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Summary. This paper discusses the acceleration of charged particles by astro-
physical shock waves of arbitrary strength. As in the non-relativistic case, an
energy spectrum of powerlaw form is produced, the slope of which varies
according to the type of shock being considered. General solutions for the
propagation of relativistic shock waves in a variety of physical conditions are
presented, and the energy spectra for the resulting cosmic rays are derived.
For strong shocks, a synchrotron spectral index in the range 0.3-0.5 is
produced for propagation velocities less than 0 9c¢; higher spectral indices can
be produced only by weak shocks. The application of this acceleration
mechanism to extragalactic radio sources is discussed briefly.

1 Introduction

Highly relativistic particles play a major role in astrophysics, being involved in the production
of non-thermal continuum emission, the most common example of which is synchrotron
radiation. The non-thermal sources often have radio or optical continuum spectra which are
approximately of powerdaw form (S «v™%), indicating that the radiating electrons have a
powerdaw integral energy distribution N(> E') o« E~*, where synchrotron theory gives the
spectral index, «, as x/2. There are many deviations in detail from this simple form, but
these may usually be accounted for by superposition of power laws of different slopes, and
by allowing for the effects of self-absorption and of radiation losses on an energy spectrum
initially of powerdaw form. In this paper, we shall consider principally the radio emission
from extragalactic radio sources, although the analysis given below may be applied equally
well to galactic radio sources or to optical emission. Indeed, the ranges of spectral indices
found in non-thermal sources of all types are very similar; for the extragalactic sources, the
observed range is 0.5 < a < 2.0, corresponding to 1 < x < 4.

In addition, relativistic particles with energies up to ~ 10 eV are observed directly at the
Earth as cosmic rays. These also have powerdaw energy distributions, with x = 1.5. For
many years there was no satisfactory explanation of these results. The high energies in
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themselves were no problem, and many mechanisms involving turbulence or electromagnetic
waves in plasmas were advanced (for a review of such mechanisms, see Parker 1976); the
difficulty lay in obtaining a powerdaw of the observed slope without assuming physical
conditions unlikely to be encountered in practice. Recently, however, it has been shown
(Axford, Leer & Skadron 1977; Bell 1978a; Blandford & Ostriker 1978) that Fermi accelera-
tion in a shock front can produce a powerdaw distribution with a slope close to that observed.

The basis of the acceleration mechanism lies in recognizing that astrophysical plasmas are
collisionless, implying that the disordering which occurs in the shock front must be achieved
via turbulent electromagnetic fields. This being so, an energetic particle may have a
sufficiently high mass-to-charge ratio to penetrate the shock front undeviated. Now, if there
exists some mechanism whereby these particles undergo pitch angle scattering in the rest
frames of the fluid on each side of the shock, then they may cross and re-cross the shock and
undergo acceleration. This scattering process may be attributed to a variety of mechanisms,
the simplest of which is scattering by magnetic irregularities. Bell (1978a) also considers the
possibility that particles moving parallel to an ordered magnetic field can generate Alfvén
waves, which then lead to scattering. This process is an unstable one in which the momentum
change of a particle that undergoes scattering generates a new Alfvén wave, which can then
sustain the scattering. In this picture, the scattering is not strictly isotropic in the fluid rest
frame, but since the mechanism is effective only when ug ok > Uaten, the difference is
not significant. Bell (1978a) then shows that, for a strong shock propagating into a cold
fluid, an initial distribution of suprathermal particles will be accelerated so as to have an
energy distribution N (> E) = 1/E, corresponding to a spectral index of 0.5. These ideas have
been applied, with some success, to the production of galactic cosmic rays via the shock
waves generated by supernovae (Bell 1978b; Blandford & Ostriker 1980).

The work described in this paper was motivated by the desire to study also particle
acceleration in the powerful extragalactic sources. The previous analysis is not directly
applicable to such objects, as the shock fronts present in them are likely to move at large
fractions of the speed of light. In compact sources of scale ~ 10 pc, apparent superluminal
motions, very fast variability and one<sided ‘jets’ have established the case for bulk motions
with a Lorentz factor y ~ 5 (Scheuer & Readhead 1979). In the beam model of double radio
sources (Blandford & Rees 1974), this would correspond also to the velocity of material in
the beams of plasma which supply energy to the extended outer lobes. These outer lobes
may also involve large velocities: Longair & Riley (1979) have analysed the asymmetry of
double radio sources and derived an upper limit of 025 ¢ for the velocity of advance of the
hot-spots at the outer edges of the extended lobes. If we wish to study particle acceleration
in such sources, it is therefore necessary to consider shocks with propagation velocities
arbitrarily close to c. ’

Section 2 of this paper presents the analysis of particle acceleration for a relativistic shock.
Section 3 considers the propagation of relativistic shocks in detail and derives the particle
spectra produced for a variety of physical conditions. Finally, possible modifications to the
basic mechanism and its application in practice are discussed in Section 4.

