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The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate 
high-temperature superconductor YBa2Cu3oy (YBCo), application of a magnetic field to 
suppress superconductivity reveals a ground state that appears to break the translational 
symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study 
of thermoelectric transport in the cuprates YBCo and La1.8 − xEu0.2srxCuo4 (Eu-LsCo) to show 
that the two materials exhibit the same process of Fermi-surface reconstruction as a function 
of temperature and doping. The fact that in Eu-LsCo this reconstruction coexists with spin and 
charge modulations that break translational symmetry shows that stripe order is the generic 
non-superconducting ground state of hole-doped cuprates. 
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In the underdoped region of the phase diagram, quantum oscil-
lations have revealed a small Fermi surface pocket in the cuprate 
superconductor YBCO (ref. 1), in contrast to the large Fermi 

surface observed on the overdoped side. This implies that there 
is a quantum critical point (QCP) near optimal doping where the 
Fermi surface of the non-superconducting ground state is recon-
structed. Understanding this QCP is essential, and if it corresponds 
to the onset of some density-wave order that breaks the transla-
tional symmetry of the CuO2 planes, then the fluctuations of that 
order may well cause both the linear temperature dependence of 
the resistivity in the ‘strange-metal phase’ and the pairing2. Such 
a density-wave scenario applies to organic superconductors3, for 
example, and possibly also to iron-pnictide and heavy-fermion 
superconductors4. In cuprates, the nature and origin of the small 
Fermi pocket are the subject of much debate5. An electron-like 
rather than hole-like pocket would strongly favour a density-wave 
scenario whereby the Fermi surface undergoes a reconstruction 
driven by the new periodicity 6,7, as in the case of antiferromagnet-
ism8, d-density-wave order 9, or stripe order10.

Here we report quantum oscillations in the Seebeck and Nernst 
coefficients of YBCO and show, from the magnitude and sign of the 
Seebeck coefficient, that they come from an electron pocket. Using 
measurements of the Seebeck coefficient as a function of hole doping 
p, we show that the evolution of the Fermi surface in YBCO is the 
same as in Eu-LSCO, a cuprate where stripe order—a modulation of 
spin and charge densities11,12—is well established13–16. The electron 
pocket is most prominent where stripe order is strongest, at p = 1/8. 
This shows that Fermi-surface reconstruction is a generic mecha-
nism of underdoped cuprates, intimately related to stripe order.

Results
Quantum oscillations. Quantum oscillations in YBCO at a hole 
doping p≈0.1 have a dominant frequency F≈530 T (refs 1,17,18), 
giving a closed Fermi surface area 30 times smaller than that found 
in overdoped Tl2Ba2CuO6 + y at p≈0.3 (ref. 19). A key question is the 
sign of the associated carriers. The large negative Hall coefficient RH 
observed in the same YBCO samples at low temperature is evidence 
of electron-like carriers20,21. However, because a negative Hall 
resistance can, in principle, come from moving vortices or negative 
curvature in a hole-like Fermi surface, it is important to confirm 
the sign of carriers using evidence insensitive to these effects. This 
can be done by measuring the Seebeck coefficient (or thermopower) 
S, a standard measure of carrier sign. In Figure 1a, we show S and  
the Nernst coefficient ν of YBCO at p = 0.11, measured at low 
temperature as a function of magnetic field B up to 28 T. The fact that 
ν is flat at high field shows that vortex contributions have become 
negligible above 25 T, and the normal state has for all practical 
purposes been reached. The fact that S is negative in that high-field 
normal state confirms that the dominant carriers are electron-like.

A zoom on the data at 2 K (Fig. 1b) reveals quantum oscillations 
in both S and ν, proving the presence of a small closed pocket in the 
Fermi surface of YBCO in fields as low as 24 T. The frequency of the 
oscillations (in 1/B) is F≈520 T, in agreement with quantum oscilla-
tions in the resistance1 and magnetization17,18 of similar YBCO crys-
tals. Given a cyclotron mass m* = 1.76 ± 0.07m0 (ref. 17), we obtain 
the Fermi temperature TF = (eħ/kB) (F/m*) = 410 ± 20 K, where m0 
and e are the electron mass and charge, respectively, and kB is the 
Boltzmann constant. From TF, we estimate the magnitude of the 
Seebeck and Nernst coefficients expected for this Fermi pocket at 
T→0, using standard expressions known to agree well with experi-
ment in several correlated electron systems. These yield (ref. 22): 

