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A classical nova results from runaway thermonuclear explosions on the sur-

face of a white dwarf that accretes matter from a low-mass main-sequence

stellar companion. In 2012 and 2013, three novae were detected in γ rays and

stood in contrast to the first γ-ray detected nova V407 Cygni 2010, which be-

longs to a rare class of symbiotic binary systems. Despite likely differences in

the compositions and masses of their white dwarf progenitors, the three classi-

cal novae are similarly characterized as soft spectrum transient γ-ray sources

detected over 2−3 week durations. The γ-ray detections point to unexpected

high-energy particle acceleration processes linked to the mass ejection from

thermonuclear explosions in an unanticipated class of Galactic γ-ray sources.

The Fermi-LAT [Large Area Telescope; (1)], launched in 2008, continuously scans the sky

in γ rays, thus enabling searches for transient sources. When a nova explodes in a symbiotic

binary system, the ejecta from the white dwarf surface expand within the circumstellar wind

of the red giant companion and high-energy particles can be accelerated in a blast wave driven

in the high-density environment (2) so that variable γ-ray emission can be produced, as was

detected at >100 MeV energies by the LAT in V407 Cygni 2010 (V407 Cyg) (3). In a classical

nova, by contrast, the ejecta quickly expand beyond the confines of the compact binary into a

much lower density environment. High-energy particle acceleration could therefore be related

to a bow shock driven by the ejecta in the interstellar medium, or to turbulence and eventually

weaker internal shocks formed in the inhomogeneous ejecta itself. The contribution of such ex-

panding nova shells to cosmic-ray acceleration had been considered (4), but no predictions have

so far been made for >100 MeV γ-rays. The classical novae (or simply “novae” where appro-

priate) detected by the LAT with 12−20σ significances (Table 1, Fig. 1) – V959 Monocerotis

2012 (V959 Mon), V1324 Scorpii 2012 (V1324 Sco), and V339 Delphini 2013 (V339 Del) –

were unanticipated. These observed γ rays have higher energies than nuclear line emission by
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radioactive decay at ∼MeV energies that remain undetected in individual novae (5) and <∼ 0.1

MeV emission detected in isolated cases (6).

V959 Mon was detected as a transient γ-ray source in June 2012 by the LAT while close (∼
20◦ separation) to the Sun (7) and then optically in August (8). Ultraviolet spectroscopy revealed

an oxygen-neon nova (9), recognized as the class with the most massive white dwarfs ( >∼ 1.1

M⊙) with massive ( >∼ 8 M⊙) progenitors [e.g., (10)]. The expected peak visual magnitude of

∼5 would have been observable with the naked eye ∼50 days earlier, when the γ-ray transient

was detected (9). V339 Del (11) was detected in August 2013 in a LAT pointed observation

triggered by its high optical brightness [4.3 mag at peak; (12, 13)]. Optical spectra of V339

Del suggest a carbon-oxygen nova (14), which are more common than the oxygen-neon types,

with less massive white dwarfs evolved from <∼ 8 M⊙ main-sequence progenitors. Optical

brightening of V1324 Sco was detected in May 2012 (15) and found in LAT γ-ray data from

June (16). Although the type for V1324 Sco is currently unclear, its optical spectroscopic

evolution at early times (15) did not resemble oxygen-neon novae at similar stages. We take

this to indicate it is likely a carbon-oxygen type.

The LAT data (13) for the three classical novae are discussed together with an updated

analysis of the originally detected symbiotic nova V407 Cyg (3). The γ-ray light curves of all

four systems (Fig. 2) are similar, with 2−3 day long peaks occurring 3−5 days after the initial

LAT detections. The observed optical peak preceded the γ-ray peak by ∼2 days in V1324

Sco (13, 17) and ∼6 days in V339 Del (12, 13). Because the early optical light variations of

the ejecta in novae are driven by line opacity changes in the ultraviolet during the expansion,

the rise to peak optical brightness coincides with the maximum flux redistribution toward lower

energies as the optically thick surface moves outward [see (18)]. The initial lack of detected γ
rays could be because the ejecta are opaque and any >100 MeV emission produced are absorbed

via photon-atom interactions, with γ rays appearing only later when the density drops and the

ejecta become transparent. The three novae were detected in γ rays during a time of high X-ray

and ultraviolet/optical opacity. Coincidentally, the few days’ delay of the γ-ray peak relative to

the optical peak was also observed in V407 Cyg, but this may instead signal interactions with

its red giant companion (below).

In compact classical nova binaries, typical companion separations are a ∼1011 cm [∼100×
larger in symbiotic systems; (19)] and expansion velocities vej at early times are many 100’s

to >∼ 1000 km s−1. Thus the ejecta reach the companion on a timescale t = 1000 (a/1011 cm)
(vej/1000 km s−1)−1 s (i.e., of order an hour or less). Modeling of the optical line profiles

indicates that the spatial distribution of the ejected gas is bipolar rather than spherical in all

cases, with greater extension perpendicular to the orbital plane in V959 Mon (9, 20, 21). Also,

narrow absorption and emission line structures seen in optical and ultraviolet line profiles later

in the expansion may be evidence of hydrodynamical instabilities and multiple ejections that

may lead to the formation of strong turbulence and internal shocks within the ejecta after the

ignition of the thermonuclear runaway (22). A clue to the physical process that causes the γ-ray

emission mechanism may be the similarity of the high-energy spectral characteristics of V1324
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Sco, V959 Mon, and V339 Del. Their >100 MeV spectra are all soft, and can be fit with

single power laws (the spectrum N (E) ∝ E−Γ with the number N of photons with energy E)

with photon indices Γ = 2.1−2.3, or exponentially cutoff power laws (the spectrum N (E) ∝
E−se−E/Ec , where Ec is the cutoff energy) – see (13), Table S1 and Fig. S1. The exponentially

cutoff power law fits to the LAT data were preferred over the power law fits at the 3.8σ and 3.4σ
level for V959 Mon and V339 Del, respectively, but provided an insignificant improvement

(2.0σ) for V1324 Sco. Considering the uncertainties in the spectral fits, the three novae are

similarly characterized by slopes s = 1.7−1.8, Ec ∼ 1−4 GeV, and observed emission up to

∼6−10 GeV. The total durations of the observed γ rays were also similar, being detected for

17−27 days at >2σ statistical significances in daily bins (Fig. 2, Table 1). Because the LAT-

observed properties are similar, it is likely that the γ-ray emission of these classical novae has a

similar origin, involving interactions of the accelerated high-energy protons (hadronic scenario)

or electrons (leptonic scenario) within the ejecta.

