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 The authors furnish a new parametrization of the Fermi-Gas model description of nuclear 

levet densities at excitation energies corresponding to the neutron binding energy. The model 

adopted is the standard Fermi-Gas model with pairing and shell-effect corrections. Particular 

care has been devoted to the inclusion of shell effects and to their parametrization. The pro-

cedure for the evaluation of level density parameters has been applied to a data-base of 217 

nuclei covering a mass range 41<=A<= 253. A global systematics parametrization has been 

derived which allows for a derivation of level density parameters for nuclei where experimental 

information is not available.
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I. INTRODUCTION

 The density of nuclear states is a funda-
mental ingredient for all the application of 
the statistical theories of nuclear reactions. 
Except for the very low excitation energy 

part of the nuclear spectra, where experi-
mental information is available for a wide 
class of nuclei, the computation of the density 
of nuclear states must rely on model calcula-

tions. Many nuclear structure models have 
been employed and tested for the calculation 
of nuclear state densities at excitation energies 
corresponding to the neutron binding energy 

(of the order of 8 MeV for medium and heavy 
nuclei). This is because at those excitation 
energies an important experimental quantity 
can be related to the density of nuclear levels ; 
the average spacings of s-wave neutron res-
onances <D>t=o. A large set of information 
on these quantities has been collected and 

compiled several times in the past. A rela-
tively recent compilation(1) has been made

available which provides a large data-base on 

which the traditional level density models 

can be tested. Of course this is not the first 

time that such an analysis has been made. 

However, the recent data-base has been used 

only for particular and specific purposes on 

limited mass ranges. It is therefore interest-

ing to repeat the calculation using well esta-

blished techniques in order to furnish the 

utilizers with the best possible parametriza-

tion. 

 In this work we will apply the Fermi-Gas 

model with the usual correction for pairing 

correlations. We will then discuss in detail 

the influence of the shell effects and their 

inclusion into the Fermi-Gas description as 

proposed by a technique which is widely 

applied in the recent versions of most of the 

computer codes for nuclear reaction calcula-

tions.
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 The paper is organized as follows : in the 

next chapter the basic relations of the Fermi-

Gas model will be given. The treatment of 

the various nuclear structure effects will be 

given in its sections. In Chap. III we will 
show the results of our analysis and we will 

give the parametrization obtained. Finally, 
the conclusions and some remark on further 

improvements for the theoretical description 

will be given in the last chapter.

 II. BASIC RELATIONS FOR 

 NUCLEAR LEVEL DENSITY 

 DESCRIPTION

 1. Fermi-Gas Model 
 The density of nuclear states into which 

a set of A non-interacting nucleons (Fermi-
Gas) are arranged from an equally spaced 
single-particle spectrum with spacing gf at 
the fermi energy is given by")

 ( 1 )

where a=(p2/6)gf and U is the excitation 
energy. This elementary relation can be 
derived from combinatorial analysis simply 
counting the ways into which the A nu-
cleons can be arranged into the single-particle 

spectrum. 
 The state-density for the equivalent system 

can be derived in an alternative way, using 
the equilibrium statistical properties of the 
Fermi-Gas itself. The result is altogether 

equivalent to that of Eq. ( 1 ). The advantage 
of the thermodynamical approach is that a 
number of additional constraints can be readily 
taken into account. For example, the density 
of states for a mixture of Z protons and N 
neutrons can be easily derived and it is given 
by a relation similar to Eq. ( 1 ):

 ( 2 )

Other constants of motion can be added to 
the thermodynamical description. In fact, 
nuclear states are characterized by good 

quantum numbers, II and M, for parity and 
projection of the total angular momentum. It 
can be shown that for a scalar constant of

motion M, a Gaussian law with dispersion s 

holds

 ( 3 )

where equal probability has been assumed for 
the two parity values II=-and II=+. 
From Eq. ( 3 ), differentiating respect to states 
with M=J and M=J+1, we can derive the 

expression of the density of nuclear levels 
with total angular momentum J

 ( 4 )

This is the basic relation that we will use 
below to evaluate the parameter systematics 
for nuclei throughout the nuclide chart. In 
addition to the parameter a, the only other 

quantity to be determined in Eq. ( 4 ) is the 
spin dispersion factor a. For a gas of fer-
mions constrained into a spherical box of 
radius R, the dispersion factor a can be eva-
luated to give

 ( )

where Mn is the nucleon mass and T the 

nuclear temperature in MeV units. This is 

equivalent to consider the rotation of a rigid 

body with moment of inertia

which furnishes

 ( 6 )

(7)

when using R=1.2A1/3 fm and Mn-=938.926 

MeV. 