S T k e T/ ( / )( / )( / )( / ) . . ,≈ − + = − ± −p z2 3 3 2 1 0 9 0 2B F
2V Kµ

where the negative sign is for electron-like carriers. The upper 
and lower bounds on the uncertainty correspond to assuming an 

(1)(1)

energy-independent relaxation time (ζ = 0) or mean-free path 
(ζ =  − 1/2), respectively22. The measured value at low temperature is 
S/T =  − 0.8 ± 0.1 µV K − 2 (Fig. 1a). The magnitude of the quasiparticle 
Nernst coefficient at T→0, ν/T =  − 13 ± 3 nV K − 2 T − 1 (Fig. 1a), is also 
the expected value23 

| / | ( / )( / )( / )v T k e T≈ = ± − −p m2 3 13 3B F
2 1nV K T ,

given the mobility µ = 0.02 ± 0.006 T − 1 obtained from quantum  
oscillations17. This excellent quantitative agreement shows that,  
in YBCO at p = 0.11, the quantum oscillations come from a small 
electron-like Fermi pocket of high mobility.

Seebeck coefficient. In Figure 2a, b, the normal-state Seebeck coef-
ficient of YBCO and Eu-LSCO, respectively, is plotted as a function 
of temperature for different dopings. We first discuss the YBCO 
data. At all dopings, S/T is positive at high temperature. For p = 0.09, 
0.10, 0.11 and 0.12, S/T starts to drop monotonically below ~80 K, 
to become negative in the T = 0 limit, changing sign at a temperature 
T0

S. We infer that an electron pocket is present in the Fermi surface 
at all four dopings. By contrast, at p = 0.08, S/T shows no downturn 
down to the lowest temperature. The same evolution was reported 
recently in the Hall coefficient, with RH(T) crossing to negative val-
ues at a sign-change temperature T0

H when p>0.08 and remaining 
positive at p = 0.08 (ref. 21). The sudden qualitative change in RH(T) 
across p = 0.08, now reproduced in S(T), is attributed to a change 

(2)(2)
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Figure 1 | Quantum oscillations in the thermoelectric response of YBCO. 
(a) seebeck (S; red curve, left axis) and nernst (ν; blue curve, right axis) 
coefficients of YBCo measured in a single crystal with a doping p = 0.11 at 
a temperature T = 6.5 K, plotted as S/T and ν/T vs magnetic field B. (b) 
Zoom on the high-field range of the same coefficients, measured at T = 2 K, 
normalized to their respective values at B = 25 T. Quantum oscillations are 
clearly seen in both coefficients. The short vertical lines show the spacing 
of two successive oscillations of frequency F = 520 T (in 1/B).
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in Fermi surface topology whereby the electron pocket disappears 
below p = 0.08 (ref. 21).

A convenient way to picture the doping evolution of the Fermi 
surface is to plot T0

S on a phase diagram, as shown in Figure 3a for 
YBCO, and Figure 3b for Eu-LSCO. For YBCO, T0

S and T0
H are seen 

to track each other closely, growing monotonically and in parallel 
from zero at p = 0.08 to their maximal value at p = 0.12. Hall meas-
urements up to 60 T reveal that T0

H comes down at higher doping, 
so that T0

H forms a dome starting at p = 0.08, peaking at p = 1/8, and 
ending at p≈0.17 (ref. 21). This dome is the region of the phase dia-
gram where the electron pocket dominates the transport properties.

Two questions arise: is this Fermi-surface evolution unique to 
YBCO? what causes the Fermi surface to reconstruct below ~80 K? 
We address these by turning to Eu-LSCO, a cuprate superconductor 
with a different crystal structure: tetragonal rather than orthorhom-
bic, with single rather than double CuO2 layers, without CuO chains, 
in which doping is done by substituting Sr rather than adding oxy-
gen. In Figure 4, we compare the normal-state Seebeck coefficient 
of Eu-LSCO to that of YBCO at the same doping, p = 0.11. The two 
curves are essentially identical: S/T has the same positive value at 
high temperature; it starts to drop at the same onset temperature 
near 80 K; it crosses zero at the same temperature T0

S = 40 K; and it 

reaches a large negative value at T→0 in both cases. (Since S is an 
intensive quantity, its magnitude is independent of the number of 
CuO2 planes per unit cell.)