In the hadronic scenario, high-energy protons that interact with nuclei produce neutral pions

(π0), which decay into two γ rays. For a representative hadronic model, we assume an exponen-

tially cutoff power law distribution of protons in the form, Np(pp) = Np,0 (pp c)
−sp e−Wp/Ecp

(proton/GeV), where pp and Wp are the momentum and the kinetic energy of protons, respec-

tively, Np,0 the normalization, sp the slope, and Ecp the cutoff energy. We fitted Ecp and sp with

the LAT spectra to obtain the best-fit π0 models (Fig. 3). The lower limits to the cutoff energies

(∼3−30 GeV) suggest proton acceleration up to near-TeV energies. The slopes of the best-fit

models of the proton spectrum have large statistical uncertainties (∼ 0.8) but interestingly are

compatible with a value of 2 expected in the first order Fermi acceleration process. To match

the observed γ-ray variability timescale in such a process, a magnetic field B > 10−3 Gauss is

required in a strong shock with vej = 2000 km s−1 to accelerate particles to > 1(10) GeV en-

ergies in ∼ 0.2(2) days. Formally, the updated best-fit proton spectrum for the symbiotic nova

V407 Cyg [cf., (3)] is parameterized by sp = 1.4+0.3
−0.4 GeV, but slopes of 2 – 2.2 are also viable

at the 90% confidence level with Ecp = 10+1.0
−0.7 GeV [ (13), Fig. S3]. Lower-confidence fits were

also obtained for V959 Mon and V339 Del but conversely with smaller slopes and lower cutoff

energies [ (13), Fig. S3]. Assuming that the γ-ray flux is due to the interactions of high-energy

protons with the nuclei in the ejecta, the best-fit parameters allow us to estimate the total energy

in high-energy protons of ∼(3−17) ×1042 ergs and to derive conversion efficiencies (i.e., the

ratio of the total energy in high-energy protons to the kinetic energy of the ejecta) ranging from

∼0.1−3.7% for the classical novae and 6.6% for V407 Cyg.

In the leptonic case, accelerated electrons produce γ rays through a combination of inverse

Compton scattering with low-energy photons and bremsstrahlung with atoms in the vicinity

of the nova. For a leptonic model, we adopted a similar functional form for the distribution

of the kinetic energy of high-energy electrons (We) in the form Ne(We) = Ne,0W
−se
e e−We/Ece

(electron/GeV), and fitted the normalization Ne,0, slope se, and cutoff energy Ece to the LAT

data for each nova (Fig. 3). The γ-ray luminosity of the calculated bremsstrahlung emission

is <20% of the total γ-ray luminosity for all the novae (13). The best-fit parameters of the
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high-energy electron spectra for the three classical novae are similar within their confidence

regions (13), with Ece constrained to lie between 2 and 30 GeV, and poorly constrained slopes.

These models are statistically indistinguishable from the π0 model. As in the hadronic model,

the spectral parameters of the classical novae differ from those for V407 Cyg (mainly due to

the lowest-energy ∼ 200−300 MeV bin detected in its LAT spectrum) where the best-fit slope

is negative (i.e., a positive index of the power law) and Ece = 1.78 ± 0.05 GeV. The best-fit

parameters for the leptonic scenario, where high-energy electrons interact primarily with the

photons emitted by the nova photosphere (23), lead to total energies of ∼(6−13) ×1041 ergs in

high-energy electrons and conversion efficiencies of ∼ 0.1 − 0.3% for the classical novae and

0.6% for the symbiotic system.

Detection of classical novae in γ rays was deemed unlikely in the past (3). The only nova

previously detected in γ rays, the aforementioned V407 Cyg, was a rare symbiotic and likely

recurrent [only 10 recurrent novae are known, of which 4 are symbiotic types; (24)]. In the

symbiotic novae, conditions are conducive for high-energy particle acceleration as the portion

of the ejecta moving into the wind in the direction of the dense medium provided by the red

giant companion decelerates within a few days. The γ-rays peak early, when the efficiency for

hadron and lepton acceleration is presumably favorable, with the red giant wind playing a key

role in the γ-ray production [see (2, 23)]. In contrast, the main-sequence star companions in

the classical novae do not provide similarly dense target material, hence it is likely that other

dissipative processes are involved in particle acceleration and generation of the observed γ rays.

Because the γ-ray properties of the novae detected so far by the Fermi-LAT appear similar

to one another, and their underlying properties are unremarkable, it appears all novae can be

considered to be candidate γ-ray emitters. Their detection by the LAT may imply close proxim-

ity and that other optical novae not yet detected with the LAT [e.g., (25)] are more distant and

have fainter optical peaks [without considering extinction uncertainties (26)]. Indeed, all the

LAT-detected novae have estimated distances of <∼ 4−5 kpc (Table 1). Despite systematic un-

certainties in the adopted distances, it is interesting that the inferred mean γ-ray luminosities and

total emitted energies of the novae span a small range ∼(3−4)×1035 ergs s−1 and ∼(6−7)×1041

ergs, respectively, except for the ∼2× greater values for V1324 Sco whose distance is highly

uncertain.

