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Abstract: The Fermatean fuzzy set (FFS) is a momentous generalization of a intuitionistic fuzzy set
and a Pythagorean fuzzy set that can more accurately portray the complex vague information of
elements and has stronger expert flexibility during decision analysis. The Combined Compromise
Solution (CoCoSo) approach is a powerful decision-making technique to choose the ideal objective
by fusing three aggregation strategies. In this paper, an integrated, multi-criteria group-decision-
making (MCGDM) approach based on CoCoSo and FFS is used to assess green suppliers. To begin,
several innovative operations of Fermatean fuzzy numbers based on Schweizer–Sklar norms are
presented, and four aggregation operators utilizing the proposed operations are also developed.
Several worthwhile properties of the advanced operations and operators are explored in detail.
Next, a new Fermatean fuzzy entropy measure is propounded to determine the combined weight of
criteria, in which the subjective and objective weights are computed by an improved best-and-worst
method (BWM) and entropy weight approach, respectively. Furthermore, MCGDM based on CoCoSo
and BWM-Entropy is brought forward and employed to sort diverse green suppliers. Lastly, the
usefulness and effectiveness of the presented methodology is validated by comparison, and the
stability of the developed MCGDM approach is shown by sensitivity analysis. The results shows that
the introduced method is more stable during ranking of green suppliers, and the comparative results
expound that the proposed method has higher universality and credibility than prior Fermatean
fuzzy approaches.

Keywords: green supplier selection; Fermatean fuzzy set; Schweizer–Sklar; entropy; CoCoSo method

1. Introduction

As a key part of enterprise operation and management, green supplier selection not
only has a direct impact on the quality and cost control of enterprise products, but also is
conducive to the sustainable development of the circular economy and green economy. Be-
cause green supplier selection needs to involve multiple criteria with different dimensions
and expert groups and suppliers with different qualifications, green supplier selection is
usually regarded as a complex, multi-criteria group-decision-making process. In recent
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years, scholars have studied the selection of green suppliers under different uncertainties
and decision algorithms [1–6]. Wu et al. [7] constructed an integrated green-supplier-
selection group-decision model through combining BWM and VIKOR under an interval
type-2 environment. Liang et al. [8] introduced a hybrid green-supplier-selection decision
algorithm on the basis of alternative queuing method (AQM) and linguistic Z-numbers
to take into account the credibility of experts’ preferences, where step-weight assessment
ratio analysis (SWARA) is utilized to determine the importance of the considered criteria.
Gao et al. [9] suggested an innovative probabilistic linguistic consensus decision framework
based on the consensus measure and feedback mechanism to choose the optimal green
supplier. Ma et al. [10] brought a three-way group decision methodology by extending a
decision–theoretic rough set into hesitant fuzzy linguistics to evaluate the most-satisfying
supplier. Further, in order to comprehensively analyze the literature on green supplier
selection, Zhang et al. [11] developed a comprehensive overview of green supplier evalua-
tion and selection through summarizing and analyzing the research from 2009 to 2020 and
providing some novel research directions and challenges. By considering the psychological
behavior of experts during decision analysis, Zhang et al. [12] advanced a spherical fuzzy
MABAC approach based on cumulative prospect theory for choosing a suitable green
supplier. Wang et al. [13] presented probabilistic dual hesitant fuzzy BWM and superiority
and inferiority ranking (SIR) based on reaching consistency in order to select the proper
suppliers. The mentioned research is based on diverse complicated uncertainty models,
but it fails to solve the problems with complex fuzzy linguistic information. Therefore, Kris-
hankumar et al. [14] put forward a more universal green-supplier-selection group-decision
approach based on case-based and TODIM methods with double-hierarchy hesitant fuzzy
linguistic information.

Multi-criteria group decision-making in modern decision science integrates multiple
disciplines and is based on the evaluation of information obtained by experts from their
cognitive abilities and preferences and adopts scientific decision-making methods with mul-
tiple qualitative or quantitative criteria to select the ideal goal from the target set. Because of
its significant merits in management decision analysis, it has been extensively employed in
different fields, such as sustainable development, low-carbon energy, engineering construc-
tion and so forth. Nevertheless, the complexity of objective things and limitations of human
cognition bring lots of challenges when experts give their assessments or preferences with
respect to the considered criteria. Fortunately, a fuzzy set (FS) [15], originated by Zadeh, can
validly manage this kind of phenomenon and has achieved numerous positive outcomes.
Furthermore, intuitionistic FSs [16] describe fuzzy information more comprehensively
by adding non-membership degree and hesitation degree, with the sum of membership
degree and non-membership grade (NMG) being no greater than one. Thereafter, in order
to provide more options for experts to express their judgment or opinion with the help of
membership grade (MG) and NMG, Yager [17,18] proposed the concept of Pythagorean FSs
by expanding the limiting conditions of membership and non-membership such that the
sum of squares of MG and NMG is no more than 1. Since PFS can provide more assessment
options to express a greater number of expert opinions, it has proven an efficient model for
experts to portray the vagueness and incomplete information of realistic complex problems.
In light of the superiority of PFS in addressing uncertainty, much research using PFS has
been developed to settle diverse complex, real-word decision issues [19–26].

Recently, a novel spread of intuitionistic and Pythagorean FS called Fermatean fuzzy
set [27,28] was pioneered as a powerful tool to describe the indeterminacy and ambiguity
of actual MCGDM problems. FFS also portrays uncertainty evaluations of objectives by MG
and NMG and makes their cubic sums less than or equal to one. Due to its practicability
and applicability, many scholars focus on it and attain many enriching theoretical results
and practical application. Senapati and Yager [28] introduced a Fermatean fuzzy WPM
decision method with the help of several novel operations and operators to choose a
satisfactory bridge construction. In order to make the information aggregation more
flexible, TOPSIS is extended to Fermatean fuzzy sets on the basis of some novel Dombi
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operators [29]. Mishra and Rani [30] constructed a group-decision model based on entropy,
score function and WASPAS to select the best location for a healthcare waste-disposal center.
Further, Gül [31] determined a satisfactory COVID-19 testing laboratory by extended SAW,
ARAS and VIKOR with the Fermatean fuzzy method. However, those extensions of
FFS fail to compute weight during decision analysis. Mishra et al. [32] presented an
innovative generalized score function of FFS and combined CRITIC and EDAS to build
a sustainable third-party reverse logistics provider assessment algorithm, where expert
weight and criteria importance are computed by generalized score function and CRITIC.
Thereafter, to enhance the robustness and reliability of decision-analysis outcomes, Rani
and Mishra [33] propounded an improved MULTIMOORA approach with the aid of
Fermatean fuzzy Einstein weight averaging and geometric operators to select a suitable
electric vehicle charging station. In addition, a Fermatean fuzzy CRITIC–COPRAS approach
has been proffered to manage the challenges of sustainable digital transformation [34].
Apart from the aforementioned investigations, several extensions of FFS by considering
different application environments have been presented to enrich the representation of
uncertainty. Liu et al. [35,36] originated the Fermatean fuzzy linguistic set and proposed
the corresponding TODIM and TOPSIS approaches by linguistic scale functions-based
novel distance measures. In order to more exactly express expert preferences, Jeevaraj [37]
defined interval-valued FFS and discussed the related order, score and distance measures
that laid the foundation of decision model construction. Further, Mishra et al. [38] built up
the COPRAS method with extended interval-valued hesitant Fermatean fuzzy theories in
order to choose an optimal desalination technology. Luo and Liu [39] presented hesitant
FFS and constructed a novel regional green development assessment model by combining
hesitant FFS and MULTIMOORA.

The aggregation operator is a vital tool to integrate the assessment information of mul-
tiple experts during MCGDM. In order to aggregate Fermatean fuzzy information, many
aggregation operators have been defined on the basis of different Archimedean operations.
Senapati and Yager [40] first defined the basic operations of Fermatean fuzzy numbers,
introduced several corresponding operators, and gave an MCDM decision algorithm by
using the proposed operators. Garg et al. [41] presented some novel Fermatean fuzzy Yager
operators to build a flexible decision algorithm for choosing an optimal lab for COVID-19
testing. Shahzadi et al. [42] defined the Hamacher interactive operations of FFN and de-
veloped Fermatean fuzzy Hamacher interactive weighted averaging operators. Further,
Shit and Ghorai [43] put forward some Fermatean fuzzy Dombi operators to aggregate
FFNs and built an MCDM method based on them. The above Fermatean fuzzy operators
were obtained by using different operations of Archimedean t-norm and t-conorm and can
validly fuse Fermatean fuzzy information. In addition, as a particular case of Archimedean
t-norm and t-conorm, Schweizer–Sklar operations [44] not only generate the intersection
and union of FFS but also possess a parameter to flexibly adjust the operations. Since its in-
troduction, it has been extended to different fuzzy environments to construct the associated
aggregation operators [45–48]. Zindani et al. [49] proffered a novel group-decision method
by merging Schweizer–Sklar power operators and TODIM with inter-valued intuitionistic
fuzzy circumstances. Liu et al. [50] defined the Schweizer–Sklar operations of complex
q-rung orthopair fuzzy numbers and proposed different Muirhead mean operators to deter-
mine interrelations between multiple input data. To further strengthen the practicability of
MULTIMOORA, the picture fuzzy Schweizer–Sklar operators-based MULTIMOORA algo-
rithm was presented for group decision analysis [51]. Nevertheless, there is no investigation
on Schweizer–Sklar operations for FFS and use of it to build aggregation operators.

In the past few years, many classical decision approaches have been presented to
deal with vague and imprecise practical issues. Recently, an excellent decision technique
called the Combined Compromise Solution method was proposed by Yazdani et al. [52] to
obtain more comprehensive and robust alternatives with the aid of three fusion strategies.
As a utility-based decision method, it acquires the final compromise result from multiple
angles and utilizes an integrated function to aggregate multiple solutions, which further
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strengthens the reliability and stability of the ultimate decision outcomes. Owing to its
advantages of simple operation and high flexibility, CoCoSo has been extended to different
uncertainty environments and used for practical problem evalutaion [53–55]. Rani and
Mishra [56] established a group decision-making model with completely unknown expert
and attribute weight based on similarity and CoCoSo by improving the similarity of single-
valued intelligent sets. Yazdani et al. [57] proposed a complete consistency model of rough
sets to determine the subjective weight of attributes and combined it with data envelopment
analysis, establishing a comprehensive CoCoSo method with rough sets in order to select a
satisfactory logistics center. Wang and Wang [58] propounded an integrated linguistic terms
with weakened hedges qualitative CoCoSo group assessment framework to evaluate health-
care waste treatment technologies. Yet, to the best of our knowledge, extant research does
not combine the Schweizer–Sklar operators, entropy and CoCoSo for supplier selection
using Fermatean fuzzy sets.

1.1. Motivations of This Research

Based on the discussion and literature review, it is apparent that FFS possesses a
stronger uncertain information representation efficiency than IFS and PFS in dealing with
complex and indeterminacy decision problems. Although much research using FFS has
successfully provided support for decision analysis, some novel aggregation theory, infor-
mation measures and decision techniques need to be explored for experts to analyze real
decision issues more comprehensively. From the existing literature, the motivations of this
study can be outlined as follows:

(1) Aggregation-based decision algorithms provide a simple and fast manner for ex-
perts to comprehensively assess alternatives. Hence, proposing some reasonable and
flexible aggregation operator is necessary to integrate Fermatean fuzzy information.
The Schweizer–Sklar operations can not only generate operations of FFN but also
possess an alternate parameter to make the decision analysis procedure more flexible.

(2) The importance of criteria in decision analysis is very vital for acquiring rational
decisions. However, most Fermatean fuzzy decision methodologies only consider
the objective weight of criteria but ignore the importance of subjective preferences
of criteria produced by experts. Therefore, it is necessary to construe a synthesized
criteria-weight-determination model to get more accurate results.

(3) Existing decision approaches using Fermatean fuzzy environments to rank alternatives
fail to consider multiple fusion strategies, which will lead to inaccurate decisions.
Further, ranking different aggregation strategies is also vital for the final decision
result. Hence, it is essential to take multiple fusion strategies and their rankings into
account to achieve more robust results.