 In the thermodynamical approach, the nu-

clear temperature is defined by the relation

 ( 8 )

Using Eq. ( 1 ) it is easy to recover the usual 
relation for the Fermi-Gas
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 U = aT2  ( 9 )

It is also straightforward to derive the value 

of the temperature from the more elaborate 

state-density of Eq. ( 2 )

(10)

Some care has to be taken when evaluating 
the spin dispersion factor. In fact, from the 
relations (7), with the definition of the nuclear 
temperature in Eq. (9) or (10), a dependence 
on the parameter a is brought back into the 
level density expression (4 ). 

 The calculation of the level density using 
Eq. ( 4 ) is affected by the assumptions made 
when deriving the state-density from the ther-
modynamical equilibrium conditions (saddle-

point inversion method, continuous approximation) 
as well as from the assumptions underlying 
the Fermi-Gas model itself. Quite generally 
the assumptions made in deriving Eq. ( 4 ) are 
well justified for excitation energies of a few 

 MeV. In particular those approximations are 

generally valid for excitation energies cor-
responding the neutron binding energy. This 
is an important point because at that energy 
the density of nuclear states of given J and 

 II is known from the spacing of neutron 
resonances (usually s-wave neutron resonances). 
In these cases it is possible to evaluate the 
only parameter of Eq. ( 4 ), a, from

for nuclei with Ia=0, or

(11)

(12)

for nuclei with Ia=/„0, where Ia is the spin 
of the nucleus with Z protons and N-1 
neutrons (target nucleus in the neutron +(Z, N-1) 

process). From the experimental <D>expl=0 it 
is possible to derive the systematics of the 
level density parameter a. These kind of 
analyses have been performed several times 
in the past, perhaps the most quoted and 

recognized being those of Erba et al.(3), Lynn(4) 
and Dilig at al.(5). Recently, a much wider

compilation of the neutron resonance level 

spacings has been made available(1). We have 
used those experimental values to obtain Fig. 

1. For clearness, Fig. 2 shows a portion of 

Fig. 1 in a restricted region, 100<=A<=200

Fig. 2 Level density parameter a calculated 

  from Eq. ( 4 ) for 100<=A<= 200

Fig. 1 Level density parameter a calculated 
from Eq. ( 4 ) for 41<=A<=235

 The strong fluctuations of the level density 

parameter a over the entire mass range are 
due to several nuclear properties whose effects 

will be discussed below.
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 2. Pairing Correlations 

 Of the various effects that must be taken 

into account to improve the simple description 

of the nuclear level density based on the 

Fermi-Gas model, the effect due to pairing 

correlations in the nuclear motion is clearly 

revealed in the Figs. 1 and 2. In fact, even-

even, odd-mass and odd-odd nuclei are shown 

to have a different, systematically correlated 

behavior in the complete mass region. This 

effect is analogous to the even-odd differences 

of the nuclear masses and it is easily ascribed 

to pairing correlations. 

 A full treatment of the pairing correlation 

in nuclear motion may be based on statistical 

as well as on BCS theories(6). However, a 

much simpler but effective treatment of this 

effect can be incorporated into the model 

description simply redefining the excitation 

energy of the Fermi-Gas according to

U->U-d, (13)

insensitive to even-odd characters.

where d=2D for even-even nuclei 

 =D for odd nuclei 

 =D for odd-odd nuclei.

The pairing correlation parameter D may be 

derived from mass-differences of neighboring 

nuclei for the entire mass region. However, 

the values derived from the experimental 

nuclear masses may be well represented by 

a simple, smooth function of the mass num-

ber. For example the value(7)

(14)

has shown to be suitable for representing the 
experimental situation. 