The rate of novae in the Milky Way is highly uncertain, but considering a plausible range

of ∼20−50 per year (27) and reasonable spatial distributions in the Galactic bulge and disk

(28), our estimate is 1−4 per year at <∼ 4−5 kpc distances. The γ-ray detection rate of novae

averages roughly to once per year over the timespan of these observations (∼5 years), consistent

with the lower end of this extrapolation.

Although the γ-ray properties of the LAT-detected novae are similar, we emphasize the

small and subtle differences that imply different emission mechanisms, e.g., the spectral shape

of V407 Cyg compared to the three classical novae as well as the apparent higher energy exten-

sion of the V1324 Sco spectrum. Among the classical novae detected so far, they also appear

different optically. The γ-ray emission mechanism and high-energy particle acceleration pro-
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cesses associated with the novae could depend on the particular system properties that remain

to be investigated, such as the white dwarf mass, which determines the explosion energetics

(ejected mass, expansion velocity), and the mass transfer dictated by the companion mass and

separation.
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29. M. M. Kasliwal et al., Astrophys. J. 735, 94 (2011).

30. S. N. Shore, The Astronomer’s Telegram 5410, 1 (2013).

31. P. L. Nolan et al., Astrophys. J. Suppl. Ser. 199, 31 (2012).

32. M. Ackermann et al., Astrophys. J. Suppl. Ser. 203, 4 (2012).

33. J. R. Mattox et al., Astrophys. J. 461, 396 (1996).

34. T. Kamae, N. Karlsson, T. Mizuno, T. Abe, T. Koi, Astrophys. J. 647, 692 (2006).

35. M. Mori, Astropart. Phys. 31, 341 (2009).

36. J. C. Houck, G. E. Allen, Astrophys. J. Suppl. Ser. 167, 26 (2006).

37. C. D. Dermer, G. Powale, Astron. Astrophys., 553, A34 (2013).

38. G. R. Blumenthal, R. G. Gould, Rev. Mod. Phys. 42, 237 (1970).

6



39. R. Greimel, J. Drew, D. Steeghs, M. Barlow, The Astronomer’s Telegram 4365, 1 (2012).

40. S. van den Bergh, P. F. Younger, Astron. Astrophys. Suppl. 70, 125 (1987)

41. M. della Valle, M. Livio, Astrophys. J. 452, 704 (1995).

42. M. J. Darnley, M. F. Bode, R. J. Smith, A. Evans, The Astronomer’s Telegram 5279, 1

(2013).

43. T. Tomov, K. Ilkiewicz, E. Swierczynski, M. Belcheva, D. Dimitrov, The Astronomer’s

Telegram 5288, 1 (2013).

44. J. Wren, W. T. Vestrand, P. Wozniak, H. Davis, The Astronomer’s Telegram 5316, 1 (2013).

45. U. Munari, A. Henden, Information Bulletin on Variable Stars 6087, 1 (2013).

46. N. R. Deacon et al., Astron. Astrophys. 563, A129 (2014).

47. U. Munari, P. Valisa, A. Milani, G. Cetrulo, The Astronomer’s Telegram 5297, 1 (2013).

48. S. N. Shore et al., The Astronomer’s Telegram 5409, 1 (2013).

49. We acknowledge with thanks the variable star observations from the AAVSO International

Database contributed by observers worldwide and used in this research, and the dedicated

observers of the Astronomical Ring for Access to Spectroscopy (ARAS) group for their

tireless and selfless efforts.

Acknowledgments: The Fermi-LAT Collaboration acknowledges support for LAT develop-

ment, operation and data analysis from NASA and DOE (United States), CEA/Irfu and IN2P3/CNRS

(France), ASI and INFN (Italy), MEXT, KEK, and JAXA (Japan), and the K.A. Wallenberg

Foundation, the Swedish Research Council and the National Space Board (Sweden). Science

analysis support in the operations phase from INAF (Italy) and CNES (France) is also gratefully

acknowledged. C.C.C. was supported at NRL by a Karles’ Fellowship and by NASA through

DPR S-15633-Y and Guest Investigator programs 11-FERMI11-0030 and 12-FERMI12-0026.

S.S. was supported by NASA and NSF grants to ASU. The Fermi-LAT data reported in this

paper are available from http://fermi.gsfc.nasa.gov/ssc/data/access/.

7



Nova V407 Cyg 2010 V1324 Sco 2012 V959 Mon 2012 V339 Del 2013

Distance (kpc) 2.7 4.5 3.6 4.2

Peak magnitude 6.9 10.0 5* 4.3

Peak date 2010 Mar 10.80 2012 Jun 19.96 ... 2013 Aug 16.50

Optical RA, Decl. 315.5409◦, +45.7758◦ 267.7246◦, –32.6224◦ 99.9108◦, +5.8980◦ 305.8792◦, +20.7681◦

Optical l, b 86.9826◦, –0.4820◦ 357.4255◦, –2.8723◦ 206.3406◦, +0.0754◦ 62.2003◦, –9.4234◦

LAT RA, Decl. 315.57◦, +45.75◦ 267.72◦, –32.69◦ 99.98◦, +5.86◦ 305.91◦, +20.78◦

Optical-LAT offset 0.03◦ 0.07◦ 0.08◦ 0.03◦

LAT error radius (95%) 0.08◦ 0.09◦ 0.18◦ 0.12◦

ts (date) 2010 Mar 10 2012 Jun 15 2012 Jun 19 2013 Aug 16

ts (MJD) 55265 56093 56097 56520

Duration (days) 22 17 22 27

Lγ (1035 erg s−1) 3.2 8.6 3.7 2.6

Total energy (1041 erg) 6.1 13 7.1 6.0

Table 1 – Summary of the Four Novae. Tabulated are optical peak magnitudes and adopted distances from (19)

for V407 Cyg, estimate of ∼4−5 kpc V1324 Sco based on the maximum magnitude rate of decline relation (17)

notwithstanding the large uncertainties in this method (29), (9) for V959 Mon (scaled from V1974 Cyg 1992),

and (30) for V339 Del (scaled from OS Andromedae 1986), and observed dates of the optical peaks (unfiltered

from (3), V -band, adopted, and visual magnitudes, respectively). Positions in J2000.0 equinox (right ascension,

