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Fermi Gamma-ray Imaging of a Radio Galaxy

The Fermi-LAT Collaboration∗

The Fermi Gamma-ray Space Telescope has detected theγ-ray glow ema-

nating from the giant radio lobes of the radio galaxy Centaurus A. The re-

solvedγ-ray image shows the lobes clearly separated from the central active

source. In contrast to all other active galaxies detected sofar in high-energy γ-

rays, the lobe flux constitutes a considerable portion (>1/2) of the total source

emission. Theγ-ray emission from the lobes is interpreted as inverse Comp-

ton scattered relic radiation from the cosmic microwave background (CMB),

with additional contribution at higher energies from the infrared-to-optical ex-

tragalactic background light (EBL). These measurements provide γ-ray con-

straints on the magnetic field and particle energy content inradio galaxy lobes,

and a promising method to probe the cosmic relic photon fields.

Cen A is one of the brightest radio sources in the sky and was amongst the first identified

with a galaxy (NGC 5128) outside of our Milky Way (1). Straddling the bright central source

is a pair of extended radio lobes with a total angular extent of ∼10◦ (2,3), which makes Cen A

the largest discrete non-thermal extragalactic radio source visible from the Earth. At a distance

3.7 Mpc (4), it is the nearest radio galaxy to us, and the implied physical source size is∼600

kpc. Such double-lobed radio structures associated with otherwise apparently normal giant

elliptical galaxies have become the defining feature of radio galaxies in general. The consensus

∗All authors with their affiliations appear at the end of this paper.
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explanation for this phenomenon is that the lobes are fueledby relativistic jets produced by

accretion activity in a super-massive black hole residing at the galaxy’s center.

With its unprecedented sensitivity and imaging capability(per-photon resolution,θ68 ≃

0◦.8E−0.8
GeV ), theFermi Large Area Telescope (LAT) (5) has detected and imaged the radio lobes

of Cen A in high-energyγ-rays. The LAT image resulting from∼10 months of all-sky survey

data (Fig. 1) clearly shows theγ-ray peak coincident with the active galactic nucleus (AGN)

detected by theCompton/EGRETinstrument (6) and extended emission from the southern giant

lobe. Because the northern lobe is characterized by lower surface brightness emission (in radio),

it is not immediately apparent from a by-eye inspection of theγ-ray counts map. Nevertheless,

from a counts profile extracted along the north-south axis ofthe source (Fig. 2)γ-ray excesses

from both lobes are clearly visible.

Spectra for each of the lobes together with the central source (hereafter, the “core”) were

determined with a binned maximum likelihood analysis implemented inGTLIKE (7) using

events from 0.2–30 GeV in equal logarithmically spaced energy bins. Background emission

was modeled by including the Galactic diffuse component, anisotropic component, and nearby

γ-ray point sources (SOM). We fit the core as a point source at the known radio position and

the lobe emission was modeled using a 22 GHz WMAP image ( (8); Fig. 1) with the core

region within a 1◦ radius excluded as a spatial template. The modeled lobe region roughly

corresponds to the region 1 & 2 (north), and 4 & 5 (south) defined in (9), where region 3 is

the core (Fig. 2). Assuming a power-law for theγ-ray spectra, we find a large fraction (>1/2)

of the total>100 MeV emission from Cen A to originate from the lobes with the flux in each

of the northern ((0.77 (+0.23/–0.19)stat.(±0.39)syst.) × 10−7 ph cm−2 s−1) and southern ((1.09

(+0.24/–0.21)stat.(±0.32)syst.) × 10−7 ph cm−2 s−1) lobes smaller than the core flux ((1.50

(+0.25/–0.22)stat.(±0.37)syst.) × 10−7 ph cm−2 s−1). Uncertainties in the LAT effective area,

the Galactic diffuse model used, and the core exclusion region were considered as sources of
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systematic error (SOM). The resultant test statistic (TS; (10)) for the northern and southern giant

lobes are 29 and 69, which corresponds to detection significances of5.0σ and8.0σ, respectively.

The lobe spectra are steep, with photon indices,Γ = 2.52 (+0.16/–0.19)stat.(±0.25)syst. (north)

and 2.60 (+0.14/–0.15)stat.(±0.20)syst. (south) where photons up to∼2–3 GeV are currently

detected. These values are consistent with that of the core (Γ = 2.67 (±0.10)stat.(±0.08)syst.)

which is known to have a steepγ-ray spectrum (6). For further details pertaining to the analysis

of the lobe emission see the SOM.

