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T-linear term of specific heat and magnetic susceptibility at zero temperature are derived for the
heavy electron systems, and relations among these quantities are discussed on the basis of the Fermi liquid
theory. Further, a rigorous expression of the T*term of resistivity at low temperatures is also obtained
on the basis of Kubo formula. It is shown that the coefficient of the T*term arising from the electron
interaction is strongly enhanced though it vanishes because of the momentum conservation for a free
electron system possessing no crystal lattice.

§1. Introduction

Behaviors shown by heavy fermion systems often realized in Ce-compounds at low
temperatures have been investigated theoretically by many authors with several
approaches.” Among them, the Fermi liquid approach on the basis of the periodic
Anderson model seems to be most appropriate in order to grasp the essential nature of the
heavy electron system.

In this paper, we discuss the low temperature behavior of the heavy electron systems

by using this approach. For simplicity we neglect the orbital degeneracy. Then, our.

Hamiltonian is given by '

H:Ho"I‘H” . (1.1)

Ho:%;ekciac:w-F EEdeo‘dko“i‘E_ Vilakocrot choars) —|—-4£N<n0f>2 , (1-2)

= ﬁai t Qby-qt Akyy Gk 13
Bbat+0) N +e 2= q NN/7 N

Creation operator cie is that for a conduction electron with momentum B, spin o and
energy &;; ako is for f-electron with &, ¢ and E,. Heavy f-electrons in the same atom
interact with each other via Coulomb repulsion U. These two kinds of electrons hybrid-
ize through matrix element V. In this paper we include the dispersion of f-electrons.

Therefore, in principle, our results can also be applied to transition metal and actinide
systems.

§2. Specific heat and magnetic susceptibility
The Green’s functions of f-electrons and conduction electrons are given by

Gio‘(z):[z_Eko‘_Zko‘(Z) _E%]_l, (2'1)
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622 K. Yamada and K. Yosida

c —_ _ _ sz -1 :
Gko’(Z)—[Z Eko Z_Eko‘"‘z‘ko‘(Z)] , . (2-2)

where X1s(z) is the true selfenergy part of f-electrons. ,
First, we consider the ground state properties.”® The eigenvalues of quasi-
" particles, E%q, are given by the poles of (2-1) or (2:2) and satisfy the equation, (z=E%o)

[Z_Eko-_‘Zko‘(Z)](Z_Ska‘)_Vk2= . (2'3)

The density of states of f-electrons are given by

od (0)=Fotsl0), | (2-4)

0how) = ——ImGholw+i3) = aho(Ete) S (0—Eks) . (2:5)

Here we have put as as(E%s) the residue

P O ) Vi ]-1
ahe(Elo) =[1- PO T (2+6)
The density of states of conduction electrons is also given by
0 (@)= Tofo(e) | | | (2:)
pholw)= —%ImGia(a)wL i0) =a%s(E%s)8(w—E%s) , (2-8)
Wheré :
o Vi 0]
aia(a))—[l-i- (00— Ero—Zrolw))? (1 ow
_ V_k>2 .
~(o=2—) ahola) | (2-9)
Combining (2-4) and (2:7), we obtain?
pr(@+D(1-22D | Vot (0)=S5(0-Ehe) . (2+10
kB @ w=Ep. I
Thus, we obtain the coefficient of 7-linear term of the specific heat as
y=20(u—Er) =S 0+ 51— 2| Nog (g, (2+1)
ko [ ko w w=0

where ¢ denotes the Fermi energy which is put as zero. This result means that 7y is given
by the sum of p° and p%s enhanced by the factor of (1—38X/0w|w=0). The large enhance-
ment of y in heavy electron systems originates from the second term of (2:11), because
this term is enhanced by the strong interaction between f-electrons.

Now we discuss the magnetic susceptibility. For simplicity, we assume that f- and
conduction electrons have the same g-value, ¢=2. In this case Ers and eros are given
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Fermi Liquid Theory on the Basis of the Periodic Anderson Hamiltonian 623

under a magnetic field H by
Eko':Ek*Ho-, (2'12)
ero=¢€p—Hy, (2-13)

where Hs=gusHo/ 2, ps being the Bohr magneton. Total electron number N. and
magnetization M are given by

Ne=36(s—E%o), ’ (2-14)
M:#BE_O‘Q(,U-Ezo‘), k (2-15)

where E%o is an eigenvalue of the quasi-particle under the magnetic field. From (2-15),
the spin susceptibility is obtained as

xs=limﬂ32cré‘(ﬂ—E};¢)(— GEZg/aH)
H-0 ko

=250 (1~ E")(— 0Bho/0H lu-o) . o (2-16)