RA; declination, Decl.), Galactic longitude (l) and latitude (b), 95% confidence localization error radius, and offset

between the LAT and optical positions in units of degrees. Adopted start dates ts (13) are given in Gregorian Dates

and Modified Julian Days (MJD). The γ-ray luminosities Lγ and total emitted energies were estimated with the

average fluxes from the power law fits of the >100 MeV LAT spectra integrated up to 10 GeV and durations from

ts up to the last > 2σ daily bin LAT detection. For V339 Del, the γ rays were detected for 25 days in 1-day

bins (Fig. 2), but there was a hint of a detection two days earlier on the day of the optical peak in 0.5-day binned

data (13), leading to a 27 day duration.

*Note that for V959 Mon the optical peak magnitude of 9.4 (unfiltered) was observed ∼50 days after the initial

γ-ray detection, and we adopted an inferred peak of 5 magnitude (9).
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Fig. 1. Fermi-LAT >100 MeV γ-ray counts maps of the four novae in Galactic coordinates

centered on the optical positions over the full 17−27 day durations. The maps used 0.1◦ × 0.1◦

pixels and were adaptively smoothed with a minimum number of 25−50 counts per kernel.

Each nova (located at the centers of the yellow circles with 1◦ radius which is the approximate

LAT 95% containment at 1 GeV) is observed near the bright diffuse γ-ray emission in the

Galactic plane, with V959 Mon in particular observed directly through the plane (0◦ latitude).
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Materials and Methods

S1. Fermi-LAT Observations and Analysis

The Fermi Large Area Telescope (LAT) (1) is sensitive to γ rays from 20 MeV to >300 GeV. It

features a large instantaneous field of view (2.4 steradian) and began operations in 2008 August

nominally in survey mode where an all-sky image is obtained every two orbits (∼3 hrs). Three

of the novae (V407 Cyg, V1324 Sco, V959 Mon) were detected over the course of the LAT

all-sky survey. For V407 Cyg, our analysis here updates that originally published (3) with the

γ-ray event selection cuts and associated instrument response functions to match those used for

the new cases. V1324 Sco in particular was found in the field of a source being monitored for

other reasons [see (17)] and was detected in γ rays as early as June 15 (just four days earlier

than V959 Mon). Its positional and temporal coincidence with V1324 Sco [MOA 2012-BLG-

320, (15)] was noticed later (16). V339 Del was the subject of a Fermi target-of-opportunity

(ToO) pointing observation triggered by the bright optical discovery (11). The ToO began 2013

August 16.5 UT, the day of the optical peak (Section S3). The V339 Del ToO lasted for six days

and resulted in ∼3× greater exposure with the LAT than would have been possible in all-sky

survey mode, leading to improved statistics that were especially useful because of the relative

faintness of the nova (below).

For the LAT analysis, we selected 100 MeV to 100 GeV events within regions of interest

(ROI) of 15◦ radius centered on each nova optical position (Table 1) using the Pass 7 data and

P7SOURCE V6 instrument response functions (IRFs)2. Data were selected with a rocking angle

cut of 52◦ and maximum zenith angle of 100◦ in order to minimize contamination from Earth

limb photons, using gtmktime with the filter (#3) recommended for the combination of sky

survey and ToO observations3. To model the diffuse γ-ray background and nearby γ ray sources

we utilized the isotropic and Galactic diffuse emission templates4 and included all sources from

the 2nd Fermi Gamma-ray LAT [2FGL, (31)] catalog within the ROI. The analysis used version

v9r27p1 of the Fermi science tools assuming a point source for each target.

Uncertainties shown in the plots are statistical. Two major sources of systematic errors on

the results are the uncertainties in the LAT effective area and the modeling of interstellar emis-

sion, since all these novae lie close to the Galactic plane. The uncertainties in the effective

area for the IRFs we use are evaluated as 10% at 100 MeV, 5% at 560 MeV, and 10% above

10 GeV, linearly varying with the logarithm of energy between those values (32). In all cases,

the statistical uncertainties exceed these values. The uncertainty due to the interstellar emis-

sion model does not affect the light curves but would enlarge the uncertainties on the spectral

2Cross-checks with the newer Pass 7 reprocessed data and response functions produced results consistent within

the quoted uncertainties.
3http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/

Cicerone_Likelihood/Exposure.html
4Files iso p7v6source.txt and gal 2yearp7v6 v0.fits, respectively.
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measurements.

Light curves and Durations

To determine the interval and duration over which γ-ray emission was detected for each nova,

we generated LAT light curves using a binned gtlike analysis in daily bins centered at fiducial

start times ts set to the first reported LAT detection for V407 Cyg (3), V1324 Sco (16), and V959

Mon (7). For V339 Del, the first LAT detection in 1-day bins was on August 18 (see Sec. S3),

but there was indication for a marginal detection (see below) in 0.5 day bins when the optical

peak was observed two days earlier; thus ts was set to the latter in this case. The full interval

studied for each nova was 106 days, i.e., ts ±53 days (to gauge the effect of varying exposure

over two precession periods of the spacecraft orbit), except for V339 Del, for which 2013

September 30 (MJD 56565) was the last day of data used (for ts = 56520; this is ts −61/+45
days). The start times defined in this way do not necessarily coincide with the optical discovery

date, which is in contrast in some cases to the convention often adopted in the nova literature.

