TECHNICAL REPORT

Fermi-Gas Model Parametrization of Nuclear Level Density

Alberto MENGONI[†] and Yutaka NAKAJIMA

Tokai Research Establishment, Japan Atomic Energy Research Institute*

Received June 10, 1993

The authors furnish a new parametrization of the Fermi-Gas model description of nuclear level densities at excitation energies corresponding to the neutron binding energy. The model adopted is the standard Fermi-Gas model with pairing and shell-effect corrections. Particular care has been devoted to the inclusion of shell effects and to their parametrization. The procedure for the evaluation of level density parameters has been applied to a data-base of 217 nuclei covering a mass range $41 \le A \le 253$. A global systematics parametrization has been derived which allows for a derivation of level density parameters for nuclei where experimental information is not available.

KEYWORDS: nuclear level density, energy-level density, energy levels, Fermi-Gas model, pairing correlations, shell effects, shell correction energies, level density parameters, global level density parameter systematics

I. INTRODUCTION

The density of nuclear states is a fundamental ingredient for all the application of the statistical theories of nuclear reactions. Except for the very low excitation energy part of the nuclear spectra, where experimental information is available for a wide class of nuclei, the computation of the density of nuclear states must rely on model calculations. Many nuclear structure models have been employed and tested for the calculation of nuclear state densities at excitation energies corresponding to the neutron binding energy (of the order of 8 MeV for medium and heavy nuclei). This is because at those excitation energies an important experimental quantity can be related to the density of nuclear levels; the average spacings of s-wave neutron resonances $\langle D \rangle_{l=0}$. A large set of information on these quantities has been collected and compiled several times in the past. A relatively recent compilation⁽¹⁾ has been made

available which provides a large data-base on which the traditional level density models can be tested. Of course this is not the first time that such an analysis has been made. However, the recent data-base has been used only for particular and specific purposes on limited mass ranges. It is therefore interesting to repeat the calculation using well established techniques in order to furnish the utilizers with the best possible parametrization.

In this work we will apply the Fermi-Gas model with the usual correction for pairing correlations. We will then discuss in detail the influence of the shell effects and their inclusion into the Fermi-Gas description as proposed by a technique which is widely applied in the recent versions of most of the computer codes for nuclear reaction calculations.

^{*} Tokai-mura, Ibaraki-ken 319-11.

[†] Permanent address: ENEA, v.le G.B. Ercolani, 8 I-40138 Bologna, ITALY.

The paper is organized as follows: in the next chapter the basic relations of the Fermi-Gas model will be given. The treatment of the various nuclear structure effects will be given in its sections. In Chap. III we will show the results of our analysis and we will give the parametrization obtained. Finally, the conclusions and some remark on further improvements for the theoretical description will be given in the last chapter.

II. BASIC RELATIONS FOR NUCLEAR LEVEL DENSITY DESCRIPTION

1. Fermi-Gas Model

The density of nuclear states into which a set of A non-interacting nucleons (Fermi-Gas) are arranged from an equally spaced single-particle spectrum with spacing g_f at the fermi energy is given by⁽²⁾

$$\rho_A(U) = \frac{1}{\sqrt{48}U} e^{2\sqrt{aU}}, \qquad (1)$$

where $a \equiv (\pi^2/6)g_f$ and U is the excitation energy. This elementary relation can be derived from combinatorial analysis simply counting the ways into which the A nucleons can be arranged into the single-particle spectrum.

The state-density for the equivalent system can be derived in an alternative way, using the equilibrium statistical properties of the Fermi-Gas itself. The result is altogether equivalent to that of Eq. (1). The advantage of the thermodynamical approach is that a number of additional constraints can be readily taken into account. For example, the density of states for a mixture of Z protons and Nneutrons can be easily derived and it is given by a relation similar to Eq. (1):

$$\rho_{Z,N}(U) = \frac{\sqrt{\pi}}{12a^{1/4}U^{5/4}} e^{2\sqrt{aU}}.$$
 (2)

Other constants of motion can be added to the thermodynamical description. In fact, nuclear states are characterized by good quantum numbers, Π and M, for parity and projection of the total angular momentum. It can be shown that for a scalar constant of motion M, a Gaussian law with dispersion σ holds

$$\rho_{Z,N}(U, M, \Pi) = \rho_{Z,N}(U) \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(M^2/2\sigma^2)} \frac{1}{2},$$
(3)

where equal probability has been assumed for the two parity values $\Pi = -$ and $\Pi = +$. From Eq. (3), differentiating respect to states with M=J and M=J+1, we can derive the expression of the density of nuclear levels with total angular momentum J

$$\rho_{Z,N}(U, J, \Pi) = \frac{\sqrt{\pi}}{12a^{1/4}U^{5/4}} e^{2\sqrt{a}U} \frac{2J+1}{2\sigma^2\sqrt{2\pi\sigma^2}} e^{-(J(J+1)/2\sigma^2)} \frac{1}{2}.$$
(4)

This is the basic relation that we will use below to evaluate the parameter systematics for nuclei throughout the nuclide chart. In addition to the parameter a, the only other quantity to be determined in Eq. (4) is the spin dispersion factor σ . For a gas of fermions constrained into a spherical box of radius R, the dispersion factor σ can be evaluated to give

$$\sigma^2 = \frac{2}{5} (M_n R^2 / \hbar^2) AT, \qquad (5)$$

where M_n is the nucleon mass and T the nuclear temperature in MeV units. This is equivalent to consider the rotation of a rigid body with moment of inertia

$$I_{rr} = \frac{2}{5} A M_n R^2, \qquad (6)$$

which furnishes

$$\sigma^{2} = \frac{I_{rr}}{\hbar^{2}} T = 0.01389 A^{5/3} T , \qquad (7)$$

when using $R = 1.2A^{1/3}$ fm and $M_n = 938.926$ MeV.

In the thermodynamical approach, the nuclear temperature is defined by the relation

$$\frac{1}{T} \equiv \frac{1}{\rho} \cdot \frac{d\rho}{dU} \,. \tag{8}$$

Using Eq. (1) it is easy to recover the usual relation for the Fermi-Gas

$$U = aT^2. \tag{9}$$

It is also straightforward to derive the value of the temperature from the more elaborate state-density of Eq. (2)

$$\frac{1}{T} = \frac{1}{\sqrt{U/a}} - \frac{5}{4U} \tag{10}$$

Some care has to be taken when evaluating the spin dispersion factor. In fact, from the relations (7), with the definition of the nuclear temperature in Eq. (9) or (10), a dependence on the parameter a is brought back into the level density expression (4).