By using the eigenvalue equation (2-3), we obtain

0E%s :[ _0xpe) V2 T > Vi )
Bhs _[1-2260) (Ek*_sk)z] (—50)| Zo(B) + (Ek*_sk)z] , (2-17)

where
Here we have put

- _ . 0X4s(0)

Zor(R)=1 0Hs |0’ (2-19)

- _ 02 rs(0)

Xu(k) - aH—o‘ H_g=0. (2'20)
Thus, the spin susceptibility is written as

stzﬂB2{§pkf(0) Zs(R)+0°(0)}, : (2-21)

where 0,7(0) and 0°(0) are given by (2-5) and (2-7), respectively.

§3. Wilson ratio

T-linear coefficient of specific heat given by (2-11) is rewritten as,

7'=Zdlpa°(0)+27f, (3-1)

220z isnbny /| uo 1esn soysnr Jo Juswpeded "S'N Aq $E7G/81/1.29/€/9./01014e/d)d/wod dnoojwepese//:sdjy woly papeojumod
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Y =S0tel0) 74, (32
Fam1-02le) | g (3-3)

In this section we use the thermal Green’s function with imaginary frequency iw as its
argument. By differentiating the unperturbed Green’s function G,% (iw) by iw, we obtain

< . V 2
8zaa) Gy i) = [GkOf(zw)]2{1+ (z'a)-lr/lk— en)’ ]+ 6(;0) 8Gy, (3-4)

where G, is given by putting X,(0)=0 in 6G;”. 6G,” is given by

8ka=ka(0+)—ka(O—)Z—Zn’ipkf(O) . . (3'5)
On\the other hand, 0G," (w)/ou is given by

3Gk°f(a)) - . or s , sz ’

— e~ LG w)] [1+—(iw+ﬂ_sk)2]. | (3-6)

By shifting the frequencies of every closed loop by external frequency @ and using (3-4),
(3-5) and (3'6), we obtain

02 rolw) ade(CU) *2 oG
Jiw oy 27

Too(k, k' B, B), (3-7)

where the vertex part me'(kl, k:; ks, ks is shown by the diagram in Fig. 1 and all
frequencies in ['so- are put as zero. By shifting the frequencies of only closed loops with
¢ spin by external frequency w, we obtain

02 rew) _ 0Xkolw) 0Gy

dio ~ oHs, ¥ 2mi

Thus, we obtain the following relation from (2-18), (3:3), (3-5) and (3-8),

Too(k, k', B, R) . (3-8)

7 (k)= fﬂ(k)-k%}pkrf(o)ﬂm(k, E;E R). (3-9)
From (3:2) and (3-9), y” is given by
77 =21+ 0% (3-10)
with
H:§Pkf(0)fﬂ(k)y _ (3-11)
Mfzglpkf(())ro'o'(k, k,; k,, k)Pk’f(O) .
a’ d 4 i
k2 // ky - K J "k (3-12)
G « d . 0. \ o  Here I';; =40, the vertex part between f-
ky K., Ky k3  electrons with parallel spins, can be

Fig. 1. Four-boint vertex Isor(Ry, be; ks, ka). antisymmetrized as
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Fermi Liquid Theory on the Basis of the Periodic Anderson Hawmiltonian 625

[’HA(k1, kz; k3, k4) :Pﬁ(kl, kz; ks, k4)_F1T(kl, k.z; k4, ks) . . ‘ (3'13)

I'1+* vanishes identically for the single impurity case, but does not for the periodic case
because of the momentum conservation.”® Equations (3+7) and (3-8) give the relation

aZkO‘(O) — 8Gk' N ’ .
aH_d - % 27_[2- FD‘—O‘(k; k ’ k 3 k) (3 14)

or
Tr(B) =201 () ook, k' F, B) . (3-15)
Thus we obtain
ff¢f2§pkf(0) Zri(R) =207 () s (b, B B, R) 0w’ (0) . (3-16)

The charge susceptibility is given by

xe=0(0) +x, ' (3-17)
ch:XMf_Xf¢f:§0kf(0)(f¢f(k)_fn(k)). v (318)

The Wilson ratio is given by
R=[0(0)+ 251/ lo°(0) +»7]. (3-19)
The ratio due to only f-electrons is given by
RI=x1v" =0ter” + 2071 (247 + 84471
=042 720"V 146804720471, (RF=R) (3-20)