2 The acceleration mechanism
2.1 OUTLINE OF THE PROBLEM

Fig. 1 shows the simple two-dimensional shock geometry to be considered, in the frame in
which the shock front is stationary. u, and u, are the velocities of the bulk fluid upstream
and downstream. Quantities pertaining to the suprathermal particles undergoing acceleration
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Figure 1. The simple plane-shock geometry to be considered, viewed in the frame in which the shock
front is stationary. The bulk flow velocities upstream and downstream are u, and u«,. The proper number
densities of suprathermal particles upstream and downstream are n, and n,. The crossing angles ¢, and 9,
are defined in the rest frame of the bulk fluid.

(1) Upstream
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are all measured in the rest frame of the fluid on either side, so that n, and n, are the proper
number densities of relativistic particles.

The acceleration process which we wish to study consists of suprathermal particles
crossing and re-crossing the shock front and gaining energy via the velocity difference of the
bulk flows on either side. We shall analyse this process via the single-particle approach of
Bell (1978a), rather than the fluid-dynamical methods of Axford et al. (1977) or Blandford
& Ostriker (1978). In common with all these authors, we consider only the situation where
the suprathermal particles are assumed to have a negligible effect on the propagation of the
shock wave in the bulk material.

Consider NV, particles crossing from the upstream region to the downstream region, each
with initial energy F,. There will be a probability P (#,) that a particle will eventually return
and, if it does so, its energy will be increased by some factor § (64, 6,), where 6 and 6, are
the angles of crossing and re<crossing the shock (see Fig. 1). In principle, P and & as defined
above might be expected to be functions of E, but in fact both are energy-independent (see
Sections 2.3 and 2.4). After k cycles of crossing and re<crossing, we shall have N of the NV,
particles remaining on the upstream side, where

N Kk
=Py (D
No
and {P) is P(0,) averaged over the numbers of particles crossing with various values of ,.

Each of the particles remaining will have a different energy E, depending on its exact values
of 6, and 0, for each crossing, such that

E k
ln(—) = Y In@y. )
Ey i=1
Hence, after each crossing, the distribution of energies is broadened but shifted to higher
energy. Now the central limit theorem tells us that, in the log plane, the distribution of
energies quickly becomes Gaussian, so the median energy, £, , is given by

E
In (—"‘—) =k (In8), 3)

Ey

where {Iné) is Iné averaged over the numbers of particles returning at 6,, having crossed at
0. This is not the same as averaging over the numbers of particles crossing at 6, and recrossing
at 6, separately, since P(f,) must be incorporated. The energy distribution produced by the
injection of particles at E, therefore consists,in the log plane, of a series of Gaussians equally
spaced by (Ind), each successive distribution being broader and containing fewer particles
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than the previous one. Hence, if we convolve this distribution with a distribution of E,
which is wider in the log plane than (In§), then the result is the same as if we had ignored
the broadening of the Gaussians and had taken each particle to have its energy increased by
the same factor,exp ({Ind)), at each crossing. Hence, from equations (1) and (3), the integral
energy spectrum is given by

E X
i m(_) , @)
where
In ({P)
x=nCR) )
(Iné>

2.2 THE DISTRIBUTIONS OF 4 AND 0,

In this Section, and in those that follow, we use units such thatc =1,

The argument in the previous section leaves unspecified the distributions of 6, and 6,
appropriate for performing the averaging in equation (5). The tacit assumption is that, after
several crossings, the distributions of 8, and 6, will tend to a form determined merely by the
nature of the scattering process on either side of the shock. Rather than attempting to
follow this process in detail, we instead consider a simple situation where the distribution of
suprathermal particles about the shock front is in a steady state. In this case, the angular
distributions required in equation (5) should be given simply by the numbers of particles
that cross the shock at 8, and 6, in equilibrium. However, the determination of this steady-
state distribution is complicated by the fact that, since there will be a net drift of particles
downstream, injection of particles is required to maintain the equilibrium state. These
injected particles will be created with some angular distribution which could affect the distri-
butions of 6, and 6, for particles that cross the shock. To tackle this problem, we note that
any specific assumptions we make about the nature of the injection should not affect the
general answer which we are attempting to obtain; this must depend only on «; and u, and
on the nature of the scattering around the shock. Therefore, let us assume that any injection
is confined to the region of the shock front itself: in this case, the angular distributions of
particles at large distances away from the shock upstream and downstream will be unaffected
by the injection. To calculate these distributions, we must consider in more detail the spatial
variations in the number density of suprathermal particles about the shock front.

