room

temperature. The background pressure was 3� 10�7 mbar.

Deposition was performed in an Ar atmosphere with

3.8� 10�3 mbar pressure. The deposition rates were previ-

ously calibrated as 26 nm/min for FeNi layers and 1 nm/min

for all spacer materials. The thickness of the FeNi layers was

170 nm taking into account the fact that under these deposi-

tion conditions the transition into the “transcritical” state

takes place at the thickness of about 200 nm.8 The thickness

of spacers (LX) was varied in the range of 0.5 to 20 nm.a)Electronic mail: galina@we.lc.ehu.es.
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A constant magnetic field of 250Oe was applied parallel to

the film plane in order to induce a uniaxial magnetic

anisotropy.

Small angle x-ray scattering in grazing incidence

(GISAXS) measurements were carried out at the BM16

beamline of the ESRF (Grenoble) in order to obtain addi-

tional information about the structure of the FeNi films. The

hysteresis loops were recorded by means of the magneto-

optical Kerr effect (MOKE). For magnetoimpedance meas-

urements, the MI elements were deposited with a metallic

mask in the shape of elongated strips of 0.5mm� 10mm.

The MI of these samples (total impedance (Z) change in a

magnetic field) was measured as a function of the external

magnetic field for a frequency (f) range of 1 to 500MHz.

The system was calibrated in order to extract the internal val-

ues of the impedance from the total measured signals by

using the method and experimental system described in Ref.

18. The MI ratio was defined with respect to the sample satu-

rated in the maximum applied field H¼ 150Oe as follows:

DZ/Z(H)¼ 100� (Z(H)-(Z(H¼ 150Oe))/Z(H¼ 150Oe).

Fig. 1 shows the 2D GISAXS pattern obtained for a

FeNi thin film. In the reciprocal space, qy and qz correspond

to the directions parallel and perpendicular to the surface,

respectively. The most relevant feature of the scattering pat-

tern is the presence of a well defined anisotropy with two

elongated intensity maxima appearing at both sides of the

beam-stopper. This can be associated with a columnar

growth of the FeNi nanograins inside the thin film.19,20 This

result suggests that the perpendicular anisotropy responsible

for the formation of “transcritical” state might have resulted

from the columnar thin-film microstructure.

There was a difference in the influence of the selected

spacers on magnetic properties of FeNi(170 nm)/X/

FeNi(170 nm) samples. “Transcritical” shape of hysteresis

loops remained for any thickness of the cobalt and iron. For

example, Figs. 2(a) and 2(b) show two loops for Co spacers.

A similar situation was observed for Fe spacers (not sown

here). In the case of Gd-Co a “transcritical” state disappears

under a spacer thickness above 4 nm (Figs. 2(e) and 2(f)), the

minimum coercivity (Hc� 0.2Oe) corresponded to a Gd-Co

layer thickness of �7–9nm (Fig. 3(b)). For Gd the

“transcritical” shape loop disappears under a spacer thickness

above 1 nm (Figs. 2(c) and 2(d)), the minimum coercivity

(Hc� 0.1Oe) corresponded to the LGd� 2–3 nm (Fig. 3(a)).

The important question in a connection with the pres-

ence of the “transcritical” state in FeNi/(Co, Fe)/FeNi sand-

wiches is about the crystalline structure of Co and Fe

spacers. The equilibrium crystalline phase of bulk cobalt at

room temperature is hcp. Ultra thin Co films can have a fcc

structure when grown on a substrate with the fcc structure

under certain growth conditions. Generally, the fcc FeNi

layer can act as a template for fcc growth of the cobalt layer.

At the same time, the fcc phase of cobalt is metastable at

room-temperature and as the film thickness grows beyond a

few monolayers, the transition from the fcc stacking to the

hcp structure occurs gradually as the film thickness

increases.21 A similar situation occurs for Fe spacers. Ultra

thin Fe films can have a metastable fcc structure when grown

onto substrate with a fcc structure, but in the coverage range

near 10 monolayers, a structural transition from fcc to stable

bcc proceeds in the film with an increasing thickness.22

Therefore, we assume that in our case, Co and Fe spacers

have hcp and bcc structures, respectively, when its thickness

increases beyond few nanometers. Thus, Co and Fe spacers

interrupt the growth of fcc FeNi layers, while the

“transcritical” state is preserved in FeNi/(Co, Fe)/FeNi

sandwiches.