Thus, R’ depends on two parameters, x.,”/x++” and 8;,7/2..”. As x¢ is positive, (3-18)
gives

fo/X”fgl’ (3-21)

and for a large value of U,

xd =0. (3-22)
In this case R’ is given by
Rf:Z/(1+8fo/Xfff)- (x‘rff_:XT¢f) (323)

For the case with an attractive interaction between parallel spins (I';,2<0), I PUCART
expected to be negative. In this case R” becomes larger than 2. Thus, in principle, if we
treat correctly the momentum dependence, the range available for R” is extended wider
in contrast to the impurity case.” The second-order term of &, is given by

371(2): Uz%;pkf(o)pluqf(o) [XqO_X(]=00] . (3-24)

This result shows that if x,° is larger than x%-, 8;,? is positive and 7 increases with
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626 K. Yamada and K. Yosida

increase of the degree of the coherence. On the other hand, if x,’ is smaller than x%-o, 7
decreases with increasing coherence. According to recent experiments the Wilson ratio
of nearly three has been observed in CeCu:Siz, CeAls and CeCus.®

§4. Resistivity

‘ The resistivity due to the electron interaction has been discussed by several au-
thors.”~® In this paper we pursue the exact coefficient of the T%term in the heavy

electron system on the basis of Kubo formula. Current operator J in our system is given
by™® '

J= e2(vy/ahoarot 04 Chacra) o _ (4-1)
where

=V e, v k (4-2)

vl =V LE,. (4-3)

Therefore, conductivity o.. is given by the sum of the four parts,

Ouy= 2 O'Etifj)
Ex)
+0#u+(7,u +O‘ . (i:C, f;i:C,f) (44)
Here /i and j mean conduction electrons (f-electron) for i=c(f) or j=c(f). 0% is
written by two-particle Green’s functions,”™®
oi)=e* X vSiLv%limLImK v o(w+18) . (4+5)
kok' o’ w—0 @

The retarded two-particle Green’s function, K%%r o(@w+i8), can be obtained from the
thermal two-particle Green’s function, K %2« (iw), by the analytic continuation,

K% kﬂ(a)+la)_Kl(zl<)'lI)z’d’(a)) . (w>0) ’ (4’6)

Thermal two-particle Green’s functions are defined by the following,
ur - X S+ .
Rifwolon)= [ dr e CTAW (2) AR ) ADS AR} , (4-7)

Afe(r) = N7 AffpemH-HNIT | (4-8)

where A¥s=crs and AYS=are, 0n=2mniT.

As discussed in the preceding section, f-electrons and conduction electrons hybridize
with each other to form quasi-particles. Therefore, conductivity ou can also be written
in terms of quasi-particles. We denote by As«(Ars) creation (annihilation) operator for
a quasi-paricle with momentum &, spin ¢ and energy E,*. In this scheme o, is given by

*) 1f 7,V ,#0, we must add a current eZrsV &V alakocro+ ciaars) to (4-1). By this correction, P,V
/(z—eg) is added to (4-3).
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Fermi Liquid Theory on the Basis of the Periodic Anderson Hamiltonian 627

Om=e X viﬂvirulim—lﬂlmKZka(a)+i8) , ‘ (4-9)
kok'c’ w-=0Q

where Khoro(w=id) is obtained from the following thermal Green’s function,
_ UT . - - -
Bhowolom = [ dr e Tel Aiol) Aol ) Aiva Ao} . (410)

Following Eliashberg, we can directly obtain the expression for the conductivity in the
quasi-particle scheme mentioned above (see (4-38)), though our system is composed of
two kinds of bare electrons. .

Now, we discuss the details of our derivation, starting from (4-4). At finite tempera-
tures f-electrons have a life-time given by the reciprocal of the imaginary part of its
selfenergy,

A(e)=—ImXZ,(e), 4,>0. (4-11)

The calculation of this value will be done in the next section. By the life-time of f-
electrons, quasi-particles have also a finite life-time. At finite temperatures the eigen-
value of quasi-particles, z=Ex*—il " (I" ,*>0), is determined by

(z—ep)(z—ES — 2 (2)— V,2=0. (4-12)

As we confine ourselves to low temperatures, we can use the following expansion form of
the selfenergy part,

® ,
EM =500+ E o i, (1-13)
and we put
Ek:Ek0+2kR(0) . (4‘14)