It is well-established that radio galaxy lobes are filled with magnetized plasma containing

ultra-relativistic electrons emitting synchrotron radiation in the radio band (observed frequen-

cies,ν ∼ 107−1011 Hz). These electrons also up-scatter ambient photons to higher energies via

the inverse Compton (IC) process. At the observed distancesfar from the parent galaxy (>100

kpc-scale), the dominant soft photon field surrounding the extended lobes is the pervading ra-

diation from the CMB (11). Because IC/CMB scattered emission in the lobes of more distant

radio galaxies is generally well observed in the X-ray band (12–14), the IC spectrum can be

expected to extend to even higher energies (9,15), as demonstrated by the LAT detection of the

Cen A giant lobes.

To model the observed lobeγ-rays as IC emission, detailed radio measurements of the lobes’

synchrotron continuum spectra are necessary to infer the underlying electron energy distribution

(EED), ne(γ), where the electron energy isEe = γmec
2. In anticipation of theseFermi

observations, ground-based (16, 17) and WMAP satellite (8) maps of Cen A were previously

analyzed (9). Here, we separately fit the0.4 − 60 GHz measurements for each region defined

therein for the north (1 and 2) and south (4 and 5) lobes (see Fig. 2) with EEDs in the form of

a broken power-law (with normalizationke and slopess1 ands2) plus an exponential cutoff at

high energies:ne(γ) = ke γ
−s1 for γmin ≤ γ < γbr andne(γ) = ke γ

s2−s1
br γ−s2 exp[−γ/γmax]

for γ ≥ γbr, such that the electron energy density isUe =
∫
Ee ne(γ) dγ. To a certain extent,
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our modeling results depend on the shape of the electron spectrum at energies higher than those

probed by the WMAP measurements (ν >
∼ 60 GHz; Fig. 3); we have assumed the spectrum to

decline exponentially.

The IC spectra resulting from the fitted EED (parameters listed in Table S1 of the SOM)

were calculated employing precise synchrotron (18) and IC (19) kernels (including Klein-

Nishina effects) by adjusting the magnetic field,B. In addition to the CMB photons, we in-

cluded IC emission off the isotropic infrared-to-optical EBL radiation field (9,20,21), utilizing

the data compilation of (22). Anisotropic radiation from the host galaxy starlight andthe well-

known dust lane was also included, but was found to have a negligible contribution in compar-

ison to the EBL (Fig. 4, see also the SOM). The resultant totalIC spectra of the northern and

southern lobes (Fig. 3) withB = 0.89µG (north) andB = 0.85µG (south) provide satisfactory

representations of the observedγ-ray data. TheseB-field values imply that the high-energyγ-

ray emission detected by the LAT is dominated by the scattered CMB emission, with the EBL

contributing at higher energies (>∼ 1 GeV; Fig. 4).

Considering only contributions from ultra-relativistic electrons and magnetic field, the lobe

plasma is found to be close to the minimum energy condition with the ratio of the energy

densities,Ue/UB ≃ 4.3 (north) and≃ 1.8 (south), whereUB = B2/8π. The EED was assumed

to extend down toγmin = 1; adopting larger values can reduce this ratio by a fractional amount

for the south lobe, and up to∼ 2× for the north lobe (SOM). For comparison, IC/CMB X-ray

measurements of extended lobes of more powerful (FRII) radio sources have been used to infer

higherB-fields and equipartition ratios with a rangeUe/UB ≃ 1− 10 (12–14).