The above mentioned result does not coincide with data

from earlier work13 where it was shown that laminating theFIG. 1. GISAXS pattern obtained for a FeNi film.

FIG. 2. MOKE hysteresis loops for FeNi/X(nm)FeNi samples, where X: (a)

Co(5 nm), (b) Co(20 nm), (c) Gd(1 nm), (d) Gd(2 nm), (e) Gd-Co(4 nm), and

(f) Gd-Co(6 nm).

162410-2 Svalov et al. Appl. Phys. Lett. 100, 162410 (2012)
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thick fcc Ni77Fe14Cu5Mo4 film with thin bcc CoFe magnetic

spacers eliminates the “transcritical” shape of a hysteresis

loop and restores the magnetic softness of this material. One

can suppose that this discrepancy is caused by differences in

the mechanism of formation of perpendicular magnetic ani-

sotropy in the films. In the above mentioned work,13 it was

shown that in Ni77Fe14Cu5Mo4 film the effective perpendicu-

lar magnetic anisotropy was determined by the stress through

the magnetostriction, which increased with film thickness.

Laminating this film with layers having different lattice con-

stants or crystal structures reduces stress as large as 200-

fold. This means that the perpendicular anisotropy constant

(Kp) for the Ni77Fe14Cu5Mo4 film decreases multiply as well

because Kp� 3/2 k�r, where k is the magnetostriction con-

stant and r is the stress. Thus, spacer introduction signifi-

cantly increases the tc value due to tc� 1/Kp
3/2 [Ref. 28].

Therefore, in this case, interlayering with thin bcc CoFe

spacers allows to obtain a multilayer film with continuous

magnetic coupling and a large tc value.

In FeNi films studied here, perpendicular anisotropy

results from the columnar structure of the films and Kp

depends weakly on the film thickness. Therefore laminating

the thick FeNi film with spacers of different lattice constants

or crystal structures interrupts growth of FeNi, but almost

does not affect Kp. Nonmagnetic spacers “mechanically”

divide thick FeNi film into magnetically separate layers with

thicknesses less than tc. By contrast, magnetic spacers from

strong magnets like Co or Fe preserve powerful magnetic

coupling between FeNi layers and “effective” tc values of

these layered structures are not significantly different from tc
for FeNi single layer film. In this way, the total thickness of

this hard magnetically coupled structure exceeds the tc value

and “transcritical” state takes place in FeNi/(Co, Fe)/FeNi

sandwiches.

The TC of amorphous Gd21Co79 alloy is above room

temperature, but appreciably smaller than the TC of iron and

cobalt films. Its own value of exchange coupling is less than

the interaction exchange constants of Co and Fe. Therefore

FeNi layers are coupled weaker by means of Gd-Co spacer

comparing with Co or Fe spacers. As a result, at the thick-

ness of the Gd-Co spacer above 4 nm, the FeNi layers in

FeNi/(Gd-Co)/FeNi sandwiches behave more likely as sepa-

rated layers and the thickness of each magnetic layer does

not exceed the tc of FeNi single layer film. It is worth to

mention that Gd-Co alloy is a ferrimagnet with a compensa-

tion temperature (Tcomp) slightly above the room temperature

(about 310K). Selected measurements of the hysteresis loop

of the samples with Gd-Co spacer were done both above and

below the Tcomp. These hysteresis loops had practically iden-

tical shape. Therefore it is logical to conclude that in the

case under consideration the main parameter of the Gd-Co

spacer is the value of the exchange interaction constant but

not the type of the magnetic sublattice (Gd or Co) predomi-

nant at a given temperature.

The “transcritical” hysteresis loops were not observed

for hcp Gd interlayers with a thickness above 1 nm. How-

ever, there is an uncertainty about magnetic state of Gd

spacers. The TC value for bulk Gd is 293K. In addition, for

thin Gd films at LGd below 5 nm the TC decreases

sharply.23,24 This is a reason to consider Gd spacers as non-

magnetic spacers. On the other hand, the proximity of Gd

and FeNi layers contributes to an enhancement of the Gd

magnetization at FeNi/Gd interfaces at temperatures above

the TC of Gd thin film. This magnetization is induced by a

strong antiferromagnetic exchange interaction with the mag-

netically ordered FeNi layers.25 The interlayer exchange

between FeNi and Gd decays exponentially from the interfa-

ces to the centre of the Gd spaces,26 but Gd spacers of few

nanometers can be highly magnetized.27 Furthermore, cool-

ing of the FeNi/Gd(6 nm)FeNi sample down to 190K, i.e.,

much lower than the TC of Gd(6 nm) layer,24 does not change

the hysteresis loop shape shown in Fig. 2(f). Therefore, one

can conclude that the introduction of magnetic Gd spacers

eliminates the “transcritical” state in FeNi/Gd/FeNi sand-

wiches. The TC and exchange constant of Gd film is less than

one of the amorphous Gd21Co79 alloy and the disappearance

of the “transcritical” loops at a smaller spacer thickness in

the Gd case is understandable.