Then, by using (3+3), we obtain

(Ept =il —e ) {7 (B —il ") —Ep+id,)— V,2=0. (4-15)
By assuming I"»* < 4,<|E r*| at low temperatures, we can determine the eigenvalue E 2 by
the equation,

Ey—E,~ V[ (Ey—ep =0, (4-16)

Ey=Eu/7, and Vi=V,/7,. (4-17)

We can see that a renormalization arising from the selfenergy shift reduces the dispersion
of f-band and V ,? by the factor of 7, '." On the other hand, the imaginary part I",* is
given by - ‘ ‘

* Ak
Fk =2 7 2 * 2
7t Vk/(Ek _€k)

=a,/4,,  (4-18)

where a,” =a,”(E,*) is given by (2:6). Now, we can represent the Green’s functions of
/- and c-electrons at low temperatures by using that of the quasi-particle,
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628 K. Yamada and K. Yosida

ch(a)+23) :dkc[a)_Ek*’l—iPk*]_l s (4'19)
Gy (w+i8)=ay lw—E+il*™ (4-20)
L . V,
Gk f(CU+ 23) - kac(a)-!- 18) :—*—ka((!))
Ek — &
:(dkfakc)llz[a)*Ek*+ipk*]_l . (4'21)

The velocity of the quasi-particle is derived from the eigenvalue equation (4:12) and is
given by™®

1
—&,

0, =V By =a/6, + a0, +a)y VeV, (4-22)

where '
G =P WE =V o(E >+ 3,(0)) . (4-23)

In our system, quasi-particles interact with each other through the Coulomb repulsion
between f-electrons (see (4:37)).

Now we discuss the two-particle Green’s function K%+ given by (4-7), which can
be written as

Kvg'g)k’o‘;(CUm) = T; G%{T)(Sn) Ggé‘)(ﬁn'i'(l)m)akk’ado"
— 1?2 Gt (en) G¥(ent@m) I kowo(en, en; )

X Gg"]g"(En') Ggfoz'(En"i_ a)m) 3 ' (4'24)

ex=2n+1)7iT and en=02n' +1)xiT. Vertex I'kowo(en, €n; @m) is Too(cnk, €n
+wnk'; enk’, en+ wnk) between f-electrons defined in Fig. 1 and G are given by (4-19)
~(4-21). Following Eliashberg,” K%#wo(w+i8) is given by

K@ (@p+i8) = —%Mf_:dg[thﬁl{l(m(e, )

+<th SZ“LT‘“ — thﬁ)l{z‘“”(s, w) —th 52+T‘” K:'(e, a))] , (4-25)

where

Kl(ij)(s, CU) :gl(ijﬁ)(E, (l)) +gz(iffi)(6, CU)

. ) o f
» 4 : . > XEIW de sz(&, £ a))gm (5 , CU) .

Fig. 2. Two-particle . Green’s function K“Yw). (see Fig. 2) (4-26)
Vertex I" is always connected to f-electron lines, (339 ’
since the electron interaction exists only between g: are defined by
f-electrons. gl(ijji)(e, @) =GR () GR(e+ @) ,
(w>0) (4-27)

*) Here, we have included a term arising from ¥,V ,* noted in the footnote of (4-1).
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Fermi Liquid Theory on the Basis of the Periodic Anderson Hamiltonian 629

9X9(e, @) = G2 () GRY(e+ w) (4-28)
and
ga(ijji)(G, CU) — GA(ij)(S) GA(ji)(£+ CU) . (4. 29)

Here R and A represent retarded and advanced Green’s functions, respectively. The
function, Tix(¢, €’; ®), related to vertex function I" rsr o is given by Eq. (12) in Eliashberg’s
paper.” When o< T, '

91" (e, ) ={G*(e) P =ay'ay’ (e —E*+1i8) 72, _ (4-30)

95" 7(e, 0) = {9 (e, W) }* . - (4-31)
Only the function g.(¢, @) depends appreciably on @ for small value of w,

929N e, w) =2rmia,’a,’S(e—E )/ (w+2i,*) . (4-32)

Here, we can see from (4-5), (4-25) and (4-30)~(4-32) that a total effective velocity
without vertex corrections is given by

vktzakkaf+ak°v,;c+akfﬂ_18 Vkaz, (4'33)

k

and vertex part related to Tu» in (4:26) can be written only by f-electron Green’s
functions. ‘ ‘

As shown by Eliashberg, Tin gives the renormalization of the velocity, as given by -

(4-36), except T2» which has g, before and behind it. The velocity renormalized by the
interaction between f-electrons can be derived by using Ward'’s identities connecting the
real part of the selfenergy part of f-electrons to the vertex corrections. This kind of
renormalization can be checked by considering the case T=0 and w=0.

