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ABSTRACT

Where do such fermion properties as colour and flavour come from? We attempt to give a possible

answer to this question in our paper. For that purpose we use the reducible ( 1
2
, 1

2
) representation

of the Lorentz group. Then the fermion corresponds to a doublet, each component of which can be

described by the standard Dirac equation. In this way we conclude that quark and lepton, when

being considered as doublets, originate from the discussed multiple representations of the Lorentz

group (LG) and the related Clifford algebra. In particular the threefold colour degree of freedom

emerges naturally, and similarly the threefold generation degree, both being enabled essentially by

the fact that the SU(2) group has three generators given by the Pauli matrices. The Dirac spinor,

or for zero mass the chiral Weyl spinor, remains the building block of that theory.
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1 INTRODUCTION

Among the key open questions in modern

elementary particle physics are those basic ones

addressing the physical origin of such striking

fermion properties as colour and flavour. Why

do quarks just come in three colours, and why

do leptons and quarks occur in three generations

or six flavours? Why are all elementary fermions

found empirically to be ordered in doublets, like

the electron and neutrino, or the up and down

quark, as well as their heavier relatives? What

are the physical reasons for the appearance

of the two gauge groups SU(2) and SU(3)?
These important questions have been around for

decades, and are competently discussed for the

non-expert physicist or educated layman in the

excellent popular books by [1] and [2], and of

course in depth addressed in modern textbooks

of quantum field theory (QFT), like the ones by

[3] and [4]. A lucid description of the history and

detection of quark colour was recently given by

[5], including the important relevant references.

We attempt to give a possible answer to the

above questions in our paper. In brief, these

properties are all connected and originate from

permutation symmetries associated with the

reducible ( 1
2
, 1

2
) representations of the Lorentz

group and related Clifford algebra. Yet, the

Dirac spinor, or for zero mass the chiral Weyl

spinor, remains the building block of the extended

theory. The fundamental SU(2) group and the

representation of the angular momentum algebra

in terms of the Pauli matrix vector [6], σ =
(σx, σy, σz), plays an eminent role in this subject.

Permutation of its three components naturally

yields the empirically rather puzzling threefold

multiplicity of colour and flavour. But to establish

this notion requires to consider the fermion at the

outset as a doublet.

Thus both colour and flavour essentially emerge

from this duality, and owing to the simple fact that

the related SU(2) group has three generators.

These traits are not included in the standard Dirac

equation (in Weyl or Dirac representation), which

describes the fermion as a doublet of particle and

antiparticle, both having a spin either up or down.

However, spin is not a relativistic property, but just

related to the spinor representation of the rotation

group SO(3), which is obvious from the relation

(σ · p)2 = p
2
12, (1.1)

with the momentum vector p and 2 × 2 unit

matrix 12. The doublet nature of the fermion

is intimately related to the structure of space-

time, and naturally emerges in the symmetric

SU(2) ⊕ SU(2) representation of the SO(3, 1)
Lorentz group.

When considering the Clifford algebra

subsequently, we do not have to pay attention

to the fermion mass m, the square of which is a

Casimir operator, i.e., an invariant property of a

particle under Lorentz transformation (LT). But all

fermions occurring in the standard model (SM)

including the neutrino (as inferred from neutrino

oscillations, see e.g. [7]) are known to have

mass, though showing a huge spread in their

values, which can now be calculated ab initio

within the SM, for references see e.g. the paper

by [8]. According to these calculations baryon

masses can be understood as arising mainly from

“condensation” of gauge-field energy, whereas

lepton and quark masses are mainly determined

by the Yukawa coupling to the Higgs field [4].

These important issues are not dealt with here,

but we shall concentrate on the origin of the

multiplicity of the Clifford algebra that is mirrored

in the fermion properties. We start with two

more tutorial sections on the generators of the

LG and the Dirac equation in general abstract

form. Then we discuss the various forms of the

Clifford algebra, yielding different versions of the

Dirac equation. Two appendices address specific

issues and provide relevant matrices appearing

in the representations of the LG.
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2 THE FOUR-VECTOR GENE-

RATORS OF THE LORENTZ

GROUP

The purpose of this introduction is to remind

the reader of the origin of the generators of

the Lorentz group (LG) from the four-vector

representation in Minkowski space. We therefore

quote in the appendix for completeness the

component matrices of the hermitian three-vector

rotation operator J, which is the generator of the

SO(3) rotation subgroup of the Lorentz group,

and of the anti-hermitian three-vector boost

operator K. According to their definitions, the

rotation and boost operators obey the well known

linked three-vector equations of the Lorentz

algebra, which can be written concisely as J ×
J = iJ, K×K = −iJ, J×K = K×J = iK. We

can thus define the following linear combinations

J± =
1

2
(J± iK), (2.1)

which obey the corresponding relations

J± × J± = iJ±, J± × J∓ = 0. (2.2)

These commutation relations are constitutive

for the Lie algebra so(3, 1) = su(2) ⊕
su(2) associated with the Lorentz Transformation

(LT). Apparently, this Lie algebra can be

decomposed into two commuting su(2) sub-

algebras consisting of the generators of the

SU(2) group.