 The use of this simple prescription may 
well be questioned from theoretical point of 
view since the relation (14) has been derived 
from even-odd difference in nuclear masses, 

 i. e. at zero temperature. The situation may 
be different at finite temperature. However, 
using this simple procedure we have obtained 
Figs. 3 and 4. It is clear that, overall, the 
applied correction is effective in condensing 
the different even-odd behaviors obtained by 
the straight application of Eq. ( 4 ) (Figs. 1 
and 2) into a consistent systematics, practically

Fig. 4 The same as in Fig. 2, with pairing cor-
  rection applied (See text for explanations)

 3. Shell Effects 
 From an inspection (Figs. 3 and 4) there 

still appear to remain strong fluctuations in 
correspondence of proton and/or neutron shell 
closures. It is possible to take into account 
of shell effects in the Fermi-Gas description 
of the nuclear level density using different 
approaches. One possibility has been explored 
by Kataria et al.(8). They have included shell

—64—

Fig. 3 The same as in Fig. 1, with pairing cor-

  rection applied (See text for explanations) 

  The least-squares straight line A/7.88 
  is also plotted.
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 inhomogeneities into the single -particle spec-
trum and consequently redefined the thermody -
namical quantities necessary to the derivation 

of Eq. ( 3 ) or ( 4 ). In this way, the expres-
sion for the state-density incorporates the 

effects of shell closures . 
 A different approach which produces results 

altogether equivalent to those obtained by 

Kataria at al. has been proposed by Ignatyuk 

& coworkers(9). The advantage of using 

the Ignatyuk approach is that the Fermi-Gas 

relations given above remain unchanged ex-

cept for a. 

 The Ignatyuk procedure is based on the 

superfluid model which predicts a phase transi-

tion from the superfluid to the normal state 

at temperatures of the order of Tcr„=0.567DJ. 
Above this critical temperature the nucleus 

behaves as a Fermi-Gas. In this approach 

a depends on the excitation energy as well 

as on the shell correction energy Esh,

(15)

where a(*) is the asymptotic level density 

parameter to which a(U) tends for high ex-
citation energies and r a dumping parameter. 

 The shell correction energy Esh, is defined 
as the difference between the experimental 
nuclear mass and a smooth theoretical mass 
value Mw, derivable, for example, from a 
liquid-drop model

(16)

The evaluation of this quantity requires some 
care because different liquid-drop model para-
metrizations are available from literature and 
they produce quite different values for Esh 

(see the next chapter). 
 Following this approach, for each isotope, 

a(*) is determined from the average neutron 
resonance spacing. In fact, the shell correc-
tion energy can be evaluated using Eq. (16) 
and the corresponding level density parameter 
a can be adjusted to fit the experimental 

 <D>expl=0 by varying a(*). 
 Using this technique we have repeated the 

calculations for the nuclei in our data-base

and the result of the a(*)-systematics is shown 
in Fig. 5. It clearly appears that the shell 
effects have, to a great extent, been appro-

priately taken into account by the procedure 
described above. In Fig. 5 we also show an 
evaluated "experimental" error associated to 
each a(*). This is just the direct effect of 
the experimental uncertainties on <D>expl=0. 
The value of the dumping parameter 7 ado-

pted in our calculation was(10)

(17)

 4. Other Effects 

 There are a number of other effects that 

can be incorporated into the Fermi-Gas des-

cription of the nuclear level densities. The 
most important of those are parity and col-

lective effects. 

 Nuclear energy levels have a clearly un-

symmetrical parity distribution in the lower 

part of the spectrum. As the excitation 
energy increases, however, the number (or 

density) of levels with opposite parity tends 

to be the same. Except for some light nuclei, 

the parity distribution at excitation energies 

corresponding to the neutron separation energy

Fig. 5 Level density parameter a(*) systematics 
Error-bars associated to a(*) correspond 

 to the experimental uncertainties on 
 <D>expl=0. The solid line corresponds to 
 the least-squares fit to Eq. (20). rms 

 stands for root mean square deviation.
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can be assumed to be symmetrical. To treat 

the cases in which the parity distribution is 

asymmetrical some technique has been pro-

posed(11). The possibility of including this 
effect has been analyzed in several practical 

applications but a systematic analysis on a 

large mass range has not yet been done. For 

this reason the commonly adopted assumption 

of equal probability for different parity states 

has been adopted in the present analysis. 