The calculation of the level density using Eq. (4) is affected by the assumptions made when deriving the state-density from the thermodynamical equilibrium conditions (saddlepoint inversion method, continuous approximation) as well as from the assumptions underlying the Fermi-Gas model itself. Quite generally the assumptions made in deriving Eq. (4) are well justified for excitation energies of a few MeV. In particular those approximations are generally valid for excitation energies corresponding the neutron binding energy. This is an important point because at that energy the density of nuclear states of given J and Π is known from the spacing of neutron resonances (usually s-wave neutron resonances). In these cases it is possible to evaluate the only parameter of Eq. (4), a, from

$$\langle D \rangle_{I=0} = \frac{1}{\rho_{Z,N}(U, J=1/2, \Pi)},$$
 (11)

for nuclei with $I_{\alpha}=0$, or

$$\langle D \rangle_{I=0} = \frac{1}{\rho_{Z,N}(U, J=I_{\alpha}+1/2, \Pi) + \rho_{Z,N}(U, J=I_{\alpha}-1/2, \Pi)},$$
(12)

for nuclei with $I_{\alpha} \neq 0$, where I_{α} is the spin of the nucleus with Z protons and N-1neutrons (target nucleus in the neutron +(Z, N-1)process). From the experimental $\langle D \rangle^{\exp_{l=0}}$ it is possible to derive the systematics of the level density parameter a. These kind of analyses have been performed several times in the past, perhaps the most quoted and recognized being those of Erba *et al.*⁽³⁾, Lynn⁽⁴⁾ and Dilig *et al.*⁽⁵⁾. Recently, a much wider

Mass number A

Fig. 1 Level density parameter a calculated from Eq. (4) for 41≤A≤235

compilation of the neutron resonance level spacings has been made available⁽¹⁾. We have used those experimental values to obtain **Fig.** 1. For clearness, **Fig.** 2 shows a portion of Fig. 1 in a restricted region, $100 \le A \le 200$.

Fig. 2 Level density parameter a calculated from Eq. (4) for $100 \le A \le 200$

The strong fluctuations of the level density parameter a over the entire mass range are due to several nuclear properties whose effects will be discussed below.

2. Pairing Correlations

Of the various effects that must be taken into account to improve the simple description of the nuclear level density based on the Fermi-Gas model, the effect due to pairing correlations in the nuclear motion is clearly revealed in the Figs. 1 and 2. In fact, eveneven, odd-mass and odd-odd nuclei are shown to have a different, systematically correlated behavior in the complete mass region. This effect is analogous to the even-odd differences of the nuclear masses and it is easily ascribed to pairing correlations.

A full treatment of the pairing correlation in nuclear motion may be based on statistical as well as on BCS theories⁽⁶⁾. However, a much simpler but effective treatment of this effect can be incorporated into the model description simply redefining the excitation energy of the Fermi-Gas according to

$$U \to U - \delta \,, \tag{13}$$

where $\delta = 2\Delta$ for even-even nuclei = Δ for odd nuclei = 0 for odd-odd nuclei.

The pairing correlation parameter \varDelta may be derived from mass-differences of neighboring nuclei for the entire mass region. However, the values derived from the experimental nuclear masses may be well represented by a simple, smooth function of the mass number. For example the value⁽⁷⁾

$$\Delta = \frac{12}{\sqrt{A}} \tag{14}$$

has shown to be suitable for representing the experimental situation.

The use of this simple prescription may well be questioned from theoretical point of view since the relation (14) has been derived from even-odd difference in nuclear masses, *i. e.* at zero temperature. The situation may be different at finite temperature. However, using this simple procedure we have obtained **Figs. 3** and **4**. It is clear that, overall, the applied correction is effective in condensing the different even-odd behaviors obtained by the straight application of Eq. (4) (Figs. 1 and 2) into a consistent systematics, practically insensitive to even-odd characters.

Mass number A

Fig. 4 The same as in Fig. 2, with pairing correction applied (See text for explanations)

3. Shell Effects

From an inspection (Figs. 3 and 4) there still appear to remain strong fluctuations in correspondence of proton and/or neutron shell closures. It is possible to take into account of shell effects in the Fermi-Gas description of the nuclear level density using different approaches. One possibility has been explored by Kataria *et al.*⁽⁸⁾. They have included shell inhomogeneities into the single-particle spectrum and consequently redefined the thermodynamical quantities necessary to the derivation of Eq. (3) or (4). In this way, the expression for the state-density incorporates the effects of shell closures.

A different approach which produces results altogether equivalent to those obtained by Kataria *et al.* has been proposed by Ignatyuk & coworkers⁽⁹⁾. The advantage of using the Ignatyuk approach is that the Fermi-Gas relations given above remain unchanged except for a.

The Ignatyuk procedure is based on the superfluid model which predicts a phase transition from the superfluid to the normal state at temperatures of the order of $T_{er}=0.567\varDelta$. Above this critical temperature the nucleus behaves as a Fermi-Gas. In this approach a depends on the excitation energy as well as on the shell correction energy E_{sh}

$$a(U) = a(*) \left[1 + \frac{E_{sh}}{U} (1 - e^{-\tau U}) \right], \qquad (15)$$

where a(*) is the asymptotic level density parameter to which a(U) tends for high excitation energies and γ a dumping parameter.

The shell correction energy E_{sh} is defined as the difference between the experimental nuclear mass and a smooth theoretical mass value M_w , derivable, for example, from a liquid-drop model

$$E_{sh} \equiv M_{exp} - M_w \,. \tag{16}$$

The evaluation of this quantity requires some care because different liquid-drop model parametrizations are available from literature and they produce quite different values for E_{sh} (see the next chapter).

Following this approach, for each isotope, a(*) is determined from the average neutron resonance spacing. In fact, the shell correction energy can be evaluated using Eq. (16) and the corresponding level density parameter a can be adjusted to fit the experimental $\langle D \rangle^{\exp_{l=0}}$ by varying a(*).

Using this technique we have repeated the calculations for the nuclei in our data-base

and the result of the a(*)-systematics is shown in **Fig. 5**. It clearly appears that the shell effects have, to a great extent, been appropriately taken into account by the procedure described above. In Fig. 5 we also show an evaluated "experimental" error associated to each a(*). This is just the direct effect of the experimental uncertainties on $\langle D \rangle^{\exp}_{l=0}$. The value of the dumping parameter γ adopted in our calculation was⁽¹⁰⁾

$$\gamma = \frac{0.40}{A^{1/3}}$$
 MeV⁻¹. (17)

Mass number A

Fig. 5 Level density parameter a(*) systematics Error-bars associated to a(*) correspond to the experimental uncertainties on $\langle D \rangle^{\exp}_{l=0}$. The solid line corresponds to the least-squares fit to Eq. (20). *rms* stands for root mean square deviation.

4. Other Effects

There are a number of other effects that can be incorporated into the Fermi-Gas description of the nuclear level densities. The most important of those are parity and collective effects.

Nuclear energy levels have a clearly unsymmetrical parity distribution in the lower part of the spectrum. As the excitation energy increases, however, the number (or density) of levels with opposite parity tends to be the same. Except for some light nuclei, the parity distribution at excitation energies corresponding to the neutron separation energy can be assumed to be symmetrical. To treat the cases in which the parity distribution is asymmetrical some technique has been proposed⁽¹¹⁾. The possibility of including this effect has been analyzed in several practical applications but a systematic analysis on a large mass range has not yet been done. For this reason the commonly adopted assumption of equal probability for different parity states has been adopted in the present analysis.