Our main finding is that the doping evolution of S/T in  
Eu-LSCO is fundamentally identical to that of YBCO: at p = 0.10, 0.11 
and 0.12 it drops to become negative, whereas, at p = 0.08, it remains 
positive down to low temperature (Fig. 2b). As shown in Figure 5 
for Eu-LSCO, a drop to a negative S/T is also observed at p = 0.16, 
whereas, for p = 0.21 and 0.24, no drop is seen and S/T is positive  
at all temperatures. In Figure 3, a plot of T0

S versus p captures the 
striking similarity between Eu-LSCO and YBCO. We conclude that 
the Fermi surface of these two cuprates undergoes a very similar 
reconstruction as a function of temperature and doping, pointing to 
a universal phenomenon amongst hole-doped cuprates. This imme-
diately implies that quantum oscillations and the downturns in S/T 
and RH come from a Fermi pocket associated with the CuO2 planes 
(and not the CuO chains of YBCO, for example).

Discussion
Upon cooling below ~100 K, Eu-LSCO undergoes an ordering pro-
cess called ‘stripe order’11,12, also observed in the closely related mate-
rial La1.6 − xNd0.4SrxCuO4 (Nd-LSCO), which involves both charge16,24 
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Figure 2 | Seebeck coefficient of YBCO and Eu-LSCO. (a) normal-state 
seebeck coefficient of YBCo, plotted as S/T vs T, measured in a field 
B = 0 (squares) and B = 28 T (circles), at five values of the hole doping p 
as indicated (data at p = 0.12 from ref. 37). T0

s is the temperature where 
S changes sign. (b) Corresponding data for Eu-LsCo, measured in a field 
B = 0 (squares) and B = 10 T (circles), at four dopings as indicated (data 
at p = 0.125 from ref. 37). our Eu-LsCo data agrees well with previous 
data38,39. All lines are a guide to the eye.
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Figure 3 | Phase diagram of YBCO and Eu-LSCO. (a) Temperature- 
doping phase diagram of YBCo showing the zero-field superconducting 
phase below Tc (grey region) and the region where the normal-state 
seebeck coefficient is negative (S < 0; yellow dome), delineated by T0

s  
(full red circles). Also shown is the line below which the normal-state  
Hall coefficient is negative (RH < 0), called T0

H (open blue circles; ref. 
21). (b) Phase diagram of Eu-LsCo showing Tc (grey region), T0

s (full 
red circles) and TCo, the onset of charge-stripe order detected by X-ray 
diffraction (full black diamonds; ref. 16). Lines through T0

s, T0
H and TCo are a 

guide to the eye. The black vertical dashed line marks the doping p = 1/8.
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and spin modulations13,14,25,26. These are in general incommensurate 
with the lattice, with a period of ~4a and 8a at p ≈1/8, respectively, 
where a is the in-plane lattice constant. The charge-ordering tem-
perature TCO in Eu-LSCO is displayed in Figure 3b. At T→0, both 
modulations are present throughout the doping range 0.10 ≤ p ≤ 0.15 
(refs 13,14,16), and by extrapolation from p ≈ 0.08 to beyond p ≈ 0.2. 
Because they break the translational symmetry of the lattice, these 
stripe modulations will inevitably cause a reconstruction of the 
Fermi surface. Calculations show that the reconstructed Fermi 

 surface will in general contain electron pockets10. We have now 
shown that throughout the doping range 0.10 ≤ p ≤ 0.16, the Fermi 
surface of Eu-LSCO does indeed contain an electron pocket. We 
conclude that stripe order is the mechanism responsible for Fermi-
surface reconstruction in Eu-LSCO. By close analogy, we infer that 
the same mechanism acts in YBCO. By extension, Fermi-surface 
reconstruction by stripe order is likely to be a generic property of 
hole-doped cuprates in the approximate range 0.08 < p < 0.2, and 
possibly beyond.

