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In order to discuss the normal-state properties of heavy-fermion systems, the Fermi liquid theory
is developed on the basis of the periodic Anderson model with arbitrary spin-orbit coupling and
crystalline field. For the unperturbed (U=0) case, the electronic band structure is determined; then
the expressions of 7-linear coefficient of specific heat and magnetic susceptibility are derived. For
U =0, the general expressions for T-linear coefficient of specific heat and magnetization are derived.
However, the expression for magnetic susceptibility cannot generally be brought into such a usual
form that includes only the quantities on the Fermi surface because of the existence of off-diagonal
elements of f-electron self-energy. Therefore, the susceptibility is calculated in the special case that
only the lowest Kramers doublet is taken into account.

§1. Introduction

Heavy fermions are characterized by the large values of the 7 -linear coefficient
(7) of specific heat, magnetic susceptibility (x) and the 7'-square coefficient (A) of
resistivity. The values of y and x observed in Ce and U metallic compounds are 1072
times larger than those in ordinary metals, and the values of A are more than 10*
times larger.” These heavy-fermion behaviors are understood most naturally by the
Fermi liquid theory which starts from the unperturbed hybridized-band states
between localized f electrons and conduction electrons and then includes the Coulomb
repulsion between f electrons.?® The first paper® is concerned with the orbitally-
non-degenerate case, and in the second® the orbital degeneracy of f electrons is
included. In order to understand the heavy-fermion behaviors of real metallic com-
pounds more precisely, it is necessary to take the spin-orbit coupling and the crystal
field into consideration. The purpose of the present paper is to extend the Fermi
liquid theory”¥ to the most general case including the spin-orbit coupling and the
crystal field for f electrons.

The periodic Anderson Hamiltonian constructed by localized f-electron states
with Coulomb repulsion U, conduction-electron states of plane waves and hybridiza-
tions between them is considered:

H= kzd EroChoChat I_A%!,EMM’J( f iM'+—gJ“ngM,f iba o b fina
+ ,/1]V 'MEko- (Vruoe ™ Biflichat Vinse * Bichofm) . @

Here, cio is the creation operator of conduction electron in the plane wave state with
wavevector £ and spin ¢, whose wave function and energy are given by
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© I °
lka>=71—é~eik r =f§z jl(k?’)m;lem*(Hk, on) Y™ (O, 91) 0, (2

Sko‘:Ek_GﬂBH . . (3)

Here, xo is the spin function, j.(k») is the spherical Bessel function, Y,”(4, ¢) is the
spherical harmonic and £ is the volume of the crystal. H is the magnitude of the
external magnetic field applied along z-axis, s is the Bohr magneton, and 6=1 for
up-spin and 6= —1 for down. f is the creation operator of f electron at site 7 in the
eigenstate of spin-orbit coupling and crystal field, which is denoted by M. The
eigenstate is expressed as ’

IZ‘M>:Rﬂl(|r_Rzl)mzo_a%ﬂo' Ylm(gr—Ria vgor*Ri)Xo— ’ (4)

where R, is the radial part in which #=4 and /=3 for Ce ion, and a¥.s is the
Clebsch-Gordan coefficient. The f-electron energy with off-diagonal elements of the
Zeeman term is given by

E = EuCamer— <'M|(lz+ 232)|M'>,UBH . (5) -

The third term of Eq. (1) represents the on-site Coulomb repulsion between f elec-
trons, U >0, and the fourth term represents the mixing between f electron and
conduction electron. The mixing matrix element is given as

Viwno= %4727”} @lne Y™ (Or, @2) Vint (6)
Vin= (=) /22 [" k) VR, | (M

where V() is the effective potential for electrons. In this paper, the Fermi liquid
theory is developed by taking the UU=0 case as the unperturbed state. For that
purpose, it is convenient to rewrite the Hamiltonian (1) as

H= kEO_ Skdclgcrckdf k%pEMM'fleko"f‘ k% ( VkMdleM_Cko“*‘ VZMo-CI:o'ko)

+% kkz fk quk +qM’, kM’ko . (8)

by introducing the Bloch state of f electron as
— ik-R; .
feu= J—Z}e (9)

In this paper the T-linear coefficient of specific heat and the magnetic sus-
ceptibility are derived. In § 2, the electronic band structures are determined.for the
unperturbed (U=0) case. In § 3, the magnetic susceptibility for U=0 is calculated,
which corresponds to the generalization of the results for the case of strong spin-orbit
coupling limit derived in Ref. 4). The perturbed (U+0) case is treated in § 4, in which
the T -linear coefficient of specific heat is derived but the magnetic susceptibility can
be calculated only in the case where the lowest Kramers doublet of f-electron state is
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962 K. Hanzawa, K. Yosida and K. Yamada

relevant. The reason why it is difficult to calculate the susceptibility for general
cases is discussed in § 4. Concluding remarks are made in the last section.

