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Recent quantum oscillation measurements in high temperature su-
perconductors in high magnetic fields and low temperatures have
ushered in a new era. These experiments explore the normal state
from which superconductivity arises and provide evidence of a recon-
structed Fermi surface consisting of electron and hole pockets in a
regime in which such a possibility was previously considered to be re-
mote. More specifically, the Hall coefficient has been found to oscil-
late according to the Onsager quantization condition, involving only
fundamental constants and the areas of the pockets, but with a sign
that is negative. Here we explain the observations with the theory
that the alleged normal state exhibits a hidden order, the d-density
wave, which breaks symmetries signifying time reversal, translation
by a lattice spacing, and a rotation by an angle π/2, while the prod-
uct of any two symmetry operations is preserved. The success of
our analysis underscores the importance of spontaneous breaking of
symmetries, Fermi surface reconstruction, and conventional quasi-
particles. We primarily focus on the version of the order that is
commensurate with the underlying crystalline lattice, but also touch
upon the consequences if the order were to incommensurate. It is
shown that while commensurate order results in two independent
oscillation frequencies as a function of the inverse of the applied
magnetic field, incommensurate order leads to three independent
frequencies. The oscillation amplitudes, however, are determined by
the mobilities of the charge carriers comprising the Fermi pockets.

High temperature superconductors — Fermi surface reconstruction — Quantum

oscillations — Hall effect

Any prospect of elucidating the mechanism of high temperature
superconductivity in cuprates is remote without answering some of
the basic questions in clear terms. The most important of which is
the notion of a Fermi surface—whether or not it exists, or it is re-
constructed due to a broken symmetry in the pseudogap state [1].
An equally basic question is the extent to which a featureless spin
liquid ground state, the resonating valence bond state (RVB), is im-
portant [2]. In this respect the recent experiments on quantum oscilla-
tions in high magnetic fields in high quality samples of YBa2Cu3Oy

(Y123) and YBa2Cu4O8 (Y124) have been striking [3, 4, 5, 6, 7].
The quantum oscillations in the magnetization (de Haas van

Alphen effect-dHvA), in the conductivity (Shubnikov-de Haas effect-
SdH), and in the Hall coefficient (RH ) have long been used to map
out the Fermi surface and its topology in metals and semimetals [8].
A Fermi surface differentiates the occupied electronic states from the
unoccupied states in the momentum space and plays a fundamen-
tal role in quantum theory of matter. The highest occupied energy
is an important parameter called the Fermi energy. The excitations
from this surface determine the quasiparticles, which behave in many
ways like bare particles but their properties are modified by the col-
lective interactions. An important notion is that a Fermi surface is a
topological invariant in a strict mathematical sense [9]. Even when

quasiparticles behave anomalously compared to conventional metals,
as in one-dimensional electronic systems, this surface is still defined
by the same topological invariant. A break up of this surface into
hole-like and electron-like pockets, termed reconstruction, requires
a global deformation in the topological sense, most likely a macro-
scopic broken symmetry.

The quantum oscillations referred to earlier are due to the exis-
tence of Landau levels in the presence of a magnetic field [10], which,
in two dimensions, restructure the energy spectra of the charged
quasiparticles in terms of a discrete set of levels. As the highest oc-
cupied level sweeps past the Fermi energy, as the magnetic field is
increased, the macroscopic quantum state of matter periodically re-
turns to itself, hence the oscillation in a variety of properties. More
quantitatively the frequency of oscillation, F = ~c

2πe
A(EF ), is the

Onsager relation [10], where A(EF ) is the area of a closed orbit in
the momentum space at the Fermi energy; here ~ is Planck’s con-
stant divided by 2π, c is the velocity of light, and e is the electronic
charge—all fundamental constants. The observed frequency provides
a valuable parameter, the Fermi surface area, if the electron orbits are
closed, and, equally importantly, the very existence of the surface it-
self. There are also surprisingly simple quasiparticles in a supercon-
ductor, but they couple to the magnetic field in such a qualitatively
different way that they do not form Landau levels and cannot give rise
to the quantum oscillations [11]. In a more technical parlance, their
coupling to the gauge field is not a minimal coupling as for normal
quasiparticles. Thus, the observation of quantum oscillations reflect
normal quasiparticles and their closed orbits on the Fermi surfaces,
in particular Fermi pockets.