The contribution of collective effects is much more important and different techniques have been proposed for its inclusion into the Fermi-Gas description. It is possible to show⁽¹²⁾ that the contribution of collective excitations to the state-density can be factorized into the form

$$\rho_{Z,N}(U) = \rho_{Z,N}^{i}(U) Z_{\text{coll}}, \qquad (18)$$

where Z_{coll} is the partition function for the collective degrees of freedom of the system with excitation energies E_c

$$Z_{\text{coll}} = \sum e^{-(E_c/T)} \tag{19}$$

and $\rho^{i}{}_{N,Z}(U)$ is the state density for the intrinsic (non-collective) excitations.

Various collective models have been employed in the past to evaluate the contribution of collective degrees of freedom to nuclear excitations⁽¹⁾⁽⁹⁾. Also in this case, however, the prescriptions proposed cannot be applied to the complete mass range. In fact, most of the proposed techniques either assume the nucleus to have rotational or vibrational degrees of freedom to be added to the intrinsic excitations. This classification is in many cases not possible. Also, the most important effect due to collective excitations should result on the total nuclear state density. Instead, the information on the neutron resonances concerns only the density of state with fixed spin and parity. In this case the effect of collective excitations at energy close to the neutron binding may be strongly reduced⁽¹³⁾.

Finally we would like to mention that our aim here is to furnish a parametrization of the Fermi-Gas description that includes the pairing and shell effect corrections because this will provide the best basis on which further improvements can be constructed.

III. EVALUATION OF LEVEL DENSITY PARAMETERS

All the numerical constants and parameters used in our calculations are given in the AP-PENDICES. As already mentioned the evaluation of the shell correction energy requires some care. As suggested by Ignatyuk *et al.* we have adopted the droplet model of Myers & Swiatecki⁽¹⁴⁾ and its parametrization is given in the APPENDIX 1.

Several mass formulae can be used to evaluate E_{sh} from Eq. (16). However, the different choices of parametrization lead to different values of the shell correction energy. To give an idea of this problem we have plotted in Fig. 6, the results of the calculations made using three diverse prescriptions for the evaluation of the smooth part of the mass formula. As can be seen, even though the overall behavior of E_{sh} is very similar for the three cases shown, the absolute values disagree considerably. In addition, looking at the magnitudes of E_{sh} at the lower and upper part of the mass region considered, a dissimilar mass dependence can be detected. When comparing the results of different

(a) is from the mass formula of Myers & Swiatecki, adopted in our level density analysis. (b) and (c) show the same quantity as derived from the mass formulae of Refs. (15) and (17) respectively. authors for the level density parameter systematics, one should be careful to use the same values of the shell correction energies.

Of course, the shell correction energy can be also calculated using some microscopic model as suggested for example by the macroscopic-microscopic model of Möller & Nix⁽¹⁵⁾, but this procedure is rarely necessary since for most of the nuclei of interest the value of the experimental mass is available and E_{sh} can be evaluated using Eq. (16).

As definition of nuclear temperature we have adopted Eq. (10), which is consistent with the state-density relation (4). In the case in which a is energy-dependent (as in Eq. (17)), the nuclear temperature can be calculated by differentiating numerically Eq. (2). However, for the present analysis, the nuclear temperature only enters into the definition of the spin dispersion factor σ . On the other hand, the analytical expression (10) gives results very close to those obtained by numerical differentiation. Weh ave therefore adopted the analytical expression (10) in the analysis.

Our data-base of nuclear information consisted of the experimental average neutron resonances of Mughabghab et al.⁽¹⁾ for 217 nuclei. The ground-state spins of the target nuclei have also been taken from the same reference. The nuclear masses were from a CERN compilation⁽¹⁶⁾. The nuclear information of our data-base and the results of the calculation for the various quantities defined above are given in APPENDIX 2.

The systematics of the a(*) parameter is shown in Fig. 5 above and can be well described by a smooth function of the mass number A of type

$$a^{(*)} = \alpha A(1 - \beta A^{-1/3}),$$
 (20)

where the two parameters α and β can be determined from a least-squares fit of the a(*)values. We have obtained

 $\alpha = 0.058025 \text{ MeV}^{-1}$, $\beta = -5.9059$, (21)

with root mean square deviation, rms=0.976 MeV⁻¹.

This parametrization can be used to eva-

luate the level density parameters in the level density expression Eq. (4), for nuclei whose experimental information on the average level spacings is not available. In fact, from the value of a(*) obtained in Eq. (20), a can be calculated using Eq. (15) and consequently the spin dispersion factor σ .

For a more accurate analysis of our results, we have performed a least-squares fit to Eq. (20), separately for nuclei of given even-odd character. The results are summarized in **Table 1** and the corresponding a(*)-systematics are shown in **Figs.** $7(a) \sim (d)$. It can be noted that the rms is smaller, compared to the global analysis, in three of the four sub-sets. This fact can allow a more accurate determination of the level density parameters for nuclei of unknown resonance spacings.

Table 1 Parametrization of a(*)-systematics according to Eq. (20)

Nuclei	α (MeV ⁻¹)	β	<i>rms</i> (MeV ⁻¹)	Number of nuclei
All	0.058025	-5.9059	0.976	217
Even-even	0.067946	-4.1277	0.566	51
Even-odd	0.053061	-7.1862	1.089	112
Odd-even	0.066920	-3.8767	0.759	8
Odd-odd	0.065291	-4.4505	0.717	46

However, to have a better accuracy in the determination of the parameter a, a local systematics of a(*) should be constructed. In fact, the small fluctuation of a(*) in comparison with those of a allows for a much more reliable determination of this parameter and in turn for the level density at the neutron binding.

Finally, we would like also to mention here that we have written a computer program for personal computers that calculates all the quantities described in this paper. It also can construct a level density systematics using different options than those adopted by us. This program is available upon request to the authors.

IV. CONCLUSIONS

We have used a well established technique to evaluate the Fermi-Gas model parametriza-

Fig. 7 Level density parameter a(*) systematics for even Z-even N nuclei, even Z-odd N nuclei, odd Z-even N nuclei and odd Z-odd N nuclei

tion of nuclear level density at energies corresponding to the neutron binding energy. Our parametrization can be easily incorporated into those computer codes that use the Fermi-Gas model prescriptions for the calculation of nuclear level densities. Our analysis included pairing correlations as well as shell inhomogeneities effects into the relations based on the Fermi-Gas model.

We would like to remark here that using our global parametrization the evaluation of the nuclear level density parameters can be

- 68 -

performed with good accuracy for nuclei where experimental information on the average spacing of neutron resonances is not available. Also, the inclusion of further refinement in the theoretical description can be eased by our analysis. We plan to develop an empirical determination of the collective contribution, in order to widen the physical basis on which the Fermi-Gas model can be employed for the calculation of nuclear level density.