 The contribution of collective effects is 

much more important and different techniques 

have been proposed for its inclusion into the 

Fermi-Gas description. It is possible to 

 show(13) that the contribution of collective 

excitations to the state-density can be fac-
torized into the form

(18)

where Zeou is the partition function for the 
collective degrees of freedom of the system 

with excitation energies E,

(19)

and piN ,z(U) is the state density for the in-
trinsic (non-collective) excitations. 

 Various collective models have been em-

ployed in the past to evaluate the contribution 
of collective degrees of freedom to nuclear 

 excitationsm(7)(9). Also in this case, however, 

the prescriptions proposed cannot be applied 

to the complete mass range. In fact, most of 

the proposed techniques either assume the 

nucleus to have rotational or vibrational de-

grees of freedom to be added to the intrinsic 
excitations. This classification is in many 

cases not possible. Also, the most important 

effect due to collective excitations should 

result on the total nuclear state density. In-

stead, the information on the neutron reso-

nances concerns only the density of state with 

fixed spin and parity. In this case the effect of 

collective excitations at energy close to the 

neutron binding may be strongly reduced(13). 

 Finally we would like to mention that our 

aim here is to furnish a parametrization of 

the Fermi-Gas description that includes the 

pairing and shell effect corrections because 
this will provide the best basis on which

further improvements can be constructed.

 III. EVALUATION OF LEVEL 

 DENSITY PARAMETERS

 All the numerical constants and parameters 
used in our calculations are given in the AP-
PENDICES. As already mentioned the evalua-
tion of the shell correction energy requires 
some care. As suggested by Ignatyuk et al. 
we have adopted the droplet model of Myers 
& Swiatecki(14) and its parametrization is 

given in the APPENDIX 1. 
 Several mass formulae can be used to 

evaluate Egh from Eq. (16). However, the 
different choices of parametrization lead to 
different values of the shell correction energy. 
To give an idea of this problem we have 

plotted in Fig. 6, the results of the calcula-
tions made using three diverse prescriptions 
for the evaluation of the smooth part of the 
mass formula. As can be seen, even though 
the overall behavior of Esh is very similar 
for the three cases shown, the absolute values 
disagree considerably. In addition, looking at 
the magnitudes of Esh at the lower and upper 

part of the mass region considered, a dis-
similar mass dependence can be detected. 
When comparing the results of different

Fig. 6 Shell correction energies as derived 
 from three different mass formulae 

 (a) is from the mass formula of Myers 
 & Swiatecki, adopted in our level densi-
 ty analysis. (b) and (c) show the same 

 quantity as derived from the mass form-
 ulae of Refs. (15) and (17) respectively.

 — 66 —



Vol. 31, No . 2 (Feb. 1994) TECHNICAL REPORT (A . Mengoni, Y. Nakajima) 157

authors for the level density parameter sys -
tematics, one should be careful to use the 
same values of the shell correction energies . 

 Of course, the shell correction energy can 
be also calculated using some microscopic 
model as suggested for example by the mac-
roscopic-microscopic model of Moller & 

 Nix("), but this procedure is rarely necessary 
since for most of the nuclei of interest the 
value of the experimental mass is available 
and E,5 can be evaluated using Eq. (16). 

 As definition of nuclear temperature we 
have adopted Eq. (10), which is consistent 
with the state-density relation ( 4 ). In the 

case in which a is energy-dependent (as in 
Eq. (17)), the nuclear temperature can be 

calculated by differentiating numerically Eq. 

 ( 2 ). However, for the present analysis, 
the nuclear temperature only enters into the 
definition of the spin dispersion factor a. On 
the other hand, the analytical expression (10) 

gives results very close to those obtained 
by numerical differentiation. Weh ave there-
fore adopted the analytical expression (10) 
in the analysis. 

 Our data-base of nuclear information con-
sisted of the experimental average neutron 
resonances of Mughabghab et al.°, for 217 
nuclei. The ground-state spins of the target 
nuclei have also been taken from the same 
reference. The nuclear masses were from a 
CERN compilation(16). The nuclear informa-
tion of our data-base and the results of the 
calculation for the various quantities defined 
above are given in APPENDIX 2. 

 The systematics of the a(*) parameter is 
shown in Fig. 5 above and can be well des-

cribed by a smooth function of the mass 
number A of type

(20)

where the two parameters a and b can be 
determined from a least-squares fit of the a(*) 
values. We have obtained

(21)

with root mean square deviation, rms=0.976 

MeV-1. 