$ 2. Electronic band structure and density of states
for non-interacting case (U =0)

In this section we der_ive the electronic band structure of the U =0 non-interacting
case as the unperturbed state of the Fermi liquid theory. In the absence of magnetic

field (H=0), the Green’s functions of conduction electrons and f electrons are given
by

Ghoo(@)=Ans(0)/[Ane(@) Ara(0)— Bro(@)Bra(w)] , (10)

Gioo(w)=Brs(®)/[Ars(w)Ars(w)— Bro(w)Brs(w)], (11)
Gl (w)= wézmgM +§ kag‘o‘ G$ o_(a)) ZM d, (12)

where 6=—0 and

Ars(@)=w—ex Z‘.g“gj{ (13)
Bkd(w):%% : (14)

Note that the Hamiltonian (8) is diagonal with respect to £ and M in the case U=0
and H=0. ‘

In the case that localized f-electron states have the Kramers degeneracy as for
Ce®", Brs always vanishes as proved in the following. The time-reversal operation,
denoted by the operator K, on the state |iM> of Eq. (4) gives its counterpart of the

Kramers doublet, denoted by |iM)>, with a phase factor which has no physical -

significance. Using the relations that K(¢x.)=¢*x,, K(¢x.)=—¢*x. and
Y™ (0r, pr)=(—)"Y.""(0r, ¢r), We obtain

alm=e(—=)""als, , alm=e(—)"ak,. (e=1 or —1) (15)

Note that the Clebsch-Gordan coefficients are taken to be real. From Egs. (6), (15)
and EM:EA?, Br.(w) of Eq. (14) is calculated as

+
ka(w)—-—z Vsz szt; EIA/lkMT Vkﬂ,u

’ 7 7 —mrE —
m*Ylm +ay—m’¢ay—m¢ Yl " Yl m)

. 1 ’ :
=27l'| VmIZZ‘,iZ (dlgnf dlgrzu - djzvrlnq d%m) Ylm* Y™ =0.
T w— Eymm

In the same way, B, (w)=0.
In the case U=0 and H =0, therefore, the Green’s functions are written by

. Gicfd(w)zl/Ako‘<w) s L (16)
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[ Vikmlz

1 c
EM +20‘ (C()—EM)Z Gko‘o‘((l)) . (17)

GiMM((U): P
It is shown that
| VkMo‘lz"‘l an?zrlZ:l VkMo‘[Z‘f‘l VkM&Iz

=47 Vinal* 2 (alno aloo + alne aliws) Y (Ok, ¢r) Y (Or, 92)

=21, ' ‘ (18)
which is independent of ¢ and the same as 27,4 Therefore, we obtain
Ghoow)=1/Ar(w), (19)
Ghm(w) = a)—lEM + (w—EZifak(w) ’ (20)
where
An(@)=0—ex— 3 L0 (21)
no—Ey’ ,

which is independent of ¢, so that we drop the subscript 6. The Green’s functions of

" Egs. (19) and (20) have the same pole at w=E%, which is an eigenvalue of the

hybridized band and determined by

e Tew  _
AWER)=Ekn—ex Dy (22)

where the subscript # is assigned to the different eigenvalues. - Corresponding eigen-
states are given by ‘

kN 1 1 VkMU' i
|bno >, _VAk’(Ein) [cka+%‘,—*Ezn_EM ko]|O>, (23)

where |0) is the vacuum state and

Ak'(Ein)sz;(w) —14+3 Tew  _ des
w

w=Eh % (Etn—Eu)?: dE%.