1.2. Contributions of This Research

In view of the mentioned motivations and discussion of the extant research, the main
objective of this study is to propose an integrated Fermatean fuzzy group-decision ap-
proach by combining Schweizer–Sklar operations, BWM, entropy and CoCoSo to assess
a green supplier. Fermatean fuzzy Schweizer–Sklar operators are employed to aggregate
expert evaluations and improve the classical CoCoSo model. Entropy is utilized to deter-
mine the objective weight and extend BWM to a Fermatean fuzzy setting. Accordingly,
the contributions of this investigation are as below:

♠ Several novel Fermatean fuzzy aggregation operators, such as Fermatean fuzzy
Schweizer–Sklar weighted averaging operator, Fermatean fuzzy Schweizer–Sklar
weighted geometric operator and corresponding ordered weighted forms are brought
forward on the basis of Fermatean fuzzy Schweizer–Sklar operational laws to fuse
Fermatean fuzzy information; the related desirable properties of the propounded
Fermatean fuzzy operators are also explored at length;

♠ A novel Fermatean fuzzy information entropy measure is proffered to measure the
vagueness of FFS and further used to compute the objective weight of criteria.
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♠ A compositional weight determination model is constructed based on entropy weight
and BWM-entropy to more reasonably identify the weight information of criteria;

♠ An integrated Fermatean fuzzy group decision framework is built in light of the pro-
posed Fermatean fuzzy Schweizer–Sklar operators, combined weight determination
model and improved CoCoSo to address complicated decision issues with unknown
weight information.

1.3. Structure of This Research

To meet the objectives of our study, the remainder of the paper is arranged as follows:
Section 2 succinctly reviews background information related to this paper. Section 3
propounds a novel Fermatean fuzzy entropy measure to determine the weight of criteria.
In Section 4, some Fermatean fuzzy Schweizer–Sklar weighted averaging and geometric
operators are presented; also, some properties are discussed. Section 5 constructs an
integrated Fermatean fuzzy CoCoSo group-decision framework for selecting a satisfactory
supplier. In Section 6, a supplier assessment problem is utilized to show feasibility, and a
contrastive study is implemented to highlight the merits of the developed method. Several
conclusion remarks are listed at the end.

2. Preliminaries

This section reviews several basic concepts, such as FFS and Schweizer–Sklar t-conorm
and t-norm, that will be utilized to build our decision approach.

2.1. FFS

The FFS was originally proposed to represent uncertain information more effectively
than intuitionistic FS and Pythagorean FS. In what follows, we illustrate the definition and
operations of FFS [27].

Definition 1 (Ref. [27]). Assume Y is a domain of discourse. A Fermatean fuzzy set (FFS) F on
Y is represented as

F = {〈Y, φF (y), ψF (y)〉|y ∈ Y}

where φF (y) and ψF (y) signify the grade of membership and non-membership of element y to
Y, with the restriction that 0 ≤ (φF (y))

3 + (ψF (y))
3 ≤ 1. The pair F = (φF (y), ψF (y)) is

usually utilized to signify a Fermatean fuzzy number (FFN) and simplified as F = (φF , ψF ) with

0 ≤ φ3
F + ψ3

F ≤ 1. The hesitancy grade of y belongs to F πF (y) =
3
√

1− (φF )
3 − (ψF )

3.

Definition 2 (Ref. [27]). Let F1 =
(
φF1 , ψF1

)
and F2 =

(
φF2 , ψF2

)
be two FFNs, then the

operational laws deduced on by algebraic operations are:

(1) F1 ⊕F2 =

(
3

√
1−

(
1−

(
φF1

)3
)(

1−
(
φF2

)3
)

, ψF1 ψF2

)
;

(2) F1 ⊗F2 =

(
φF1 φF2 , 3

√
1−

(
1−

(
ψF1

)3
)(

1−
(
ψF2

)3
))

;

(3) λ · F1 =

(
3

√
1−

(
1−

(
φF1

)3
)λ

,
(
ψF1

)λ

)
, λ > 0;

(4) Fλ
1 =

((
φF1

)λ, 3

√
1−

(
1−

(
ϕF1

)3
)λ
)

, λ > 0;

(5) F c
1 =

(
ψF1 , φF1

)
.
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In order to compare two FFNs, Senapati and Yager [27] proposed the score function
SC(F ) = (φF )

3− (ψF )
3 and accuracy function AC(F ) = (φF )

3 + (ψF )
3 to compare FFNs

according to their score and accuracy values, respectively. However, the score function
SC(F ) is invalid when the membership grade is equal to the non-membership grade.
Based on this, a novel score function S(F ) is presented by [30] to consider the influence of
hesitancy grade for enhancing the reasonableness of comparison and ranking.

Definition 3 (Ref. [30]). Given an FFNF = (φF , ψF ), the score function S(F ) ofF is defined as:

S(F ) = 1
2

((
(φF )

3 − (ψF )
3 − ln

(
1 + (πF )

3
))

+ 1
)

, S(F ) ∈ [0, 1], (1)

where πF = 3
√

1− (φF )
3 − (ψF )

3 signifies the hesitancy grade of F .

Definition 4. Let F1 =
(
φF1 , ψF1

)
and F2 =

(
φF2 , ψF2

)
be two FFNs. Then the comparison

algorithm of F1 and F2 is:

(1) If S(F1) < S(F2), then F1 is smaller than F2, signified as F1 ≺ F2;
(2) If S(F1) = S(F2), then we need to compare their accuracy values:

• If AC(F1) > AC(F2), then F1 is bigger than F2, signified as F1 � F2;
• If AC(F1) = AC(F2), then F1 has no differences with F2, signified as F1 ∼ F2.

2.2. Schweizer–Sklar T-Conorm and T-Norm

The Schweizer–Sklar t-conorm and t-norm, consisting of the Schweizer–Sklar product
and Schweizer–Sklar sum, respectively, are special cases of ATT.

Definition 5 (Ref. [44]). Suppose F1 =
(
φF1 , ψF1

)
and F2 =

(
φF2 , ψF2

)
are two FFNs. Then

the generalized intersection and union are described as follows:

F1 ∩T̃,T̃∗ F2 =
{〈

y, T̃
(
φF1 , φF2

)
, T̃∗
(
ψF1 , ψF2

)〉
y ∈ Y

}
(2)

F1 ∪T̃,T̃∗ F2 =
{〈

y, T̃∗
(
φF1 , φF2

)
, T̃
(
ψF1 , ψF2

)〉
y ∈ Y

}
(3)

where T̃ represents a T-norm and T̃∗ represents a t-conorm. The definitions of the Schweizer–Sklar
t-norm and t-conorm are shown as follows.

Let a, b be two positive real numbers and a, b ∈ [0, 1]. Then the conception of the
Schweizer–Sklar t-norm and t-conorm is depicted as follows:

T̃SS,σ(a, b) = (aσ + bσ − 1)
1
σ , σ < 0;

T̃∗SS,σ(a, b) = 1−
(
(1− a)σ + (1− b)r − 1

) 1
σ , σ < 0.

Specially, when σ = 0, the Schweizer–Sklar t-norm and t-conorm shall yield to the
algebraic t-norm and t-conorm, namely, T̃σ(a, b) = ab, T̃∗σ (a, b) = a + b− ab.

3. A Novel Fermatean Fuzzy Entropy Measure

Entropy is a frequently used and valid information measure for measuring the fuzzi-
ness of FS. Since the conception of fuzzy entropy was presented, diverse information
entropies have been introduced under intuitionistic FS, Pythagorean FS and hesitant FS.
These entropy measures not only enrich the information measure theory of FS, but are also
widely used in decision analysis [59–62]. Hence, this section proposes a novel Fermatean
fuzzy entropy measure to measure the vagueness of FFS, and uses it to determine the
weight of assessment criteria.
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Definition 6 (Ref. [30]). A real-value mapping E: FFS(Y)→ [0, 1] is a Fermatean fuzzy entropy
measure if it meets the following conditions:

(P1) 0 ≤ E(F ) ≤ 1;
(P2) E(F ) = 0 if F is a crisp set;
(P3) E(F ) = 1⇒ φF (yt) = ψF (yt) for yt ∈ Y;
(P4) E(F ) = E

(
(F )c);

(P5) E(F ) ≤ E(G) for all F ,G ∈ FFS(Y) meet either if φF (yt) ≤ φG(yt) ≤ ψG(yt) ≤ ψF (yt)
or φF (yt) ≥ φG(yt) ≥ ψG(yt) ≥ ψF (yt) for all yt ∈ Y.

Definition 7. For an FFS F = {〈Y, φF (y), ψF (y)〉|y ∈ Y}, the Fermatean fuzzy entropy of F
is defined as:

E(F ) = 1
2n

n

∑
t=1

[
e−|(φF (yt))

3−(ψF (yt))
3| − e−1

1− e−1 +
(

1−
∣∣∣(φF (yt))

3 − (ψF (yt))
3
∣∣∣)]. (4)

Proof.

(P1) Since 0 ≤ φF (yt), ψF (yt) ≤ 1, then 0 ≤ (φF (yt))
3, (ψF (yt))

3 ≤ 1. Thus, we have

0 ≤
∣∣∣(φF (yt))

3 − (ψF (yt))
3
∣∣∣ ≤ 1. Let f (a) = e−a−e−1

1−e−1 + (1− a)(0 ≤ a ≤ 1), then

f
′
(a) = − e−a

1−e−1 − 1 < 0, namely, f (a) is decreasing in [0, 1]. Thus one has 0 ≤ f (a) ≤

2. Further, 0 ≤ 1
2n

n
∑

t=1

[
e−|(φF (yt))

3−(ψF (yt))
3|−e−1

1−e−1 +
(

1−
∣∣∣(φF (yt))

3 − (ψF (yt))
3
∣∣∣)] ≤ 1.

Accordingly, 0 ≤ E(F ) ≤ 1 holds.

(P2) If E(F ) = 0, then
[

e−|(φF (yt))
3−(ψF (yt))

3|−e−1

1−e−1 +
(

1−
∣∣∣(φF (yt))

3 − (ψF (yt))
3
∣∣∣)] = 0.

This implies that
∣∣∣(φF (yt))

3 − (ψF (yt))
3
∣∣∣ = 1, thus φF (yt) = 1, ψF (yt) = 0 or

φF (yt) = 0, ψF (yt) = 1. We prove that F is a crisp set. Conversely, if F is a crisp set,
φF (yt) = 1, ψF (yt) = 0 or φF (yt) = 0, ψF (yt) = 1. Based on Equation (4), we have
E(F ) = 0.

(P3) If φF (yt) = ψF (yt) for yt ∈ Y, we get E(F ) = 1 with the aid of Equation (4).

Conversely, if E(F ) = 1, then ∀yt ∈ Y; we have e−|(φF (yt))
3−(ψF (yt))

3|−e−1

1−e−1 = 1 and(
1−

∣∣∣(φF (yt))
3 − (ψF (yt))

3
∣∣∣) = 1; then

∣∣∣(φF (yt))
3 − (ψF (yt))

3
∣∣∣ = 0, namely,

φF (yt) = ψF (yt).
(P4) Since (F )c is the complement of FFS F , then (F )c = {yt, ψF (yt), φF (yt)|yt ∈ Y}.

Now we can obtain

E
(
(F )c) = 1

2n

n

∑
t=1

[
e−|(ψF (yt))

3−(φF (yt))
3| − e−1

1− e−1 +
(

1−
∣∣∣(ψF (yt))

3 − (φF (yt))
3
∣∣∣)]

=
1

2n

n

∑
t=1

[
e−|(φF (yt))

3−(ψF (yt))
3| − e−1

1− e−1 +
(

1−
∣∣∣(φF (yt))

3 − (ψF (yt))
3
∣∣∣)] = E(F ).

Hence, E(F ) = E
(
(F )c) holds for all yt ∈ Y.