We chose to define the start times in this way because the γ-ray emission is often detected

at or near the optical peaks and these seem to be the relevant time windows to utilize for the

light curve comparisons. For V407 Cyg, the first daily bin γ-ray detection coincided with the

apparent optical peak observed on the discovery date, although there was an uncertainty in the

optical peak epoch of up to three days due to an observing gap. In the case of V1324 Sco (17),

the optical discovery date of May 22.80 UT (15) was 23 days before the first LAT detection,

making the former an impractical choice of a start time for this work. For V339 Del (12), the

discovery date was two days before the optical peak when the first LAT detection occurred in

0.5-day binned data (below), but a further two days before the first daily LAT detection.

For all light curves, we left the normalization of the isotropic diffuse spectrum as a free

parameter in each time bin while the Galactic normalization was initially fit over the full 106-

day interval, then fixed at the average fitted value in the shorter time-bins. All 2FGL sources

within each ROI were included in the model using their cataloged spectral parameters (31). For

the 2FGL sources within 5◦ of the novae positions known to be variable [according to (31)],

the flux normalizations were initially fit over each 106-day interval. The newly fitted fluxes

were assumed for the variable sources if significantly detected with test statistic (33) TS > 10,

otherwise, the 2FGL fluxes were used in the subsequent 1-day binned analysis. We assumed a

power-law (PL; the spectrum N (E) ∝ E−Γ) spectral model for point sources fit at the optical

nova positions. The 1-day binned data were initially fit with free normalization and photon

index Γ. We found no statistically significant variations in the index from the average values

of the most significant detections with TS > 9, Γ = 2.2 for V407 Cyg (N = 15 bins) and

V339 Del (N = 9). We similarly found no significant variations from the average daily values

Γ = 2.2 for V1324 Sco (N = 7) and 2.4 for V959 Mon (N = 6) considering instead a larger

TS > 15 threshold because of the brighter Galactic diffuse background in these cases. We then

fixed the PL spectral slopes and regenerated the light curves to determine durations over which
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to sum the data to fit average spectra (below). The final daily light curves presented in Fig. 1

assumed Γ = 2.2 (V407 Cyg, V1324 Sco) and 2.3 (V959 Mon, V339 Del), with the latter taken

to match the values fitted below over the total intervals; V407 Cyg was not adjusted because of

the significant spectral curvature detected.

Considering a TS > 4 threshold5 for detections rather than upper limits in the 1-day binned

light curves (Fig. 2; tabulated in Table S2), the resultant observed durations of detectable γ-ray

emission were 2−3 weeks for all sources. More precisely, the observed range was 17−22 days

for the first three novae. For V339 Del, γ rays were detected for 25 days beginning 1.5 days after

the optical peak observed on August 16.5. Note however, that the ToO observation commenced

also on August 16.5; thus we generated a LAT light curve with 0.5 day bins and found TS = 0
for the earlier bin and TS = 5.6 with >100 MeV flux = (2.5±1.3)×10−7photons cm−2 s−1 for

the latter half which benefitted from the increased exposure from the ToO. We therefore defined

the duration for V339 Del to be 27 days. Because the varying exposures over the timescales

of many weeks for the LAT observations may complicate statements about the detectability of

each nova at both early and late times, this may affect our measured γ-ray durations, hence

estimates of the total energy emitted in γ rays. As a final note, applying the same TS > 4
threshold to the original LAT analysis for V407 Cyg results in a γ-ray duration of 18 days [ (3),

Table S1 therein], and is shorter than the 22 days we found in our reanalysis (due to an increase

in TS of two bins from ∼1−2 to 4; Table S2).

Positions

To obtain the most precise source positions with the LAT, we performed an unbinned gtlike

analysis assuming a single PL model over the γ-ray active durations defined in the 1-day binned

analysis. The resultant formal integrated detection significances were 12−20σ; the correspond-

ing sky counts maps are shown in Fig. 1. We then ran gtfindsrc and obtained 95% confi-

dence error radii of 0.068◦ − 0.16◦ (statistical only), meaning all sources were well localized.

In the values reported in Table 1, we included a 10% allowance for systematic uncertainties as

applied for the 2FGL catalog (31). This is a conservative estimate because the time intervals

analyzed here are considerably shorter, and the statistical uncertainties correspondingly larger,

than for the 2FGL catalog. The stellar counterparts for each nova were within the obtained

LAT error circles, being within the 68% confidence region for three cases, and within 95% for

V1324 Sco which may suffer from larger systematic uncertainty due to large gradients in the

bright diffuse γ-ray emission in the Galactic bulge.

Spectra

The LAT spectra of the novae were extracted in 12 logarithmic energy bins from 100 MeV to

100 GeV. The fit results for single PL and exponentially cutoff power-law (EPL; the spectrum

5The source significance is ∼
√
TS assuming one degree of freedom.
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N (E) ∝ E−se−E/Ec) models are plotted over the LAT data in Fig. S1 and summarized in

Table S1. With the extra degree of freedom in the EPL model versus the single PL, the fits were

improved with significances of 3.4σ for V339 Del and 3.8σ for V959 Mon, but only marginally

at 2.0σ for V1324 Sco. The new analysis of V407 Cyg yielded a 6.4σ significance of the

spectral curvature, confirming the original analysis in (3). Interestingly, we also see marginal

evidence in all four novae of a downturn of the LAT spectrum at the low energy end with no

significant emission in the lowest energy (100−178 MeV) spectral point in each case. The 95%
confidence upper limits derived in this energy bin are at, or just below, the PL model for all

four examples. Along with the statistical uncertainties, systematic uncertainties in the Galactic

diffuse γ-ray emission limit the spectral shape measurements to varying degrees depending on

the location of each nova studied. Because V1324 Sco is seen against the Galactic bulge and

has the brightest diffuse background, the spectral shape was more difficult to measure and the

cutoff energy in the EPL fit was not well constrained. Regardless, the inferred cutoff energies

are 1−4 GeV with indices = 1.2−1.8 in the EPL model fits.