For shocks with u; <1, the diffusion equation applies and the steady-state number
density of suprathermal particles of a particular energy is given by Bell (1978a) as

ny=A +Bexp (—fx Dl;,) dx') (x>0), (6)

n,=C (x<0), (7)

where x is the distance from the shock front (defined so that x increases in the upstream
direction) and D is the diffusion coefficient. Thus the density of particles is constant behind
the shock, but decreases ahead of it. In the expression for n,, the first term represents pre-
existing particles in the upstream medium, whereas the second represents the diffusion ahead
of the shock of the particles that have crossed from the downstream side. When u; becomes
relativistic, the diffusion equation no longer applies and the above expressions for n, and
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n, require modification. However, the basic situation remains unaltered: the requirement of
time independence means that n, still remains a constant and n, will still decrease ahead of
the shock. Hence, since isotropic scattering is assumed to occur in the rest frames of the
upstream and downstream fluids, the angular distribution of the suprathermal particles
downstream of the shock must become isotropic in the rest frame of the downstream flow.
Due to the spatial variation of n,, however, the situation upstream is more complex; in order
to obtain an expression for the distribution of 8, we must consider a specific model for the
scattering process. For simplicity, we shall assume that the scattering is due to pre-existing
magnetic irregularities in the upstream medium. This is not by any means the only possi-
bility, but should give us a useful guide to the sort of anisotropies that may exist in the
upstream @, distributions. For this calculation, it is most convenient to work in the shock
frame; consider a particle travelling at an angle ¢ to the shock normal, where ¢ = 0 is defined
to be in the downstream direction. Thus, on the upstream side

cosf; +u,
cosp=s ——— | ®)
1+uycosf,
whereas on the downstream side
cosf, — u,y
cosp=— ——— | )
1 —u,cosf,

The number of particles travelling in the range ¢ to ¢ + d¢, dn, is determined by the sum of
the scattered contributions from other regions of the upstream.fluid. If we evaluate dn by
summing the contributions received at a point which is a distarice x ahead of the shock as
measured in the shock frame, then we may write

dn o F(qb)j~°° n,(x +rcos¢) P(r)dr, (10)

where F (¢) is an angular factor depending on the anisotropy of the scattering, r is the dis-
tance from the point considered as measured in the shock frame, and P (r) is the probability
that a particle will travel a distance r in the shock frame without being scattered. Since the
scattering is isotropic in the fluid rest frame, F (¢) is simply proportional to d(cos8,), where
d(cos0) dcos¢ an
cosfy) = .
7 (1 —uycose)
An equation such as (10) may always be satisfied by a selfsimilar exponential solution for
ny:ny «exp (— kx), hence

ny(x + rcosg) o exp {—krcose). (12)

Finally, the form of P(r) depends on the assumed distribution of mean free paths, which
depends in turn on the exact distribution of magnetic irregularities considered. For simpli-
city, we shall consider the distribution of mean free paths, g(\), in the fluid frame to have
the form appropriate for a constant scattering probability per unit time

1
g =— exp(—XAo), (13)
Ao

from which it follows that

P(r)=exp(—7y1r(1 —u cosd)/Ny). (14)
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Although this model for the scattering process is a highly idealized one, it should be suffi-
cient to yield some insight into the type of anisotropy that may exist in the upstream
angular distributions. As discussed in-Section 3.3, the spectral indices predicted by this
analysis do not in fact depend strongly on the precise form of these distributions.

When the above assumptions are made, the angular dependence of d®,, the flux per unit
area of particles travelling at ¢ in the upstream region, is given by equation (10) as

cospd (cbs ®)

dd, o s 15
! (1 —u,cos¢)*(1 +acos o) (15)
where
kg
a=— —U;.
Y1

The parameter a (and hence k) is determined by the condition that the net flux of particle
number measured in the shock frame should be zero for a steady-state solution. Hence

1
f dd,=0,
-1

which yields

[(1 —uy)(1 —d)] 2(uta)
n + =0
(1 +u)( +a) (1-u?)

For small u,, a =~ 2u,; for large u,, « tends to 1.

By a similar argument, we may also obtain the flux of particle number per unit area
downstream of the shock, d®,, as

(16)

cos¢ d (cos@)

(o8 3
(1 —u,cos¢)®

2 a7
This form is in fact independent of the model of the scattering adopted, being merely the
result of transforming the isotropic distribution that exists in the downstream rest frame.

Now, having found the distributions of ¢ in the upstream and downstream regions, we
must consider how these are related to the distributions of ¢ crossing the shock. The
problem is that, within one mean free path on either side of the shock, the distributions
given by equations (15) and (17) begin to be affected by the contributions of the particles
that have crossed the shock. Hence, the actual distribution of ¢ for particles crossing the
shock will be some form intermediate between equations (15) and (17). This fact is sufficient
to allow reasonable limits to be put on the variation of a due to the uncertainty in the
distribution of ¢ at the shock (see Section 3.3), and we shall not attempt a precise solution
of this problem,

23 CALCULATION OF § (04, 6,)

Consider a particle with energy E crossing the shock at 6y, being scattered in pitch angle
(but gaining no energy) in the rest frame of the downstream fluid, and returning at 6,. Its
energy after this process is given by a double Lorentz transformation

E'=Ey3(1+ Acosf,)(1 + Acosf,), (18)
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where
u,—u
A(= 1 2)
I—UIU2

is the velocity difference of the upstream and downstream flows. Hence

(Ind)=2Iny, +{n(1 + Acosf,))+ {In(1 + Acosf, ), (19)

where

1

f P@,)In(1+Acosd,)dd,
(n(1 + Acosf,)) = - , , (20)
f P©,)de,

0

f In(1 + Acos,)d®,

(In(1 +Acosf,)) = - . (21)
f do,

In these expressions, d®, and d®, represent the actual numbers of particles crossing the
shock at 0, and 0, respectively. Equation (20) is simpler than (21), as d P, gives the probabi-
lity of returning at 6, directly.