(24)

Furthermore, Gkum(w) has another pole at w=Ey. Residues of Ghor(w) and Ghm(w)
are given by

S Efn)=_ 1 NP I R
2%o(E%n) A7 ER) [1+%: (Ei:n—EM)Z] , , (25)
fM E )= ZIkM co_
zhn(E%n) ——(Ei,,—EM)ZZk (E%n), (26)
ziM(EM)zl——ZIL for Ium+0, 27
kmr

M/'e{Epq=En)}
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94 K. Hanzawa, K. Yosida and K. Yamada

zku(Ew)=1  for Ipu=0. _ (28)

Here it should be noted that 2%+(E%.) is independent of ¢ and
2o B+ 5 ehu(BL) =1 | (29)

Introducing the Green’s function of the electron in the hybridized-band state by

Ghno(w)=1/(0—E%n) , . A (30)
we can rewrite the Green’s functions of c¢- and f-electrons as

Ghoo(@)=2250(En) Gluo() (31)

Ghin( @)= 2k EL) Glnol 0)+ 2hn( E) [(0— En) (32)

Now we discuss how the electronic band structures are obtained. We put aside
the exceptional case of some Iz vanishing which we will discuss later.

If there are no degeneracies but the Kramers one, the residues at any Ex for &
(Eq. (27)) vanish and Eq. (22) gives the whole band energies: The number of E%.
becomes Ny/2+1. Here, Ny denotes the degeneracy of the local f-electron states, and
Ny/2 corresponds to the number of the Kramers doublets. In such a case, the whole
bands are obtained to have dispersion. .

If some f level including the state M has further degeneracy besxdes the Kramers
one, a fraction of the state M mixes with the conduction-electron states to construct
the hybridized bands, and the remaining part stays at the original energy E» with the
weight of Eq. (27). The total weight of the remaining unhybridized parts of the f
level (named /th level) is calculated from Eq. (27) as Xmeun ieverzbu(Ew)=Ns—2
where Ny is the degeneracy of the level. These remaining parts, of course, form
dispersionless bands at the original energy.

An exceptional case that [x»=0 occurs, for example, for & parallel to one of the
crystal axes for the cubic I7 doublet. In such a case the I7 state is outside of the
mixing problem solved by Eq. (22), but joins the band formation by connecting
continuously to a solution of Eq. (22) for Iru+0.

A simplicity of Eq. (22) to be solved appears for the spherically symmetrlc case
that only the spin-orbit coupling is considered. Using the expressions of Clebsch-
Gordan coefficients

d%no'z - 01/ %87&]’12—1/26 for M: ]'1: [ _%, jlz , (33)
a%azw%&’ﬁm,hz—uza for M: j%=l+%, Jez, (34)

and the relations Xa-— Y/™(6, @)= (21+1)/47r | Y™(8, 9)P=0, we obtain

B L=l Veult= 2]‘“

M=j1,—j1

R (35)
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2j2+1

5 { Vind? . (36)

o=

Therefore, Eq. (22) is rewritten as

Ve D] Vil

Ebe gy B Ef.—E,

=0, . (37)

which does not depend on the direction of k&, thereby leading to an expected result that
the whole bands are spherical. The degree of Eq. (37) with respect to E%. becomes
three, giving three hybridized bands with twofold degeneracy. The prefactors of
| V enif® are equal to half of the degeneracy of the corresponding spin-orbit levels. It
means that the effective mixing matrices are enhanced by the square root of half of
the degeneracy. This fact can be seen straightforwardly if one compares Eq. (37) for
the single-level case of infinite E;, or E;, = E;, with the corresponding equation for the
orbitally nondegenerate case in which the prefactor equals one.

In the present paper, we consider the case that the total number of /- and c-
electrons per f-site is less than two and the lowest band is a hybridized one denoted
by E%o, so that only the lowest band of E% is partially-filled and the other bands are
unoccupied. In this case, the 7 -linear coefficient of the specific heat is given by

2’ |

e = .
3 ks % S(u Eio), (38)

7:

where £s is the Boltzmann constant and ¢ is the Fermi energy. This is proportional
to the density of states at the Fermi energy, which is rewritten using Eq. (29) as

31 8(u—Et)= 31| 2ho(Bl) + S1ehn(ER) |0(u— B (39)

By denoting the density of states of the original conduction band per spin as o(ex), the
summation over wavevector is replaced by