The radiating particles in the Cen A lobes lose energy predominantly through the IC chan-

nel, because the ratio of the corresponding cooling times isequal to the energy density ratio,

UCMB/UB
>
∼ 10. This manifests itself in the∼order of magnitude dominance of theγ-ray

component over the radio one in the observed SEDs (Fig. 3). However, the magnetic field con-

4



straints (thus the exact ratios ofUCMB/UB) are sensitive to the shape of the EED at the electron

energies,Ee > 0.1 TeV. On one hand, magnetic field strengths greater thanB∼1 µG will un-

derproduce the observed LAT emission for all reasonable forms of the EED, so the quoted ratio

is formally a lower limit. Conversely, magnetic fields as lowas∼1/3 of our quoted values are

strictly allowed if we invoke a sharper cutoff in the synchrotron spectrum at>∼ 60 GHz, as

would be expected in some aging models for extended radio lobes (cf., (9)). Such models with

lower magnetic fields and EEDs with sharper upper energy cutoffs than the exponential form

adopted here (Fig. 3) would result in IC spectra where the EBLrather than the CMB compo-

nent become dominant in the LAT observing band. These modelsrequire large departures from

equipartition (Ue/UB
>
∼ 10); even lowerB-fields would violate the observed X-ray limit to the

lobe flux (9,23).

For a tangled magnetic field, the total non-thermal pressures in the lobes are,prel = (Ue +

UB)/3 ≃ 5.6× 10−14 erg cm−3 (north) and≃ 2.7× 10−14 erg cm−3 (south). Such estimates can

be compared to the ambient thermal gas pressure to enable further understanding of the dynam-

ical evolution of such giant structures in general. Unfortunately, the parameters of the thermal

gas at the appropriate distances from the nucleus of Cen A arenot well known. Upper limits of

the soft X-ray emission of the lobes (9), as well as Faraday rotation studies (24) indicate that

the thermal gas number density isngas < 10−4 cm−3 within the giant lobes. Hence, the upper

limit for the thermal pressure,pgas = nkT < 10−13 (ngas/10
−4 cm−3) (Tgas/10

7K)erg cm−3, is

comparable to the evaluated non-thermal pressures.

Our modeling results allow us to estimate the total energy inboth giant lobes,Etot ≃ 1.5×

1058 erg. This, divided by the lifetime of the lobes derived from spectral aging (9), τ ≃ 3 ×

107 yrs, gives the required kinetic power of the jets inflating the giant lobes,Lj ≃ Etot/2 τ ≃

7.7× 1042 erg s−1, which is close to the estimates of the total power of the kpc-scale outflow in

the current epoch of jet activity (25). For a black hole mass in Cen A,MBH ≃ 108M⊙ (26),
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this implies a jet power which is only a small fraction of the Eddington luminosity (Lj ≃

6.1 × 10−4LEdd), and a relatively small jet production efficiency,Etot/MBHc
2 ≃ 8 × 10−5.

Because thep dV work done by the expanding lobes on the ambient medium is not taken into

account, and the relativistic proton content is unconstrained in our analysis, the obtained values

for Etot andLj are strict lower limits and could plausibly be an order of magnitude larger

(cf., (27)).

The observed LAT emission implies the presence of 0.1–1 TeV electrons in the> 100’s

kpc-scale lobes. Because their radiative lifetimes (< 1–10 Myr) approach plausible electron

transport timescales across the lobes, the particles have either been accelerated in situ or effi-

ciently transported from regions closer to the nucleus. Such high-energy electrons in the lobes

are in fact required to IC scatter photons into the LAT band and it is presently unclear how

common this is in other radio galaxies.
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Fig. 1. Fermi-LAT γ-ray (>200 MeV) counts maps centered on Cen A displayed with square-
root scaling(A, B). In both panels, a model of the Galactic and isotropic emission components
were subtracted (in contrast to the observed counts profile presented in Fig. 2). The images are
shown before(A) and and after(B) additional subtraction of field point sources (SOM), and are
shown adaptively smoothed with a minimum signal-to-noise ratio of 10. In panel(B), the white
circle with a diameter of 1◦ is approximately the scale of the LAT PSF width. For comparison,
the 22 GHz radio map from the 5-year WMAP dataset (8) with a resolution 0◦.83 is shown(C).
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Fig. 2. Observed intensity profiles of Cen A along the north-south axis in γ-rays [top panel]
and radio [bottom panel]. In the bottom panel, the lobe regions 1 & 2 (northern lobe), and 4 &
5 (southern lobe) are indicated following (9) where region 3 (not indicated) is the core. The red
curve overlaid onto the LAT data indicates the emission model for of all fitted points sources
plus the isotropic and Galactic diffuse (brighter to the south) emission. The point sources in-
clude the Cen A core (offset=0◦) and a LAT source at an offset=−4.5◦ (see SOM) which is
clearly outside (1◦ from the southern edge) of the southern lobe. The excess counts are coinci-
dent with the northern and southern giant lobes.
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Fig. 3. Broad-band spectral energy distributions (SEDs) of the northern(A) and southern(B)
giant lobes of Cen A. The radio measurements (up to 60 GHz) of each lobe are separated into
2 regions with blue data points indicating regions (2 and 4; cf., Fig. 2) closer to the nucleus
and the farther regions (1 and 5) in light blue. Synchrotron continuum models for each region
are overlaid (see text). The component at higher energies isthe total IC emission of each lobe
modeled to match the LAT measurements (red points with errorbars). The X-ray limit for the
lobe emission derived fromSAS-3 observations (23) is indicated with a red arrow; see (9). The
break and maximum frequencies in the synchrotron spectra are νbr = 4.8 GHz andνmax = 400
GHz, respectively.
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M. Razzano5, S. Razzaque1,2, A. Reimer47,3, O. Reimer47,3, T. Reposeur31,32, S. Ritz4, L. S. Rochester3,