24 CALCULATION OF P(6,)

P (6) must be determined by the scattering in the downstream region. This is characterized
by a mean free path A, which will in general be a function of energy. Since P (6,) can depend
on u,, u,, x and 6, only, we see by a dimensional argument that P (6,) must be independent
of A, and hence of energy. This argument will break down only when A becomes comparable
with the scale of the accelerating region, and this will determine a high energy cut-off.

To obtain an expression for P (f,), we adopt a simple model for the post-shock scattering
process. Let a particle possess a mean free path, A, in the fluid frame, such that the particle
travels a distance A and is then isotropized. If the particle crosses the shock at 8, it travels
at an angle ¢ to the shock normal in the shock frame, where

cosf, +u,

cos¢ = (22)

1+u,cos0,

The particle is first scattered when it is a distance b from the shock as measured in the down-
stream rest frame, where

Acos¢
b —

" Y2(1 —uzcosp)

(23)

The problem now becomes a standard one in probability theory: the random walk with a
moving barrier. This may be solved by means of the diffusion equation (see Cox & Miller
1965). Although the diffusion approximation is not strictly valid in this case, the answer
obtained should still be useful since (i) u, is generally less than 1/3 (see Section 3.3), and
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(ii) many particles will take a large number of scatterings to cross the shock. In this approxi-
mation, we have for the probability of return as a function of b,

P(b)=Aexp(—u,b/D), (24)

where D is the diffusion coefficient and 4 is an arbitrary constant. Finally, we must average
b over a distribution of mean free paths: we again take this to have the simple form of
equation (13). In this case, since we hage D =,/3, we obtain

3u, cosg ]‘1

P@@=All+ —2—"
) [+7%(l—uzcosrb)

(25)

The above analysis leaves the constant 4 undetermined; to overcome this problem, we
can use a direct argument to find (P) for one particular distribution of ¢. If we require the
distribution of ¢ for particles crossing from upstream to downstream to be the same as the
form at large distances downstream (equation 17), then this distribution of ¢ will apply
throughout the downstream region. Hence, P (¢) averaged over equation (17) will be given
simply by the ratio of the flux of particle number crossing from downstream to upstream to
the flux crossing from upstream to downstream. Therefore, from (17), we have in this case

® cos¢d(cosg)
o (L—uzcos9)’ 1y, )\?
' cos¢ d (cose) ) (1+u2)
.[ (1 —u,cos¢)®

(Py= (26)

which allows the constant 4 to be found for a given value of u,.

Since, for strong shocks, u, < 1/3 (see Section 3.3), the expression for P(¢) in (25)
should be quite accurate. Before proceeding further, it is nevertheless advisable to check this.
As a test, therefore, we evaluated P (¢) numerically by following the scattering process step-
by-step. If the above assumptions about the nature of the post-shock scattering and the
distribution of mean free paths are made, then it is possible to simulate the random walk and
find the probability of return asa function of the point at which the particle is first scattered.
Using (13), we can then average this probability over the distribution of mean free paths to
find P(¢). We chose to perform this simulation for the case u, = 1/3, to provide the most
severe test of equation (25). The resulting form for P(¢) is shown in Fig. 2, together with
the curve derived from (25) and (26). We see that, even in this extreme limit of post-shock
velocity, the analytical expression gives a result quite close to that of the numerical simula-
tion. For cos¢ > 0.5, there is little difference between the two curves and both predict that
the minimum value of P(¢) should be about 02. Equation (26) shows that, for u, =1/3,
P (¢) averaged over the distribution in (17) should be 0.25; this was found to be the case for
our numerical simulation, giving confidence that it had been performed correctly. Although
these calculations have been based on a specific model for the downstream scattering, the
following points suggest that the results are likely to be model-independent. Since the
averaging of P (¢) based on (17) is quite strongly biased towards cos¢ ~ 1 for u, = 1/3, it is
clear that P(¢) for cos¢ = 1 must be close to 0.25, independent of the exact nature of the
downstream scattering. This fact, combined with the requirement that P(¢) must be less
than 1 for cos¢ = 0, suggests that any form for P(¢) that is to be consistent with (P) =025
must be quite similar to the curves in Fig. 2. In view of these points and of the good agree-
ment between the analytical expression for P(¢) and the numerical simulation, we are
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Figure 2. The probability of return as a function of crossing angle as measured in the shock frame,

P (¢), for u, =1/3. The solid line is the result of the numerical simulation, and the dashed line shows the
prediction of equations (25) and (26).

confident that the use of equations (25) and (26) for P(¢) will not produce any important
errors in a.