(P5) All yt ∈ Y meet if either φF (yt) ≤ φG(yt) ≤ ψG(yt) ≤ ψF (yt) or φF (yt) ≥ φG(yt) ≥
ψG(yt) ≥ ψF (yt); then −

∣∣∣(φF (yt))
3 − (ψF (yt))

3
∣∣∣ ≤ −∣∣∣(φG(yt))

3 − (ψG(yt))
3
∣∣∣ holds

for all yt ∈ Y. This implies that E(F ) ≤ E(G) for all F ,G ∈ FFS(Y) meet if either
φF (yt) ≤ φG(yt) ≤ ψG(yt) ≤ ψF (yt) or φF (yt) ≥ φG(yt) ≥ ψG(yt) ≥ ψF (yt) for all
yt ∈ Y.
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4. Fermatean Fuzzy Schweizer–Sklar Aggregation Operators

This section first presents the Fermatean fuzzy Schweizer–Sklar operations and then
advances some novel Fermatean fuzzy Schweizer–Sklar aggregation operators; also, some
valuable properties are explored.

4.1. Fermatean Fuzzy Schweizer–Sklar Operations

In light of the T̃SS,σ(a, b) and T̃∗σ (a, b) of Schweizer–Sklar operations, the generalized
intersection and union operations, respectively, of FFNs are defined as:

Definition 8. Suppose F1 =
(
φF1 , ψF1

)
and F2 =

(
φF2 , ψF2

)
are two FFNs. Then the general-

ized intersection and union are described as:

F1 ⊕T̃,T̃∗ F2 =

(
3

√
T̃∗SS,σ

((
φF1

)3,
(
φF2

)3
)

, 3

√
T̃SS,σ

((
ψF1

)3,
(
ψF2

)3
))

, (5)

F1 ⊗T̃,T̃∗ F2 =

(
3

√
T̃SS,σ

((
φF1

)3,
(
φF2

)3
)

, 3

√
T̃∗SS,σ

((
ψF1

)3,
(
ψF2

)3
))

. (6)

In view of Definition 7, we can propound the following operation laws of FFNs:

F1 ⊕SS F2 =

 3

√
1−

((
1−

(
φF1

)3
)σ

+
(

1−
(
φF2

)3
)σ
− 1
) 1

σ
,

3

√((
ψF1

)3σ
+
(
ψF2

)3σ − 1
) 1

σ

; (7)

F1 ⊗SS F2 =

 3

√((
φF1

)3σ
+
(
φF2

)3σ − 1
) 1

σ ,
3

√
1−

((
1−

(
ψF1

)3
)σ

+
(

1−
(
ψF2

)3
)σ
− 1
) 1

σ

; (8)

κF1 =

 3

√
1−

(
κ
(

1−
(
φF1

)3
)κ
− (κ − 1)

) 1
κ
,

3

√(
κ
(
ψF1

)3σ − (κ − 1)
) 1

σ

; (9)

F κ
1 =

 3

√(
κ
(
φF1

)3σ − (κ − 1)
) 1

σ ,
3

√
1−

(
κ
(

1−
(
ψF1

)3
)κ
− (κ − 1)

) 1
κ

. (10)

Theorem 1. Suppose F1 =
(
φF1 , ψF1

)
and F2 =

(
φF2 , ψF2

)
are two FFNs, and κ, κ1, κ2 >

0. Then

(1) F1 ⊕SS F2 = F2 ⊕SS F1;

(2) F1 ⊗SS F2 = F2 ⊗SS F1;

(3) κ(F1 ⊕SS F2) = κF1 ⊕SS κF2;

(4) κ1F1 ⊕SS κ2F1 = (κ1 + κ2)F1;

(5) F κ1
1 ⊗SS F κ2

1 = F κ1+κ2
1 ;

(6) (F1)
κ1 ⊗SS (F2)

κ1 = (F1 ⊗F2)
κ1 .

The proof of Theorem 1 is straightforward.

4.2. Fermatean Fuzzy Schweizer–Sklar Weighted Averaging Operator

In this section, we present the Fermatean fuzzy Schweizer–Sklar weighted averag-
ing (FFSSWA) operator and Fermatean fuzzy Schweizer–Sklar order-weighted averaging
(FFSSOWA) operator and explore some of their notable properties.



Entropy 2022, 24, 776 9 of 32

Definition 9. Suppose Ft = (φFt , ψFt) is a family of FFNs; the FFSSWA operator is a mapping
from Θn to Θ. If

FFSSWA(F1,F2, · · · ,Fn) = ς1F1 ⊕SS ς2F2 ⊕SS · · · ⊕SS ςnFn, (11)

then the FFSSWA is called a Fermatean fuzzy Schweizer–Sklar weighted averaging operator, where
Θ signifies the set of FFNs and ςt(t = 1(1)n) is the weight of Ft with ςt ∈ [0, 1] with ∑n

t=1 ςt = 1.
Moreover, an FFSSWA operator will yield to an FFSSA operator when vt = ( 1

n , 1
n , · · · , 1

n )
T .

The following theorem can be attained on the basis of Definition 8.

Theorem 2. Suppose Ft = (φFt , ψFt) is a family of FFNs. Then the fusion value through
employing the FFSSWA operator is still an FFN, and is represented as

FFSSWA(F1,F2, · · · ,Fn) =


3

√
1−

(
n
∑

t=1
ςt

(
1− (φFt)

3
)σ
−

n
∑

t=1
ςt + 1

) 1
σ

,

3

√(
n
∑

t=1
ςt(φFt)

3σ −
n
∑

t=1
ςt + 1

) 1
σ

. (12)

Based on the mathematical induction method, we can prove that Equation (12) is valid.
In view of the operational laws of FFNs based on Schweizer–Sklar operations, one has

ςtFt =

 3

√
1−

(
ςt

(
1− (φFt)

3
)σ
− (ςt − 1)

) 1
σ

,
3

√(
ςt(ψFt)

3σ − (ςt − 1)
) 1

σ

.

(i) When n = 2, we have

ς1F1 =

 3

√
1−

(
ς1

(
1−

(
φF1

)3
)σ
− (ς1 − 1)

) 1
σ

,
3

√(
ς1
(
ψF1

)3σ − (ς1 − 1)
) 1

σ

;

ς2F2 =

 3

√
1−

(
ς2

(
1−

(
φF2

)3
)σ
− (ς2 − 1)

) 1
σ

,
3

√(
ς2
(
ψF2

)3σ − (ς2 − 1)
) 1

σ

.

Then

FFSSWA
(
F1,F2

)
= ς1F1 ⊕SS ς2F2

=



3

√√√√√√√√√1−


1−

 3

√√√√
1−

(
ς1

(
1−

(
φF1

)3
)σ
−
(
ς1 − 1

)) 1
σ


3

σ

+

1−

 3

√√√√
1−

(
ς2

(
1−

(
φF2

)3
)σ
−
(
ς2 − 1

)) 1
σ


3

σ

− 1


1
σ

,

3

√√√√√√√√

 3

√√√√(
ς1
(

ψF1

)3σ
−
(
ς1 − 1

)) 1
σ


3σ

+

 3

√√√√(
ς2
(

ψF2

)3σ
−
(
ς2 − 1

)) 1
σ


3σ

− 1


1
σ



=

 3

√√√√√1−
(

2
∑

t=1
ςt

(
1−

(
φFt

)3
)σ
−

2
∑

t=1
ςt + 1

) 1
σ

,
3

√√√√√( 2
∑

t=1
ςt
(

φFt

)3σ
−

2
∑

t=1
ςt + 1

) 1
σ

,

Namely, Equation (12) holds for n = 2.
(ii) Assume Equation (12) holds n = h̄.

FFSSWA(F1,F2, · · · ,Fh̄) =


3

√√√√1−
(

h̄
∑

t=1
ςt

(
1− (φFt)

3
)σ
−

h̄
∑

t=1
ςt + 1

) 1
σ

,

3

√√√√( h̄
∑

t=1
ςt(ψFt)

3σ −
h̄
∑

t=1
ςt + 1

) 1
σ

.
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Then when n = h̄ + 1, based on the operation rules of FFNs based upon Schweizer–
Sklar operations, one has

ς h̄+1Fh̄+1 =


3

√
1−

(
ς h̄+1

(
1−

(
φFh̄+1

)3
)σ

− (ς h̄+1 − 1)
) 1

σ

,

3

√(
ς h̄+1

(
ψFh̄+1

)3σ
− (ς h̄+1 − 1)

) 1
σ

,

and

FFSSWA(F1,F2, · · · ,Fh̄,Fh̄+1) = FFSSWA(F1,F2, · · · ,Fh̄)⊕SS ς h̄+1Fh̄+1

=

 3

√√√√1−
(

h̄

∑
t=1

ςt

(
1−

(
φFt

)3
)σ
−

h̄

∑
t=1

ςt + 1

) 1
σ

,
3

√√√√( h̄

∑
t=1

ςt
(
ψFt

)3σ −
h̄

∑
t=1

ςt + 1

) 1
σ


⊕SS

 3

√
1−

(
ς h̄+1

(
1−

(
φFh̄+1

)3
)σ
− (ς h̄+1 − 1)

) 1
σ

,
3

√(
ς h̄+1

(
ψFh̄+1

)3σ − (ς h̄+1 − 1)
) 1

σ


=

 3

√√√√1−
(

h̄+1

∑
t=1

ςt

(
1−

(
φFt

)3
)σ
−

h̄+1

∑
t=1

ςt + 1

) 1
σ

,
3

√√√√(h̄+1

∑
t=1

ςt
(
ψFt

)3σ −
h̄+1

∑
t=1

ςt + 1

) 1
σ


Accordingly, Equation (12) is valid for n = h̄ + 1.
Based on (i) and (ii), Equation (12) holds for any t. Furthermore, because ςt is the

weight of FFN Ft and meets ςt ∈ [0, 1] with ∑n
t=1 ςt = 1, Equation (12) can be simplified as

FFSSWA(F1,F2, · · · ,Fn) =

 3

√√√√1−
(

n

∑
t=1

ςt

(
1−

(
φFt

)3
)σ
) 1

σ

,
3

√√√√( n

∑
t=1

ςt
(
ψFt

)3σ

) 1
σ

. (13)

In what follows, we will explore several notable properties of FFSSWA operators.

Property 1 (Idempotency). Suppose Ft = (φFt , ψFt) is a family of FFNs. If Ft = (φF , ψF ) =
F for all Ft, then

FFSSWA(F1,F2, · · · ,Fn) = F (14)

Proof.

FFSSWA(F1,F2, · · · ,Fn) =

 3

√√√√√1−
(

n

∑
t=1

ςt

(
1− (φFt)

3
)σ
) 1

σ

,
3

√√√√√( n

∑
t=1

ςt(ψFt)
3σ

) 1
σ


=

 3

√
1−

((
1− (φF )

3
)σ) 1

σ
,

3

√(
(ψF )

3σ
) 1

σ


=

(
3

√
1−

(
1− (φF )

3
)

, 3
√
(ψF )

3

)
= (φF , φF ) = F .

This concludes the proof of Property 1.
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Property 2 (Boundedness). Suppose Ft = (φFt , ψFt) is a family of FFNs. If F+ = ( max
1≤t≤n

φFt ,

min
1≤t≤n

ψFt) and F− =

(
min

1≤t≤n
φFt , max

1≤t≤n
ψFt

)
, then

F− ≤ FFSSWA(F1,F2, · · · ,Fn) ≤ F+. (15)

Proof. Since min
1≤t≤n

φFt ≤ φFt ≤ max
1≤t≤n

φFt and min
1≤t≤n

ψFt ≤ φFt ≤ max
1≤t≤n

ψFt hold for all t.

Then we can acquire:

(i) For membership grade of FFSSWA(F1,F2, · · · ,Fn), one has

1−
(

max
1≤t≤n

φFt

)3
≤ 1−

(
φFt

)3 ≤ 1−
(

min
1≤t≤n

φFt

)3

⇒
(

1−
(

max
1≤t≤n

φFt

)3
)σ

≤
(

1−
(
φFt

)3
)σ
≤
(

1−
(

min
1≤t≤n

φFt

)3
)σ

⇒
(

n

∑
t=1

ςt

(
1−

(
max

1≤t≤n
φFt

)3
)σ) 1

σ

≤
(

n

∑
t=1

ςt

(
1−

(
φFt

)3
)σ
) 1

σ

≤
(

n

∑
t=1

ςt

(
1−

(
min

1≤t≤n
φFt

)3
)σ) 1

σ

⇒
3

√√√√√1−
(

n

∑
t=1

ςt

(
1−

(
min

1≤t≤n
φFt

)3
)σ) 1

σ

≤ 3

√√√√1−
(

n

∑
t=1

ςt

(
1−

(
φFt

)3
)σ
) 1

σ

≤
3

√√√√√1−
(

n

∑
t=1

ςt

(
1−

(
max

1≤t≤n
φFt

)3
)σ) 1

σ

⇒ min
1≤t≤n

φFt ≤
3

√√√√1−
(

n

∑
t=1

ςt

(
1−

(
φFt

)3
)σ
) 1

σ

≤ max
1≤t≤n

ψFt .