3= 22 fo(eden= [B24 foe)-SExaps,, | (40)

dE%e

where dQr=sin 0,d0rdeor. Noting Eq. (24), we have

N -V d% , o Iim
3 0= Elo= [ R o(e)+ 3 [t olen) ity (1)
where
PR § 77
&n »,u %:ﬂ—EM' (42)

The first term of Eq. (41) corresponds to the density of states of conduction electrons,
* which coincides with that of the original conduction band for a constant density of
states, and the second term to that of f electrons.
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966 K. Hanzawa, K. Yosida and K. Yamada

§3. - Susceptibility for U=0
To derive the expression of magnetic susceptibility, we must solve the equation
for H+0 ‘
Aro{w)Ars(@)— Bro(w)Brs(w)=0 (43)

to obtain the eigenvalues up to the order of H? Here Ars(w) and Brs(w) are
obtained as

Arod(w)=w— 65— ar(w)+o[1+bp(w)]h— crlw)i®*+ 0% , (44)
Brow)=—drolw)h+O(h?), (45)

where 2= ppH and

ak<w>=§% , | (u6)
@)= 3 V?Sm(M|((l;tiz.;))léli’}_(gll§(Z;t2§;z!lj)uu> Vi (48)
drol0)=3 Vzméf _|<é§5?ZZ)_Iﬁg;)VkM'5 : (49)

It is easily shown that az(w), bu(w), ca(w) and drdw)drs{w)=|ds{w)?=er(w) are
independent of ¢. Therefore, Eq. (43) is reduced to

w=cptar(w)—oV[1+b(w)]?+en(w) h+ clw)i?+ 0(7®) . (50)

We define the solutions of (50) for ¢ by E%, and consider the case that only the lowest
bands =0 are occupied as in the previous section. From the expressions of the total
number of electrons and the energy of the ground state

Ne= kzd 9(#_Ezdo) , (51)
Ey= %}' EtGoﬁ(ﬂ—Eto‘o) y (52)

the susceptibility is obtained as

x=xr+2xv, (53a)
B 0E %60 2 o . : .

=3[ s R, o (53h)

pr=— 3y T (e—Eh). (53c)

ko QH? u
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Fermi Liquid Theory on the Basis of the Periodic Anderson Model 967

The first term xr may be called the Pauli term which gives rise to a usual Pauli
susceptibility, and the second xv the Van Vleck term. The contribution from 2v is
crucial when the orbital degeneracy is considered. Differentiating Eq. (50) by %, we
have

G| __ JM+b(0)P+ex(w)

e 0 1—an(@) 50
Fo| 1 [ 8 ([1+bu(w)P+er(w)

ot ln=0 1—ay(w)! o | 1—ar(w) }+20k(w)] ’ (55)

where ar'(0)=0ar(w)/dw. Noting that 1—ar'(E%») is just the same as Az (E%n) of
Eq. (24), and replacing the summation over £ by the integration as Eq. (40), we have

2#5 fd.Qk ( A [1+bk§lﬂ)](2/j)_ek(ﬂ) , (56)
tv=—2u [425 [ dBBoo et {[”b’”(if"()g)ek(m")}+z WE)]
o (dQn o (1 b+ er(p) |
= 2;1[ (E | An (#)
+2ﬂB/ .Qkp( —D*\ [1+bk( AD:)];*ik( D*)

ot 420 [* apge @O ([ b BRI+ enEL)

dQp [* *
—tp [CE [ dBap(eE M) eu(ER), (57)
where —D* is the lowest value of E¥o and

* ) IkM :
Efo— Fgy—S\— 2 kM
efmw=FE% §E20~EM : (58)
The Pauli term yr is entirely cancelled by the first term of xv, Eq. (57). If we consider
the case that the conduction-band width is much larger than the mixing matrix

elements, which is relevant for the heavy-fermion systems, we have Az (—D¥*)=1,
br(—D*)=0 and epx(—D*)=0. Then, we obtain

et 2t - 22 ot

+ 2 /%k [ aen o€ (1 ou(ER+ euER) (59)

The fiirst term is the contribution from fche conduction electrons, and the second is
that from the f electrons. The third term is a correction which vanishes if the density
of states of the original conduction band is constant. Here we assume the density of
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968 : ' K. Hanzawa, K. Yosida and K. Yamada

states and the mixing integral to be constant: p(ex)=po; | Vane/?= V2, then we obtain