A. Y. Rodriguez18, R. W. Romani3, M. Roth17, F. Ryde39,28, H. F.-W. Sadrozinski4, R. Sambruna21,

D. Sanchez16, A. Sander11, P. M. Saz Parkinson4, J. D. Scargle48, C. Sgrò5, E. J. Siskind49,

12



D. A. Smith31,32, P. D. Smith11, G. Spandre5, P. Spinelli14,15, J.-L. Starck6, Ł. Stawarz50,3∗,

M. S. Strickman1, D. J. Suson51, H. Tajima3, H. Takahashi33, T. Takahashi52, T. Tanaka3,

J. B. Thayer3, J. G. Thayer3, D. J. Thompson21, L. Tibaldo9,10,6, D. F. Torres53,18, G. Tosti12,13,

A. Tramacere3,54, Y. Uchiyama3, T. L. Usher3, V. Vasileiou22,23, N. Vilchez43, V. Vitale44,55,

A. P. Waite3, E. Wallace17, P. Wang3, B. L. Winer11, K. S. Wood1, T. Ylinen39,56,28, M. Ziegler4,

M. J. Hardcastle57, D. Kazanas21

1. Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA

2. National Research Council Research Associate, NationalAcademy of Sciences, Wash-

ington, DC 20001, USA

3. W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics

and Cosmology, Department of Physics and SLAC National Accelerator Laboratory,

Stanford University, Stanford, CA 94305, USA

4. Santa Cruz Institute for Particle Physics, Department ofPhysics and Department of As-

tronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064,

USA

5. Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa, Italy

6. Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique,
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32. CNRS/IN2P3, Centre d’Études Nucléaires Bordeaux Gradignan, UMR 5797, Gradignan,

33175, France

33. Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima

739-8526, Japan

34. Department of Astronomy and Astrophysics, Pennsylvania State University, University

Park, PA 16802, USA

35. Department of Physics and Department of Astronomy, University of Maryland, College

Park, MD 20742, USA

15



36. INAF Istituto di Radioastronomia, 40129 Bologna, Italy

37. Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
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Supporting Online Material (SOM)

Materials and Methods: LAT Data Selection and Tests of Spa-
tial Modeling

The characteristics and performance of the LAT aboardFermi are described in detail by (S1).

The data used in this work amount to 300 days of continuous skysurvey observations over

the period August 4th 2008 – May 31st 2009 (corresponding to mission elapsed times (MET)

239557420 - 265507200) during which an effective exposure of ∼ 2.3× 1010 cm2 s (at 1 GeV)

is obtained for Cen A. Events satisfying the standard low-background event selection (“Pass 6

Diffuse” events) (S1), coming from zenith angles< 105◦ and satisfying the rocking angle cut

of 39◦ are used (S2). We further restrict the analysis to photon energies above200 MeV; below

this energy the effective area in the Diffuse class is relatively small and strongly dependent on

energy.