Search for Spectral Variability

In order to check whether the spectral characteristics changed during the γ-ray flares, each

data set was split into the time intervals specified in Table S1. The same method as the one

presented previously for the full duration datasets was used to analyze both split sets of data.

The resultant best-fit parameters are tabulated in Table S1 and the spectral energy distributions

are presented in Fig. S2. For each nova, the first intervals (a) were six days long beginning at

ts, and resulted in comparable TS values (∼1−1.5× larger) than those in the second intervals

(b) which range from 11 to 21 days long. Although the fluxes clearly decreased by factors of

1.6−2.6 between the two intervals, one cannot conclude that the spectral shape changed for any

of the sources considering the measurement uncertainties. For V407 Cyg, these conclusions are

again consistent with (3).

S2. High-energy Proton and Electron Spectra

Hadronic Model

Following (3), the γ-ray spectra due to the decay of π0 produced in pp collisions was calculated

following the method presented in (34), assuming a Solar metallicity (35). We use high-energy

proton spectra in the form Np(pp) = Np,0 (pp c)
−sp e−Wp/Ecp (proton/GeV), where pp is the

proton momentum and Wp is the kinetic energy of protons [see, e.g., (36)]. The parameters

that were fitted to the data are Np,0, sp and Ecp which are the normalization, the slope, and

the cutoff energy of the high-energy proton spectrum, respectively. The fits were performed

using the gtlike likelihood fitting tool. The corresponding best-fit parameters and TS values

obtained for each nova are presented in Table S1. The best-fit models are shown in Fig. 3 and the
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corresponding confidence regions of the slopes and cutoff energy fits are presented in Fig. S3.

These contour plots have similar shapes except the one for V407 Cyg, which shows a deep χ2

minimum at a slope of 1.4; one can also see a secondary χ2 minimum at about the value we

published in (3).

The total energy in high-energy protons can be calculated using estimates of the mean local

target density over the time interval when the γ rays were detected. In the hadronic model, we

assumed that high-energy protons collide with the nuclei of the ejecta, except for V407 Cyg

where the ejecta expand in the dense stellar wind of the companion star (3). Consequently, in

the latter case, high-energy protons collide with hydrogen nuclei that are in the ejecta and the

wind. The high-energy protons are assumed to be uniformly distributed in the ejecta, which

is transparent to >100 MeV γ rays. For the three classical novae, the mean density of target

hydrogen is assumed to correspond to the ejecta mass in the mean ejecta volume. Despite the

likelihood that the ejecta are axisymmetric rather than spherical, for simplicity we calculated the

mean ejecta volume over the γ-ray emission duration assuming an expanding shell with an outer

radius Rout(t) = vej × t and a relative thickness ∆R/Rout ≈ 0.4 [see, e.g., (9, 20)]. In these

conditions, the total energy in high-energy protons (ǫp) resulting from the best fitting parameters

(Np,0, sp, and Ecp) is about 1042 − 1043 ergs (see Table S3) with proton lifetimes ranging from

∼ 100 to 300 days. The corresponding ratios ηp of the total energy in high-energy protons to the

kinetic energy of the ejecta are presented with the ejecta parameters in Table S3. The conversion

efficiencies ηp in Table S3 are similar to those estimated in supernova remnants [e.g., (37) and

references therein]. The γ-ray emission produced by the secondary electrons and positrons

from high-energy proton interactions with ejecta nuclei was not taken into account in this study

since it requires more detailed modeling of the novae. This γ-ray emission component would

contribute to the low energy range of the LAT spectra since the secondary lepton spectrum has

a bump shape that peaks at ∼100 MeV. As the γ-ray emissivity is proportional to the number of

target nuclei, the values of ǫp and ηp presented in Table S3 scale with the ejecta mass as M−1
ej

and M−2
ej , respectively.

Leptonic Model

In the leptonic model, the inverse Compton (IC) and bremsstrahlung spectra are calculated using

the method presented in (38), for a high-energy electron spectrum that is an exponentially cutoff

power-law: Ne(We) = Ne,0W
−se
e e−We/Ece (electron/GeV), where We is the kinetic energy of

electrons. As in the hadronic model, the normalization (Ne,0), the slope (se) and the cutoff

energy (Ece) were fitted to the LAT data with the gtlike likelihood fitting tool. The results of

the fit for each nova are presented in Table S1 and the corresponding confidence regions of the

slope and cutoff energy fit in Fig. S4. The best-fit models are presented in Fig. 3.

The target photons used to calculate the γ-ray spectrum produced by the IC process are

emitted by the nova photosphere. This differs from the first study of the V407 Cyg γ-ray

emission (3) for which the target photons were assumed to be emitted by the red giant (RG)
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companion star. The target photon spectrum was modeled by a black body with a temperature of

15 000 K and a radius of 3×1012 cm, taken as typical values characterizing nova photospheres.

The photon distribution before scattering is assumed to be isotropic in the high energy electron

frame. The high-energy electrons were assumed to be at the ejecta front layer, at a distance

from the white dwarf that corresponds to the average radius of the ejecta during the γ-ray

emission duration, taking into account the ejecta velocity (vej) presented in Table S3. In order

to estimate the effects of high-energy electron interactions with the atoms in the ejecta, we

calculated the bremsstrahlung spectrum assuming that high-energy electrons interact with a

canonical ejecta mass of 10−5M⊙ (Solar metallicity), except for V407 Cyg where the additional

target atoms in the dense stellar wind of the companion red giant star were taken into account

(3). The separate contributions of the IC and bremsstrahlung spectral components in the best-

fit leptonic models are presented in Fig. S5. The model parameters fitted with the LAT data

led to the total high-energy electron energies and conversion efficiencies presented in Table S4.

The resulting electron lifetimes range from ∼4 to 10 days. The conversion efficiencies were

calculated assuming kinetic energies derived from ejecta parameters presented in Table S3. It

should be noted that the values of the total energy of high-energy electrons obtained from the

fits scale with the inverse of the nova luminosity since more target photons implies fewer high-

energy electrons are needed to produce the same γ-ray luminosity.