2 KM |(l+2s)| M |?

= 215" 00+ 1200 V' , 0
X ‘ B Po UB Po - it (/l"‘EM)<ﬂ_EMI) (6 a)
where _
<MI|(LA2s)|M>= mZ‘.d(m +0)@lnoaln . _ (60b)

Here we have used Eqgs. (48), (4), (6) and the orthonormalities of |{M>, R and Y. Tt
should be noted that the expression of f-electron part is essentially the same as that
for the Ce-impurity case derived in Ref. 5). This simple feature results from the
assumptions of constant density of states and constant mixing.

We now calculate the susceptibility in the case of only the spin- 0rb1t coupling
considered. Usmg Eqgs. (33) and (34), we have

ng]l(]1+1) [2]2+1 VZ} 912]2(]2"'1)[2]2‘*‘1 Vz}

2
200 po-+-241 00|
ATl 00T O (=B U 2 (u—Ez? U 2

200+1)/Q1+1) .,
(e En)u—Er) Ik

Note that j1=l—1/2, gJIZZZ/(Zl‘i‘l), j2=l+'1/2, g,2=(21+2)/(21+1) If EjlejzéE,
we have

(61)

@2/+1nv?

: 2
X =2p5" 00+ 2 18 00 (i—EY @)V

+—,UB pol(l+1) (ﬂ—E)Z

(62)

§4. Specific heat and susceptibility for full Hamiltonian (U =0)

In the case that the Coulomb repulsion between f electrons is included, we can
introduce the self-energy of f electron by Xpwmm(w), then determine the Green’s
functions by

PrGr=1n,s, (63a)
wTN,—E—fk Uk Ve,
Pp= Tha W— Ery 0 , : (63b)
5;;; 0 W— Ery
’GAkf GA'icf Giﬁ N
Ge=| G# Ghiry(w) Ghy(w)| (=Px™). | (63¢) .
é%ﬁ Giu(a)) Giu(a))

Py and Gr are (N5 +2) X (N;+2) matrices. Tn,+2 and 1n, denote the unit matrices of

rank Ny+2 and Ny, respectively. These are simply written by 1 in the following. E, »

5 » and G4~ are Ny X Ny matrices whose MM’ components are given by Eum, 2 e )
and Gim(w), respectively. ¥ prs and Gifa are Ns-dimensional column vectors whose

M component are given by Vems and Gfi(w), and 7 hs and G¥s are the row vectors.
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The determinant of P is expressed as

~ wT_E_Z’: - ﬁko‘ﬁ;zo' Y .
|Pk'= k W— Ere ’ (0— €nro)
Uks W ks
~ A & T ol ’
=‘w1—E—Zk—ZM(a)—ekf)(a)—em), (64)
0 @ Eks

where 7 o0 o is the Ny X Ny matrix (tensor) whose MM’ component is given by
Viwus Vews. Therefore, if we define the Ny X Ny matrix

—~ —~ — —~ 7 51
Fr=al—E—5,— ) YkoVkes (65)
o W) — Ego

the Green’s functions of /- and c-electrons are given by

GiMM’(w):(Fk_I)MM’ , ' (66)
~ -~ =~ 7 77 -1 -1
Gidﬂ(w)=[w_€kd— 2 Vtmr(lia)l_E_Zk_w:] ) VkM'o‘]
7771 W— Eng MM
1 1 1 ’
= + 2 VszGiMM'(CU) VkM’o‘ . (67)
W— Ere W Ere MM W— Ero

By introducing the unitary matrix Ur, Pr is diagonalized as UrPrUr =@ to
give eigenvalues E}. where n=1, 2, -, N;+2. If we follow Luttinger’s derivation,”
the coefficient of the T -linear term in specific heat is obtained as

2 Nst2 ) '
y="t kst 3 0(u—Eln). (68)

Now we calculate

e 1, 6, Mr o 1. 0., 14
D Mw—Et,)=——Im——log Il (0+i0— E¥»)= ——Im——log| Q|
A=l T dw n=1 T ow
1 0 = 1 0 = . :
= ——Im——log|Pr|=——Im——{log| Fr| + Xlog(w+ i — ers)}
T ow n dw o .
- —~1~Im{ ) (8MM,— 02 o' _ < V”M"Vi“;")GiM,M(m i8)
x dw ¢ (0— &)