Apart from the presence of a small closed electron pocket, lit-
tle is known with certainty about the reconstructed Fermi surface 
of YBCO or Eu-LSCO. In particular, the k-space location of the 
electron pocket and the existence of other Fermi-surface sheets are 
open questions. Studies of the electronic structure by angle-resolved 
photoemission spectroscopy in Eu-LSCO (ref. 27) and Nd-LSCO 
(ref. 28) at p ≈1/8, performed between Tc and TCO, revealed evidence 
of a Fermi-surface reconstruction. However it is unclear whether 
these effects are due to stripe order or to structural distortions, and 
no direct evidence for an electron pocket was found.

The excellent agreement between the measured value of S/T at 
T→0 and that calculated assuming the Fermi surface consists of 
only the electron pocket implies that other Fermi-surface sheets, as 
yet unobserved, must have a much lower conductivity. In particular, 
a hole-like sheet would make the Seebeck and Hall coefficients less 
negative. From the frequency of quantum oscillations in YBCO at 
p ≈ 0.1, the Hall coefficient of the electron pocket alone should be 
Re =  − 1/ne =  − 15 mm3 C − 1, since n = F/Φ0 = 0.038 carriers per planar  
Cu atom (ref. 20), assuming an isotropic pocket. The measured value 
of the Hall coefficient is RH =  − 35 mm3 C − 1 (ref. 20). The fact that 
|RH|>|Re| suggests that the electron pocket is not isotropic, and it 
leaves little room for a significant hole-like contribution. The contri-
bution of the electron pocket to the normal-state electronic specific 
heat Ce at T→0 is21 Ce

pocket/T = (π2/2)kB(n/TF) = 5.1 ± 0.2 mJ mol − 1  
K − 2, where n is the carrier density per unit cell (assuming one  
electron pocket for each of the two CuO2 planes in the unit cell). 
Recent high-field measurements on a YBCO crystal with p ≈ 0.11 
yield Ce/T = 4 − 5 mJ mol − 1 K − 2 above 25 T (ref. 29), in agreement 
with expectation if there are no other sheets in the Fermi surface, or 
if such sheets have a very low mass m*.

Stripe order is known to be most robust at p = 1/8, as indicated 
for example by the fact that the onset temperature TCO is highest at 
that doping (see Fig. 3b). Hence, the fact that T0

S in Eu-LSCO and 
T0

H in YBCO peak at p = 1/8 is further evidence that Fermi-surface 
reconstruction and stripe order are linked, in both materials. To our 
knowledge, diffraction studies in YBCO have not yet been carried 
out in magnetic fields large enough to suppress superconductiv-
ity and directly confirm whether or not the non-superconducting 
ground state in the doping range 0.09–0.15 does indeed have modu-
lations of spin and/or charge. It is conceivable that the stripe-like 
spin order observed in YBCO at low temperature up to p ≈ 0.07 in 
zero field could persist up to higher p when superconductivity is 
suppressed by a large enough magnetic field30.

We stress that stripe order extends well above p = 1/8, into the 
highly overdoped region of the phase diagram. The QCP where 
the stripe-ordered phase at T = 0 ends on the high-doping side is 
approximately at p≈0.25 (refs 16,25). Transport measurements31,32 
in Nd-LSCO show clearly that Fermi-surface reconstruction still 
occurs at p = 0.20, but no longer does at p = 0.24 (the same is true 
in Eu-LSCO). The precise location of the QCP is p* = 0.235 ± 0.005 
(ref. 33). The presence of such a QCP has a profound impact on the 
electronic properties, producing, for example, a linear temperature 
dependence of the resistivity as T→0 (ref. 31), the defining signa-
ture of the so-called ‘strange-metal phase’ of cuprates. Significantly, 
the strength of the anomalous linear-T scattering in hole-doped 
cuprates was shown to be directly proportional to Tc, the strength of 
superconductivity2,34, as found in organic superconductors3.
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Figure 4 | Comparing Seebeck data in YBCO and Eu-LSCO. Direct 
comparison of the seebeck coefficients of YBCo (red symbols) and Eu-
LsCo (blue symbols) at the same doping, p = 0.11. The applied magnetic 
field B = 0 (squares), 10 T (triangles) or 28 T (circles). The very similar 
downturn in the normal-state data points to a very similar Fermi-surface 
reconstruction.