ACKNOWLEDGMENT

This work has been partially supported by the Commisson of the European Communities under the EC-S & TF Programme in Japan. The authors are grateful to Dr. Y. Kikuchi of the Nuclear Data Center, Japan Atomic Energy Research Institute, for supporting this work. One of the authors (A. M.) would like to thank the hospitality offered by the members of NDC/JAERI where the main part of this research work has been performed.

- MUGHABGHAB, S. F., DIVADEENAM, M., HOLDEN, N. E.: "Neutron Resonance Parameters and Thermal Cross Sections", Part A, (1981) Academic, New York; MUGHABGHAB, S. F.: ibid., Part B, (1984), Academic, New York.
- (2) The basic relations of the Fermi-Gas model level density have been derived in a number of papers and books (see Refs. (4,7) below). Perhaps, the most recent paper on the argument in which the basic relations given in the text are once more derived is: ENGELBRECHT, C. A., ENGELBRECHT, J.R.: Ann. Phys., 207, 1 (1991).
- (3) ERBA, E., FACCHINI, U., SAETTA-MENICHELLA, E.: Nuovo Cimento, 22, 1237 (1961).
- (4) LYNN, J.E.: "The Theory of Neutron Resonance Reactions", (1968), Clarendon Press, Oxford.
- (5) DILIG, W., SCHANTL, W., VONACH, H., UHL, M.: Nucl. Phys. A, 217, 269 (1973).
- (6) See Ref. (4) above. For the BCS treatment see: MAINO, G., MENAPACE, E., VENTURA, A.: Nuovo Cimento A, 57, 427 (1980).
- BOHR, A., MOTTELSON, B.: "Nuclear Structure", Vol. I, (1969), *ibid.*, Vol. II, (1975), Benjamin, New York.
- (8) KATARIA, S.K., RAMAMURTHY, V.S., KAPOOR, S.S.: Phys. Rev. C, 18, 549 (1978).
- (9) IGNATYUK, A.V., ISTEKOV, K.K., SMIRENKIN, G.N.: Sov. J. Nucl. Phys., 29, 450 (1979).
 For a recent review on the Generalized Superfluid Model see: RASTOPCHIN, E.M., SVIRIN, M.I., SMIRENKIN, G.N.: *ibid.*, 52, 799 (1991); IGNATYUK, A. V., WEIL, J. L., RAMAN, S., KAHANE, S.: Phys. Rev. C, 47, 1504 (1993).
- (10) RAMAMURHY, V.S., KATARIA, S.K., KAPOOR, S.S.: Proc. of IAEA Advisory Group Mtg. on Basic and Applied Problems of Nuclear Level Densities, BNL-NCS-51694, p. 187 (1983).
- (1) See for example: MENGONI, A., FABBRI, F., MAINO, G.: Nuovo Cimento, 94, 297 (1986) and references therein.
- (12) MAINO, G., MENGONI, A., VENTURA, A.: Phys. Rev. C, 42, 988 (1990).

- MENGONI, A.: Proc. of 1992 Symp. on Nuclear Data, JAERI-M 93-046, p. 92, (1993).
- MYERS, W. D., SWIATECKI, W. J.: Nucl. Phys., 81, 1 (1966).
- Möller, P., Nix, J.R.: At. Data Nucl. Data Tables, 39, 213 (1988).
- (1) CERN mass compilation, obtained by private communication to FABBRI, F., ENEA, Bologna, 1981.
- SPANIER, L., JOHANSSON, S. A. E.: At. Data Nucl. Data Tables, 39, 259 (1988).

[APPENDIX]

1. Mass Formula of Myers & Swiatecki⁽¹⁴⁾

The mass formula that we have used to evaluate M_w is $^{(14)}$

where $\Delta M_w(amu) = M_w(amu) - A$ is the massexcess,

$$c_i = a_i \left[1 - \kappa \left(\frac{N - Z}{A} \right)^2 \right], \quad i = 1, 2 \quad (A2)$$

and

 $p = -\frac{11}{\sqrt{A}} \quad \text{for even-even nuclei}$ = 0 for odd-mass nuclei (A3) = + $\frac{11}{\sqrt{A}}$ for odd-odd nuclei.

The numerical constants in Eqs.(A1) \sim (A3) are

$$a_1 = 15.677 \text{ MeV}$$
 $a_2 = 18.56 \text{ MeV}$
 $\kappa = 1.79$
 $c_3 = 0.717 \text{ MeV}$ $c_4 = 1.21129 \text{ MeV}$
 $M_n = 8.07144 \text{ MeV}$ $M_H = 7.28899 \text{ MeV}$
1 amu = 931.44 MeV.

Note that the even-odd correction term p is slightly different from the corresponding parameter in Eq. (14). We have maintained this difference in our calculations in order to keep the values of the other numerical constants of the mass formula consistent with the original determination by Myers & Swiatecki. For the other mass formulae used to make Fig. 6, see Refs. (15) and (17).

2. Nuclear Information and Level Density Parameter Systematics

Here follows the table containing the nuclear information and the parameter systematics, calculated as described in the text.

Table A1 Data-base containing nuclear information

and level density parameter systematics $I_{\alpha}, \Pi_{\alpha}, \langle D \rangle^{\exp}_{l=0}$ and its error are from Mughabghab *et al.*⁽¹⁾. The neutron binding energy S_n is evaluated from the nuclear mass table⁽¹⁶⁾. All the other quantities have been defined in the text except for -a(*) and +a(*). These are the uncertainties associated with the level density parameter a(*), evaluated from the experimental uncertainty on $\langle D \rangle^{\exp}_{l=0}$.