At T=0 and external frequency w=0, vertex correction A,° is given by

0 — da), i ’ 5 ’ 2[ S ‘{/k'2 KA aVklz/ak,
bel0) = 32 oz o, KOG (| oa” - Ko rowet T 20
(4-34)

TI'so(k, k') being I'se(RR; B'R). On the other hand, momentum derivative of the f-
electron selfenergy is given by

aZko'(O) _ N1: ]. 7 ’ da),
A= 5 [Tao (b, B)lim [ Ghnol @) — Gu? (@)
—_ da), , Ia f N2 F Vk’z c
_k'zifzm' Lok, ) [Ga ()] ["”’ AR EEr
aVk’Z/akl _ ’ S _ * * .
L= 3 Do b, B) a8 (=) vs” (4-35)

where v,* is the velocity of the quasi-particle given by (4:22). By adding vertex correc-
tion a,”4,° to (4-33), we obtain real velocity J, contributing to the conductivity,
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1
H—&p

szakf<ka+11k°(0)+ Vkaz>+(lkcvkc

:dkf(ka+7k2k(0)+ Vk sz>+akcvk°

K—E&p

+ akf%‘.lﬂ'w(k',' R)ar'd(p—Er*)vp*

:Uk*‘I‘k,Zl‘-T,fda'(k, B)o(u—Ep*) v’ . (4-36)

The second term of (4-36) represents the backflow'® and interaction fss(k, ®) is given by
using f-electron vertex as

foo(k, B)=0a,’Tss(kk'; E'B)ay” . (4-37)

As the result, we obtdin the conductivity in our system as”

; Frch(E,/2T)
omw) :762 zk:]kﬂ o+ 2il.*
k

]ku

ﬁch‘z(Ek*/ZT) Too(b, B: w)

(w+2il" ) w+2il ™)

53 e’ Tl (4-38)

The effect of T, will be discussed in § 6.
§5. Imaginary part of the f-electron selfenergy
In this section, we calculate the imaginary part of the selfenergy of f-electron, X ,}(e),
up to the order of T2 or ¢°. For simplicity we consider the second-order term in U2

corresponding to the diagram in Fig. 3. Extension to general terms will be discussed
later. The second-order selfenergy can be written as follows;

Fig. 3. The second-order selfenergy diagram giving rise to the 7TZ-term of its imaginary part. The
general diagram giving the T%-term is also shown on the right. Dotted line denotes the interaction
" between f-electrons and thick solid line f-electron Green’s function.
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Fermi Liquid Theovy on the Basis of the Periodic Andevson Hamiltonian 631

2 P(en) =UT 2 Gr-glen) x"(€n—e€n?) , (5-1)
eEn'q

XqO(Sn_Sn'):-TIZILGk’(xm) Gk’+q(xm+$n_€n’) , ‘ (5'2)

Ia=0Cm+V T, en=0Qu'+1)miT. (5-3)

By the analytic continuation of (5:1), X ,*(e+:38) is given by

2 Xe+id)=— Uzzqf_/:mg—i{cth 82;16 Gir-o(e)ImyR(e—¢")

£ "(e—e)]. (5-4)

Then,

mEe) = - U2 [ 2] cth &~ thfr [InGh-o()Imz (e —¢), (5+9)
X" (W) =— Ef { 57 Ghra(x + 1) ImGo"(x)

+th Y G ) ImGha(x +)] (5:6)

Iqu°R('e—e}) = —Z g; [th _thx-l-zej:—e ]ImGk»R(x)ImG‘},urq(x+e—s’) .
(57

From (5-5) and (5-7), we obtain

Im3,Me) = U73 [ 25 | cth €8 thS [ImGh-of &)

7]

X[ it i G () Im Gl e ) . (59

At T=0,ImX *(e) is expanded as follows:

_d Rf N yre [de' ] . &—e e’]
Im3 o) = U* [ A< | cth&5E—thetr

x glmcﬁ_q(s')[:“%[—a(x+s—e')]lmG;R(x)ImGg,+q(x teme). (5-9)

By taking the second derivative by ¢, we obtain

2 2 o ’
IO >S5 [ 5(e'~ &) R Gh-o(e) LmGa™ (e ~ I Gl o0

*(0)

:-%kzq 70 k-a(0) 01 +0(0) 0 #(0) . (5-10)
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632 K. Yamada and K. Yosida