The experiments show [3, 5] that in the underdoped samples of
hole-doped cuprates the oscillating RH in high magnetic fields and
low temperatures has a negative sign. Doping refers to adding charge
carriers to the parent compounds of the high temperature supercon-
ductors. The superconducting transition temperature is the highest at
a doping that is referred to as optimal. The normal state of less than
optimally doped, underdoped, superconductors exhibit a number of
anomalous proporties. That RH oscillates and is negative is strik-
ing, because at face value the robust feature of a given Fermi surface
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with conventional quasiparticles, is simply that RH = ±1/nec, pos-
itive for holes and negative for electrons, where n is the density of
the charge carriers. How could then the experimental observation be
understood? In the present paper we shall attempt to answer this fun-
damental question and draw its implications. We shall see that an
explanation is that the Fermi surface undergoes reconstruction form-
ing both hole and electron pockets and it is these electronic carriers
that dominate the sign of the Hall coefficient and the two-pocket pic-
ture is the root of the oscillating Hall coefficient.

We propose to explain the quantum oscillation experiments, in
particular the Hall measurements, with the notion of an unusual bro-
ken symmetry, namely the d-density wave [12] (DDW), which was
proposed to unify the phenomenology of high temperature supercon-
ductors from a single assumption, but with no special reference to
RVB. In contrast, the RVB character [2] was considered essential for
its predecessor, the staggered flux state [13]. Thus, one can study
DDW within a suitable effective Hamiltonian even in the weak in-
teraction limit; however, those properties that are determined by the
symmetries should be valid even in the strong interaction limit [14].
We emphasize that it is the notion of a broken symmetry and a con-
ventional reconstructed Fermi surface that is of fundamental impor-
tance in our explanation of these remarkable experiments.

One of the predictions of DDW was circulating orbital currents
arranged in a staggered pattern that could be detected in neutron scat-
tering experiments because of the resulting magnetic fields, but with
very small magnitude of the ordered moments of the order of 0.05µB
(Bohr magneton). Such experiments are very demanding and require
high quality samples and a proper polarization analysis to detect very
small magnetic signals [15]. Therefore, attempts to observe DDW
have understandably resulted in controversy. While some experi-
ments purport to confirm it [16, 17], others do not [18, 19]. From
the smallness of ordered moments, one should not immediately infer
that all macroscopic signatures of DDW are equally small. A feature
of DDW is the existence of hole and electron pockets in its electronic
structure that result in striking consequences, an example of which
we shall demonstrate in the present paper. At the very least a the-
ory must explain: (a) Why any oscillations of the Hall coefficient are
seen in the first place? (b) How is the Luttinger’s sum rule [20] satis-
fied? (c) Why is the Hall coefficient negative for large fields and low
temperatures? The assumption of a static spin density wave (SDW)
can also result in electron and hole pockets [21] and can thus lead to
a similar explanation of the experiments. However, a critical analysis
given below renders this route implausible.

It is sufficient to consider the behavior at zero temperature,
T = 0, and in the pristine DDW state. At non-zero temperatures,
oscillations are expected to be washed out. We assume that the high
magnetic field is enough to destroy the DSC component in the co-
existing DDW and DSC state in the underdoped regime. In other
words, the DDW state is not a field induced state. We also assume
that the lifetime of the DDW quasiparticles at the lowest measured
temperatures are dominated by scattering from impurities and the ef-
fects of electronic interactions are negligible in comparison, except
insofar as the formation of the ordered state is concerned. It is well
known that quantum oscillations are often significantly affected by
other complex sources of dephasing, some of which involve sample
or magnetic field inhomogenities [8]. These, however, will not be
addressed here.

First we shall consider commensurate DDW order and then dis-
cuss the effect of incommensuration. The commensurate DDW or-
der doubles the unit cell of the real space lattice because the transla-
tional symmetry corresponding to a displacement by the lattice spac-

ing a of the square planar CuO-lattice is broken. As a result the
conventional Brillouin zone (BZ) in the reciprocal space is halved,
or reduced, which is known as the reduced Brillouin zone (RBZ).
This unit cell doubling, but without a conventional spin or charge
density wave order, plays a crucial role in our analysis. It is con-
venient to define ε±k = 1

2
[εk ± εk+Q], where εk is the electronic

band structure as function of the wave vector k, and Q is the com-
mensurate ordering vector (π/a, π/a). The elementary excitations,

quasiparticles, are given by E±k = ε+k ±
q

(ε−k )2 +W 2
k , where the

DDW order parameter is defined by an energy gap that has the char-
acteristic shape of a d-wave, reflecting a bound electron-hole pair:
Wk = W0(T )