S3. Notes on Available Optical Observations of the Novae

V407 Cyg 2010

The symbiotic binary system V407 Cyg was studied in detail by (19), who found that the sec-

ondary is a Mira variable with spectral type M6 III and distance of 2.7 kpc as assumed here and

in our previous LAT γ-ray detection paper on the 2010 nova (3).

V959 Mon 2012

The historical optical and near-infrared counterpart of Nova Monocerotis 2012 (V959 Mon) was

found in archival databases by (39). These consisted of optical observations (r � 17.8 − 18.1
and i = 17.1− 17.4 mag) from the INT Photometric H-Alpha Survey that used the 2.5m Isaac

Newton Telescope and near-infrared photometry (J = 16.26, H = 15.71, and K = 15.42 mag)

from the UKIDSS survey that used the 3.8m UK Infrared Telescope. Considering a plausible

range of values of the extinction E(B − V ) = 0.3− 0.8 [see also (9)], (39) concluded that the

companion is likely a main-sequence star.

V1324 Sco 2012

The available multi-wavelength observations of Nova Scorpii 2012 (V1324 Sco) are relatively

sparse compared to V959 Mon and V339 Del. In the report of its optical discovery, (15) found
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a variable pre-outburst counterpart with I = 19.0 − 19.5 mag. The AAVSO light curve shows

a V -band maximum around 10th mag. The B magnitude at maximum was about 11.5 which,

assuming an intrinsic (B − V )0 ∼ 0 [e.g., (40)], implies a large E(B − V ) value of 1.5 mag.

With a time of decline by two magnitudes t2 of about 25 days estimated from the AAVSO

light curve, we obtain an absolute V -band magnitude of −7.6 from the maximum magnitude

rate of decline relation of (41) and a distance of 4 kpc. We emphasize the uncertainty in this

method (29) and adopted it in the absence of any more direct method for obtaining the intrinsic

properties. Note, however, that the substantial drop in brightness might be from a dust-forming

event that compromises the t2 value; without dust formation the t2 time would be much longer

and the inferred source closer. The same applies if the extinction has been overestimated. For

example if E(B−V ) ∼ 1 mag, which might be supported by the low neutral hydrogen column

density toward this source, the distance is 8 kpc. Given the uncertainties outlined, we adopted

the distance of 4.5 kpc from (17) and the absolute magnitude of the quiescent counterpart in the

I-band is ∼ 2 mag.

V339 Del 2013

Nova Delphini 2013 (V339 Del) was discovered as PNV J20233073+2046041 by Koichi Ita-

gaki (Teppo-cho, Yamagata, Japan) at 6.8 magnitude on 2013 August 14.584 UT with nothing

visible in an image taken with a limiting magnitude of 13.0 on August 13.565 (11). Optical

spectroscopy identified it as a classical nova (14,42,43). Pre-discovery images indicated a rapid

brightening from 10.1 to 8.5 magnitude from 7hr UT to 8hr UT on the discovery date (44). The

historical V = 17.1 mag of the optical counterpart comes from APASS observations (45); see

also (46). With the small extinction E(B − V ) � 0.2 (43, 47, 48), the absolute magnitude is

3.5 mag making this unlikely a red giant. We obtained V -band magnitudes from the Ameri-

can Association of Variable Star Observers (AAVSO)6 (49), averaged them in 0.25 day bins,

and these are plotted along with the γ-ray light curves (Fig. S6). The naked-eye peak visual 4.3

magnitude, also from the AAVSO, was observed on 2013 August 16.5, two days after discovery.

6http://www.aavso.org/lcg
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Fig. S1. Fermi-LAT >100 MeV average γ-ray spectra of the four novae over the full 17−27

day durations. Vertical bars indicate 1σ uncertainties for data points with TS > 4; otherwise,

arrows indicate 2σ limits. The best-fit PL and EPL models (Table S1) are overlaid on the LAT

data.
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Fig. S2. Fermi-LAT >100 MeV average γ-ray spectra of the four novae as in Fig. S1 but split

into two intervals denoted as panels (a) and (b). Vertical bars indicate 1σ uncertainties for data

points with TS > 4; otherwise, arrows indicate 2σ limits. The best-fit EPL models are overlaid

onto the LAT data. See Table S1 for details.
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Fig. S2. continued.
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Fig. S5. Fermi-LAT >100 MeV average γ-ray spectra of the four novae over the full 17−27

day durations (as shown in Fig. 3) showing the inverse Compton and bremsstrahlung spectral

components in the leptonic model as well as their total.
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Days since V407 Cyg 2010 V1324 Sco 2012 V959 Mon 2012 V339 Del 2013