P m—
217 W+ 10— Ere

— ——}{Im{ A;W(aw—aza#f”) Ghin(0-+8)+ 3 Glorl o+ i®)} .
(69)

Generally, the imaginary part of the self-energy vanishes at the Fermi surface, so that
the T-linear coefficient of the specific heat is obtained as
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970 K. Hanzawa, K. Yosida and K. Yamada

r = ST (7 () 8 () + S ) | (70)

where 7r(w) is the N, X Ny matrix representing the mass enhancement
_ ~ 35 ‘
7u(0)=1—"%, (71)
ow }

and 72"(w) and #%+(w) are defined by

A (0)=——ImGy (0 +i8), (72)
NG @)= —%ImGimy(wﬂLié\) . | (73)

The T-linear term in specific heat is proportional to the density of states of quasipar-
ticles at the Fermi energy, in which the f-electron contribution is enhanced by 7k(ﬂ)
" while the c-electron one is not.

In order to calculate the susceptibility, first we need to know the magnetization.
As Luttinger has derived,” the magnetization is obtained by differentiating the ther-
modynamic potential with respect to the magnetic field and making use of its station-
ary property with respect to variations in the self-energies, as

=3} [ dof (@} 33 MIEA25)M 5 ~Lim) Ghasa o+ i0)

+;o(—l”1m)ezw(w+z‘a)}, | (74)

where f(w) is the Fermi distribution function. Introducing the Ny X N, matrix M
whose MM’ component is given by <M|(/.+2s:)|M"> and making use of Egs. (66) and
(67) with o replaced by w+id, one may rewrite Eq. (74) as

M=#sz}[:da)f(a))<—%lm>

—1 + O- U o~ —~F = _1}.
{Tr(MF ) 2 w+id— Sko‘+26(w+i6_6kd)2Tr(vkdvdek (75)

If we follow Luttinger’s procedure, the next step will be to rewrite Eq. (75) as

M= pBZ‘./ dcof(w)(——lm) Flo+id)+], (76)

ow
where ¥ x(w+10) is some function, hopefully logarithmic, and to prove /=0. If we
can obtain such an expression, M is expressed only by the quantities of quasiparticles
on the Fermi surface after integrating by parts with respect to w, because (3/3w)f(w)
=—8(¢x—w) at T=0K. It may be, however, impossible to obtain such an expression
in the cases including the trace of product of matrices in Eq. (75), since commutators
of Fy with M, 9o ke and (9/dw)F, are not proportional to the unit matrix in
general, much less vanish. In Ref. 3) in which an orbital degeneracy has been taken
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Fermi Liquid Theory on the Basis of the Periodic Anderson Model 971

into consideration for localized f electrons, non-commutability between these opera-
tors was not correctly treated, and therefore the expression given there for the
susceptibility is not correct. 4

This difficulty comes from the existence of the off-diagonal parts of self-energies
in the present case in contrast to the cases of the homogeneous Fermi liquid,® the
orbitally-nondegenerate periodic Anderson model® and the orbitally-degenerate im-
purity Anderson model.””® The reason why the off-diagonal self-energy parts appear
is that the hybridization connects different f states, that is, the off-diagonal elements
of the last term in Eq. (65) remain. However, one can find a simple relation that such
elements vanish between an f state and its time-reversal state in the absence of the
applied magnetic field as shown below. Thus, if we are allowed to consider only a
Kramers doublet of f states, we can proceed following Eq. (75) to get an expression
for the magnetic susceptibility.