Z	A	I _a	п	<d>^{exp}l=0 Ke∨</d>	Δ <d>^{exp}i=0 Ke∨</d>	S _n MeV	E _{sh} MeV	T MeV	σ²	a(*) MeV~1	-a(*) MeV ⁻¹	+a(*) MeV ⁻¹	a MeV ⁻¹
20 21 22 22 22	41 46 47 48 49	0.0 3.5 0.0 2.5 0.0	1 -1 1 -1 1	45.0 1.3 10.0 2.2 13.0	6.0 0.1 8.0 0.4 3.0	8.3631 8.7605 8.8797 11.6281 8.1424	-0.150 1.460 0.727 0.663 0.244	1.273 1.336 1.180 1.304 1.099	8.620 10.957 10.032 11.478 10.013	6.285 6.303 7.064 6.596 7.696	-0.112 -0.058 -0.513 -0.138 -0.205	0.129 0.063 1.516 0.168 0.263	6.208 6.959 7.458 6.914 7.844
22 22 23 24 24	50 51 51 51 53	3.5 0.0 6.0 0.0 0.0	-1 1 1 1	5.0 125.0 2.7 15.0 42.0	0.5 70.0 0.7 2.0 5.0	10.9449 6.3724 11.0512 9.2612 7.9398	-0.468 -0.319 -0.645 -1.089 -1.135	1.295 1.039 1.431 1.260 1.170	12.208 10.118 13.940 12.274 12.150	6.876 7.286 6.787 7.573 7.657	-0.089 -0.492 -0.205 -0.119 -0.118	0.099 0.961 0.272 0.138 0.134	6.638 7.089 6.490 6.966 6.983
24 24 25 26 26	54 55 56 55 57	1.5 0.0 2.5 0.0 0.0	-1 1 -1 1 1	7.1 26.0 2.7 13.0 17.0	1.2 7.0 0.4 2.0 2.0	9.7190 6.2464 7.2702 9.2986 7.6464	-0.308 0.424 -0.643 -2.980 -1.310	1.137 0.874 1.175 1.242 1.039	12.184 9.660 13.378 13.725 12.182	7.611 8.935 7.983 9.162 9.206	-0.158 -0.293 -0.139 -0.162 -0.132	0.190 0.394 0.163 0.191 0.150	7.431 9.250 7.607 7.193 8.276
26 26 27 28 28	58 59 60 59 61	0.5 0.0 3.5 0.0 0.0	-1 1 -1 1	6.0 35.0 1.1 13.7 16.0	1.0 15.0 0.1 2.0 2.5	10.0443 6.5810 7.4916 9.0000 7.8203	-0.528 0.281 -0.605 -3.080 -1.252	1.117 0.942 1.121 1.199 1.052	13.487 11.701 14.318 14.895 13.806	8.309 8.428 8.780 9.586 9.171	-0.159 -0.410 -0.092 -0.161 -0.168	0.190 0.666 0.102 0.188 0.199	7.985 8.618 8.400 7.465 8.309
28 28 28 29 29	62 63 65 64 66	1.5 0.0 0.0 1.5 1.5	-1 1 -1 -1	1.8 19.1 19.9 0.32 0.51	0.3 3.6 3.6 0.03 0.06	10.5977 6.8387 6.0981 7.9159 7.0666	-0.767 0.156 1.228 -0.258 0.915	1.139 0.927 0.824 1.052 0.980	15.367 12.849 12.021 14.964 14.671	8.691 9.071 9.261 9.900 9.511	-0.158 -0.204 -0.204 -0.095 -0.117	0.189 0.250 0.248 0.105 0.133	8.219 9.182 10.169 9.724 10.131
30 30 30 30 30	65 67 68 69 71	0.0 0.0 2.5 0.0 0.0	1 -1 1 I	3.44 4.7 0.51 5.77 6.9	0.23 0.4 0.02 0.73 1.0	7.9799 7.0527 10.1982 6.4821 5.8356	0.542 1.846 1.953 2.642 3.271	0.955 0.858 1.018 0.795 0.719	13.943 13.168 16.018 12.824 12.165	9,589 9,463 8,535 9,484 9,824	-0.071 -0.092 -0.037 -0.137 -0.165	0.077 0.101 0.039 0.157 0.193	9.969 10.786 9.702 11.415 12.352
31 31 32 32 32 32	70 72 71 73 74	1.5 1.5 0.0 0.0 4.5	-1 -1 1 1	0.181 0.225 0.93 0.96 0.082	0.035 0.048 0.36 0.40 0.020	7.6551 6.5209 7.4159 6.7823 10.2001	2.335 3.406 3.220 3.763 3.219	0.975 0.858 0.808 0.736 0.914	16.102 14.850 13.668 13.038 16.552	9.327 9.660 10.131 10.619 9.692	-0.170 -0.198 -0.354 -0.399 -0.220	0.209 0.249 0.543 0.634 0.286	10.819 12.010 12.523 13.608 11.824
32 32 33 34 34	75 77 76 75 77	0.0 0.0 1.5 0.0 0.0	1 -1 1 1	3.0 3.75 0.075 0.42 0.667	1.5 2.00 0.005 0.24 0.270	6.5054 6.0723 7.3282 8.0278 7.4184	3.393 2.607 3.700 3.711 3.756	0.759 0.715 0.882 0.834 0.789	14.054 13.843 16.708 15.445 15.265	9.958 10.872 9.953 10.142 10.365	-0.462 -0.542 -0.064 -0.461 -0.366	0.818 1.004 0.068 0.895 0.573	12.497 13.026 12.463 12.790 13.157
34 34 34 34 35	78 79 81 83 80	0.5 0.0 0.0 0.0 1.5	-1 1 1 -1	0.146 1.39 3.5 6.7 0.047	0.030 0.50 1.5 4.7 0.005	10.4968 6.9606 6.7011 5.8954 7.8924	3.179 3.241 1.998 0.732 3.384	0.929 0.772 0.787 0.719 0.911	18.367 15.587 16.578 15.779 18.785	9.834 10.477 10.589 12.005 10.192	-0.179 -0.349 -0.430 -0.760 -0.098	0.223 0.518 0.694 1.831 0.110	11.913 12.942 12.131 12.663 12.462
35 37 37 38 38	82 86 88 85 87	1.5 2.5 1.5 0.0 0.0	-1 -1 -1 1 1	0.094 0.200 2.64 0.383 0.500	0.015 0.045 0.88 0.130 0.066	7.5935 8.6504 6.0778 8.5254 8.4282	2.091 0.011 -0.435 1.866 -0.018	0.912 1.078 0.923 0.875 0.877	19.613 25.097 22.323 19.977 20.812	10.599 9.930 10.411 11.118 12.365	-0.154 -0.205 -0.352 -0.319 -0.153	0.183 0.261 0.508 0.461 0.176	12.067 9.937 10.097 12.501 12.350
38 38 39 40 40	88 89 90 91 92	4.5 0.0 0.5 0.0 2.5	1 -1 1 1	0.121 25.0 4.0 6.4 0.57	0.013 5.0 0.4 1.1 0.10	11.1132 6.3639 6.8568 7.1993 8.6351	-1.505 -0.949 -1.285 -1.231 -0.005	1.046 0.855 1.002 0.875 0.849	25.296 21.056 25.146 22.377 22.117	11.473 10.953 10.454 11.890 11.704	-0.120 -0.253 -0.114 -0.216 -0.210	0.134 0.314 0.127 0.260 0.253	10.390 10.206 9.557 10.879 11.700
40 40 40 41 42	93 95 97 94 93	0.0 0.0 0.0 4.5 0.0	1 1 1 1 1	2.6 3.6 4.5 0.044 2.1	0.7 0.8 1.0 0.004 0.3	6.7320 6.4709 5.5810 7.2296 8.0675	0.480 1.504 2.493 0.581 -1.844	0.768 0.753 0.654 0.845 0.911	20.374 20.678 18.601 22.801 24.143	12.414 11.637 12.181 12.822 12.765	-0.326 -0.263 -0.284 -0.110 -0.181	0.436 0.334 0.361 0.121 0.211	12.832 12.867 14.380 13.307 11.204
42 42 42 42 42	95 96 97 98 99	0.0 2.5 0.0 2.5 0.0	1 1 1 1	0.975 0.055 0.850 0.032 0.97	0.260 0.008 0.045 0.003 0.20	7.3713 9.1542 6.8211 8.6423 5.9256	0.090 1.019 1.694 2.448 3.372	0.792 0.792 0.724 0.717 0.629	21.753 22.130 20.599 20.758 18.520	13.124 13.200 12.906 13.585 13.085	-0.321 -0.175 -0.069 -0.117 -0.261	0.427 0.204 0.073 0.129 0.325	13.204 14.089 14.413 15.815 16.218
42 43 44 45 47	101 100 100 104 108	0.0 4.5 2.5 0.5 0.5	1 1 -1 -1	0.40 0.0107 0.025 0.016 0.016	0.08 0.0018 0.002 0.001 0.003	5.3984 6.7641 9.6733 6.9984 7.2695	4.667 3.021 1.286 2.968 2.519	0.539 0.733 0.810 0.727 0.748	16.394 21.928 24.246 23.212 25.442	14.584 13.562 13.285 14.214 14.291	-0.274 -0.195 -0.095 -0.075 -0.212	0.339 0.233 0.104 0.080 0.258	19.490 16.238 14.378 16.919 16.554