At e=0, ImX ,*(0) is expanded up to the 7 term as follows:

ImX }0)= 22/ o Lcth th2 ]ImGk o€

X%/ngx chT th% ZT ]ImGk (ImGh1g(x—¢€)

uz 2 0 R a’x[
=5 (D) S MGl o) [ E the—th ¢ ]

XIMmGr™(2)ImGErs olx — ) ]er—o

= Az IS 1010008 (0) 014 0) (5-11)

Here we have used the relation,
[ mde'[cth;—T—th;—T]F(e’)zF’(o)(;zT)f. ‘ (5-12)
Combining (5-10) and (5-11), we obtain
2
M2, (e) >~ 0k o(0) 0w (O)pws (2 T) 4 7], (513)

where 0,(0) =—(1/7)ImG }(0).

We have hitherto considered only the second-order term of selfenergy in U. If we
include the higher order terms, we obtain the following results by using the same deriva-
tion as that used for the single impurity case,!"'?

Im3 (&)=~ (*+(zT)?/ 2- 2 10h-o(0) 0" 00k +4(0)

x{FHZ(k, | X0y k—q)+%PHA2(k, Bk +q, k—q)}, (5-14)

where Iy, and I';,* are defined as the diagrams in Fig. 1 and (3-13). The result (5-14)
is exact as far as ¢* and 7"*terms are concerned. While 0£(0) in (5-13) is the unperturbed
density of states of f-electrons, px”(0) in (5-14) is the true density of states of f-electrons
with the mutual interaction.

§6. Vertex corrections

There are two kinds of vertex corrections. One discussed in § 4 is related to the real
part of the selfenergy of f-electrons by Ward’s identities. In the formalism developed by
Eliashberg, this correction arises from the vertices connected to g: or gs at least on one
side of it and changes the velocity (4-33) into J, written by (4-36). This correction can
be obtained by putting external frequency @w=0 in the three-point vertex. Another
correction arising from T%. in (4-38) is related to the imaginary part of the selfenergy.
This correction is essential to obtain the correct result in the thermodynamic limit, @—0.
By treating this correction in a consistent way, we can show that the resistivity due to
electron interaction vanishes in a free electron system without any crystal potential, as the
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= m

(al (b]) ()

Fig. 4. Three-point vertex corrections indispensable to recover the momentum conservation. These
three diagrams are obtained from the second-order selfenergy diagram shown in Fig. 3 by putting
the vertex corrections to one of three electron lines in it, respectlvely Thick solid line represents
electron line and dotted line electron interaction.

result of recovering the momentum conservation. In this section we consider the latter
correction.

For simplicity, we explain it by calculating the second-order terms with respect to
Coulomb repulsion U. In order to make vertex corrections consistent with the selfenergy
correction, we should take into account of the three diagrams in Fig. 4. We neglect the
wave-function renormalization for the moment and take it into account at the last stage.

First we consider diagram (a) in Fig. 4. By using (4-32) and neglecting renormaliza-
tion factors,

A P(e) = ——2/ de’ [cth —th—]

2T 2T

R e T (6+)
q

where Imy,"*(e—¢") is given by (5-7),

Imy,e—¢")= —Z " dx |_th th< ITte—e >]ImGk'R(x)ImG‘1§'+q(x +e—¢).
e 27 | 2T
' (6-2)
By a similar way to that used for the imaginary part of the selfenergy in the previous

section, we expand A,“(e) up to e?+(xT)? and obtain

4= TS npk_q<0)pm(mpy(m%’%m_q@) o (6-3)

Figure 4(b) gives the same contribution as 4,“(e), as seen easily.

44() = U B 10n- o001 001 (0) S50 Ao e). (6-4)

Figure 4(c) gives the following term,

Ak(é)(é‘) 22 ds Cthe +€ th £ Im¢k+k’R(8+€,) 27[26(6 +,U_Ek') Ak’(el) ,
7l 2T 2idy
(6+5)
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where
Im¢p(e+¢&) :Zq"j:: gx th2T —thx_‘_z?e ]ImG‘i_q(x+e+e')ImG’;§'+q(—x) .
(6:6)
At e=0, A,'”(0) can be expanded with respect to T2 as follows:
@) — 772 2_ow(0) i I:i R( 7 ] .
Ay 0M=U %(ET) 24w (0) A (0) oc Im¢rra™(e’) ermgr’ (6:7)
L Img s (€ ermo= -3 52+ ) Im G- (2 + €)M Gl g(—Dlermo
= _Zq:ﬁpk—q(O)Pk’+q(0) . © (6+8)
Thus, A4,9(0) is given by
(c) — 2 ; , 2 Ak'(o) .
L AL(0) U Elﬂpk—q(O)Pk +a(0) o (0)(zT) 94,(0) - (6-9)