The related 4 × 4-matrices J± define generators

of the irreducible SU(2) ⊕ SU(2) representation

of the LG in Minkowski spacetime. These

symmetric (and constitutive for the Lorentz

algebra) four-vector generators can be rewritten

after [17] as matrix operator J± = 1

2
Σ±, with

J2
± = s(s + 1)14 and s = 1

2
. Here 14 means

the 4 × 4 unit matrix. We shall call J+ the

right-chiral, respectively, J− the left-chiral spin

operator, involving the novel and generalized 4×4
spin matrices,

Σ± x =









0 ±1 0 0
±1 0 0 0
0 0 0 −i
0 0 i 0









, Σ± y =









0 0 ±1 0
0 0 0 i
±1 0 0 0
0 −i 0 0









, Σ± z =









0 0 0 ±1
0 0 −i 0
0 i 0 0
±1 0 0 0









,

(2.3)

with the commutator [Σ± i,Σ∓ j ] = 0. Also, Σ± ×Σ± = 2iΣ±. By complex conjugation of the Sigma

matrices in (2.3), we can see that they obey (Σ±)
∗ = −Σ∓. Moreover, the Sigma matrices fulfill, like

the Pauli matrices, a metric condition in real space, namely

Σ± jΣ± k +Σ± kΣ± j = 2δj,k14. (2.4)

Thus the sigma component matrices squared give unity, and their sum yields, Σ2
± = 3 14. The

related four-vector Lorentz transformation is a real 4 × 4 matrix operator since it operates on a real

four-vector V µ in Minkowski space. Finally note that the matrices in (2.3) cannot together be made

block-diagonal, which is obvious from their origin in the matrices of J and K given in the appendix.

This fact simply reflects the so(3, 1) algebra.

According to the seminal work by [9], [10], [11], and [12], one can extend the above representation of

the LG by using any other adequate version of the involved su(2) algebra, which is the fundamental

one for angular momentum. Consequently, various more general representations of the Lorentz

group can be constructed and then classified as (m
2
, n
2
) with integer m and n. This subject is dealt

with exhaustively in the cited papers and in any modern textbook [4, 3] of quantum field theory (QFT).

In what follows, we will construct some novel versions of the Lorentz algebra and the related matrix

representations of the Clifford algebra, among them some which involve the original four space-time

dimensions of the Minkowski space. These matrices then act on complex four-component vectors.

Conveniently, we shall call the related vector doublets Minkowski spinors. They are reducible to

doublets of Dirac spinors.
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3 REVISITING THE DIRAC

EQUATION DESCRIBED IN

TERMS OF THE ABSTRACT

CLIFFORD ALGEBRA

This section does contain merely things that can

be found in any modern textbook on QFT [4, 3],

Yet we believe it is helpful in and needed for

setting the scene for the subsequent key topics

appearing in this paper. Here we are concerned

with a discussion of the main properties of

the Dirac equation, yet based solely on the

abstract Clifford algebra. Various specific matrix

representations of this algebra are considered

subsequently. For a free fermion (i.e., a spin

1/2 particle) of mass m the key Casimir operator

of the LG is the mass squared, which leads to

the so called mass-shell condition of the four-

momentum as follows

p
µ
pµ = m

2
, (3.1)

with pµ = (E,−p). This relation can be

linearized by help of the Clifford algebra which

can be expressed in standard terms as

ΓµΓν + ΓνΓµ = 2 gµν
. (3.2)

Then we can write

Γµ
pµ = m, Γµ = (Γ0,Γ). (3.3)

Here gµν is the metric tensor in Minkowski

space in standard notation. When we now

square Eq. (3.3) and use the metric properties

of the above Clifford algebra, we retain the

Casimir operator (3.1). The Dirac [13]

equation is obtained from (3.3) by insertion of

the the relativistic quantum mechanical four-

momentum operator as Pµ = i∂µ = i( ∂
∂t
, ∂
∂x

),
whereby we use standard symbols, notations and

conventional units as in the textbooks [4, 3] for

quantum field theory, and we also set ~ = c =
1. Thus we obtain for the fermion the linear

covariant wave equation

Γµ
PµΨ = Γµi∂µΨ = mΨ, (3.4)

for the spinor Ψ. Conventionally, one introduces

the so called Γ5 matrix as Γ5 = iΓ0ΓxΓyΓz, which

obeys (Γ5)
2 = 1 and mutually anticommutes

with the four other Gamma matrices by definition.