Thus, we now have an expression for P(¢) and also reasonable limits within which the
distributions of 6, and 0, for particles crossing the shock must lie. Hence, given u; and u,,
we are in a position to evaluate the integrals in (20) and (21) numerically and find c.

3 The propagation of relativistic shock waves
3.1 THE SHOCK EQUATIONS

The fundamentals of relativistic shocks are given by Landau & Lifshitz (1959) and we shall
use their notation here. There are three jump conditions

7%ulwl =’Y%U2W2 y 27)
yiuiw, + P =vjuiw, + P, (28)
YiU1P1 = Y2U202, (29)

where e = energy density, P = pressure, w = enthalpy = e + p and p = rest mass density of the
bulk fluid. Additionally, we require an equation of state for the bulk fluid and, following
Blandford & McKee (1976), we consider:

P=(T-1)(e—-p), (30)

where T' is a parameter which varies between 5/3 for cold material and 4/3 for material
which is sufficiently hot for its internal motions to be relativistic. In these two limits, I' is
precisely the ratio of specific heats, but not for intermediate cases. In general, the processing
of the bulk fluid by the shock will change the thermodynamic state so that I" has different
values in the preshock and post-shock regions. This is considered in Section 3.2. Since I'
varies, (30) is not precisely an equation of state: it merely allows us to eliminate p in terms
of I,

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 0z o 1s8NnB Ad €17E96/GE |/2/96 L /9101ME/SEIUW /WO dNO"DIWSPEsE//:SRY WOy POPEOjUMOQ


http://adsabs.harvard.edu/abs/1981MNRAS.196..135P

FIOBIVNRAS, 196- ~135P!

144 J. A. Peacock

The solution of (27)—(29) to find the relation between u, and u, is simplified in two
cases:

(@) I'y=T,=4/3.

This is a shock wave propagating in a relativistic gas. Equations (34) and (35) yield
Buy+ 1fuy=3uy+ 1/u,, €29)
which gives u, as a function of u, directly.

(b) Strong shocks.
In this case, P,/p, > Py/p,, which is always true for a shock propagating into cold material.
Blandford & McKee give

Ry=e3/py= YA wWi/P1s (32)
(ra + DT (ry—1)+1)?
[Q2-Ty)(yy, —1+2°

where R is the mean internal Lorentz factor of the bulk material. Additionally, we may
derive

(33)

Y=

=N
Fz(’yA—l)"'l

Since we may find uy and u, as a function of the single parameter R, if we know I';, the
general equation of state which we require in order to express u, and u, in terms of a single
parameter is I' (R).

For material with I'y between 5/3 and 4/3, there is no analytic solution and (27)—(29)
must be solved numerically. This may be done if the ratios w,/p,, w,/p,, wy /Py and w,/P,
are known; again we require the equation of state I' (R ) if the solution for u, and u, is to be
parameterized in terms of R, for a given initial value of Ty,

Y2 (34)

3.2 THE EQUATION OF STATE

The natural assumption in deriving an equation of state is that of thermal equilibrium. In the
absence of two-body processes in a collisionless plasma, this may not be achieved easily,
but may be valid for the unshocked material. The basic thermodynamics of relativistic gases
are given by Chandrasekhar (1939). For a single-particle gas at temperature T, we have

Pk (35)
m
3 K, (z) (36)

R=elp=—+ ,
, z Ko(z)+2K,(2)/z
where z=m/kT and K, and K, are modified Bessel functions (see Abramowitz & Stegun
1965). The appropriate relations for an astrophysical plasma (with 25 per cent of helium by
mass) may be derived simply from these by summing over all species of particles as follows:

p-y 2L 37)

i m;
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Figure 3. The equation of state I" (R) for an astrophysical plasma in thermal equilibrium. The temperature
scale which corresponds to the scale of R in this case is also shown.

e=) R, (38)
p=Y ni. (39)

This allows us to derive the I'— R relation (Fig. 3), and hence all ratios required for a
solution of the shock equations. This I' — R curve gives the value I" = 5/3 up to temperatures
~ 10°K, beyond which point T" falls rapidly — levelling off at I' ~ 1.45 at a temperature of
~ 10K before dropping rapidly again to I' = 4/3. This first rapid fall is caused by the elec-
trons becoming relativistic while the H and He nuclei are still moving sub-relativistically. The
worrying feature of this solution is that the electrons are required to move so much faster
than the protons (which do not become relativistic until the electrons have Lorentz factors
~1000). In a normal gas, this would be achieved by two-body collisions leading to equi-
partition of energy. Since the plasmas we consider here are collisionless, thermalization may
not take place and we thus need to consider the difference this will make to shock propaga-
tion,

An extreme alternative to thermalization may be visualized in terms of a shock front
which consists only of magnetic irregularities and therefore preserves, in its own frame, the
energies of incoming particles. In this case, using the same 6, and 6, as in Fig. 1, but now
considering bulk particles,