2
(cos kxa− cos kya). The spectra of excitations in

the RBZ consist of two hole pockets and one electron pocket for a
generic set of parameters, as shown in Fig. 1. Despite the appear-
ance of hole pockets, not all experimental probes can detect them.
In particular, due to the special coherence factors, only one half of a
hole pocket (the inner part) is visible in angle resolved photoemission
spectroscopy [22]; as to electron pockets, only the nearly vertical seg-
ments close to (0,±π/a) and the nearly horizontal segments close to
(±π/a, 0) should be visible due to the same coherence factor analy-
sis.
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Fig. 1. The contour plot of the DDW band structure for Y123 with y = 6.51.

There are two inequivalent elliptical hole pockets (one half of four centered at

(±π/2,±π/2)) in the reduced Brillouin zone (RBZ) bounded by ky ± kx =
±π/a and one electron pocket (one quarter of four centered at (0,±π) and

(±π, 0)) defined by the chemical potential µ. A simplified common set of

band structure parameters [25] are given by ε−k = −2t(cos kxa + cos kya),

ε+k = 4t′ cos kxa cos kya − 2t′′(cos 2kxa + cos 2kya), where a is the

lattice spacing equal to 3.84 Å; we ignore the slight orthorhombicity. The param-

eters are t = 0.3 eV , t′ = 0.3t, t′′ = t′/9.0, W (0) = 0.078 eV, and

µ = −0.2642 eV , corresponding to a total hole doping of 10%.

Within a conventional Fermi liquid picture and the Boltzmann
theory, Hall resistivity, Rxy , for a single band, be it a hole or an elec-
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tron band, is equal to H/(nec), with H the magnetic field. Yet, it
has been known for sometime that many semimetals with electron
and hole pockets exhibit pronounced oscillations of Rxy as a func-
tion of magnetic field [23], which closely reflect SdH oscillations.
It is a textbook exercise [10] that for two bands the combined Hall
coefficient R is given by (for magnetic fields of interest)

R ≈ R1σ
2
1 +R2σ

2
2

(σ1 + σ2)2
[1]

where Ri and σi are the individual Hall coefficients and the con-
ductivity of the ith band. The formula makes it transparent that the
oscillations of the conductivities can lead to oscillations of R, and
its sign depends on the relative contributions of the bands 1 and 2,
respectively a hole and an electron band. There are a number of im-
plicit assumptions: that independent Hartree-Fock quasiparticle ap-
proximation is valid, the Boltzmann theory of transport is adequate,
and there is no quantum tunneling between the bands. The first two
assumptions are the sine qua non of the DDW theory, in which, well
inside the ordered phase, the order is described by mean field theory
and its elementary excitations are simple quasiparticles. The last as-
sumption can be correct only if the quasiparticle gap is not so small
that the quantum tunneling effects dominate and result in a reconnec-
tion of the Fermi surfaces.

Ando [24] has derived a marvelous formula for σ for a non-
interacting continuum two dimensional electron system, but includ-
ing impurity scattering within a self-consistent Born approximation,
in a perpendicular magnetic field and Fermi energy situated at a high
Landau level. In general, the Landau level problem in a crystal is
not so simple, but in the limit of high Landau level, N , and in the
absence of interband transitions, both of which are excellent assump-
tions here, we can apply the quantization condition for a closed orbit:H
kxdky = 2πeH

~c [N + γ(N)] , where γ(N) is a number between 0
and 1. The relevant chemical potential, µ, which is alsoEF at T = 0,
is so large that the Dirac character of the nodal fermions is simply ir-
relevant. Ando’s result for the continuum can be recast in a slightly
more general form by using the above quantization condition, which
becomes

σ = σ0
1

1 + φ2

"
1 + 4

φ2

1 + φ2

∞X
s=1

e−sπ/φ cos

„
s

2πF

H

«#
, [2]

where φ = ωcτ = eH
m∗cτ . 1, m∗ is the effective mass, and τ is the

elastic scattering time from the impurities. Because the higher har-
monics fall off rapidly, because of the exponential damping factors,
called the Dingle factors, here we will consider only s = 1. Note
that the Drude conductivity σ0 = ne2τ/m∗ is in general different
for different bands. Similarly, φ may be different for bands that are
distinct. Here τ is the impurity scattering time, but it is quite possible
that additional dephasing must be included if the sample or the mag-
netic field is inhomogeneous. Note that in applying Eq. 2 to Eq. 1,
the absolute magnitudes of the individual σ’s do not enter, but only
their ratio. It is also very reasonable that the ratio of φ’s should reflect
the ratio of σ’s.