start TS Fγ TS Fγ TS Fγ TS Fγ

-4.5 3.0 < 7.2 0.0 < 4.2 0.3 < 6.0 0.0 < 2.9

-3.5 0.0 < 3.0 0.5 < 4.2 0.0 < 4.8 0.0 < 2.3

-2.5 0.0 < 2.2 0.2 < 3.6 0.5 < 6.7 1.7 < 4.2

-1.5 3.5 < 6.6 2.7 < 6.1 0.2 < 5.8 0.0 < 1.9

-0.5 0.0 < 3.4 3.0 < 7.1 1.7 < 9.1 0.0 < 2.5

0.5 16.2 6.2± 2.2 9.0 3.7± 1.9 9.0 5.4± 2.5 3.3 < 3.9

1.5 58.9 11.1± 2.3 14.1 6.9± 2.3 9.6 7.6± 3.2 1.1 < 2.8

2.5 12.8 5.9± 2.1 14.9 6.7± 2.4 14.4 8.4± 2.9 42.6 4.0± 0.9

3.5 68.6 13.1± 2.5 16.0 7.1± 2.4 32.8 12.9± 3.5 37.2 3.4± 0.8

4.5 56.8 13.9± 2.6 23.0 8.8± 2.7 27.9 10.6± 3.1 25.3 3.5± 0.9

5.5 47.9 13.2± 2.7 33.4 10.9± 2.7 27.7 13.8± 3.7 38.8 4.9± 1.1

6.5 27.1 7.5± 2.1 35.0 12.3± 2.9 15.7 9.8± 3.2 65.7 5.9± 1.1

7.5 10.1 5.6± 2.3 14.3 7.6± 2.6 11.3 8.0± 3.1 25.8 3.0± 0.9

8.5 11.0 4.7± 1.9 2.1 < 7.9 29.2 13.5± 3.6 14.4 2.6± 0.9

9.5 35.1 10.3± 2.5 15.5 10.3± 3.3 3.3 < 8.3 17.5 2.6± 0.9

10.5 12.5 3.9± 1.8 2.6 < 9.0 1.7 < 7.2 10.8 2.4± 1.0

11.5 20.6 6.5± 2.3 10.3 6.7± 3.0 15.1 9.1± 3.1 0.9 < 2.2

12.5 1.1 < 5.3 0.0 < 5.8 2.8 < 8.5 2.5 < 3.9

13.5 11.7 6.8± 2.6 0.0 < 5.4 4.8 4.8± 2.7 5.0 2.0± 1.1

14.5 16.5 6.5± 2.3 7.0 9.5± 4.3 2.3 < 7.0 1.3 < 3.3

15.5 14.8 7.2± 2.5 1.7 < 7.2 0.0 < 3.6 0.0 < 0.8

16.5 1.1 < 6.2 6.4 8.7± 4.3 1.9 < 3.6 6.0 2.1± 1.2

17.5 8.0 4.5± 2.1 0.7 < 10.6 0.0 < 1.6 1.0 < 3.4

18.5 0.0 < 3.0 0.0 < 6.5 0.0 < 2.4 1.9 < 3.9

19.5 4.4 3.0± 2.0 0.9 < 9.6 6.3 2.6± 1.3 1.4 < 2.9

20.5 1.4 < 7.5 0.0 < 31.1 4.3 3.8± 2.2 7.9 2.6± 1.4

21.5 4.1 3.8± 2.3 0.1 < 7.6 7.9 3.9± 2.0 0.4 < 3.6

22.5 2.3 < 9.3 0.0 < 5.6 0.0 < 4.8 0.0 < 2.3

23.5 0.1 < 5.4 2.5 < 12.8 0.3 < 5.6 4.1 1.5± 1.2

24.5 0.0 < 3.7 0.0 < 4.1 0.0 < 2.0 0.1 < 2.6

25.5 3.0 < 8.7 0.4 < 9.8 0.0 < 4.5 0.0 < 2.3

26.5 0.5 < 5.2 0.4 < 9.4 2.5 < 6.7 6.1 3.1± 1.6

27.5 3.4 < 3.0 0.0 < 6.7 0.0 < 3.5 0.1 < 3.5

28.5 0.0 < 1.5 0.0 < 6.2 0.6 < 5.7 0.0 < 2.8

29.5 0.3 < 3.0 0.3 < 9.4 2.9 < 7.6 0.0 < 2.8

Table S2. Daily LAT γ-ray TS and >100 MeV fluxes Fγ in units of 10−7 photons cm−2 s−1 and 95%

confidence upper limits (when TS < 4) corresponding to Fig. 2 in the main paper. The dates indicated

are the centers of the one day bins relative to the defined start times (ts).
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Nova V407 Cyg 2010 V1324 Sco 2012 V959 Mon 2012 V339 Del 2013

ǫ̇π
0

γ (1035 erg s−1) 3.04+0.04
−0.03 9.12+0.54

−0.93 3.50+0.27
−0.14 2.52+0.23

−0.11

Mej (M⊙) 10−6 10−5 6×10−5 8×10−5

vej (km s−1) 3200 2200 3000 2000

ǫp (1042 erg) 6.8+0.4
−0.5 17.2+7.8

−1.5 10.1+5.4
−2.6 3.0+0.9

−0.7

ηp (%) 6.6+0.4
−0.5 3.7+0.2

−0.4 0.19+0.10
−0.05 0.09+0.03

−0.02

F π0

ε (10−10 erg s−1 cm−2) 3.46+0.04
−0.03 3.73+0.22

−0.38 2.23+0.17
−0.09 1.18+0.11

−0.05

Table S3. Best-fit γ-ray luminosity for the hadronic models (ǫ̇π
0

γ ) and ejecta parameters used to calculate

the energetics of the novae. Mej is the mass of the ejecta, vej is the ejecta velocity, ǫp is the total energy

in protons, ηp is the conversion efficiency, and F π0

ε is the total energy flux. The 1σ uncertainties were

obtained from the fits of the models to the LAT data.

Nova V407 Cyg 2010 V1324 Sco 2012 V959 Mon 2012 V339 Del 2013

ǫ̇ICγ (1035 erg s−1) 3.11+0.04
−0.06 9.42+1.04

−1.18 3.80+0.36
−0.29 2.67+0.15

−0.20

ǫe (1041 erg) 5.9± 0.1 13.4+3.1
−2.1 8.0+4.4

−1.1 6.6+1.3
−0.7

ηe (%) 0.57± 0.01 0.28+0.06
−0.04 0.09+0.05

−0.01 0.17+0.03
−0.02

F IC
ε (10−10 erg s−1 cm−2) 3.53+0.05

−0.07 3.85+0.43
−0.48 2.43+0.23

−0.19 1.25+0.07
−0.09

Table S4. Best-fit γ-ray luminosity for the leptonic models (ǫ̇ICγ ), total energy in electrons (ǫe), conver-

sion efficiency (ηe), and F IC
ε the total energy flux obtained for the four novae. The 1σ uncertainties were

obtained from the fits of the models to the LAT data.
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