For the analysis we select all events within a rectangular region-of-interest (ROI) of size

14◦ × 14◦ centered on(αJ2000, δJ2000) = (13h25m26s,−43◦01′12”) and aligned in equatorial

coordinates. A counts map of the ROI is shown in Fig. S1. All analysis is performed using the

LAT Science Tools package, which is available from the FermiScience Support Center (S3),

using P6V3 post-launch instrument response functions (IRFs). These take into account pile-up

and accidental coincidence effects in the detector subsystems that were not considered in the

definition of the pre-launch IRFs. At the Galactic latitude of Cen A (b ≈ +19◦), the γ-ray

background is a combination of extragalactic and Galactic diffuse emissions and some residual

instrumental background. We model the Galactic backgroundcomponent using the LAT stan-

dard diffuse background modelgll iem v021 for which we keep the overall normalization

as a free parameter. The extragalactic and residual instrumental backgrounds are combined into

1The model can be downloaded from http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html.
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a single component which has been taken as being isotropic and with a spectral distribution

determined from all-sky fitting (fileisotropic iem v02.txt). The normalization of this

component was left as a free parameter.

The first Fermi-LAT source catalog (S4) contains 14 point sources within the ROI. One

of these sources (1FGL J1325.6−4300) corresponds to the core of Cen A while two sources

(1FGL J1322.0−4515, 1FGL J1333.4−4036) are likely local maxima of the Cen A lobes. This

leaves 11 point sources within the ROI that are not associated to Cen A. To correctly account

for these 11 field sources in our analysis, we include point sources at the positions quoted in

Table S2 in our background model for which we left the fluxes and spectral power-law indices

as free parameters. The locations of the point sources are indicated by boxes in Fig. S1.

We model the core emission from Cen A with a point source located at the known radio

position of(αJ2000, δJ2000) = (13h25m27s,−43◦01′09”) for which we keep the flux and power-

law spectral index as free parameters. The giant radio lobesof Cen A are modeled using a

spatial template that is based on the WMAP 22 GHz image (S5) of Cen A (see main text and

Fig. S1). To exclude the core emission from this template we set all pixels within a radius of

1◦ around the core of Cen A to zero. We further split the templatealong an east-west axis

running through the core of Cen A to obtained separate modelsfor the northern and southern

radio lobes. We model the spectrum of both lobes using power laws for which we keep the

fluxes and spectral indices as free parameters.

We fit the core and radio lobes in addition to the background model to the data using a

binned maximum likelihood optimization. The test statistic (TS) (S6) of the core amounts to

219, corresponding to a detection significance of14.6σ. For the northern and southern lobes we

obtain TS values of 29 and 69, which corresponds to detectionsignificances of5.0σ and8.0σ,

respectively. As a test, fake WMAP image templates were created by rotating the map by90◦,

180◦, and270◦, bringing the lobes out of the alignment with respect to the radio emission. As

2



expected, when fitting the data with these fake maps instead of the original WMAP template

the TS is reduced by a large factor (∼ 4), indicating that theγ-ray emission indeed matches the

radio morphology.

As Cen A is relatively close to the Galactic plane, an accurate modeling of the diffuse

Galactic emission is important. We tested the stability of our results by replacing the standard

model of diffuse Galactic emission by the modelgll iem v01, i.e., from the GALPROP

code (S2) and this is considered as a source of systematic uncertainty. The effect of different

core exclusion radii was also tested, considering values of1.5◦ and 1.25◦ in addition to the

1◦ results quoted. The lower end of this range is defined by excluding enough of the core

to sufficiently model its emission, and the upper end is the radius in which the lobe emission

begins to be excluded. Lastly, systematic uncertainties were calculated considering the effect

of the uncertainty in the IRFs (i.e., the LAT effective area,Aeff ). These are summarized in

Table S3.

To investigate whether theγ-ray emission seen towards the giant radio lobes of Cen A could

also be attributed to background blazars in the area, we haveshown in the right panel of Fig. S1

the distribution of blazar candidates in the CRATES catalogof flat-spectrum radio sources (S7)

within the ROI. We found a total of 11γ-ray blazar candidates that spatially overlap with the

radio lobes of Cen A. From Fig. S1 we can already notice that none of them coincides with a

local maximum ofγ-ray emission in the counts map. Fitting point sources at thepositions of the

11 CRATES sources with flux and spectral power law index set free in addition to the core and

lobe model of Cen A does not result in a significant detection for any of them, and does not lead

to a significant reduction of the flux from the WMAP template that models theγ-ray emission

from the lobes. We thus conclude that the emission seen towards the Cen A radio lobes cannot

be attributed to known blazars in the field. Extended emission from the giant radio lobes of Cen