At T=0, A,(e) is expanded with respect to ¢ as follows:

0 o) TT2 de'[ ., et+¢ ¢ 12mor(e)
e Ak (E) 2] LCth chTJ ZAk'(éJ)

~ 2<_%>fmdx8(x +e+e)ImGE-o(x +e+€)IMGh+o( —x) Ar(e)
q - .

_ ete’ & N Aple)
=U? Zf de’ [cth chT]pkf(e )——_ZAkr(e’)
X0op-g(0) (=71 or+alete) . (6-10)
Then, '
T == 2200000 s0) oo (6+11)
Combining (6-9) and (6-11), we obtain
A, =~ U S m0n ol 0o w0 prral O [ T)* + AL ZEL (612
ag. - a a
g g a
N7/ . W %
g ag ag U, w a 0" w
%
o My o g NP
_ g
(al (0} (C]

Fig. 5. General vertex corrections giving rise to the T%term. In the irreducible four-point vertices
of these diagrams, two four-point vertices are connected only by two electron lines.
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‘Hitherto, we have discussed the second-order term with respect to U. As far as
T*terms are concerned, we have only to consider the diagrams with two electron lines at
the same time in irreducible vertex I"zp(€x, €27) as shown in Fig. 5. In this case four-
point vertices contributing to the 7-term depend on (e+¢’) or (¢'—¢), in the same way
as the second-order terms in U. Therefore, the general term can be obtained from the
second-order terms by replacing U? by

Tk, B B+, k=) +5 Tk, B K+, k).

This replacement is similar to the imaginary part of selfenergy given by (5-14).
Simultaneously with this replacement, 0,(0) is replaced by the true density of states,
01”(0), at the Fermi energy by including the selfenergy corrections.

Now we discuss the renormalization of g. in the three-point vertex. By (4-18),

Pk*:akf(_lmzk(E)):dkak, (4'18,)
and by (4:32),

2 S
T 0, (€)= 21

=9 ( 7 FVES (o B ¥N [ O *—
g:(&) =27i(a,”)?6(e—E ")/ 2il", Tk oA,

0, (e), (4-32)

where 0,7(¢) is the true density of states of f-electrons, which appeared in (2-5) and
(5-14).

Now we show that vertex corrections discussed above are consistent with momentum
conservation. The three-point vertex part A,(e) can be determined by the equation,

A(e) =T+ A () + A, 2(e) +A4,(e)

_ r.op _ Ak—q(E) Ak’+q(5) _ Ak’(_s) .
“Tut g Al K K a, k Q){zdk_q(e)+24k'+q(e) rpERIERY

where

Aok, k' B+, b—q) =101-4" (0) o1+ 4" (0) 02" (0)
X[ Xk, k' ' +q, k—q) +%Fﬂ“(k, kRiE+q, k—)ll(zT)*+e*]  (6-14)

and by (4-11) and (5-14)

A4=5 3 Aulk, B K+, h—a) (6-15)

Here it is noted that renormalization factor a % in the numerator is cancelled out by that

in the denominator, I",*, and A ,(¢) can also be written by unrenormalized quantities even
if we include the renormalization.

We put here
D (e)=A,(e)]24,(e) =D ,(—¢) . (6-16)

Then, we obtain
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0=Jk+quAo(k, R E+a, b~q) [ @+ Ppog— P — D] . (6-17)
Here if we put
@,=kF, (6-18)

the second term in (6-17) vanishes because of the momentum conservation.
On the other hand, in the periodic case we have Umklapp prosesses in f- electron
scattering and (6-17) can be written by

Jk—kZ,(‘;Ao(k, k, Rk +aq, k—q)gKiFZO. (6-19)
Here we have put

Piot Puvg— Pu—@p=—3KF, (6-20)
where K is a reciprocal lattice vector and we have assumed that 4, with reciprocal lattice

vector in its arguments can be replaced by the corresponding value in the reduced zone
for simplicity. From (6-15), (6-18) and (6j19),

t

kR Jpk

¢k:24k-§Ki'k

and J,xk. » (6-21)

The conductivity given by (4-38) is written as

_ _9fx) Apy _
om(0)=e Zklfkp( o )MZ TR (6-22)

Inserting (6-21) into (6-22), we obtain

21—, Z(I]z k) ]ku (623)

O‘;w(Q) 226(/‘ Ek )]k/t

In this expression, J, and I',* are renormahzed by a,” and density of states of quasi-
particles 0,"(0)=8(z—E,*) is enhanced by [a,”]™'. Therefore, all renormalizations
cancel out with each other and the resistivity is proportlonal to 4, which is given by the o
T2-term with a strongly enhanced coefficient. This is one of important results obtained S
by the present theory.