(ii) For non-membership grade of FFSSWA(F1,F2, · · · ,Fn), one has

min
1≤t≤n

ψFt ≤ ψFt ≤ max
1≤t≤n

ψFt

⇒ ςt

(
min

1≤t≤n
ψFt

)3σ

≤ ςt(ψFt)
3σ ≤ ςt

(
ψFt ≤ max

1≤t≤n
ψFt

)3σ

⇒
(

n

∑
t=1

ςt

(
min

1≤t≤n
ψFt

)3σ
) 1

σ

≤
(

n

∑
t=1

ςt(ψFt)
3σ

) 1
σ

≤
(

n

∑
t=1

ςt

(
max

1≤t≤n
ψFt

)3σ
) 1

σ

⇒ 3

√√√√√( n

∑
t=1

ςt

(
min

1≤t≤n
ψFt

)3σ
) 1

σ

≤ 3

√√√√√( n

∑
t=1

ςt(ψFt)
3σ

) 1
σ

≤ 3

√√√√√( n

∑
t=1

ςt

(
max

1≤t≤n
ψFt

)3σ
) 1

σ

⇒ min
1≤t≤n

ψFt ≤
3

√√√√√( n

∑
t=1

ςt(ψFt)
3σ

) 1
σ

≤ min
1≤t≤n

ψFt .

(iii) Furthermore, considering that as the score of the FFSSWA operator, let
FFSSWA(F1,F2, · · · ,Fn) = F = (φF , ψF ). We can acquire

SC(F ) = (φF )
3 − (ψF )

3 =

 3

√√√√√1−
(

n

∑
t=1

ςt

(
1− (φFt)

3
)σ
) 1

σ


3

−

 3

√√√√√( n

∑
t=1

ςt(ψFt)
3σ

) 1
σ


3

≤
(

max
1≤t≤n

φFt

)3
−
(

min
1≤t≤n

φFt

)3
= SC

(
F+
)

and
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SC(F ) = (φF )
3 − (ψF )

3 =

 3

√√√√√1−
(

n

∑
t=1

ςt

(
1− (φFt)

3
)σ
) 1

σ


3

−

 3

√√√√√( n

∑
t=1

ςt(ψFt)
3σ

) 1
σ


3

≥
(

min
1≤t≤n

φFt

)3
−
(

max
1≤t≤n

φFt

)3
= SC

(
F−
)
.

Accordingly, F− ≤ FFSSWA(F1,F2, · · · ,Fn) ≤ F+ holds for all t.

Property 3 (Commutativity). Assume that F̂t(t = 1(1)n) is any permutation of Ft(t = 1(1)n).
Then

FFSSWA(F1,F2, · · · ,Fn) = FFSSWA
(
F̂1, F̂2, · · · , F̂n

)
. (16)

Proof. Based on the definition and theorem of the FFSSWA operator, we have

FFSSWA(F1,F2, · · · ,Fn) =

 3

√√√√√1−
(

n

∑
t=1

ςt

(
1− (φFt)

3
)σ
) 1

σ

,
3

√√√√√( n

∑
t=1

ςt(ψFt)
3σ

) 1
σ



FFSSWA
(
F̂1, F̂2, · · · , F̂n

)
=

 3

√√√√√1−
(

n

∑
t=1

ς̂t

(
1−

(
φF̂t

)3
)σ
) 1

σ

,
3

√√√√√( n

∑
t=1

ς̂t

(
ψF̂t

)3σ
) 1

σ

.

Since
{
F̂1, F̂2, · · · , F̂n

}
is any permutation of {F1,F2, · · · ,Fn}. Then we have

3

√√√√√1−
(

n

∑
t=1

ςt

(
1− (φFt)

3
)σ
) 1

σ

=
3

√√√√√1−
(

n

∑
t=1

ς̂t

(
1−

(
φF̂t

)3
)σ
) 1

σ

,

3

√√√√√( n

∑
t=1

ςt(φFt)
3σ

) 1
σ

=
3

√√√√√( n

∑
t=1

ς̂t

(
φF̂t

)3σ
) 1

σ

.

Therefore, we have FFSSWA(F1,F2, · · · ,Fn) = FFSSWA
(
F̂1, F̂2, · · · , F̂n

)
.

When the parameter σ in an FFSSWA operator is taken as zero, then the FFSSWA
operator will yield to the Fermatean fuzzy weighted averaging operator based on algebraic
operations.

FFSSWAσ=0(F1,F2, · · · ,Fn) =

(
3

√
1−

n

∏
t=1

(
1− (φFt)

3
)ςt

,
n

∏
t=1

(ψFt)
ςt

)
. (17)

Definition 10. Suppose Ft = (φFt , ψFt) is a family of FFNs, and ςt(t = 1(1)n) is the weight of
ςt ∈ [0, 1] with ∑n

t=1 ςt = 1. The FFSSOWA operator is a mapping Θn → Θ. If

FFSSOWA(F1,F2, · · · ,Fn) = ς1Fε(1) ⊕SS ς2Fε(2) ⊕SS · · · ⊕SS ςnFε(n), (18)

then the FFSSOWA is called a Fermatean fuzzy Schweizer–Sklar ordered weighted geometric
operator, in which (ε(1), ε(2), · · · , ε(n)) is a permutation of (1, 2, · · · , n) within Fε(t−i) ≥ Fε(t)
for t = 2, 3, · · · , n, and Θ signifies the set of FFNs.
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Theorem 3. Suppose Ft = (φFt , ψFt) is a family of FFNs. Then the fusion value through utilizing
the FFSSOWA operator is still an FFN and is represented as

FFSSOWA(F1,F2, · · · ,Fn) =


3

√√√√1−
(

n
∑

t=1
ςt

(
1−

(
φFε(t)

)3
)σ) 1

σ

,

3

√(
n
∑

t=1
ςt

(
ψFε(t)

)3σ
) 1

σ

. (19)

4.3. Fermatean Fuzzy Schweizer–Sklar Weighted Geometric Operator

Definition 11. Suppose Ft = (φFt , ψFt) is a family of FFNs and the FFSSWG operator is a
mapping Θn → Θ. If

FFSSWG(F1,F2, · · · ,Fn) = (F1)
ς1 ⊗SS (F2)

ς2 ⊗SS · · · ⊗SS (Fn)
ςn , (20)

then the FFSSWG is called a Fermatean fuzzy Schweizer–Sklar weighted geometric operator, where
Θ signifies the set of FFNs and ςt(t = 1(1)n) is the weight of Ft with ςt ∈ [0, 1] with ∑n

t=1 ςt = 1.
Moreover, the FFSSWA operator will yield to the Fermatean fuzzy Schweizer–Sklar geometric
operator when vt = ( 1

n , 1
n , · · · , 1

n )
T .

Theorem 4. Suppose Ft = (φFt , ψFt) is a family of FFNs. Then the fusion value through
employing the FFSSWG operator is still an FFN and represented as

FFSSWG(F1,F2, · · · ,Fn) =

 3

√√√√( n

∑
t=1

ςt
(
φFt

)3σ

) 1
σ

,
3

√√√√1−
(

n

∑
t=1

ςt

(
1−

(
ψFt

)3
)σ
) 1

σ

. (21)

The proof of Theorem 4 is similar to Theorem 1, so it is omitted here.
Similar to FFSSWG operator, the FFSSWG operator also possesses the idempotency,

boundedness and commutativity. In addition, when the parameter σ in FFSSWG operator
is taken zero, then the FFSSWG operator will yield to the Fermatean fuzzy weighted
geometric operator based on algebraic operations.

FFSSWGσ=0(F1,F2, · · · ,Fn) =

(
n

∏
t=1

(φFt)
ςt , 3

√
1−

n

∏
t=1

(
1− (ψFt)

3
)ςt

)
. (22)

Definition 12. Suppose Ft = (φFt , ψFt) is a family of FFNs, ςt(t = 1(1)n) is the weight of
fusion-related with ςt ∈ [0, 1] with ∑n

t=1 ςt = 1. FFSSOWG operator is a mapping from Θn to
Θ. If

FFSSOWG(F1,F2, · · · ,Fn) =
(
Fε(1)

)ς1 ⊗SS

(
Fε(2)

)ς2 ⊗SS · · · ⊗SS

(
Fε(n)

)ςn
, (23)

then FFSSOWG is called a Fermatean fuzzy Schweizer–Sklar ordered weighted geometric operator,
where ε(t)(t = 1(1)n) is a permutation of (1, 2, · · · , n) within Fε(t−i) ≥ Fε(t) for t = 2, 3, · · · , n
and Θ signifies the set of FFNs.

Theorem 5. Suppose Fj =
(

ζFj , ηFj

)
is a family of FFNs. Then the fusion value through utilizing

the FFFOWG operator is still an FFN and represented as

FFSSWG(F1,F2, · · · ,Fn) =

 3

√(
n
∑

t=1
ςt

(
φFε(t)

)3σ
) 1

σ

,
3

√√√√1−
(

n
∑

t=1
ςt

(
1−

(
ψFε(t)

)3
)σ) 1

σ

. (24)

The proof of Theorem 5 is similar to the Theorem 2, so it is omitted here.
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5. An Integrated Fermatean Fuzzy CoCoSo Group-Decision Framework with
Unknown Weight Information

In this section, we construct an integrated Fermatean fuzzy group decision framework
on the basis of the best-worst method, entropy weight and CoCoSo to cope with MCGDM’s
issue with unknown weight information. First, we define the MCGDM issue and obtain
linguistic assessment information from experts based on their cognition and experience.
Next, the weight information of experts is computed by a score function in which the weight
information is provided by Fermatean fuzzy numbers from experts. Meanwhile, the fused
assessment matrix is acquired through the proposed FFSSWA operator and expert weight.
Further, criteria weights are ascertained from two aspects: subjective weight is determined
by BWM based on entropy, and objective weight is identified using entropy weight. Lastly,
the rank of the scheme is calculated based upon the improved CoCoSo method using the
FFSSWA operator, the FFSSWG operator and the score function. A succinct Fermatean fuzzy
group decision algorithm is also provided by summarizing the mentioned decision steps.

5.1. Problem Description
The classical MCGDM decision problem within a Fermatean fuzzy setting consists of the

following fundamental notions. The scheme set denoted as Υ = {Υs | s = 1(1)m} is utilized
as decision objects. The criterion set indicated as C = {Ct | t = 1(1)n} is viewed as assessment
indexes with corresponding weights ωt and ωt ∈ [0, 1], and ∑n

t=1 ωt = 1. The assessment ex-
perts and corresponding weights are signified as DEl(l = 1(1)L) and ν = {ν1(l = 1(1)L)}T,
with ν ∈ [0, 1], ∑L

l=1 = 1. The evaluators DEl provide their assessment information for

schemes Υs under the criteria Ct by the form of FFNFst
l
=
(

φFst
l , ψFst

l
)

, where φFst
l , ψFst

l ∈

[0, 1] and 0 ≤
(

φFst
l
)3

+
(

ψFst
l
)3
≤ 1. Hence, the decision matrices F l

=
(
Fst

l
)

m×n
are

constructed by collecting all assessment information provided through experts for alterna-
tives under different criteria, as shown below.

F l
=
(
Fst

l
)

m×n
=


F11

l
=
(

φF11
l , ψF11

l
)

F12
l
=
(

φF12
l , ψF12

l
)

· · · F1n
l
=
(

φF1n
l , ψF1n

l
)

F21
l
=
(

φF21
l , ψF21

l
)

F22
l
=
(

φF22
l , ψF22

l
)

· · · F2n
l
=
(

φF2n
l , ψF2n

l
)

...
...

...
...