It is now straightforward to plot R(H) using Eq. 1. The results
for a set of parameters are shown in Fig. 2. To obtain a single os-
cillation frequency of R, as observed in experiments and with a neg-
ative sign, the oscillations must arise from the electron pocket; the
constraint of the Luttinger sum rule [20] as modified to apply to the
RBZ [21] provides a very severe constraint. The most general form
of this sum rule, also a rigorous theorem, states that the particle den-
sity is twice (for two spin directions) the “volume” of the momentum

space in d-dimensions divided by (2π~)d over which the real part of
the single particle Green function at the Fermi energy is positive.
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Fig. 2. Oscillations of the Hall coefficient R in YBa2Cu3Oy with y = 6.51;

the unit corresponds two dimensional areal density. The relevant band structure

parameters are the same as in Fig. 1. The additional parameters needed are

σ
(1)
0 /σ

(2)
0 = 1/2, φ1/H = 0.0065 T−1 and φ2/H = 0.013 T−1, as

discussed in the text. The oscillation period 1/530T is entirely determined by the

area of the electron pocket. The oscillations from the hole pocket are not visible

because of the exponentially small Dingle factor. The inset is the negative of the Hall

resistivity −Rxy = −RH , where H is expressed in terms of Tesla.

The principal results are relatively insensitive to the band struc-
ture parameters as long as this sum rule is satisfied and the electron
and hole pockets have the right curvature. Thus we have chosen pa-
rameters such that over the range of the magnetic field the contribu-
tion from the hole pocket is smooth and does not vary much. This
becomes obvious if one plots separately the individual conductivities
σ1 and σ2. Of course, this is true only for the range of parameters
used in our calculation, but with a different set of parameters one
can observe oscillations arising from the hole pockets as well, and in
general one can observe complicated oscillatory patterns.

It is important to emphasize the details of our choice of parame-
ters to expose the robust features outlined above. We have employed
a simplified version of the band parameters given in Ref. [25] for
YBa2Cu3Oy with y = 6.51; see the caption of Fig. 1. We have
verified that other choices of parameters lead to similar results. Once
these parameters are given and the doping level is fixed, there is no
further flexibility in choosing Fi or Ri. The Fi’s are determined by
the area of the Fermi pockets. The corresponding densities, henceRi,
are obtained by applying Luttinger’s counting argument to the RBZ.
Including a factor of 2 for spin and a factor of 2 for the two hole
pockets, the density corresponding to the hole pockets, n1 ≡ nh, is
nh = Ah/π

2, where Ah is the k-space area of a single hole pocket.
We convert nh to number of carriers per Cu-atom by multiplying it by
a2, but maintain the same notation, as no confusion should arise. For
the density in the electron pocket we have to include again a factor of
2 for spin but there is now only one electron pocket in the RBZ, that
is, n2 ≡ ne = Ae/2π

2. Now R1 = 1/nhec and R2 = −1/neec,

Footline Author PNAS Issue Date Volume Issue Number 3



where the charge e > 0.
The remaining parameters are σ0 and ωcτ for the two bands. As

mentioned above, Eq. 1 is independent of the absolute value of σ0; it
is only the ratio between the two bands that matter. In the present set
of experiments there is evidence for oscillations involving only a sin-
gle frequency: ∆(1/H) = 1/530T. The single frequency implies
that only one of the bands dominates the oscillation, and its period
determines the area of the relevant Fermi pocket via the Onsager re-
lation. To understand which band is responsible for the oscillation,
let us first assume that it is the hole pocket. Note that the hole doping,
δ, for YBa2Cu3O6.51 is 0.1. However, the density corresponding to
two hole pockets in the RBZ, deduced from the oscillation period,
is 2 × 0.038 = 0.076, which leads to a violation of the Luttinger
sum rule independently of any electron pockets. Taking into account
an electron pocket will result in a δ less than 0.076, an even greater
violation of the sum rule, because δ = nh − ne. If, instead, the
oscillations are from the electron pocket, F2 is 530 T, and there-
fore ne = 0.038. To achieve a hole doping of 0.1, we must set
nh = 0.138, implying F1 = 969 T. Therefore, the single observed
frequency of 530 T combined with the Luttinger sum rule uniquely
constrain ne, nh, F1 and F2. Moreover, because only one frequency
is observed we must have ωcτ for the electron pocket larger than ωcτ
for the hole pocket. The Dingle factors are critical for this and the
final parameters are given in the captions of Fig. 1 and Fig. 2.