We may by its help also define the important

projection operator

P± =
1

2
(1± Γ5), (3.5)

which is idempotent and has the effect that

P±Γ
µ = ΓµP∓, i.e., its sign switches

by commutation with the Gamma matrices.

Conventionally, Γ5 bears the name chirality

operator. The reason being that according to

(5.17) in the appendix, the spinor Ψ can be

decomposed into its right-chiral part ΨR = P−Ψ
and left-chiral part ΨL = P+Ψ , which always

transform independently under the LT. Related

relevant information about the spinorial Lorentz

transformation of the Dirac equation in abstract

form is contained in the appendix.

4 VARIOUS VERSIONS OF

THE CLIFFORD ALGEBRA

FOR A FERMION

4.1 The Standard Dirac
Equation for a Fermion and
Various Clifford Algebras

At this point we have to remind the reader that

in the Dirac equation [13, 4] the two simplest

possible spinor representations of the LG are

employed. They are given by the two generator

pairs for the rotation operator J = 1

2
σ and the

boost operator K = ± i

2
σ. They are based on

the fundamental two-dimensional representation

of SU(2) as generated by the Pauli matrix

vector [6], which acts on left- and right-chiral

two-component Weyl spinors usually denoted as

φR,L. It is assumed that either J+ = J, and the

trivial one then is J− = 0 or vice versa, which

just yield the two well known asymmetric ( 1
2
, 0) or

(0, 1

2
) irreducible representations of the LG. Their

matrix dimensions are reduced to two instead of

four as in the original four-vector representation

given above in (2.3). However, the use of the

combined fundamental and trivial representation

of SU(2) breaks at the outset chiral symmetry,

which is yet guaranteed if the J± are treated

equally, like in the genuine representation (2.3).

4
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In this paper we shall make frequent use of the three hermitian Pauli matrices again (defining the

SU(2) group generators), but we will give them, to avoid confusion with the nomenclature, the new

name tau matrices defined as follows

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

. (4.1)

Of course we have τiτj + τjτi = 2δi,j12, and thus τ2i = 12. Moreover, τ1τ2 = iτ3, cyclically.

Furthermore, we introduce the associated similarity transformations

Uj =
1√
2
(12 − iτj), U

†
j = U

−1
j =

1√
2
(12 + iτj), (4.2)

with j = 1, 2, 3, and with UjU
−1
j = 12. Thus we obtain the cyclic relations

U1τ2U
−1
1 = τ3, U2τ3U

−1
2 = τ1, U3τ1U

−1
3 = τ2, (4.3)

for the tau matrices. And similarly, we find that

U1τ3U
−1
1 = −τ2, U2τ1U

−1
2 = −τ3, U3τ2U

−1
3 = −τ1. (4.4)

We are going to use these expressions throughout the paper. Given the Pauli matrices for the physical

spin vector σ, we can easily write down exactly three different gamma-matrix doublets, with γµ =
(γ0,γ), as follows

γ01 = τ1 ⊗ 12, γ2 = iτ2 ⊗ σ,

γ01 = τ1 ⊗ 12, γ3 = iτ3 ⊗ σ,

γ02 = τ2 ⊗ 12, γ3 = iτ3 ⊗ σ,

γ02 = τ2 ⊗ 12, γ1 = iτ1 ⊗ σ,

γ03 = τ3 ⊗ 12, γ1 = iτ1 ⊗ σ,

γ03 = τ3 ⊗ 12, γ2 = iτ2 ⊗ σ.

(4.5)

The first is known as the Weyl representation, the sixth as the Dirac representation. The other four

bear no name yet and have to our knowledge not been used in the literature. In the sequence given

above, they are obtained by cyclic permutation of the index pairs at the gamma matrices with a

spatial index. The threefold multiplicity just reflects the fact that the SU(2) group has exactly three

generators. We suggest that this striking permutation symmetry corresponds to the “flavour” degrees

of freedom (which are just twice three) of a fermion in the standard model. By means of the similarity

transformations in (4.3) and (4.4), the representations are all mutually connected, separate from

unimportant phase factors of plus or minus.