<i>z</i>	A	I _a	Π	<d>^{exp}_{i=0} KeV</d>	$\Delta < D > \exp_{t=0}$ KeV	^S n Me∨	E _{sh} MeV	T MeV	σ ²	a(*) MeV ⁻¹	-a(*) MeV ⁻¹	+a(*) MeV ⁻¹	a MeV ⁻¹
47 48 48 48 48	110 107 109 111 112	0.5 0.0 0.0 0.0 0.5	-1 1 1 1	0.014 0.135 0.12 0.155 0.020	0.002 0.035 0.03 0.020 0.004	6.8055 7.9274 7.3605 6.9764 9.3953	3.379 0.345 1.564 2.380 2.414	0.700 0.757 0.697 0.668 0.740	24.539 25.366 24.073 23.781 26.743	14.571 15.000 15.088 14.779 14.435	-0.168 -0.319 -0.311 -0.169 -0.229	0.195 0.421 0.406 0.193 0.282	17.706 15.332 16.629 17.098 16.617
48 48 48 48 49	113 114 115 117 116	0.0 0.5 0.0 0.0 4.5	1 1 1 1	0.190 0.021 0.235 0.39 0.0094	0.025 0.004 0.035 0.09 0.0002	6.5439 9.0407 6.1448 5.7698 6.7834	2.932 2.741 3.110 2.931 2.589	0.631 0.710 0.598 0.575 0.721	23.159 26.412 22.571 22.354 27.610	14.918 14.703 15.353 15.655 14.419	-0.176 -0.224 -0.207 -0.325 -0.028	0.203 0.274 0.242 0.415 0.028	17.835 17.248 18.569 18.775 16.767
50 50 51 51 52	119 121 122 124 123	0.0 0.0 2.5 3.5 0.0	1 1 1 1	0.87 1.40 0.018 0.038 0.132	0.39 0.17 0.002 0.004 0.015	6.4845 6.1714 6.8064 6.4673 6.9329	1.467 0.968 1.681 0.766 1.997	0.680 0.665 0.734 0.736 0.655	27.200 27.323 30.607 31.512 27.656	14.228 14.633 14.722 14.871 15.728	-0.534 -0.176 -0.140 -0.141 -0.157	0.880 0.200 0.158 0.158 0.176	15.602 15.572 16.257 15.584 17.743
52 52 52 52 52	124 125 126 127 129	0.5 0.0 0.5 0.0 0.0	1 1 1 1	0.025 0.130 0.038 0.21 0.26	0.004 0.015 0.003 0.02 0.03	9.4243 6.5722 9.1184 6.2905 6.0861	1.312 1.250 0.361 0.096 -1.467	0.752 0.618 0.739 0.606 0.592	32.196 26.840 32.518 27.003 27.075	15.190 17.306 16.022 18.544 20.892	-0.195 -0.175 -0.108 -0.161 -0.220	0.231 0.198 0.117 0.178 0.248	16.402 18.706 16.376 18.660 18.891
52 53 55 56 56	131 128 134 136 137	0.0 2.5 3.5 1.5 0.0	1 1 1 1	0.87 0.0097 0.02065 0.040 0.430	0.14 0.0008 0.00230 0.007 0.035	5.9244 6.8255 6.8915 9.1074 6.8985	-3.416 0.640 -0.914 -1.422 -2.257	0.616 0.710 0.747 0.766 0.690	28.923 32.041 36.398 38.243 34.889	22.166 16.654 16.861 16.959 18.884	-0.337 -0.116 -0.162 -0.247 -0.142	0.400 0.126 0.182 0.297 0.155	17.214 17.307 15.929 15.515 16.227
56 56 57 58 59	138 139 140 141 142	1.5 0.0 3.5 0.0 2.5	1 1 1 1	0.29 6.3 0.208 3.2 0.088	0.04 1.7 0.010 0.2 0.009	8.6114 4.7235 5.1605 5.4285 5.8434	-3.148 -2.242 -1.417 -1.077 -0.437	0.800 0.550 0.657 0.607 0.687	40.967 28.486 34.431 32.224 36.872	16.830 20.276 17.665 17.686 16.745	-0.216 -0.558 -0.086 -0.117 -0.158	0.250 0.747 0.091 0.125 0.176	13.615 17.224 16.074 16.445 16.293
60 60 60 60	143 144 145 146 147	0.0 3.5 0.0 3.5 0.0	1 -1 1 -1 1	0.440 0.045 0.430 0.022 0.235	0.052 0.004 0.065 0.002 0.029	6.1225 7.8174 5.7554 7.5645 5.2924	-0.412 0.347 1.115 1.685 2.495	0.610 0.665 0.571 0.616 0.505	33.135 36.556 31.746 34.639 28.737	18.643 16.810 18.012 17.236 19.082	-0.203 -0.136 -0.248 -0.139 -0.214	0.230 0.150 0.291 0.153 0.243	18.157 17.170 19.295 19.035 22.161