The experiments observe the evolution of the superconducting
state to the normal state as the magnetic field is increased up to 62 T.
Clearly in the superconducting state both Rxx and Rxy are zero, but
in the vortex liquid state these quantities are finite. It is claimed [5],
however, that for H & 45 T the behavior truly reflects the normal
state, free of traces of superconductivity, and it is in this experimen-
tal regime that our theory is relevant. Overall, we find the agreement
with experiments excellent. We have focused here on oscillations
of R because it is the most striking consequence of the existence of
both electron and hole pockets, but clearly there will be also SdH and
dHvA oscillations with the same frequency F2.

We wish to emphasize that our approach is robust and equally
well describe the results for Y124. Although Y123 and Y124 must
necessarily have different band structures because they are different
materials, the required adjustment is truly minimal. We can fit the
results for Y124 with all parameters the same as in Fig. 1 except
for t′′ = t′/5.5, W (0) = 0.051 eV, and µ = −0.286 eV , corre-
sponding to a total hole doping of 12.5%. Once again, the Luttinger
sum rule, the value of doping, and the observed areas of the quantum
oscillations almost uniquely fix all the parameters. The additional
parameters needed are the same as in Fig. 2. The oscillation fre-
queny 660T is entirely determined by the area of the electron pocket.
Note that the required value of the DDW gapW (0) is now decreased
to 0.051eV, which is consistent with the DDW theory, because the
DDW gap should decrease with increased doping [12].

Until recently [3, 5] no signatures of electron pockets have been
detected in hole doped cuprates, nor are they predicted by the elec-
tronic structure calculations based on local density approximation in
either Y123 or Y124; see Refs. [3, 4] and references therein.

Previously, electron pockets were noted in the DDW band struc-
ture but their presence [26] did not make any critical difference. The
aim there was to explain the nonanalyticity in the Hall number as the
DDW gap collapses in the middle of the superconducting dome at a
quantum critical point. As mentioned above, a static commensurate
SDW can also lead to both hole and electron pockets [21, 27], but
this is not experimentally relevant in the doping regime of interest
here. Moreover, conventional SDW order parameter is necessarily a

s-wave object and clearly inconsistent with the strongly momentum
dependent d-wave character of the pseudogap [28]. A triplet ver-
sion of DDW which results in a staggered circulating spin currents
does have the necessary d-wave character and the associated electron
pockets, but is implausible for other reasons.[12] It has been recently
argued that a high magnetic field can induce a conventional SDW or-
der and the experiments have been interpreted in terms of two hole
pockets [29]. But this approach clearly cannot explain the negative
Hall coefficient and its oscillations, nor the Luttinger sum rule. The
low energy spin fluctuations in YBCO typically have a spin gap be-
low the (π/a, π/a) resonance peak at higher doping, which seems
not to be the case for YBa2Cu3O6.5, where the spectral weight in
the normal state vanishes linearly with energy [30]. However, it is
difficult to see, simply from energetics, how even a 65 T magnetic
field can produce a condensation at zero energy of a static SDW with
sufficient spectral weight to produce a large enough order parameter
that is necessary to obtain the required sizes of the pockets. An in-
teresting discussion along similar lines of the implausibility of SDW
or antiferromagnetic order determining these experiments was also
offered in Ref. [31].

In a mean field theory it was found [32] that 1/8 magnetic an-
tiphase stripe order generically produces complicated Fermi surfaces
involving open orbits, hole pockets and electron pockets. However, it
appears to be difficult to satisfy simultaneously the constraints of the
Luttinger sum rule, the periodicity of the oscillations, and the nega-
tive sign of R, consistent with the observations in Refs. [3, 4, 5]. A
more exotic mechanism has also been invoked to explain these ex-
periments [33], but within this mechanism the correct negative sign
of the Hall coefficient is very difficult to achieve.