 This parametrization can be used to eva-

luate the level density parameters in the level 
density expression Eq. ( 4 ), for nuclei whose 
experimental information on the average level 
spacings is not available. In fact, from the 
value of a(*) obtained in Eq. (20), a can be 
calculated using Eq. (15) and consequently 
the spin dispersion factor s. 

 For a more accurate analysis of our results, 
we have performed a least-squares fit to Eq. 

(20), separately for nuclei of given even-odd 
character. The results are summarized in 
Table 1 and the corresponding a(*)-systematics 
are shown in Figs. 7(a)~(d). It can be noted 
that the rms is smaller, compared to the global 
analysis, in three of the four sub-sets. This 
fact can allow a more accurate determination 

of the level density parameters for nuclei of 
unknown resonance spacings.

Table 1 Parametrization of a(*)-systematics 

  according to Eq. (20)

 However, to have a better accuracy in the 
determination of the parameter a, a local syste-
matics of a(*) should be constructed. In fact, 
the small fluctuation of a(*) in comparison 
with those of a allows for a much more 
reliable determination of this parameter and 
in turn for the level density at the neutron 

binding. 
 Finally, we would like also to mention 

here that we have written a computer program 
for personal computers that calculates all the 

quantities described in this paper. It also 
can construct a level density systematics 
using different options than those adopted by 
us. This program is available upon request 
to the authors.

 IV. CONCLUSIONS

 We have used a well established technique 

to evaluate the Fermi-Gas model parametriza-
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Fig. 7 Level density parameter a(*) systematics for even Z-even N nuclei, 
  even Z-odd N nuclei, odd Z-even N nuclei and odd Z-odd N nuclei

tion of nuclear level density at energies cor-

responding to the neutron binding energy. 

Our parametrization can be easily incorporated 

into those computer codes that use the Fermi-

Gas model prescriptions for the calculation 

of nuclear level densities. Our analysis in-

cluded pairing correlations as well as shell 

inhomogeneities effects into the relations 

based on the Fermi-Gas model. 

 We would like to remark here that using 

our global parametrization the evaluation of 

the nuclear level density parameters can be

performed with good accuracy for nuclei 
where experimental information on the aver-

age spacing of neutron resonances is not 

available. Also, the inclusion of further re-
finement in the theoretical description can be 

eased by our analysis. We plan to develop 

an empirical determination of the collective 

contribution, in order to widen the physical 

basis on which the Fermi-Gas model can be 

employed for the calculation of nuclear level 

density.
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[APPENDIX]

 1. Mass Formula of Myers 

 & Swiatecki(14) 

 The mass formula that we have used to 

evaluate Mw is (14)

(A1)

where DMw(amu)-=Mw(amu)—A is the mass-

excess,

and

for even-even nuclei

for odd-mass nuclei

for odd-odd nuclei .

(A2)

(A3)

The numerical constants in Eqs.(A1)—(A3) are

 a1=15.677 MeV a2=18.56 MeV 

 K = 1 .7 9 

 c3=0.717 MeV c4=1.21129 MeV 

 Mn=8.07144 MeV MH=7.28899 MeV 
1 amu=931.44 MeV .

 Note that the even-odd correction term p 

is slightly different from the corresponding 

parameter in Eq. (14). We have maintained 
this difference in our calculations in order to 
keep the values of the other numerical con-

stants of the mass formula consistent with 
the original determination by Myers & 
Swiatecki. For the other mass formulae used 
to make Fig. 6, see Refs. (15) and (17).

 2. Nuclear Information and Level 

 Density Parameter Systematics 

 Here follows the table containing the 

nuclear information and the parameter sys-

tematics, calculated as described in the text.

 — 69 —



160 TECHNICAL REPORT (A. Mengoni, Y. Nakajima) J. Nucl. Sci. Technol.,

 Table Al Data-base containing nuclear information 
   and level density parameter systematics  Ia

, II a, <D>expl=0 and its error are from Mughabghab et al.(1). The neutron 
binding energy Si, is evaluated from the nuclear mass table(16). All the 
other quantities have been defined in the text except for —a(*) and +a(*). 
These are the uncertainties associated with the level density parameter a(*), 
evaluated from the experimental uncertainty on <D>expl=0.
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