A seems thus as the most plausible explanation of the observations.
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Theoretical Modeling

Following (S8), we used a template elliptical galaxy spectrum (S9) normalized to theV -band ap-

parent magnitude,mV = 7.0 (S10) to derive a luminosity of the host ofLV ≃ 7.8×1043 erg s−1

in this band. The far-infrared (FIR) emission of the dust lane is modeled as a modified black-

body, νIν(Td) ∝ ν4 (1 − exp[−(ν/ν0)
−β])/(exp[hν/kTd] − 1), whereβ = 1.5 is the dust

emissivity power-law,Td ≃ 60K is the assumed dust temperature (corresponding to the peak

frequencies,νd = 3kTd/h ≃ 3.75 × 1012 Hz), andν0 = 3 × 1012 Hz is the frequency below

which the thermal dust emission becomes optically thin. This distribution is normalized to the

total100µm Cen A flux of400 Jy (S11), amounting to a luminosity ofL100 ≃ 2 × 1043 erg s−1

at this wavelength. The spectra generated in this way are consistent with the monochromatic

flux density measurements compiled by (S12).

In Fig. S2, the relevant photon fields as seen by the lobes are plotted. These include the CMB

(black) and the solid green line denotes the EBL model from (S13) adopted in our calculations

(see main text); green dashed lines are the other EBL models considered (see Fig. S3). The

volume averaged energy density of the starlight (blue) and dust (red) emission as seen at the

locations of regions 1 and 2 (lower and upper solid, respectively) and 4 and 5 (upper and lower

dashed, respectively) are indicated. For all EBL choices, the EBL energy density dominates

over that of the host galaxy starlight and dust emission by>
∼ 3–100×. Here, the lobes are

assumed to lie in the plane of the sky. This assumption maximizes the possible contribution of

the galactic emission as smaller angles to the line of sight result in larger de-projected distances

for the radio lobes and would make the galactic photon fields even less relevant. In terms of our

modeling results, smaller angles would also imply larger source volumes which would affect

only the jet powers evaluated (making them larger), so the quoted estimate should further be

considered as a lower limit.
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As mentioned in the main text, we parameterize the electron energy distribution (EED) of

each lobe region with a broken power-law in the form:ne(γ) = ke γ
−s1 for γmin ≤ γ < γbr

andne(γ) = ke γ
s2−s1
br γ−s2 exp[−γ/γmax] for γ ≥ γbr. We initially considered a wide range

of magnetic field strengths,B = 0.1 − 10µG, and adjusted the parameters of the EED (ke, s1,

s2, γbr, andγmax) to match the radio measurements. The IC fluxes were evaluated separately

for each defined region (1, 2, 4, and 5) and the summed computedemission from each lobe

was compared to the observed LAT spectra. The models found tobest represent the radio

andγ-ray measurements are reported (Table S1). Using differentEBL models/compilations

(Fig. S3), we found the resultant IC SEDs are insensitive to the particular EBL models within

the measurement uncertainties.

The low-energy ultrarelativistic electron energy distributions in the south lobe are relatively

flat, with indicess1 < 2. We note in this context that since the synchrotron continuafor this

lobe are significantly curved, the precise synchrotron kernel has to be used in evaluating the

synchrotron emission for a given form of the electron spectrum. That is, no standard approx-

imation relating the synchrotron spectral index,α (defined asSν ∝ ν−α), with the electron

energy index,s = 2α+1, can be made. Such an approximation holds when the electron energy

distribution is of the form of a single (and steep) power-law, but not if the electron spectrum

has a sharp break, which – in the considered case – affects thesynchrotron spectra in the GHz

range for the Cen A south lobe. If we increases1 for the southern lobe up to 2, we would

not be able to reproduce the radio data well. We also note thatwith s1 < 2, the derived total

electron energy density (Ue) of the southern lobe is relatively insensitive to our assumption of

the minimum electron energy (γmin = 1) with a decrease by only a few percent if we increase

γmin to 100 for example. For the north lobe however, increasingγmin to 100 would result in a

non-negligible (≃ 2×) decrease inUe because this lobe is characterized by a steeper low-energy

electron spectrum.
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In addition to the galactic emission, one can expect that thenon-thermal emission from

the active nucleus also illuminates the giant lobes, thus providing another possible seed photon

source. For Cen A, the energy density of the nuclear emissionat a distancer ∼ 100 kpc from the

nucleus (corresponding to regions 2 and 4) can be estimated roughly as,Unuc
<
∼ 10−14 erg cm−3