What, we may ask, will be the scenario if the order, in particular
the DDW order, incommensurates, which is a distinct possibility over
a range of hole doping? [34] Although it is energetically expedient to
add holes at the nodes, unlike SDW, the Fermi surface must eventu-
ally move away from the nesting wave vector as a function of doping.
A rigorous treatment of any incommensurate order is generally com-
plex, especially if the incommensuration is irrational. Nonetheless,
the dominant physical behavior can be often approximated by the
lowest order gap and the hierarchy of gaps will be washed out due
to thermal fluctuations, disorder, or magnetic breakdown [35]. Thus,
in a simplified treatment, the DDW order parameter can be crudely
approximated by the quantum mechanical expectation value [36],

〈c†σ′k′cσk〉 = i
Wk

2
(δk′,k+K + δk′,k−K) δσ,σ′ , [3]

where the incommensuration vector q = K − (π/a, π/a); σ, σ′

are spin indices and ck, c†k′ are the Fermion destruction and creation
operators. This Ansatz conserves current to only linear order in q,
which may be sufficient for practical situations.

In high temperature superconductors, there is some evidence
from neutron scattering of incommensurate SDW fluctuations that
the incommensuration is of the form q = π(±2η, 0)/a and q =
π(0,±2η)/a, where η ∼ 0.1 in the underdoped YBCO [37]. We
believe that similar estimates should also apply for incommensurate
DDW because the determining competition between the kinetic and
the interaction energies are similar within a mean field theory; the
precise value of η is not particularly relevant at the level of present
discussion. If we further simplify by assuming a single wave vec-
tor q, by spontaneous breaking of inversion symmetry, the excitation
spectrum can be trivially solved. One can easily show, using the pa-
rameters essentially identical to those as before, that for 10% doping
the frequency of one of the hole pockets can be shifted from 969 T to
a higher frequency with little change in the frequency of the electron

4 www.pnas.org — — Footline Author



pocket (530 T), but generically there is an additional smaller hole
pocket of lower frequency, tightly constrained by the Luttinger sum
rule. The physics of the Fermi surface reconstruction is completely
unchanged as compared to the commensurate case. The same as-
sumption that the hole pockets have lower mobility will render their
observation difficult, but still the splitting of the frequencies of the
hole pockets is a prediction of the incommensurate picture. In addi-
tion, the field sweep necessary for the observation of the smaller hole
pocket corresponding to a lower frequency may be a limiting factor
in unambiguously identifying it without higher field magnets.

We have assumed, along with Ref. [5], that, once there is no
longer any non-linear field-dependence to the transport, the system
is in the “normal state” , that is, there are no contributions from vor-
tices. One can go even further and claim that the samples are above
the upper critical field, Hc2, and that there are no vortices around at
all. This need not be the case. It is quite possible that these high
field experiments are still well below Hc2, guessed to be 100T or
more. It is well known and understood, however, that quantum os-
cillations in many superconductors are observed to fields as small as
(1/2)Hc2, with the oscillation frequencies unchanged from the non-
superconducting or the “normal state”, but with an increased damp-
ing [38]. As remarked above, it is also known that the quasiparticles
of the high temperature superconductors do not form Landau levels
in the superconducting state [11]. Thus, the very fact that the oscilla-
tions are observed in three different samples, with three independent
techniques, and by at least two independent groups imply that the ex-
periments are accessing the normal state beyond the realm of super-
conductivity. A convincing theory of the amplitude of the oscillations
is a very difficult problem, however.

The seeming lack of observation, yet, of electron and hole pock-
ets in other measurements in hole-doped superconductors, in particu-
lar in angle resolved photoemission spectroscopy that is also capable
of measuring the Fermi surface is an important puzzle; see, however,
the work on electron-doped materials [39] where both electron and
hole pockets are observed. Clearly further experiments are neces-
sary to settle these important issues more definitively, but our simple
symmetry breaking approach remains a serious challenge to alterna-
tive scenarios, which has to be consistent with all the experimental
facts, in particular the negative Hall coefficient, as well as the the-
oretical constraints of the Luttinger sum rule, known to be valid for
a whole class of systems, including Mott insulators [40]. There is
another serious implication of our work. That a simple quasiparti-
cle/Fermi surface based theory can explain these striking data in the
underdoped regime, which previously was thought to be plagued by
the complexities ensuing from the proximity of a Mott insulator, is
a warning that we may have misidentified the effective Hamiltonian
as the single band Hubbard model. In particular, the correct effec-
tive Hamiltonian should include correlated hopping processes that
are necessary to stabilize both DSC and DDW [14]. The properties
protected by symmetries can equally well be understood in the weak
interaction limit with a proper effective Hamiltonian.
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