Fm1
l
=
(

φFm1
l , ψFm1

l
)
Fm2

l
=
(

φFm2
l , ψFm2

l
)
· · · Fmn

l
=
(

φFmn
l , ψFmn

l
)


The goal of this research is to build an integrated group-decision methodology involv-

ing weight determination and scheme ranking based on decision matrices to resolve the
MCGDM problem under Fermatan fuzzy surroundings.

5.2. The Steps of the Propounded Decision Approach

This section shall expound on the decision steps of the propounded Fermatean fuzzy
CoCoSo group-decision framework at length. The decision framework is divided into four
phases: assessment information collection, assessment information fusion, determination
of criterion weight and scheme sorting by CoCoSo. A visual flowchart of the proposed
Fermatean fuzzy CoCoSo group-decision framework is provided and displayed as Figure 1.
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Figure 1. Fermatean fuzzy CoCoSo grou-decision framework.

5.2.1. Obtain the Fermatean Fuzzy Assessment Information

Step 1: Achieving the linguistic assessment information.
In order to choose the optimal scheme from the scheme set, we first form an expert

committee and invite them to provide their preferences for schemes in terms of the selected
criteria. A mapping relation displayed in Table 1 from linguistic terms to FFNs is given for
experts to more easily express their cognitive preference information.

Table 1. Linguistic terms for experts to choose green suppliers.

Linguistic term Abbreviation Fermatean Fuzzy Element

Very Very Low VVL (0.25, 0.95)
Very Low VL (0.30, 0.90)
Low L (0.35, 0.85)
Middle Low ML (0.40, 0.80)
Below Middle BM (0.50, 0.70)
Middle M (0.60, 0.60)
Above Middle AM (0.70, 0.50)
Middle High MH (0.80, 0.40)
High H (0.85, 0.35)
Very High VH (0.90, 0.30)
Very Very High VVH (0.95, 0.25)
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Step 2: Getting normalized Fermatean fuzzy assessment information.
We first transform the linguistic assessment information of experts to Fermatean fuzzy

assessment information with the help of Table 1. Next, we shift the negative criteria into
positive criteria to avoid the effects of inconsistency brought by the type of criteria. Thus,
the normalized Fermatean fuzzy assessment matrices F l =

(
F l

st

)
m×n

are acquired by

Equation (25).

F l
st =

(
φl
Fst

, ψl
Fst

)
=


(

φFst
l , ψFst

l
)

, Ct is benefit criterion;(
ψFst

l , φFst
l
)

, Ct is cost criterion.
(25)

5.2.2. Assessment Information Fusion

In order to ponder the group opinion of multiple decision experts, we assemble the
individual assessment opinions into a single evaluation matrix to effectively develop the
decision analysis. This includes expert weight calculation and assessment information inte-
gration.

Step 3: Evaluating the weight of decision experts.
Importance grades of experts in the course of decision analysis are often different since

experts possess diverse cognition and experience on the objects. The presented decision
framework considers the vagueness of experts and further expresses the importance of
experts in the form of FFN. Suppose F l =

(
φl
F , ψl

F

)
is an FFN, then the weight νl of expert

DEl is computed by Equation (26).

νl =

1
2

(((
φl
F

)3
−
(

ψl
F

)3
− ln

(
2−

(
φl
F

)3
−
(

ψl
F

)3
))

+ 1
)

∑L
l=1

(
1
2

(((
φl
F
)3 −

(
ψl
F
)3 − ln

(
2−

(
φl
F
)3 −

(
ψl
F
)3
))

+ 1
)) , l = 1, 2, · · · , L. (26)

Step 4: Obtaining the synthesized assessment matrix.
On the basis of the expert matrices, the synthesize assessment matrix F = (Fst)m×n

can be attained by the FFSSWA operator displayed in Equation (27).

Fst = FFSSWA
(
F 1

st,F 2
st, · · · ,F L

st

)
=


3

√√√√1−
(

n
∑

t=1
νl
(

1−
(

φ1
Fst

)3
)σ) 1

σ

,

3

√(
n
∑

t=1
νl
(

ψ1
Fst

)3σ
) 1

σ

. (27)

5.2.3. Computing the Criteria Weight Based on Combinative Method

In order to ascertain the importance of criteria during Fermatean fuzzy decision analy-
sis, the current part presents a combinative weight determination model through merging
BWM and entropy weight, which takes into account the influence of subjective preference
and objective information simultaneously. It is worth noting that combinative weights
are all built based upon the propounded Fermatean fuzzy entropy measure. The detailed
computation process of combinative weights is illustrated as follows.

Step 5: Identifying the subjective weight ωsub
t of criterion Ct by using BWM based

on entropy.

(1) Determine the best criterion CB and worst criterion CW from the criterion set based
upon the knowledge and experience of the expert committee.

(2) To take into account the uncertainty of expert preferences, comparative vectors
including best-to-others (BO) BO = (BB1, BB2, · · · , BBn) and other-to-worst (OW)
OW = (W1W , W2W , · · · , WnW)T are determined, in which BBt and WtW are signified
in the form of FFNs. The BO vector and OW vector denote the preference between the
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best criterion CB to other criteria Ct, and the preference between other criteria Ct to
the worst criterion CW , respectively.

(3) Shift the BO and OW vectors to real number on the basis of the proposed Fermatean
fuzzy entropy measure, as below:

EBO = (E(BB1), E(BB2), · · · , E(BBn)), (28)

EOW = (E(W1W), E(W2W), · · · , E(WnW))T , (29)

where

E(BBt) =
1
2

[
e−|(φF )

3−(ψF )3| − e−1

1− e−1 +
(

1−
∣∣∣(φF )3 − (ψF )

3
∣∣∣)],

E(WtW) =
1
2

[
e−|(φF )

3−(ψF )3| − e−1

1− e−1 +
(

1−
∣∣∣(φF )3 − (ψF )

3
∣∣∣)]

(4) Aiming at the EBO and EOW vectors, the multiplicative consistency relationships
between Fermatean fuzzy entropy and criterion weight are indicated as:

Ĕ(BBt) =
ωsub

B

ωsub
B + ωsub

t
, Ĕ(WtW) =

ωsub
t

ωsub
t + ωsub

W
, (30)

in which Ĕ(BBt) = 1− E(BBt), Ĕ(WtW) = 1− E(WtW). Here, based on the information
entropy, the smaller the entropy, the larger the entropy value. Hence, we utilize Ĕ(BBt)
to replace E(BBt) to ensure the consistency of comparison procedures.

(5) Further, we build the following model based on the proffered Fermatean fuzzy
entropy measure.

min χ (31)

s.t



∣∣∣∣ ωsub
B

ωsub
B +ωsub

t
− Ĕ(BBt)

∣∣∣∣ ≤ χ∣∣∣∣ ωsub
t

ωsub
t +ωsub

W
− Ĕ(WtW)

∣∣∣∣ ≤ χ

n
∑

t=1
ωt = 1

ωt ≥ 0.

Based upon the results obtained in [63], the first model can be further shifted into

min χ1 (32)

s.t



∣∣∣ωsub
B −

(
ωsub

B + ωsub
t

)
× Ĕ(BBt)

∣∣∣ ≤ χ1∣∣∣ωsub
t −

(
ωsub

t + ωsub
W

)
× Ĕ(WtW)

∣∣∣ ≤ χ1
n
∑

t=1
ωt = 1

ωt ≥ 0.

The model can be solved with the aid of LINGO software to further acquire the

subjective weight ωsub
t =

(
ωsub

1 , ωsub
2 , · · · , ωsub

n

)T
.

Step 6: Identifying the objective weight ω
obj
t of criterion Ct utilizing the entropy weight.
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(1) Compute the entropy matrix E = (Est)m×n based on the proposed Fermatean fuzzy
entropy measure and the comprehensive matrix by Equation (33)

Est =
1

2n

n

∑
t=1

[
e−|(φF (yt))

3−(ψF (yt))
3| − e−1

1− e−1 +
(

1−
∣∣∣(φF (yt))

3 − (ψF (yt))
3
∣∣∣)] (33)

(2) Calculate the criterion weight by Equation (34).

ω
obj
t =

1−
m
∑

s=1
dst

n
∑

t=1

(
1−

m
∑

s=1
dst

) (34)

Step 7: Identify the synthesized weight ωt of criterion Ct with the aid of Equation (35).

ωt =

√
ω

obj
t ωsub

t
n
∑

t=1

√
ω

obj
t ωsub

t

, t = 1, 2, · · · , n. (35)

5.2.4. Ranking by Improved Fermatean Fuzzy CoCoSo

Step 8: Compute the weighted sum measure by the FFSSWA operator.

P̃s = FFSSWA(Fs1,Fs2, · · · ,Fsn) =


3

√
1−

(
n
∑

t=1
ωt

(
1− (φFst)

3
)σ
) 1

σ

,

3

√(
n
∑

t=1
ωt(ψFst)

3σ
) 1

σ

 (36)

where P̃s =
(

φP̃s
, ψP̃s

)
is the Fermatean fuzzy Schweizer–Sklar weighted average compara-

bility sequence for scheme Υs.
Step 9: Compute the weighted product measure by the FFSSWG operator.

Q̃s = FFSSWA(Fs1,Fs2, · · · ,Fsn) =


3

√(
n
∑

t=1
ωt(φFst)

3σ
) 1

σ

,

3

√
1−

(
n
∑

t=1
ωt

(
1− (ψFst)

3
)σ
) 1

σ

 (37)

where Q̃s =
(

φQ̃s
, ψQ̃s

)
is the Fermatean fuzzy Schweizer–Sklar weighted geometric

comparability sequence for scheme Υs.
Step 10: Compute the appraisal score of the WSM and WPM.

S
(

P̃s
)
=

1
2

(((
φP̃s

)3
−
(

ψP̃s

)3
− ln

(
2−

(
φP̃s

)3
−
(

ψP̃s

)3
))

+ 1
)

, (38)

S
(
Q̃s
)
=

1
2

(((
φQ̃s

)3
−
(

ψQ̃s

)3
− ln

(
2−

(
φQ̃s

)3
−
(

ψQ̃s

)3
))

+ 1
)

. (39)

Step 11: Work out the relative importance of alternatives with the aid of three appraisal
score strategies.
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(i) Compute assessment score G(1)
s of scheme Υs through the arithmetic mean strategy

displayed in Equation (40),

G(1)
s =

S
(

P̃s
)
+S

(
Q̃s
)

m
∑

s=1

(
S
(

P̃s
)
+S

(
Q̃s
)) . (40)

(ii) Compute assessment score G(2)
s of scheme Υs through the relative score strategy

displayed in Equation (41),

G(2)
s =

S
(

P̃s
)

min
1≤s≤m

{
S
(

P̃s
)} +

S
(
Q̃s
)

min
1≤s≤m

{
S
(
Q̃s
)} . (41)

(iii) Compute assessment score G(3)
s of scheme Υs through the balanced compromise

strategy displayed in Equation (42),

G(3)
s =

$S
(

P̃s
)
+ (1− $)S

(
Q̃s
)

$ max
1≤s≤m

{
S
(

P̃s
)}

+ (1− $) max
1≤s≤m

{
S
(
Q̃s
)} , (42)

where $($ ∈ [0, 1]) stands for the balancing coefficient.

Step 12: The classical COCOSO method only obtains the final decision scheme ranking
by synthesizing the numerical results of the above three strategies, but ignores the ranking
results of the three strategies. Based upon this defect, Wen et al. [48] constructed an
innovative aggregation formulation to reasonably integrate the numerical results and
rank the mentioned strategies. In this paper, we fuse the three aggregation strategies
G(y)

s (y = 1, 2, 3) and acquire the ultimate sorting of scheme Υs.

<(Υs) =
3

∑
y=1

√√√√√√1
2


 G(y)

s

max
1≤s≤m

{
G(y)

s

}


2

+

(
m− R̃(y)

m

)2
, (43)

where G(y)
s denotes the strategy values of the sth strategy to supplier Υs, and R̃(y) signifies

the rank of supplier Υs under the strategy values of G(y)
s , and y indicates the number of

fusion strategies.
Step 13: End.

6. Empirical Study

In the current section, an empirical method for supplier assessment is employed to
validate the feasibility and practicability of the proposed Fermatean fuzzy CoCoSo group-
decision framework. To begin with, we illustrate the example’s background and use the
presented FF-CoCoSo group-decision algorithm to deal with the supplier problem. Then
we analyze the sensibility and robustness of the FF-CoCoSo group-decision algorithm with
the aid of paramater analysis and weight during the decision analysis. Further, we expound
several merits and significant characteristics of the advanced FF-CoCoSo group-decision
algorithm in dealing with actual vague decisions.