The factor 24, is given by
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24]1;2%(7TT)Zkzqﬁpi—q(o)Pk'f(,0)0£’+q(0)[F1¢2(k, E;k+q k—q)

LPH“(k, E;E+aq, k—q)]. | C(6+24)

5

Here, if we neglect the momentum dependence in I ,%, I'1+*=0. Further, if we assume a
large Coulomb repulsion giving rise to xc” =0, from (3-9) and (3-18) we have

?Z¢¢(k):f¢1(k):')7(k), (6'25)
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and from (3-15)
fﬂ(k):%!pkrf(O)Fﬂ(k, kR R). (6-26)

It can be understood from (6-24) ~(6-26) that the coefficient of T2-term of the resistivity,
A, is poportional to 7?, if we can neglect the momentum dependence (especially on ¢ in
(6-24)) in I'y,. Thus A can be strongly enhanced as observed in experiments in Ce and
U systems.

§7. Conclusicns

In this paper we have studied low temperature properties of the heavy fermion system
on the basis of the periodic Anderson Hamiltonian. The treated properties are electronic
specific heat, susceptibility and electrical resistivity. The coefficient of T-linear specific
heat, 7, is given by the density of states of quasi-particles at Fermi energy and consists of
two parts; one is a part arising from conduction c-electrons and the other a part from f-
electrons which is given by the sum over the density of states of wave vector k, 0,7 (0),
multiplied by enhancement factor ¥,. This enhancement factor gives a main origin of
heavy electrons. '

The susceptibility is also given by two contributions from c-electrons and f-electrons.
The latter contribution is given by the sum of two susceptibilities x,,” and x,,”. The
contribution to 7 from f-electrons, 77, is connected to the sum of x,,” and vertex functions
of two f-electrons with parallel spins, (3:10)~(3-12). This relation is derived by

Ward’s identities. The parallel spin vertex function vanishes in the case of single impuri- .

ty, while this does not vanish in the periodic case because of the momentum conservation.
This point is an important difference between single impurity and periodic cases. As a
result of it, Wilson ratio in the limit of large U can be larger or smaller than the
corresponding value of the single impurity case, 2, depending on the sign of their parallel
spin vertex function.

At low temperatures, the repulsive interaction between f-electrons gives rise to the
T?-resistivity for quasi-particles in the crystal. However, if there is no crystal lattice,
this resistivity automatically vanishes, because of the momentum conservation. There-
fore, the T?resistivity arises from mainly Umklapp processes.

Resistivity can be calculated mainly along the line layed by Eliashberg. The
obtained expression for the conductivity (6-23) includes quasi-particle density of states,
two current components in the numerator and the reciprocal life-time of quasi-particles in
the denominator. Renormalization factors in' these quantities are cancelled out and
resistivity becomes finally proportional to the reciprocal life-time of f-electrons, 4,.
This 4, is proportional to the square of the enhancement factor ¥, and gives large

T?-resistivity to the heavy fermion system.
' All these properties derived in this paper can explain at least qualitatively the low
temperature behaviors of the heavy electron systems in many Ce-compounds represented
by CeAls, CeCu»Siz, CeCus, etc. The present theory, however, includes several quantities
characteristic of the Fermi liquid, the selfenergy of f-electrons as a function of £ and @
and two kinds of vertex functions between two f-electrons with parallel and antiparallel
spins. These quantities were left as unknown functions in this paper.
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638 K. Yamada and K. Yosida

The appearance of the quasi-fermion system in Ce compounds at low temperatures is
caused by large Kondo temperature Tk compared with RKKY interaction. It is now
recognized that such a large value of Tx is originated from the degeneracy of 4f-orbitals.
In this sense, the present Anderson model is not sufficient, and present calculations should
be extended to the periodic Anderson model in which are taken into account the orbital
degeneracy and also crystalline field splittings for 4 f-orbitals. Nevertheless, the results
obtained in this paper would remain with only minor modifications for such a real system.
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