Here we assume the strong limit of spin-orbit coupling and crystal field to
consider only a Kramers doublet labeled by M and #. The matrix Fy of Eq. (65) is
now 2 X2 matrix:

(?Zk

a(/-‘BH) 'U H=

Fr=(w—E)+MuH — 3 ,#=—

kaavla-F ot B S 6D ho D hot (77)

w—e (w—er)* s

where we expand it with respect to magnetic field, H, and drop the suffix M of Eu.
We take a representation diagonalizing the magnetic moment: (M) uw= 1, (M) i
=—pu, (M)uz=0. In the same way that we have shown Brs(w)=0 and derived Eq.
(18) in § 2, it can be shown that the off-diagonal elements of 2167 r¢7 ks vanish and the
diagonal elements are equal, namely, (X167 koD ko) =21 rOmr. Here we have used
the expression of the mixing matrix elements, Eq. (6), and the relation between the
Clebsch-Gordan coefficients, Eq. (15). The reason why the off-diagonal elements
vanish lies in the cancellation of twoprocesses: One is the process that the f electron
in M-state transfers to the spin-u#p conduction electron state then back to M-state; the
other is that the f electron transfers from M-state to the . spin-down conduction
electron state then back to M-state. Considering the general structure of the dia-
grams contributing to the self-energies, we can conclude that the cancellation between
these two processes results in the diagonal form of the self-energy matrix for H=0:
(5=, =3 @)Swm. Equation (77), therefore, may be written as

Fr=forlw)1+ firw) MusH + FippsH + O(H?), (782)
where
. ‘(o> 2l
forlw)=0—E -2, 0)——"—, (78b)
W— Er )
26| V buol?
firlw)=1— 02 wn(®)| < (78¢)

+
HppH) lu=o " plo—en)?
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(Fim)mn=(Fin)mn =0, | (78d)

_ aZkMA?(C())I EGGVkMGVtﬁg

(Fik)M’= 3(,UBH) |H=0 (CU—EIz)z . (786)

It should be noted that for(w) and fir(w) consist of only dlagonal elements, and F%p
consists of off-diagonal elements. The inverse of F is obtained as

poa_ 1 a2 filw) mo0 1 ,
Fe fok(w)l ﬁ)k((l))zMﬂBH _fok(w)z wusH + O(H?) . (79)

Noting Tr(#M)=0, Tr(M?) =24 and Tr(#ME;z)=0, we have

Tr(MFy ™) =—242 s ]]:lk((w))zH-l- O(H?). (80)

It has been shown that only the diagonal elements of ', contribute to the f-electron
part of the magnetic moment up to the order of H'. To calculate the susceptibility,

therefore, it may be sufficient to make use of fictitious f- electron Green’s functions
constructed from the diagonal elements of Fp:

[ghmn(@)]"* =0+ ] — hn(0)~ pISLA L ——— (81)

0 W Eko

where uu=p, pr=—p and 3 $an(w) is the self-energy consisting of g tmn(®) and
ghin(®) as the f-electron propagators. It is shown that 3¥i(w) coincides with
2 pmm(®) up to the order of H' as follows. If a diagram contributing to 2 zmn(w)
contains an f-electron line corresponding to the off-diagonal Green’s function, the
diagram should contain at least another line corresponding to the off-diagonal Green’s
function for the interaction U of Eq. (8) which conserves the indices M and M.
Noting the fact that the off-diagonal Green’s function vanishes if H tends to Zero, we
obtain immediately the desired result

3Zérhm(0)) | (Iffztm(w) |
) =0 amﬂBH) o> thereby
Ghmm(@)=— L Su@) o). A (82)

fol®)  for(w)?

Thus we can calculate the f-electron part of the magnetic moment in the accuracy up
to the order of H' as

s %l [ :da)f(w)<—~}r—lm)Tr(MF k‘l').
- 1 . .
=#BE/ a’wf(w)(——lm)E#mgkmm(w+18)-M0+]+M1 , (83a)
E J-o T m

where
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Mo=pi 3 [ dof (@) —21m) 2t logl ghn(0+ i8] (83b)
=t [ dof (@) —-S1m) Snghmn( e+ 8} 5 Ehn( 0+ 18) (830)
_ PRASS T m dw
—— - 1 A :
My=—m %‘. L»a’cof(co)( ”Im>m2¢#’”(w+ Z.a_ew)zgimm(wﬁ- i5) . (83d)

We now discuss the zero-temperature limit, where we can put f(w)=~0(er— w), &r
being the Fermi energy. For M, we can integrate by parts, then obtain only the
contribution from the Fermi surface. We can show that /=0 for the M-independent
force U in Eq. (1), using the energy conservation condition at each vertex. Similar
relations have been obtained by Luttinger® for the homogeneous Fermi liquid and by
Shiba” for the single-impurity Anderson model with orbital degeneracy. M, is a
correction term which will be combined with the last term of Eq (75) Noting Egs.
(78), (79) and (82), we have

O'Vkmo‘Vim'o‘Gim'm((!)) _Z /lml Vkmo‘Izgjl:mm(C())

omm’ (0— €ro)* . om (00— €rs)?