6.1. Case Background

Selecting appropriate green suppliers is one of the important measures for enterprises
to enhance their core competitiveness. Friendly cooperation between enterprises and
suppliers does not only ensure the safety of commodity transportation, but also continu-
ously improves the economics of enterprises. The advent of new energy vehicles not only
reduces the air pollution caused by traditional fuel vehicles, but also further improves
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the combustion efficiency of automobile engines. ABC company is a large automobile
company that produces new energy vehicles and related accessories and facilities. After the
transformation of the company, the company will re-screen a number of green suppliers to
provide services for the company. The transportation department of the enterprise selected
six suppliers {Υs|s = 1, 2, · · · , 6} through qualification review, enterprise credit review and
other links to enter the expert selection stage. Four experts {E(l)|l = 1, 2, 3, 4} selected the
best supplier by investigating the enterprise’s products and combining their own knowl-
edge and experience to determine five criteria {Ct|t = 1, 2, · · · , 5}. The illustrations of the
above five criteria are displayed in Table 2. The core goal of the company is to acquire
priority order and choose the best one of the six suppliers with the aid of four experts.

Table 2. Depictions of the criteria for green supplier selection.

Criteria Description Type References

Quality (C1)

Quality is the characteristic that the sup-
plier’s products meet the specified and po-
tential needs, which is mainly reflected in
the product qualification rate, quality sta-
bility, product repair and return rate and
product cleanliness.

Benefit [4,7,8,11–14]

Cost (C2)
Cost is the main cost involved in the sup-
plier’s service process, including service
cost and transportation cost.

Cost [3,4,7,8,11–14]

Service level (C3)

This refers to the ability of suppliers to pro-
vide various services for the whole supply
chain during delivery, which is mainly re-
flected in on-time arrival rate, flexibility of
delivery ability, maintenance service ability
and service attitude.

Benefit [4,8,11,12,14]

Production capacity (C4)

This is mainly reflected in the product pro-
duction scale, the operation status of pro-
duction equipment and the flexibility in the
production process.

Benefit [4,7,11–13]

Technical level (C5)

This is mainly reflected in the ability for
product innovation, the technical level of
production equipment and the level of prod-
uct design.

Benefit [3,4,7,11,14]

6.2. Decision Analysis

Stage 1: Obtain the Fermatean fuzzy assessment information.
Based on the introduction of the practical case, we use the presented FF-COCOSO

group-decision approach to select the optimal supplier. The assessment experts give their
assessment opinion for the considered supplier with respect to different criteria using the
provided linguistic assessment terms; this assessment information is gathered in Table 3.
Then, the Fermatean fuzzy assessment information is shown in Table 4, which is obtained
through transformation of the data in Table 1.

Stage 2: Assessment information fusion.
Considering that different types of evaluation criteria will lead to unreasonable

decision-making results, normalized Fermatean fuzzy assessment information is obtained
according to Equation (25), and the results are displayed in Table 5.

Considering the fuzziness of experts’ cognition in decision analysis, experts provide their
importance grades with the help of Fermatean fuzzy numbers, namely, E(1) = (0.90, 0.30),
E(2) = (0.80, 0.40), E(3) = (0.70, 0.50), E(4) = (0.75, 0.45). Afterwards, the importance of
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each evaluation expert can be calculated based on the Fermatean fuzzy information and
Equation (26). The result of expert weight νl is shown below:

νl = 0.3447, ν2 = 0.2543, ν3 = 0.1839; ν4 = 0.2170.

After that, the Fermatean fuzzy comprehensive assessment information of suppliers is
acquired by aggregating the assessment information of diverse experts with the assistance
of weight information and the proposed FFSSWA operators. The outcome is shown in
Table 6.

Table 3. Preferences for selection of green supplier provided by experts using the linguistic terms.

Expert Alternative C1 C2 C3 C4 C5

Υ1 VH L VH VH H
Υ2 VH VL MH MH MH

E(1) Υ3 MH BM VVH H MH
Υ4 VVH ML M AM VH
Υ5 MH L VH VH VH
Υ6 VH VVL H VH VVH
Υ1 VH ML AM H M
Υ2 VVH L M MH AM

E(2) Υ3 MH BM VH VH M
Υ4 AM M VH AM VVH
Υ5 VH L MH H VH
Υ6 VH VL VVH VH VH
Υ1 MH VL MH H AM
Υ2 VH BM H AM M

E(3) Υ3 MH BM M VH MH
Υ4 VVH L VVH MH VH
Υ5 VH M VH VH H
Υ6 VH VL VH H VVH
Υ1 M BM VH H VVH
Υ2 VH L AM MH MH

E(4) Υ3 H VL VH VH VH
Υ4 VH VL VH VVH M
Υ5 M BM H MH H
Υ6 VVH VVL VVH H VH

Table 4. Preferences for selection of green supplier provided by experts using Fermatean fuzzy
information.

Expert Alternative C1 C2 C3 C4 C5

Υ1 (0.90, 0.30) (0.35, 0.85) (0.90, 0.30) (0.90, 0.30) (0.85, 0.35)
Υ2 (0.90, 0.30) (0.30, 0.90) (0.80, 0.40) (0.80, 0.40) (0.80, 0.40)

E(1) Υ3 (0.80, 0.40) (0.50, 0.70) (0.95, 0.25) (0.85, 0.35) (0.80, 0.40)
Υ4 (0.95, 0.25) (0.40, 0.80) (0.60, 0.60) (0.70, 0.50) (0.90, 0.30)
Υ5 (0.80, 0.40) (0.35, 0.85) (0.90, 0.30) (0.90, 0.30) (0.90, 0.30)
Υ6 (0.90, 0.30) (0.25, 0.95) (0.85, 0.35) (0.90, 0.30) (0.95, 0.25)

Υ1 (0.90, 0.30) (0.40, 0.80) (0.70, 0.50) (0.85, 0.35) (0.60, 0.60)
Υ2 (0.95, 0.25) (0.35, 0.85) (0.60, 0.60) (0.80, 0.40) (0.70, 0.50)

E(2) Υ3 (0.80, 0.40) (0.50, 0.70) (0.90, 0.30) (0.90, 0.30) (0.60, 0.60)
Υ4 (0.70, 0.50) (0.60, 0.60) (0.90, 0.30) (0.70, 0.50) (0.95, 0.25)
Υ5 (0.90, 0.30) (0.35, 0.85) (0.80, 0.40) (0.85, 0.35) (0.90, 0.30)
Υ6 (0.90, 0.30) (0.30, 0.90) (0.95, 0.25) (0.90, 0.30) (0.90, 0.30)
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Table 4. Cont.

Expert Alternative C1 C2 C3 C4 C5

Υ1 (0.80, 0.40) (0.30, 0.90) (0.80, 0.40) (0.85, 0.35) (0.70, 0.50)
Υ2 (0.90, 0.30) (0.50, 0.70) (0.85, 0.35) (0.70, 0.50) (0.60, 0.60)

E(3) Υ3 (0.80, 0.40) (0.50, 0.70) (0.60, 0.60) (0.90, 0.30) (0.80, 0.40)
Υ4 (0.95, 0.25) (0.35, 0.85) (0.95, 0.25) (0.80, 0.40) (0.90, 0.30)
Υ5 (0.90, 0.30) (0.60, 0.60) (0.90, 0.30) (0.90, 0.30) (0.85, 0.35)
Υ6 (0.90, 0.30) (0.30, 0.90) (0.90, 0.30) (0.85, 0.35) (0.95, 0.25)

Υ1 (0.60, 0.60) (0.50, 0.70) (0.90, 0.30) (0.85, 0.35) (0.95, 0.25)
Υ2 (0.90, 0.30) (0.35, 0.85) (0.70, 0.50) (0.80, 0.40) (0.80, 0.40)

E(4) Υ3 (0.85, 0.35) (0.30, 0.90) (0.90, 0.30) (0.90, 0.30) (0.90, 0.30)
Υ4 (0.90, 0.30) (0.30, 0.90) (0.90, 0.30) (0.95, 0.25) (0.60, 0.60)
Υ5 (0.60, 0.60) (0.50, 0.70) (0.85, 0.35) (0.80, 0.40) (0.85, 0.35)
Υ6 (0.95, 0.25) (0.25, 0.95) (0.95, 0.25) (0.85, 0.35) (0.90, 0.30)

Table 5. The normalized Fermatean fuzzy assessment information for selection of green supplier.

Expert Alternative C1 C2 C3 C4 C5

Υ1 (0.90, 0.30) (0.85, 0.35) (0.90, 0.30) (0.90, 0.30) (0.85, 0.35)
Υ2 (0.90, 0.30) (0.90, 0.30) (0.80, 0.40) (0.80, 0.40) (0.80, 0.40)

E(1) Υ3 (0.80, 0.40) (0.70, 0.50) (0.95, 0.25) (0.85, 0.35) (0.80, 0.40)
Υ4 (0.95, 0.25) (0.80, 0.40) (0.60, 0.60) (0.70, 0.50) (0.90, 0.30)
Υ5 (0.80, 0.40) (0.85, 0.35) (0.90, 0.30) (0.90, 0.30) (0.90, 0.30)
Υ6 (0.90, 0.30) (0.95, 0.25) (0.85, 0.35) (0.90, 0.30) (0.95, 0.25)

Υ1 (0.90, 0.30) (0.80, 0.40) (0.70, 0.50) (0.85, 0.35) (0.60, 0.60)
Υ2 (0.95, 0.25) (0.85, 0.35) (0.60, 0.60) (0.80, 0.40) (0.70, 0.50)

E(2) Υ3 (0.80, 0.40) (0.70, 0.50) (0.90, 0.30) (0.90, 0.30) (0.60, 0.60)
Υ4 (0.70, 0.50) (0.60, 0.60) (0.90, 0.30) (0.70, 0.50) (0.95, 0.25)
Υ5 (0.90, 0.30) (0.85, 0.35) (0.80, 0.40) (0.85, 0.35) (0.90, 0.30)
Υ6 (0.90, 0.30) (0.90, 0.30) (0.95, 0.25) (0.90, 0.30) (0.90, 0.30)

Υ1 (0.80, 0.40) (0.90, 0.30) (0.80, 0.40) (0.85, 0.35) (0.70, 0.50)
Υ2 (0.90, 0.30) (0.70, 0.50) (0.85, 0.35) (0.70, 0.50) (0.60, 0.60)

E(3) Υ3 (0.80, 0.40) (0.70, 0.50) (0.60, 0.60) (0.90, 0.30) (0.80, 0.40)
Υ4 (0.95, 0.25) (0.85, 0.35) (0.95, 0.25) (0.80, 0.40) (0.90, 0.30)
Υ5 (0.90, 0.30) (0.60, 0.60) (0.90, 0.30) (0.90, 0.30) (0.85, 0.35)
Υ6 (0.90, 0.30) (0.90, 0.30) (0.90, 0.30) (0.85, 0.35) (0.95, 0.25)

Υ1 (0.60, 0.60) (0.70, 0.50) (0.90, 0.30) (0.85, 0.35) (0.95, 0.25)
Υ2 (0.90, 0.30) (0.85, 0.35) (0.70, 0.50) (0.80, 0.40) (0.80, 0.40)

E(4) Υ3 (0.85, 0.35) (0.90, 0.30) (0.90, 0.30) (0.90, 0.30) (0.90, 0.30)
Υ4 (0.90, 0.30) (0.90, 0.30) (0.90, 0.30) (0.95, 0.25) (0.60, 0.60)
Υ5 (0.60, 0.60) (0.70, 0.50) (0.85, 0.35) (0.80, 0.40) (0.85, 0.35)
Υ6 (0.95, 0.25) (0.95, 0.25) (0.95, 0.25) (0.85, 0.35) (0.90, 0.30)

Table 6. The comprehensive decision matrix obtained by the FFSSWA operator.