(see (S14)). This is comparable at best to the EBL level at near-infrared/optical wavelengths but

as the precise level is dependent on the unknown relativistic beaming parameters of the inner

jet and uncertainty in the jet duty cycle, this is omitted in our estimates for simplicity.
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Fig. S1. Gaussian kernel (σ = 0.3◦) smoothed counts maps of the region-of-interest (ROI)
around Cen A in a true local projection before (left) and after subtraction of the background
model (right) for the energy range 200 MeV – 30 GeV and for a pixel size of0.1◦ × 0.1◦. The
boxes show the locations of the 11 LAT point sources that havebeen included in the background
model. The stars in the right panel show the locations of the CRATES radio sources in the ROI.

North South
Region 1 2 4 5
Distance from core [kpc] 226 125 131 217
Cylindrical dimensions (L, r) [kpc] (122, 81) (73, 70.5) (86, 78) (87, 69.5)
F (>100 MeV) [10−7 ph cm−2 s−1] 0.77 (+0.23/–0.19) 1.09 (+0.24/–0.21)
Photon index 2.52 (+0.16/–0.19) 2.60 (+0.14/–0.15)
ke [10−10 cm−3] 86 161 0.016 1.7
s1 2.1 1.1 1.6
s2 3.0 3.4 3.7
γmin 1 1
γbr 3.6× 104 3.6× 104

γmax 3.3× 105 3.3× 105

B [µG] 0.89 0.85
Ue/UB 4.3 1.8
p [10−14 erg cm−3] 5.6 2.7

Table S1. Measured & model parameters for the Cen A giant lobes. The quoted distances are
from the core to the centroid of the different regions. Errors in the flux and photon indices are
statistical only – see Table S3 for a summary of the systematic errors.
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Name αJ2000 δJ2000
1FGL J1300.9−3745 13h00m54s −37◦45′36”
1FGL J1304.0−4622 13h04m05s −46◦22′06”
1FGL J1304.3−4352 13h04m21s −43◦52′07”
1FGL J1305.4−4928 13h05m28s −49◦28′15”
1FGL J1307.0−4030 13h07m06s −40◦30′37”
1FGL J1307.6−4259 13h07m38s −42◦59′58”
1FGL J1320.1−4007 13h20m10s −40◦07′36”
1FGL J1328.2−4729 13h28m12s −47◦29′56”
1FGL J1334.2−4448 13h34m15s −44◦48′48”
1FGL J1347.8−3751 13h47m52s −37◦51′18”
1FGL J1400.1−3743 14h00m08s −37◦43′04”

Table S2.Positions of point sources detected by theFermi-LAT within the ROI that have been
included in the background model.

Parameter Value Stat. Sys. (Aeff ) Sys. (diff.) Sys. (radius) Sys. (total)
Core flux 1.50 +0.25/–0.22 +0.12/–0.11 +0.02/–0.03 +0.35/–0.00 ±0.37
Core index 2.67 +0.10/–0.10 +0.06/–0.06 +0.02/–0.00 +0.00/–0.05 ±0.08
North lobe flux 0.77 +0.23/–0.19 +0.23/–0.16 +0.30/–0.14 +0.00/–0.09 ±0.39
North lobe index 2.52 +0.16/–0.19 +0.18/–0.20 +0.11/–0.14+0.06/–0.00 ±0.25
South lobe flux 1.09 +0.24/–0.21 +0.25/–0.21 +0.14/–0.16 +0.00/–0.11 ±0.32
South lobe index 2.60 +0.14/–0.15 +0.17/–0.15 +0.10/–0.05+0.00/–0.01 ±0.20

Table S3.Summary of statistical and systematic errors. The fluxes [10−7 ph cm−2 s−1] quoted
are in the> 100 MeV band. In addition to the statistical (Stat.) errors, thesources of sys-
tematic (Sys.) uncertainties are due to limited knowledge about the LAT effective area (Aeff ),
variations of the diffuse model components (diff.), and core cut-out radius. Quoted are the min-
imum/maximum parameter differences from the values derived. The maximum values of each
source of systematic error are added in quadrature to give the total systematic error.

10