–0.5

0

0.5

1

0 50 100

S
/T

 (
µV

 K
–2

)

T (K)

p = 0.21

0.24

0.16

0.11
T0

S

0.1

0.3

0.5

10 100

S
/T

 (
µV

 K
–2

)

T (K)

p = 0.24

Figure 5 | Seebeck coefficient of Eu-LSCO at high doping. normal-state 
seebeck coefficient S of Eu-LsCo plotted as S/T vs T for values of the 
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Methods
YBCO samples. YBa2Cu3Oy samples are fully detwinned crystals grown at the 
University of British Columbia in non-reactive BaZrO3 crucibles from high-purity 
starting materials (see ref. 35). The hole concentration (doping) p in each sample 
is tuned by adjusting the oxygen content y. The samples are uncut, unpolished thin 
platelets, whose transport properties are measured via gold evaporated contacts  
(of resistance  < 1 Ω), in a six-contact geometry. The doping p was determined from 
a relationship between the superconducting temperature Tc and the c-axis lattice 
constant36. The value of Tc, defined as the point of zero resistance, is: Tc = 44.5, 
55, 57.3, 61.3 and 66 K for samples with y = 6.45, 6.49, 6.51, 6.54 and 6.67, giving 
p = 0.08, 0.09, 0.10, 0.11 and 0.12, respectively.

Eu-LSCO samples. Single crystals of La1.8 − xEu0. 2SrxCuO4 were grown at the Uni-
versity of Tokyo using a travelling float zone technique. The doping p is taken to be 
equal to the Sr content x, to within ± 0.005. Electrical contacts (of resistance  < 0.1 Ω 
at room temperature) were made using silver epoxy diffused into the surface. The 
value of Tc, defined as the point of zero resistance, is: Tc = 3, 5, 4, 7, 13, 14 and 9 K 
for samples with x = 0.08, 0.10, 0.11, 0.125, 0.16, 0.21 and 0.24, respectively.

Measurement of the thermoelectric coefficients. The thermoelectric transport 
coefficients were measured by applying a steady heat current through the sample 
(along a direction which we define as the x-axis). In YBCO, the current was along 
the a-axis of the orthorhombic crystal structure to avoid any contribution from 
the CuO chains; in Eu-LSCO, the current flowed within the CuO2 planes. The 
generated thermal gradient was measured using two uncalibrated Cernox chip 
thermometers (Lakeshore), referenced to a third, calibrated Cernox. The longitudi-
nal and transverse electric fields were measured using nanovolt preamplifiers and 
nanovoltmeters. All measurements were performed with the temperature of the 
experiment stabilized within ± 10 mK and the magnetic field B swept at a constant 
rate of 0.4–0.9 T min − 1 between positive and negative maximal values, with the heat 
on. The field was applied normal to the CuO2 planes (B || z || c).

As the Seebeck coefficient S is symmetric with respect to the magnetic field, it 
is obtained by taking the mean value between positive and negative fields: 

S E T x V B V B Tx x x x= ∂ ∂ = + −/( / ) [ ( ) ( )]/( ),∆ ∆ ∆2

where ∆Vx is the difference in the voltage along x measured with and without 
thermal gradient. This procedure removes any transverse contribution that could 
appear because of slightly misaligned contacts. The longitudinal voltages and the 
thermal gradient being measured on the same pair of contacts, no geometric factor 
is involved.

The Nernst coefficient N is antisymmetric with respect to the magnetic field, 
therefore it is obtained by the difference: 

N E T x L w V B V B Ty y y x= ∂ ∂ = − −/( / ) ( / )[ ( ) ( )]/( ),2 ∆

where L and w are the length and width of the sample, respectively, along x and 
y, and Vy is the voltage along y measured with the heat current on. This antisym-
metrization procedure removes any longitudinal thermoelectric contribution from 
the sample and a constant background from the measurement circuit. The uncer-
tainty on N comes from the uncertainty in determining the sample dimensions, 
giving typically an error bar of  ± 10%.

Measurements were performed at the University of Sherbrooke up to 10 or 15 T 
and at the LNCMI in Grenoble up to 28 T. 
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