Y1(Ey tuymicosdy) =7, (Ey —uymycoshy), (40)

where 7, and 7, are the momenta of the bulk particles in the upstream and downstream rest
frames. The energies of all bulk particles are thus increased by a mean factor of about 7v,/v,.
For a simple model of the effect of this on an incoming gas, let us assume that the shock
takes all incoming particles and raises their energies by the same factor 8 (not to be confused
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Figure 4. Possible thermodynamic histories for the shocked material, illustrated for three initial tempera-
tures of the unshocked material: 0, 10! and 10'2K. From each of these starting points, two routes are
shown: one that follows the thermalization curve of Fig. 2 (shown dashed), and one that departs from
this curve according to the anti-thermalization picture outlined in Section 3.2.

with the factor § which applies for suprathermal particles). This should illustrate the possible
differences from the case of postshock thermalization. We consider an initially thermalized
gas with parameters T, Rq, I'g and obtain the I — R relation

K 11
C-DR-1= +3(B— )RO, (41)

Bm* B

where R = iR and m* is the mean rest mass of the particles in the plasma. This picture of the
processes at work in a collisionless shock front is almost certainly unrealistic, but it gives us a
useful guide to the differences which may arise if the assumption of thermalization is relaxed.

Thus, given initially thermalized material whose state is specified by some point on the
I' =R curve in Fig. 3, we can derive two possible thermodynamic paths for the shocked
material, one which continues along the thermalization curve and one which departs from it.
This behaviour is illustrated in Fig, 4 for a variety of starting points. In principle, the two
most extreme ways in which the energy in the bulk fluid may be divided are that all the
energy is given either to the electrons or to the protons and other nuclei. However, the cases
of thermalization or the ‘anti-thermalization’ picture outlined above are already sufficiently
extreme for the I' — R curves expected for the most extreme energy partitions to be quite
similar to those in Fig. 4. Hence, we shall generally consider the alternatives of thermaliza-
tion or anti-thermalization to give an indication of the extremes within which the value of
I', might lie.

33 VELOCITIES AND SPECTRAL INDICES

We are now in a position to derive the propagation relations for any shock, given an assump-
tion about I'y and the degree of thermalization behind the shock. These are shown in Fig. 5
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Figure 5. The shock propagation relation u, versus u,, plotted for four initial temperatures of the
unshocked material: 0, 10'', 10?K and . For each case, a pair of curves is drawn — the solid one
corresponding to the case of post-shock thermalization, the dashed one corresponding to the case of
post-shock anti-thermalization (see Section 3.2).

as plots of u, versus u;, for a variety of temperatures of the unshocked material. As the
shocks become weaker, u, - u,, and u, =u, at the sound speed corresponding to I';; the
maximum possible value of u, is 1/4/3 for a weak shock in very hot (I'; = 4/3) matter. As
the strength of the shock increases, in all cases, u, - 1/3 and u; - 1. Thus, we see that the
post-shock flow may never become highly relativistic, thereby justifying the arguments used
to obtain P (¢) in Section 2 4.

To use the velocity curves in Fig. 5 to obtain spectral indices, we must now return to the
problem of determining the distributions of 6; and 6, for particles crossing the shock.
A first approach is to assume that these are given simply by the limiting forms at large
distances upstream and downstream. The spectral indices that result from this assumption
are shown in Fig. 6(a), plotted against u,. We see that consideration of shock waves with a
wide range of propagation speeds, rather than only those with speeds much less than c,
complicates the situation in that any positive spectral index may now be produced, rather
than the ‘universal’ spectral index of 0.5 produced by slow shocks. The differences from the
simple non-relativistic strong shock case become more extreme as the temperature of the
unshocked material is raised. For cold matter, we obtain a = 0.5 as u, - 0, but « falls as u}
increases. This is due to two effects: (i) the nature of the acceleration process and (ii) the
change in the shock compression ratio as the shock becomes stronger. The first point arises
due to the fact that the post-shock flow never becomes highly relativistic; (P) therefore
remains large (> 02) even for ultrarelativistic shocks, whereas & increases without limit as
uy— 1, causing o to tend to O as u, - 1. However, this effect is only important when the
shock becomes ultrarelativistic: for u; < 0.8, the spectral indices produced for a constant
compression ratio remain relatively constant. The second effect is due to the heating of the
bulk material by the shock; at some point I', changes from 5/3 to 4/3, causing the compres-
sion ratio to change from 4 to 7, thus increasing § and reducing a. The velocity at which this
occurs depends on the equation of state: if the post-shock material is thermalized, then the
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Figure 6. The spectral indices produced by Fermi acceleration in the shocks whose propagation relations
are shown in Fig. 5, assuming the distributions of ¢ for particles crossing the shock to be given by (a)
equations (15) and (17) and (b) equation (17) only.

bulk electrons become relativistic at u, ~ 0.1 and the spectral index produced then remains
atabout 0.3 for 0.1 < u,; < 09.