Alternative C1 C2 C3 C4 C5

Υ1 (0.8758, 0.3236) (0.8455, 0.3531) (0.8737, 0.3236) (0.8743, 0.3263) (0.9008, 0.3115)
Υ2 (0.9244, 0.2802) (0.8674, 0.3324) (0.7791, 0.4533) (0.7887, 0.4098) (0.7635, 0.4304)
Υ3 (0.8148, 0.3846) (0.8154, 0.3771) (0.9262, 0.2750) (0.8886, 0.3119) (0.8325, 0.3637)
Υ4 (0.9345, 0.2718) (0.8404, 0.3565) (0.9086, 0.3357) (0.8966, 0.3177) (0.9192, 0.2875)
Υ5 (0.8623, 0.3364) (0.8167, 0.3778) (0.8791, 0.3215) (0.8797, 0.3209) (0.8864, 0.3142)
Υ6 (0.9219, 0.2826) (0.9388, 0.2648) (0.9325, 0.2769) (0.8864, 0.3142) (0.9376, 0.2662)

Stage 3: Computing the criteria weight based on combinative method.
To compute the importance grade of the considered assessment criteria, we utilize the

Fermatean fuzzy BWM and entropy weight to evaluate the subjective weight and objective
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weight, respectively, of assessment criteria. Then we further work out the combinative
weight of criteria through integrating the ideal between the subjective and objective weights.

First, the subjective weights of criteria are determined by the Fermatean fuzzy BWM
based on entropy. The experts select C1 and C4 as the best and worst criteria after discussion
and negotiation. At the same time, the BO and OW vectors provided by experts are
displayed as follows:

FFBO = ((0.50, 0.50), (0.85, 0.25), (0.90, 0.15), (0.95, 0.25), (0.80, 0.50)),

FFOW = ((0.95, 0.25), (0.80, 0.15), (0.85, 0.35), (0.50, 0.50), (0.90, 0.20))T .

Then, we compute the entropy value of FFBO and FFOW vectors via the proposed Fer-
matean fuzzy entropy measure displayed in Equation (4), namely, EBO = (1.0000, 0.3445, 0.2291,
0.1290, 0.5527), EOW = (0.1290, 0.4303, 0.3702, 1.0000, 0.2331). Based on the results of EBO
and EOW, we apply them to the BWM model and attain the following:

min χ1

s.t


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(
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)
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B −

(
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B + ωsub
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)
× 0.1290

∣∣∣ ≤ χ1∣∣∣ωsub
B −

(
ωsub

B + ωsub
5

)
× 0.5527

∣∣∣ ≤ χ1∣∣∣ωsub
2 −

(
ωsub

2 + ωsub
W

)
× 0.4303

∣∣∣ ≤ χ1∣∣∣ωsub
3 −

(
ωsub

3 + ωsub
W

)
× 0.3702

∣∣∣ ≤ χ1∣∣∣ωsub
5 −

(
ωsub

5 + ωsub
W

)
× 0.2331

∣∣∣ ≤ χ1
n
∑

t=1
ωt = 1, ωt ≥ 0(t = 1, 2, · · · , 5).

with this model, we can attain the subjective weight of criteria shown as ωsub
1 = 0.0420,

ωsub
2 = 0.2019, ωsub

3 = 0.2812, ωsub
4 = 0.3649, ωsub

5 = 0.1100. The consistency index
χ1 = 0.0420, which shows high consistency is maintained during the weight determi-
nation process.

Next, the objective weights of criteria are computed based on the Fermatean fuzzy
entropy weight using Equation (34); the outcomes are shown as below:

ω
obj
1 = 0.1493, ω

obj
2 = 0.2611, ω

obj
3 = 0.1750, ω

obj
4 = 0.2147, ω

obj
5 = 0.1999.

Finally, the comprehensive weights of criteria are ascertained by Equation (35); the
results are as follows:

ω1 = 0.0826, ω2 = 0.2395, ω3 = 0.2313, ω4 = 0.2919, ω5 = 0.1547.

Stage 4: Ranking by improved Fermatean fuzzy CoCoSo.
After obtaining the comprehensive weight of criteria by combining the BWM and

entropy, we ascertain the rank order of suppliers by using Fermatean fuzzy CoCoSo,
which is improved by the propounded FFSSWA and FFSSWG operators and score function.
The computation of sum measure P̃s is by the FFSSWA operator and product measures Q̃s
is by the FFSSWG operator, and scores are displayed in Table 7.
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Table 7. The integration outcomes by utilizing FFSSWA and FFSSWG operators.

Suppliers
Sum Measure P̃s
by the FFSSWA

Operator
Score S

(
P̃s
) Product Measure Q̃s

by the FFSSWG
Operator

Score S
(
Q̃s
)

Υ1 (0.8750, 0.3276) 0.6881 (0.8703, 0.3303) 0.6785
Υ2 (0.8444, 0.3598) 0.6272 (0.8032, 0.4031) 0.5524
Υ3 (0.8881, 0.3148) 0.7159 (0.8572, 0.3390) 0.6523
Υ4 (0.9032, 0.3141) 0.7485 (0.8884, 0.3252) 0.7162
Υ5 (0.8701, 0.3298) 0.6782 (0.8608, 0.3371) 0.6595
Υ6 (0.9275, 0.2793) 0.8051 (0.9185, 0.2853) 0.7838

On the basis of the sum measure and product measure of suppliers, we first compute
the assessment scores of suppliers by three strategies G(1)

s , G(2)
s and G(3)

s . We acquire the
rank order of suppliers by Equation (43) and list the corresponding computation outcomes
in Table 8. From Table 8, the order of the selected green suppliers is Υ6 � Υ4 � Υ3 � Υ1 �
Υ5 � Υ2. In a word, the optimal green supplier is Υ6.

Table 8. The comprehensive decision matrix obtained by the FFFWA operator.

Suppliers PG(1)
s Ranking G(2)

s Ranking G(3)
s Ranking <s Ranking

Υ1 0.1645 4 2.3255 4 0.8601 4 1.9570 4
Υ2 0.1420 6 2.0000 6 0.7424 6 1.5731 6
Υ3 0.1647 3 2.3224 3 0.8611 3 2.1112 3
Υ4 0.1764 2 2.4901 2 0.9218 2 2.4130 2
Υ5 0.1611 5 2.2754 5 0.8419 5 1.8206 5
Υ6 0.1913 1 2.7027 1 1.0000 1 2.7613 1

6.3. Sensibility Analysis

Since parameters and weights play an important role in Fermatean fuzzy decision
analysis, this subsection will perform a sensitivity discussion with respect to the differ-
ent parameters and divers kinds of weights involved in the proposed Fermatean fuzzy
MCGDM method, including the following two topics: (1) the influence of parameter σ in
the presented FFSSWA and FFSSWG operators and parameter $ in the Fermatean fuzzy
CoCoSo method on the final ranks of suppliers; (2) the fluctuation of the decision outcome
attained through taking different types of weights in the process of supplier selection.

Parameter change analysis. We analyze the impact of parameters σ and $ for the final
supplier ranking. The parameter σ exists in the FFSSWA operator and FFSSWG operator,
which means it may influence expert information fusion and supplier assessment informa-
tion integration. We take the value of σ as {−1,−2,−5,−13,−20,−50,−100} and further
obtain the corresponding decision outcomes and ranks of suppliers, which are shown as
Tables 9 and 10. The results shown that although the comprehensive assessment values
of different suppliers is different, the final rank is Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2 or
Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2. However, the most satisfactory is always the sixth
supplier, which means the proposed Fermatean fuzzy decision approach in this paper is
stable with respect to diverse values of σ. Next, parameter $ can be regarded as a balance
coefficient to regulate the proportion of WSM and WPM in the third fusion strategy. Based
on the range of balance coefficient $, we take the value of $ from 0.1 to 1 and determine the
corresponding assessment values and ranks of suppliers. The results show that changing
$ does not substantially change the ranking of suppliers, which shows that the proposed
method is stable for different values of $.
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Table 9. The impact of σ on ultimate decision results.

σ
Ranking Values

Sorting
<(Υ1) <(Υ2) <(Υ3) <(Υ4) <(Υ5) <(Υ6)

σ = −1 2.0811 1.5443 1.9168 2.3444 1.8142 2.7613 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2
σ = −2 1.9570 1.5731 2.1112 2.4130 1.8206 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
σ = −5 2.0332 1.6739 2.1915 2.4949 1.8373 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2

σ = −10 2.2536 1.7576 2.0896 2.5281 1.8534 2.7613 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2
σ = −20 2.3059 1.8019 2.1039 2.5427 1.8614 2.7613 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2
σ = −50 2.3448 1.8646 2.1042 2.5477 1.8282 2.7613 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2
σ = −100 2.3582 1.8739 2.1027 2.5487 1.8277 2.7613 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2

Table 10. The impact of σ on ultimate decision results.

σ
Ranking Values

Sorting
<(Υ1) <(Υ2) <(Υ3) <(Υ4) <(Υ5) <(Υ6)

0.1 1.9599 1.5519 2.0971 2.4093 1.8203 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
0.2 1.9592 1.5572 2.1007 2.4102 1.8204 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
0.3 1.9584 1.5625 2.1042 2.4112 1.8205 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
0.4 1.9577 1.5678 2.1077 2.4121 1.8205 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
0.5 1.9570 1.5731 2.1112 2.4130 1.8206 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
0.6 1.9570 1.5731 2.1112 2.4130 1.8206 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
0.7 1.9563 1.5784 2.1147 2.4139 1.8207 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
0.8 1.9548 1.5888 2.1216 2.4158 1.8208 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
0.9 1.9541 1.5939 2.1250 2.4167 1.8209 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
1.0 1.9534 1.5990 2.1284 2.4176 1.8210 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2

Weight change analysis. The weights of diverse supplier criteria are essential for experts
to make a reasonable and effective selection from a group of suppliers. According to
classifications of weight determination, we analyze the influence of different weight types
on the final supplier ranking. Because the presented approach selects the optimal supplier
based on integrated criteria weight to comprehensively factor objectivity and subjectivity
into the decision analysis, we utilize four kinds of criteria weight, including objective
weight, subjective weight, integrated weight and equal weight to recompute the mentioned
supplier selection problem; the decision outcomes are displayed in Table 11. According to
the acquired outcomes, we find that diverse criteria weights make minor changes to the
outcome. The ranks of suppliers obtained by subjective weight and combined weight are
the same, but they are different from the rank order attained by objective weight, which
means that objective weight is non-ignorable for supplier ranking in this paper. Actually,
the objective weight determined by practical decision data is very important for experts to
develop a rational decision analysis for different complex decision problems.

Table 11. The impact of different weight types for the ultimate decision results.

Weight Type
Ranking Values

Sorting
<(Υ1) <(Υ2) <(Υ3) <(Υ4) <(Υ5) <(Υ6)

Objective weight 2.1022 1.6187 1.7914 2.4117 1.8975 2.7613 Υ6 � Υ4 � Υ1 � Υ5 � Υ3 � Υ2
Subjective weight 1.9698 1.5368 2.1676 2.4237 1.8494 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2

Combinative weight 1.9570 1.5731 2.1112 2.4130 1.8206 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2
Equal weight 2.1118 1.6383 1.8034 2.4379 1.9124 2.7613 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2

6.4. Comparative Analysis

In this part, a comparison analysis with several previous Fermatean fuzzy decision
approaches is implemented to further expound the efficiency and practicability of the
proposed methodology. Four decision methodologies—Fermatean fuzzy TOPSIS (FF-
TOPSIS), Fermatean fuzzy WASPAS (FF-WASPAS), Fermatean fuzzy WPM (FF-WPM),
Fermatean fuzzy VIKOR (FF-VIKOR), Fermatean fuzzy ARAS (FF-ARAS) and Fermatean
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fuzzy SAW (FF-SAW)—are employed to sort the suppliers in this research. Among them,
diverse decision techniques are extended to Fermatean fuzzy settings based on the distance,
score and aggregation. In order to guarantee the rationality of the comparison process, we
utilize the combined weight determined in this study to solve the above supplier problem
based on the four listed methods. The rankings of suppliers deduced by the aforementioned
methods are displayed in Table 12.

Table 12. The impact of different weight types for the ultimate decision results.