WE(G ﬂm)’ V kmol?

2 syl 2
(= ety 30 HeV wmol bl
fin(w)
+ ((1) Sk)zfok(a))z 2(/4‘ #md)l Vkmo‘i ,UBH
1 2
(CU €k) ﬁ)k(ﬁ))z Em O‘Vkmo‘vtm O‘(Flk)m m,UBH+ O(H )
R 1 . ' )
aa) 1(w e or(@) }2(0‘ ,Umo‘)l V bnol ﬂBH+Kk(a))#BH+ O(H )‘,
(84a)
where
— jblk(w) _ .flk(a)) A 2 _
Kuta) (w—ek)zj%k(w)z4([k Turt (0— ek)szk(CU)Z*(# Lv=7v
- (w— ek)szk(w)z Zm oV ensVkmo(Fi)mn , | _ (84b)
Zlk—zl V kmol*= 2] Vnol? : (84c)
4]k:m26#m0| Vkmd|2:2#26| Viewsl?, ' (84d)
f (C()) afOk((I)) 1 aZk(O)(a)) + 2[k (84e)

ow (w—en)?”

220z ¥snbny oz uo 1senb Aq 061158 1/096/S/ 1 8/2101E/d)d/W0o0 dno olwepede//:sdpy Woly papeojumog



974 » K. Hanzawa, K. Yosida and K. Yamada
Then we obtain the magnetization
M=% (—%m); ﬂmlog[eri- 10— E+ timtaH — 5l 5+ i)

lvkmo‘[z :|
0 Er+ 10— Eno

+ s % <—%1m>; olog(er+ 18— ex+ o H)

\ ;(02—#7”0‘” Vkmo‘l2
! (ex+i6— en)for(er+10)

+we® 2 <—iIm H
7 7

et 31 [~ duf (@) —Him) K+ i) H+ OCH?). (85)

The susceptibility is calculated by the formula x=0M/0H |u-o as

0 kMM(SF)
N pusH)

x =217 s’ %} [1— H=0:| Wham(er) + 2 1167 % nho(er) »

3 [ dof(o)—Lim)Kuw+id) (86)

The first term corresponds to the Pauli susceptibility of f electrons enhanced by the
magnetic-field derivative of the self-energy, and the second that of conduction elec-
trons unenhanced. The third term is the correction originating from the orbital
moment of f electrons, which should be estimated by numerical calculations.

§5. Concluding remarks

. On the basis of the periodic Anderson model, we have developed the Fermi liquid
theory for a real case in which orbital degeneracy, spin-orbit coupling and crystalline
field are taken into account for f electrons.

In the absence of Coulomb repulsion U between f electrons, the formalism can be
done quite straightforwardly in spite of the existence of the crystalline field splittings,
and usual standard results can be derived characteristic to the Fermi liquid theory for
the specific heat and the susceptibility. This is a simple extension of Ref. 4).

In the presence of on-site Coulomb repulsion U between f electrons, the expres-
sion for the 7 -linear coefficient 7 of the specific heat can also be derived to lead to the
result with a usual form for the present case. However, for the susceptibility situa-
tions are somewhat different from simpler cases of the periodic Anderson model in
which f orbital has no degeneracy, and the susceptibility contains a part which cannot
be expressed by the quantities at the Fermi energy besides the term with a usual
Fermi liquid form. The appearance of such correction terms is entirely due to the
off-diagonal elements of the f-electron self-energy. However, it seems very difficult
to derive each part of the susceptibility separately.

Therefore, we have demonstrated, in this paper, such calculations for a simple
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special case in which L-S couplng and crystalline field splittings are large enough to

be able to confine our consideration to the lowest Kramers doublet. In this case, the _

self-energy of f electrons has no off-diagonal elements between two Kramers compo-
nents when an external field is absent, whereas derivation of the susceptibility for this
case is still somewhat complicated.

This work was ﬁnanciélly supported by the Grant-in-Aid for Scientific Research
from the Ministry of Education, Science and Culture.
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