Similar effects are found for shocks in hot material, except that the shocks are now weak
for propagation velocities near to the sound speed. This means that A - 0 while u, remains
high enough that all particles escape essentially without acceleration, leading to very large
values of a. In this case, since no acceleration is occurring, the shape of the cosmic-ray
spectrum will be dominated by the form of the injection spectrum. In practice, particles may
well be processed by several shocks and it is the flattest spectrum which will prevail.

Finally, we must consider the effect on « of the uncertainties in the distributions of 6, and
6, crossing the shock; we have stated in Section 2.2 that these distributions should be some
form intermediate between those of equations (15) and (17). This uncertainty is unlikely to
make a significant change in (P): we have seen in Section 2 4 that P (¢) does not vary greatly
with ¢, even for the strongest shocks. The variations in 8, however, can be large: for a highly
relativistic shock with u, ~ 1 and u, = 1/3, (1 + Acosf ) can vary between 0 and 2, whereas
(1 + Acosf,) can vary only between 4/3 and 2. Hence, although the changes to logd caused
by uncertainties in the distribution of 6, are small, uncertainties in the distribution of 8 1 can
make major changes to a if cosf, is forced to take values close to —u;. To investigate this
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possibility, we evaluated « in the case where the distribution of particles crossing from the
upstream side has the form characteristic of the downstream particles (equation 17). In this
case, the distribution throughout the downstream region obviously has the same form, so
that specifying the distribution of 6, fixes the distribution of 6,. The spectral indices
produced in this situation are shown in Fig. 6(b). The differences between Fig. 6(a) and (b)
are small for u, < 0.8, but there is a great difference for larger velocities: in Fig. 6(b) a -
043 as u;— 1, rather than tending to O as in Fig. 6(a). This is due to the point discussed
above; the assumption of the form (17) for the distribution of particles crossing from the
upstream region forces cos¢ to take values near to —u, as u;— 1, thus reducing & and
steepening the spectrum. However, this case is something of an extreme: the mixing at the
boundary will make the upstream angular distribution become closer to (17), but will never
cause equality with (17) to be achieved. Hence, for the model of the scattering assumed
here, the true answer should lie somewhere between Fig. 6(2) and (b).

The one remaining uncertainty in this analysis is the effect of different models for the
scattering process. We have seen that the forms of P(¢) and of the downstream angular
distribution should be reasonably model-independent; the only possible variation is therefore
in the upstream angular distribution (equation 15). Although it is difficult to assess exactly
how large this variation could be, it is unlikely to be important; Fig. 6(a) and (b) show that
changing the assumed form of the upstream angular distribution from (15) to (17) makes a
negligible difference to a for u; < 0.8. Although different models for the upstream scattering
will yield different angular distributions, it is most unlikely that any such changes could be
significantly more extreme than the difference between (15) and (17). Thus, changes to a
due to uncertainties in the distribution of 8, are likely to be small for u; < 0.8. For higher
velocities a can vary considerably, but in fact such ultrarelativistic shocks will probably not
be capable of accelerating particles in the observable range of energies (see Section 4.2).
Hence we conclude that Fig. 6(a) and (b) should give a reasonably accurate picture of the
spectral indices produced by Fermi acceleration in relativistic shock waves. The most impor-
tant point is that, for strong shocks, the spectral index remains small — in the range 0.3 to
0.5 — for a wide range of velocities.

4 Application of the mechanism in practice
4.1 INJECTION

So far, we have not found it necessary to consider precisely where suprathermal particles
are injected into the acceleration mechanism. If, in fact, turbulent plasma mechanisms are
the most likely sources of injected particles, then we expect the downstream region to be the
site of injection (Blandford & Rees 1974). The spectrum of the Fermi-accelerated particles
is, however, independent of the site of injection. Similarly, time variations in injection will
not affect the spectrum, provided that there is no variation on time-scales comparable with
that necessary for the establishment of the spectrum. This is characterized by the typical
time-scale for a particle to complete one cycle of crossing and re-crossing the shock, namely
~ Dfu3, where D is the post-shock diffusion coefficient (Blandford 1979). The spectrum is
obviously unaffected if the injection averaged over this time-scale is relatively constant, so
that neither slow systematic changes nor fast fluctuations in injection will change the spectrum.

An extremely important point concerning the application of this mechanism in practice is
the rate of injection. The acceleration mechanism itself is very efficient, but the rate of
production of ultrarelativistic particles is limited by the rate at which mildly suprathermal
particles are injected. From this point of view, strong shocks will be more important than
weak ones if we assume that a certain fraction of the total turbulent energy in the downstream
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region is channelled into suprathermal particles (Blandford & Rees 1974). Hence the very
steepest spectra in Fig. 5 are probably not important, as the corresponding shocks are very
weak and will have a low injection rate,

42 THE THRESHOLD ENERGY

We have until now assumed that a sufficiently energetic particle will penetrate the shock
front undeviated, without quantifying this statement. The energy which is necessary (the
threshold energy) depends on the processes at work in the collisionless shock front, which
are uncertain. The picture we have is of a region of turbulent electromagnetic fields which
randomize the incident bulk flow, leading to compression. For a thermal particle of mass m
and charge g, incident at u,, the impulse received per unit charge, dmg, is given by