Approaches Ranking Values Sorting
<(Υ1) <(Υ2) <(Υ3) <(Υ4) <(Υ5) <(Υ6)

FF-TOPSIS method
proposed by [27]

0.5776 0.1602 0.5383 0.7430 0.5241 0.9676 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2

FF-WASPAS method
proposed by [30]

0.6274 0.4842 0.6190 0.6821 0.6100 0.7605 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2

FF-WPM method
proposed by [28]

0.6255 0.4687 0.6059 0.6754 0.6059 0.7560 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2

FF-VIKOR method
proposed by [31]

0.5123 1.0000 0.6255 0.4219 0.6296 0.0000 Υ6 � Υ4 � Υ1 � Υ3 � Υ5 � Υ2

FF-ARAS method
proposed by [31]

0.8143 0.6464 0.8180 0.8913 0.7947 0.9898 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2

FF-SAW method
proposed by [31]

0.6293 0.4996 0.6322 0.6889 0.6142 0.7650 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2

FF-CoCoSo method
in this study

1.9570 1.5731 2.1112 2.4130 1.8206 2.7613 Υ6 � Υ4 � Υ3 � Υ1 � Υ5 � Υ2

As can be observed from Table 12, the sorting outcomes of suppliers through employ-
ing the proposed approach is basically the same with the extant research FF-ARAS and
FF-SAW methods. Besides, although these approaches achieve two rankings of suppliers,
the most satisfactory suppliers as determined by FF-TOPSIS, FF-WASPAS, FF-WPM, FF-
VIKOR, FF-ARAS, FF-SAW and the presented approaches is Υ6. Accordingly, the validity
and applicability of the designed FF-CoCoSo approach is validated. Furthermore, we
further analyze the differences and outcomes of the presented method with the mentioned
approaches from the aspects of weight determination and ranking method.

From the point of view of weight evaluation. Previous approaches assume in advance
that the weights of criteria are given by experts according to their subjective experience,
knowledge background and cognitive ability, which often puts too much reliance on the
professional knowledge of experts and leads to irrational decisions. By comparison, the pro-
pounded approach not only considers the subjective weight computed by an improved
BWM, but it also factors the objective weight identified by entropy, which further enhances
the practicality of the proposed approach in dealing with actual complicated decisions.
Besides, the weight analysis in the section of sensitivity also proves that the different kinds
of weight will affect the final ranks of suppliers. Therefore, the combined weight of criteria
determined in our method is reasonable and advantageous for uncertain decision analysis.

From the aspect of decision methods. FF-TOPSIS and FF-VIKOR are based on distance
between the ideal and negative ideal solutions and the assessment value to rank the
suppliers. FF-WASPAS, FF-WPM, FF-ARAS and FF-SAW rank suppliers according to
utility. However, these Fermatean fuzzy decision approaches have the following two
defects: (1) they are all based on one or two integration strategies that fail to consider the
influence of a balanced compromise strategy on the decision result; (2) they ignore the ranks
of different integration strategies when the rank of a supplier is computed to be greater
than or equal to two strategies. The proposed Fermatean fuzzy decision method deals
with these two disadvantages efficaciously and thus obtains more rational and consistent
decision outcomes.

With the assistance of the aforementioned comparison discussion, we further extract
the significant features of these compared approaches according to the main characteristics
of MCGDM. In Table 13, we contrast the presented method with previous Fermatean fuzzy
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decision methodologies from the aspects of weight determination, information fusion and
ranking method, which further highlights the unique advantages of the method developed
in this study. In view of the above-mentioned analysis and discussions, several merits of
the proffered FF-CoCoSo group-decision approach are summarized as follows:

♣ The presented approach under Fermatean fuzzy setting can efficaciously attain the
optimal scheme in an uncertain environment with completely unknown weight infor-
mation of experts and criteria.

♣ The presented FF-CoCoSo group-decision method is improved based on the FFSSWA
and FFSSWG operators to make the overall decision procedure more flexible through
adjustable parameters.

♣ The identification of supplier criteria weights takes the subjective preferences and
actual decision data into consideration simultaneously, which further strengthens the
reliability and credibility of the decision outcomes.

♣ The final rank of suppliers is ascertained with the aid of an improved CoCoSo, which
not only considers the numerical result of multiple strategies but also considers their
rank outcomes. Accordingly, the ultimate rank result of suppliers is more credible and
robust than some extant methods.

Table 13. Characteristic comparison between the propounded method and other Fermatean fuzzy
decision algorithms.

Methods Calculation of
Expert Weights

Flexibility of the
Fusion Procedure

Criteria
Weights

Ranking
Algorithm

Considers
Multiple

Fusion Strategies

FF-TOPSIS method
proposed by [27] Assume NO Subjective TOPSIS NO

FF-WASPAS method
proposed by [30] Computing NO Objective WASPAS NO

FF-WPM method
proposed by [28] NO NO Subjective WPM NO

FF-VIKOR method
proposed by [31] NO NO Subjective VIKOR NO

FF-ARAS method
proposed by [31] NO NO Subjective ARAS NO

FF-SAW method proposed
by [31] NO NO Subjective SAW NO

The propounded method
in this study Computing YES Combined

weight CoCoSo YES

7. Results, Discussion and Conclusions
7.1. Results

In this research, we construct an multistage group decision approach with Fermatean
fuzzy information to evaluate and select the most appropriate green supplier. Firstly,
the numerical example to select a green supplier validates that the proffered method has
high feasibility to support expert evaluation of green suppliers. Next, we conduct the
sensibility discussion for the parameters in the process of information aggregation and
different criteria weights. The results exhibit that the supplier ranking results obtained
by the proposed method are stable no matter how the parameters change. However,
the criteria weight from different perspectives makes the supplier ranking change slightly,
but the optimal selection is the same. Finally, we perform comparative analysis with other
priori Fermatean fuzzy decision methodologies to test the effectiveness of the presented
method. The comparative results demonstrate that the constructed method is efficacious
for experts to select the most satisfactory supplier. Meanwhile, characteristic comparison
outcomes further highlight the significant advantage of the introduced method to rank
green suppliers under complex, uncertain circumstances.
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7.2. Discussion

As an effective extension of intuitionistic FS and Pythagorean FS, FFS does not only
possess a stronger ability to express ambiguous information but also provides freer space
for decision experts to express their preferences. In order to fully realize its advantages
in depicting uncertain information and in considering the objectivity and subjectivity of
decision processes, an integrated MCGDM decision methodology is presented to deal with
practical decision problems with unknown weight information. In order to construct the
MCGDM approach, some new Fermatean fuzzy Schweizer–Sklar operators are suggested
to fuse Fermatean fuzzy information to improve the BWM, and a novel entropy measure
is defined to improve the entropy weight method. Then, an improved CoCoSo method is
attained based on the propounded Fermatean fuzzy Schweizer–Sklar operators and score
function. The proposed Fermatean fuzzy group decision approach determines the rank of
green suppliers by combining numerical results and order outcomes of the three fusion
strategies, which further strengthen the rationality and reliability of the final green supplier
ranking. The combination of BWM-Entropy–CoCoSo method is based on the proposed
aggregation operators and entropy measure. The combined weight is attained by using
BWM and entropy weight based on proposed Fermatean fuzzy entropy, which further
improves the reliability of the criteria weight information. The improved CoCoSo method
using the presented operators further enhances the flexibility and robustness of the final
decision. Therefore, we merge the BWM-Entropy and CoCoSo method to construct a group
decision framework to strengthen the rationality and feasibility of the decision outcomes.

7.3. Conclusions

In this research, a comprehensive group decision methodology is designed on the
basis of synthetic weight calculation and a CoCoSo algorithm to rank green suppliers
with Fermatean fuzzy information. Specifically, the Fermatean fuzzy Schweizer–Sklar
operational laws are based on the Schweizer–Sklar t-norm and t-conorm, and then some
Fermatean fuzzy Schweizer–Sklar aggregation operators are put forward based on the
proposed operations. Secondly, a novel Fermatean fuzzy entropy measure is advanced
to measure the fuzziness of FFS. Furthermore, the comprehensive weights of criteria are
ascertained based on the improved BWM and entropy weight. Thirdly, an innovative Fer-
matean fuzzy MCGDM method is presented based on BWM-Entropy and CoCoSo to settle
complicated decision issues; this model can overcome the defects of the extant methods
that only consider the weight information of a single aspect. Ultimately, an actual problem
about green supplier selection is applied to illustrate the effectiveness and feasibility of
our propounded approach. Moreover, comparison between our proposed method and
previous Fermatean fuzzy decision approaches is implemented to validate the validity and
prominent superiorities of the designed group-decision method. The outcomes show that
the proffered method possesses a certain availability and unique advantages.

Nevertheless, the proposed method also has some limitations: (a) it ignores the
objective weight information of experts; (b) it fails to consider the consistency of experts
during expert information fusion; (c) it assumes that the experts in the decision process are
completely rational.

In view of the defects in the proffered method, future works will develop the re-
search of uncertain decision methods and applications from the following aspects: (1)
propose several novel Fermatean fuzzy Schweizer–Sklar operators by combining power
average operators, Muirhead mean and partitioned Hamy Mean Operators; (2) explore
and discuss some novel information measures such as dissimilar measures, knowledge
measures and divergence measures to support Fermatean fuzzy decision analysis; (3) utilize
the proposed group-decision method to address some realistic decision methods such as
sustainable supply chain [64], emergency scheme assessment [65] and solid waste manage-
ment [66]; (4) construct a large-scale group-decision-making model based on consensus
reaching [67–69].



Entropy 2022, 24, 776 29 of 32

Author Contributions: Conceptualization, D.W.; Data curation, Y.R.; Formal analysis, Y.R.; Methodol-
ogy, Y.R.; Project administration, D.W. and Y.L.; Visualization, D.M., H.G. and D.P.; Writing—original
draft, D.W., D.M., Y.R., Y.L., H.G. and D.P.; Writing—review and editing, H.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by teaching reform projects of Xihua University (no. Xhjg2021060),
the Science and Technology Planning Project of Neijiang City (no. NJFH20-003), the Fundamental
Research Funds for the Central Universities (no. JBK2203010) and the Open Research Fund Program
of Data Recovery Key Laboratory of Sichuan Province (no. DRN19014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The abbreviations displayed in the following are used in this manuscript.

Fermatean Fuzzy Set FFS
Combined Compromise Solution CoCoSo
Multi-Criteria Group Decision-Making MCGDM
Best-and-Worst Method BWM
Fuzzy Set FS
Non-Membership Grade NMG
Membership Grade MG
Fermatean Fuzzy Number FFN
Weighted Product Model WPM
Simple Additive Weighting SAW
Additive Ratio ASsessment ARAS
VIse KriterijumsaOptimiz acija I Kompromisno Resenje VIKOR
CRiteria Importance Through Intercriteria Correlation CRITIC
Evaluation based on Distance from Average Solution EDAS
An acronym in Portuguese of interactive and multi-criteria decision making TODIM
Multi-objective optimization based on the ratio analysis with the full multiplicative form MULTIMOORA
COmplex PRoportional ASsessment COPRAS
Technique for Order Preference by Similarity to an Ideal Solution TOPSIS
Fermatean Fuzzy Schweizer–Sklar Weighted Averaging FFSSWA
Fermatean Fuzzy Schweizer–Sklar Weighted Geometric FFSSWG

The notions and their explanations are displayed in the following.

φF (y) Membership function
ψF (y) Non-membership function
F Fermatean fuzzy number
S Score function of FFN F
E(F ) Entropy of FFN F
T̃SS,σ(a, b) Schweizer–Sklar T-norm
T̃∗SS,σ(a, b) Schweizer–Sklar S-norm

F l
=
(
Fst

l
)

m×n
Decision matrix of expert

Υs The sth alternative
Ct The tth criteria
ωt Weight of tth criteria
ν1 Weight of lth expert
F l =

(
F l

st

)
m×n

Normalized Fermatean fuzzy assessment matrices

ω
obj
t The objective Weight of tth criteria

ωsub
t The subjective Weight of tth criteria

P̃s FFSSWA comparability sequence
Q̃s FFSSWG comparability sequence
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G(1)
s Arithmetic mean strategy score

G(2)
s Relative score strategy

G(3)
s Balanced compromise strategy score

$ Balancing coefficient in G(3)
s

R̃(y) Rank of supplier Υs by G(y)
s
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