60 60 61 62 62	149 151 148 148 150	0.0 0.0 3.5 3.5 3.5	1 1 -1 -1	0.140 0.174 0.0036 0.0057 0.0022	0.015 0.020 0.0005 0.0005 0.0002	5.0384 5.3345 5.9014 8.1414 7.9854	3.525 3.411 2.862 2.039 3.252	0.466 0.501 0.590 0.628 0.587	27.095 29.780 33.952 36.112 34.510	19.883 18.654 18.248 17.700 18.401	-0.191 -0.192 -0.202 -0.129 -0.133	0.214 0.217 0.234 0.141 0.147	24.439 22.730 21.434 19.882 22.023
62 62 62 62 63	151 152 153 155 152	0.0 2.5 0.0 0.0 2.5	1 -1 1 1	0.055 0.0012 0.0518 0.115 0.00073	0.009 0.0002 0.0033 0.012 0.00007	5.5965 8.2585 5.8674 5.8135 6.3055	3.980 3.630 3.685 2.941 4.223	0.496 0.589 0.519 0.536 0.576	29.494 35.414 31.576 33.272 34.612	19.290 18.646 18.917 18.495 18.862	-0.261 -0.230 -0.104 -0.168 -0.136	0.310 0.273 0.111 0.187 0.150	24.163 22.688 23.282 21.894 23.620
63 63 63 64 64	153 154 155 153 153	3.0 2.5 3.0 0.0 0.0	-1 1 -1 1 1	0.00025 0.0013 0.00092 0.015 0.0145	0.00004 0.0002 0.00017 0.002 0.0015	8.5505 6.4344 8.1704 6.4874 6.4385	3.889 3.688 3.324 3.748 3.709	0.652 0.601 0.657 0.543 0.538	39.617 36.904 40.839 33.020 33.409	17.913 18.257 17.367 19.179 19.449	-0.198 -0.209 -0.231 -0.200 -0.159	0.234 0.246 0.280 0.230 0.177	21.890 22.248 20.693 23.584 23.861
64 64 64 64	156 157 158 159 161	1.5 0.0 1.5 0.0 0.0	-1 1 -1 1 1	0.0018 0.0378 0.0049 0.085 0.202	0.0002 0.0055 0.0004 0.003 0.020	8.5364 6.3605 7.9374 5.9425 5.6354	3.275 3.056 2.819 2.635 2.249	0.614 0.556 0.591 0.539 0.533	38.573 35.261 37.918 34.929 35.294	18.313 18.782 18.603 19.039 18.870	-0.153 -0.220 -0.121 -0.059 -0.167	0.172 0.256 0.132 0.062 0.185	21.833 22.289 21.734 22.137 21.509
65 66 66 66 66	160 157 161 162 163	1.5 0.0 0.0 2.5 0.0	1 1 1 1	0.0039 0.0027 0.0270 0.00267 0.0646	0.0004 0.0004 0.0017 0.00013 0.0019	6.3755 6.9695 6.4534 8.1965 6.2724	2.587 3.605 2.772 2.468 2.169	0.614 0.541 0.554 0.607 0.561	40.210 34.350 36.685 40.561 37.926	18.429 20.892 19.457 18.795 19.146	-0.147 -0.223 -0.101 -0.073 -0.049	0.164 0.260 0.108 0.077 0.050	21.232 25.398 22.718 21.519 21.664
66 66 67 68 68	164 165 166 163 165	2.5 0.0 3.5 0.0 0.0	-1 1 -1 1 1	0.00685 0.147 0.0046 0.0069 0.020	0.00054 0.009 0.0005 0.0012 0.003	7.6565 5.7154 6.2425 6.9045 6.6495	2.022 1.914 1.727 3.047 2.579	0.586 0.532 0.621 0.558 0.563	39.994 36.645 43.217 37.678 38.815	19.075 19.638 18.608 20.256 19.711	-0.124 -0.107 -0.162 -0.258 -0.229	0.135 0.115 0.182 0.310 0.268	21.374 21.952 20.488 23.918 22.744
68 68 68 68 69	167 168 169 171 170	0.0 3.5 0.0 0.0 0.5	1 1 1 1	0.038 0.0040 0.094 0.125 0.0073	0.003 0.0002 0.010 0.025 0.0005	6.4364 7.7705 6.0034 5.6815 6.5934	1.928 1.856 1.672 1.533 1.531	0.561 0.587 0.546 0.523 0.627	39.465 41.717 39.169 38.265 45.458	19.935 19.548 19.917 20.601 19.278	-0.130 -0.081 -0.180 -0.341 -0.103	0.141 0.085 0.201 0.422 0.111	22.236 21.687 21.933 22.527 20.974
70 70 70 70 70	170 171 172 173 174	3.5 0.0 0.5 0.0 2.5	1 -1 -1 -1	0.0022 0.037 0.0058 0.070 0.0078	0.0005 0.006 0.0005 0.003 0.0009	8.4694 6.6145 8.0194 6.3675 7.4655	2.126 1.895 1.757 1.414 1.468	0.631 0.576 0.586 0.571 0.574	45.723 42.117 43.313 42.582 43.204	18.578 19.615 20.442 19.751 20.061	-0.309 -0.250 -0.136 -0.073 -0.188	0.393 0.297 0.149 0.076 0.212	20.844 21.812 22.527 21.410 21.796