Yimu
dng ~mjqg=— . (42)
q
For a suprathermal electron to cross the shock front undeviated we require dm, < m,, where
Ye e
Te = .
de

However, if the shock is capable of randomizing the incident He nuclei, then, since for these
_ 2yimpuy

diy = ———,
qe

the above condition becomes

Mp
Ye > 271 — Uy, 43)

me
and very high electron energies (~ 2 GeV for a mildly relativistic shock with u; ~ 1 and
v;= 1, corresponding to v, =4000) are required before acceleration is possible. It is interesting
to place this in the context of radio observations by considering the best-studied region of an
extragalactic source where particle acceleration is thought to occur, namely the hot-spots of
Cyg A. Here, the standard assumption of equipartition yields magnetic fields of 40 nT
(Hargrave & Ryle 1976). The emissive maximum of electrons with a Lorentz factor y is at a
frequency of 044+2q, B[2nm, (Pacholczyk 1970) which, for y = 4000, corresponds to a
frequency of 8 GHz. Hence, on this picture, acceleration by a highly relativistic shock would
not be important in the normal range of radio observations (10 MHz—15 GHz), although for
a shock with u, = 0.1 the critical frequency would be reduced to 80 MHz and acceleration
would be important, as it would also in the ‘tails’ of Cyg A, where the magnetic field is much
weaker than in the hot-spots, and the critical frequency is correspondingly lower by a factor
of 10—1000. These figures do not apply for an ultrarelativistic shock, where the threshold
energy is increased by a factor v,. The most highly relativistic shocks are therefore unlikely
to be capable of accelerating particles in the observable region, so the uncertainties in « at
large u, discussed in Section 3.3 are not important.

43 COMPLICATIONS TO THE SHOCK PROPAGATION

There remains the possibility that the u, versus u, relations in Section 3.3 may require
modification.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 0z o 1s8NnB Ad €17E96/GE |/2/96 L /9101ME/SEIUW /WO dNO"DIWSPEsE//:SRY WOy POPEOjUMOQ


http://adsabs.harvard.edu/abs/1981MNRAS.196..135P

FIOBIVNRAS, 196- ~135P!

Relativistic shock waves 151

We have solved the shock equations by assuming a perfect gas, without taking account of
the magnetic field. Magnetohydrodynamic shocks were considered by de Hoffmann & Teller
(1950), who found two simple cases:

(i) If the shock propagates parallel to a magnetic field, then the shock equations Q27)-
(29) are unchanged.

(ii) If the propagation is perpendicular to the field, then the effect is to compress the field
so that B,/B; = p,/p, and to add a term B?/2pu, to P and e on either side of the shock. The
shock is consequently made less strong and o will increase. This second case, however,
cannot lead to acceleration as there is no possibility of diffusion away from the shock; the
particles will be carried through with the field lines and have their energies increased by
some finite factor. In reality, the pre-shock magnetic field will probably be random and
diffusion will be allowed, although the magnetic field will be dynamically important if it is
sufficiently strong.

There is also the objection that throughout we have considered the suprathermal particles
to be a dynamically negligible perturbation to the shock. Blandford (1980) considers the
possibility that this is not so and that the cosmic ray pressure may become significant. By
means of a perturbation argument, he shows that the spectrum may either steepen or flatten
by amounts of order P, /Py, , where P, is the ram pressure of the incoming material.

Both of these modifications may indeed be relevant in hot-spots, since simple pressure-
balance arguments show that P, =P, and, assuming equipartition, €mag ~ €cr- The problem
is almost certainly more complex than this, due to its three-dimensional nature — the
cosmic-ray density and magnetic field within the emitting region which we call a hot-spot do
not necessarily have the same values at the shocks which bound the whole system. It is clear
that much further study of this problem is necessary.

5 Conclusions

The acceleration of charged particles by relativistic shock waves has been investigated for
differing physical conditions. For strong shocks, a synchrotron spectral index in the range
0.3—05 is produced for a wide range of propagation velocities. There is some uncertainty in
a for highly relativistic shocks, but the threshold energy in such cases is probably too high
for the acceleration mechanism to operate. Thus, it seems that very steep spectra may be
produced only by weak shock waves in hot material.

These conclusions are very relevant to the powerful extragalactic radio sources, where the
observed range of o is 0.5 < a < 2.0. Attempts to explain the variation of spectral indices
found in the extragalactic sources have often considered the steepening effects of synchrotron
losses on an injection spectrum with a = 0.5. However, although a spectral index of around
0.5 arises from strong shocks for a wide range of physical conditions, the value is generally
<0.5. Since, in the steady-state, synchrotron losses can produce an increase of only 0.5 in
a, aging effects are unable to account for the steepest spectra, and the weak shocks in hot
material may be of astrophysical significance in this context.
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