Thus, in terms of preventing an occurrence of the

“transcritical” state, the magnetic properties, namely, the

interaction exchange constant of spacer materials, are no less

important than the structural features.

From the viewpoint of providing additional magnetic

softness, the Gd and Gd-Co spacers act differently. For the

single layer FeNi(170 nm) film, Hc¼ 0.7Oe. The Gd-Co

alloy allows us to have Hc less then the mentioned value for

FeNi/Gd-Co/FeNi sandwiches with a spacer thickness of up

to 20 nm (Figs. 3(b)). In the case of Gd spacers above

FIG. 3. Dependence of the coercivity of FeNi/Gd/FeNi (a) and FeNi/Gd-

Co/FeNi (b) samples on the spacer thickness. Insets show the same graph in

a smaller scale.

162410-3 Svalov et al. Appl. Phys. Lett. 100, 162410 (2012)
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LGd> 3 nm, the coercive force of FeNi/Gd/FeNi sandwiches

rises rapidly and again reaches the level of coercivity of the

FeNi(170 nm) film at a thickness spacer above 5 nm. But

among the investigated magnetic spacers, the best magnetic

softness was obtained for Gd: at LGd>�2–3 nm

Hc¼ 0.1Oe. This Hc value is similar to Hc for the Ti spacer

with a thickness of 6 nm in FeNi/Ti multilayers.12

It is interesting to compare soft magnetic FeNi/Ti and

FeNi/Gd multilayers as a material for MI sensors. Fig. 4

shows the frequency dependence of the maximum of the MI

ratio and total impedance dependence on the external field

for both [FeNi/Ti(6 nm)]2/FeNi and [FeNi/Gd(2 nm)]2/FeNi

multilayers. One can see that for all frequencies under con-

sideration DZ/Z(H) is higher for the [FeNi/Gd]2/FeNi multi-

layers. The absolute maxima appear at a frequency of about

330 MHz in both cases and which is why we selected this

frequency for the analysis of the field dependence. The im-

pedance variation in the field close to the anisotropy field of

the multilayer is much higher for [FeNi/Gd]2/FeNi multi-

layers. More studies are necessary in order to explain the

sharp increase of the MI value in the Gd containing multi-

layers, but the difference in the mechanisms of magnetic

interaction between the FeNi layers is probably a conse-

quence: for [FeNi/Gd]2/FeNi multilayers, a direct exchange

via Gd spacers is possible, but for [FeNi/Ti(6 nm)]2/FeNi

layered structures the “orange peel” and “magnetization

ripple” magnetostatic mechanisms should be essential. In MI

configuration, the application of the external field can signifi-

cantly change the magnetic state of the multilayered struc-

ture because of the complex dynamic of the magnetic

moments.

In conclusion, structural and magnetic properties of

FeNi(170 nm)/X/FeNi(170 nm) sandwiches (X¼Co, Fe, Gd,

Gd-Co) were studied. The perpendicular magnetic anisot-

ropy responsible for the formation of the “transcritical” state

in thick FeNi films is likely a result of the columnar thin-film

microstructure. In order to avoid the transition into a

“transcritical” state, we laminatied the thick FeNi film with

various magnetic spacers. The Co and Fe spacers of any

thickness did not prevent an appearance of the out-of-plane

magnetization component in FeNi-based sandwiches. The

Gd and amorphous Gd-Co spacers not only eliminate the

“transcritical” state, but even enhance the sandwich mag-

netic softness. The coercivity minimum (� 0.1Oe) was

achieved for the Gd spacers with the thickness of 2 nm. The

MI ratio measured for [FeNi/Ti(6 nm)]2/FeNi and [FeNi/

Gd(2 nm)]2/FeNi multilayers is higher in the last case which

is most likely a consequence of the difference in the mecha-

nisms of magnetic interaction between the FeNi layers.
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