.....

ZA	I _a	Π	<d>^{exp}i=0 KeV</d>	Δ <d>^{exp}l=0 KeV</d>	S _n Me∨	E _{sh} MeV	T MeV	σ²	a(*) MeV ⁻¹	-a(*) MeV ⁻¹	+a(*) MeV ⁻¹	a MeV ⁻¹
70 175 70 177 71 176 71 177 72 175	0.0 0.0 3.5 7.0 0.0	1 1 -1 1	0.162 0.18 0.00345 0.00174 0.021	0.018 0.02 0.00015 0.00017 0.005	5.8224 5.5674 6.2935 7.0724 6.7894	1.322 1.392 1.390 1.754 1.964	0.543 0.521 0.613 0.588 0.575	41.299 40.386 47.056 45.591 43.719	19.992 20.576 19.519 20.282 20.105	-0.193 -0.200 -0.069 -0.157 -0.354	0.217 0.225 0.072 0.174 0.456	21.586 22.312 21.078 22.333 22.411
72 177 72 178 72 179 72 180 72 181	0.0 3.5 0.0 3.5 0.0	1 -1 1 1	0.032 0.0024 0.062 0.0044 0.094	0.007 0.0003 0.011 0.0002 0.011	6.3834 7.6265 6.0994 7.3884 5.6954	1.772 1.846 1.625 1.589 1.439	0.550 0.562 0.542 0.557 0.515	42.646 43.971 42.798 44.430 41.456	20.761 20.914 20.633 20.845 21.414	-0.346 -0.203 -0.293 -0.079 -0.212	0.437 0.231 0.354 0.082 0.239	22.930 23.162 22.623 22.782 23.262
73 181 73 182 73 183 74 181 74 183	8.0 3.5 3.0 0.0 0.0	1 -1 1 1	0.0011 0.00417 0.0047 0.0225 0.066	0.0001 0.00004 0.0012 0.0065 0.004	7.5825 6.0634 6.9334 6.6844 6.1904	1.443 1.192 1.534 1.437 1.134	0.618 0.596 0.595 0.567 0.551	49.727 48.397 48.747 45.590 45.175	20.147 20.134 19.796 20.966 20.879	-0.143 -0.016 -0.375 -0.439 -0.107	0.157 0.016 0.492 0.597 0.114	21.785 21.512 21.538 22.714 22.271
74 184 74 185 74 187 75 186 75 188	0.5 0.0 0.0 2.5 2.5	-1 1 1 1	0.012 0.081 0.087 0.0031 0.0041	0.001 0.005 0.007 0.0002 0.0003	7.4114 5.7544 5.4664 6.1794 5.8724	1.254 1.243 1.198 0.951 0.848	0.554 0.516 0.491 0.591 0.571	45.813 43.086 41.721 49.722 48.944	21.591 21.814 22.812 21.057 21.595	-0.144 -0.116 -0.158 -0.107 -0.126	0.157 0.123 0.171 0.115 0.136	23.163 23.427 24.447 22.197 22.644
76 187 76 188 76 189 76 190 76 191	0.0 0.5 0.0 1.5 0.0	1 -1 1 -1 1	0.026 0.0044 0.040 0.0033 0.070	0.002 0.0002 0.002 0.0002 0.0002 0.005	6.2924 7.9884 5.9245 7.7924 5.7604	0.999 0.715 0.727 0.309 0.167	0.536 0.577 0.514 0.571 0.513	45.488 49.476 44.400 49.783 45.093	22.524 22.386 23.332 22.811 23.589	-0.139 -0.079 -0.097 -0.108 -0.143	0.151 0.083 0.103 0.115 0.154	23.834 23.293 24.329 23.211 23.821
76 193 77 192 77 193 77 194 78 195	0.0 1.5 4.0 1.5 0.0	1 -1 1 1	0.115 0.00180 0.0006 0.00554 0.240	0.010 0.00014 0.0001 0.00053 0.065	5.5834 6.1994 7.7644 6.0665 6.1084	-0.613 -0.025 -0.488 -0.993 -1.462	0.509 0.567 0.612 0.584 0.579	45.530 50.332 54.807 52.766 52.711	24.376 23.969 23.348 23.626 22.163	-0.182 -0.141 -0.276 -0.177 -0.484	0.200 0.153 0.329 0.195 0.646	23.493 23.936 22.721 22.301 20.287
78 196 79 198 80 199 80 200 81 204	0.5 1.5 0.0 0.5 1.5	-1 1 1 -1 1	0.018 0.0165 0.105 0.10 0.36	0.003 0.0009 0.033 0.03 0.05	7.9214 6.5124 6.6644 8.0284 6.6555	-2.157 -3.432 -4.100 -4.731 -7.405	0.610 0.653 0.605 0.673 0.777	56.028 61.033 57.022 63.923 76.270	23.925 23.856 26.381 24.339 24.332	-0.306 -0.107 -0.626 -0.564 -0.303	0.365 0.114 0.877 0.778 0.351	21.033 19.325 20.268 17.946 14.484
81 206 82 205 82 207 82 208 83 210	0.5 0.0 0.5 4.5	1 1 -1 -1	5.5 1.52 37.1 35.7 4.5	1.1 0.13 5.5 6.5 0.6	6.5034 6.7314 6.7394 7.3675 4.6045	-9.095 -7.570 -9.565 -9.972 -7.620	0.857 0.702 0.854 0.867 0.694	85.520 69.500 85.923 87.923 71.523	23.943 27.366 24.184 24.354 24.146	-0.459 -0.219 -0.378 -0.479 -0.357	0.569 0.239 0.443 0.582 0.412	12.014 15.782 11.288 10.746 13.499
88 227 90 230 90 231 90 233 91 232	0.0 2.5 0.0 0.0 1.5	1 1 1 -1	0.0303 0.00053 0.0096 0.0168 0.00045	0.0054 0.00015 0.0013 0.0010 0.00005	4.5521 6.7910 5.1206 4.7863 5.5605	3.824 3.238 3.315 3.555 2.965	0.382 0.459 0.410 0.391 0.476	44.809 55.035 49.494 47.965 57.884	26.761 25.845 27.146 27.325 25.904	-0.375 -0.488 -0.277 -0.131 -0.202	0.452 0.659 0.319 0.139 0.226	32.709 30.477 32.257 32.884 30.100
91 234 92 233 92 234 92 235 92 236	1.5 0.0 2.5 0.0 3.5	-1 1 1 -1	0.00059 0.0046 0.00055 0.0106 0.00044	0,00009 0.0007 0.00005 0.0005 0.0005	5.2096 5.7538 6.8435 5.2976 6.5459	3.122 2.465 2.555 2.623 2.752	0.453 0.448 0.464 0.426 0.441	55.953 54.869 57.275 52.980 55.164	26.587 26.979 26.458 27.071 27.466	-0.283 -0.295 -0.175 -0.100 -0.258	0.332 0.346 0.192 0.105 0.309	31.159 30.673 30.173 31.061 31.648
92 237 92 238 92 239 93 238 94 239	0.0 0.5 0.0 2.5 0.0	1 1 1 1	0.0147 0.0035 0.0209 0.00052 0.0090	0.0008 0.0008 0.0011 0.00004 0.0007	5.1247 6.1531 4.8063 5.4881 5.6472	2.743 3.011 3.077 2.272 1.847	0.418 0.425 0.397 0.479 0.452	52.665 53.892 50.738 60.808 57.762	27.057 27.171 27.473 26.191 26.959	-0.117 -0.440 -0.117 -0.146 -0.160	0.124 0.560 0.124 0.159 0.173	31.240 31.740 32.272 29.424 29.713
94 240 94 241 94 242 94 243 95 242	0.5 0.0 2.5 0.0 2.5	1 1 1 -1	0.0023 0.0136 0.0009 0.0155 0.00055	0.0001 0.0007 0.0001 0.0017 0.0005	6.5337 5.2412 6.3094 5.0339 5.5409	2.141 2.183 2.450 2.456 1.679	0.448 0.426 0.431 0.411 0.483	57.621 55.210 56.304 53.974 63.105	27.533 27.498 27.953 27.894 26.735	-0.090 -0.112 -0.229 -0.237 -0.175	0.094 0.118 0.257 0.266 0.193	30.779 30.852 31.740 31.736 29.159
95 243 95 244 96 243 96 244 96 245	5.0 2.5 0.0 2.5 0.0	-1 -1 1 1 1	0.00040 0.00060 0.025 0.0011 0.012	0.00008 0.00006 0.008 0.0002 0.001	6.3640 5.3629 5.6955 6.7993 5.5197	2.094 1.976 1.353 1.532 1.458	0.490 0.471 0.477 0.475 0.447	64.395 62.304 62.688 62.864 59.497	25.777 26.913 25.326 26.659 27.547	-0.357 -0.194 -0.574 -0.345 -0.176	0.441 0.216 0.809 0.417 0.192	28.684 29.794 27.209 28.879 29.762
96 246 96 247 96 248 96 249 97 250	3.5 0.0 4.5 0.0 3.5	1 -1 1 1	0.0014 0.034 0.0014 0.033 0.0010	0.0001 0.007 0.0003 0.005 0.0001	6.4567 5.1573 6.2124 4.7124 4.9694	1.730 1.777 2.049 2.305 1.823	0.457 0.437 0.440 0.397 0.453	61.276 58.960 59.762 54.298 62.400	26.855 26.515 27.219 28.163 27.353	-0.147 -0.415 -0.425 -0.336 -0.204	0.159 0.516 0.533 0.393 0.227	29.400 29.135 30.289 31.812 30.069
98 250 98 253	4.5 0.0	-1 1	0.0007 0.027	0.0001 0.003	6.6233 4.8034	1.021 2.065	0.460 0.401	63.364 56.320	28.320 28.556	-0.294 -0.251	0.341 0.282	29.888 31.847