To give only one well known example, the corresponding equations for the standard Dirac spinor

(ψ† = (φ†
1, φ

†
2)) read in the Weyl, also named chiral, representation in terms of Pauli spinors as

follows
i( ∂

∂t
− σ · ∂

∂x
)φ1 = mφ2

i( ∂
∂t

+ σ · ∂
∂x

)φ2 = mφ1
. (4.6)

For vanishing mass, m = 0, the equations decouple. Permutations among the six representations

in (4.5) would not change the physical content of the Dirac equation, describing a particle and its

antiparticle with their spin up and down duality.

The dual nature of the representations in (4.5) suggests to lump them together into three doublets,

because the difference in representation may not be a mathematical redundancy but have physical

meaning. This idea was already proposed by [14]. This notion becomes even more convincing by

the results of the subsequent sections. Therefore, we may write an extended Dirac equation for the

fermion as a doublet in the form

Γµ
1 i∂µΨ1 = mΨ1, Γµ

1 =

(

(γ01,γ2) 0
0 (γ01,γ3)

)

, (4.7)

5
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with Ψ†
1 = (ψ†

2, ψ
†
3). Now any of the

three couples which can be composed of the

six gamma matrices in (4.5) may be used.

Cyclic permutation of the indices in (4.7) yields

three different versions, which we interpret as

corresponding to three fermion generations. By

help of (4.3) and (4.4), equation (4.7) can also be

written as γµi∂µΨ̃ = mΨ̃, with γµ = (γ01,γ3),
and Ψ̃† = ((U1 ⊗ 12 ψ2)

†, ψ†
3). Therefore, the

doublet theory is related to the SU(2) symmetry,

to which the Yang-Mills [15] gauge theory can

be applied. This result is in compliance with

the Coleman-Mandula theorem [16], after which

the connected symmetry of a field can only be a

direct product of the internal symmetry group with

the Lorentz (Poincaré) group.

4.2 Different Gamma Matrices
for the Lepton

The aim of this section is to construct various

versions of the Clifford algebra for a fermion

based on the chiral spin matrices (2.3). In

order to do so we have to use both spin

matrices and employ them on an equal footing

in the subsequent calculation. Our goal can be

achieved by a linear combination of them, while

acting both on a complex Minkowski vector. So

we define the new hermitian 8 × 8-matrix vector

operator

Σ1 =
1√
2
(τ2 ⊗Σ+ + τ3 ⊗Σ−). (4.8)

The factor
√
2 is required to normalize Sigma

such that we have (Σ1)
2 = 14. We stress that

Σ1 has the same metric properties as the Pauli

matrices, yielding

Σ1 jΣ1 k +Σ1 kΣ1 j = 2δj,k18, (4.9)

whereby the fact that the commutator [Σ± j ,Σ∓ k]
vanishes has been exploited. But note that

these sigma matrices do not obey the su(2) spin

algebra, and thus 1

2
Σ1 is not a spin operator. It

just corresponds to a linear combination of the

right-chiral and left-chiral spin operators J+ and

J−. Yet in order to ensure the essential property

(4.9), the coefficients τ2 and τ3 in (4.8) ought to

be Pauli matrices, because the scalar product

of the chiral spin matrices is a non-vanishing

diagonal matrix Σ+ · Σ− = diag[−3, 1, 1, 1]. We

are now in the position to define the desired

Gamma matrices for the Dirac equation by tensor

multiplication in the following way

Γ0 = τ1 ⊗ 14, Γ†
0 = Γ0, Γ2

0 = 12 ⊗ 14 = 18

(4.10)

and similarly

Γ = iΣ1, Γ
† = −Γ, Γ

2 = −3 12 ⊗ 14 = −3 18,

(4.11)

in formal analogy to the usual Dirac γ matrices.

By definition we have ΓµΓµ = (Γ0)2 − Γ2 = 4 18.
Given that the chiral spin discussed above has

four components, we required two more degrees

of freedom to construct these Gamma matrices.

They correspond of course to the particle and

antiparticle doublet, as we know it well from the

standard Dirac equation. The Dirac equation

based on the above Clifford algebra has been

studied extensively by [17].

Close inspection of equations (4.8), (4.10) and

(4.11) reveals a striking permutation symmetry,

namely we can permute the indices of the tau

matrices without changing the physics. By

definition, the tau matrices are connected by the

formula iτ1 = τ2τ3, whereby the indices can be

cyclically permuted.

Application of the transformations (4.2), (4.3) and

(4.4) on the Gamma matrix (4.10) and (4.11)

yields three physically equivalent representations

of the Clifford algebra. As there are only

three SU(2) generators, we obtain consequently

a triple of Gamma matrices. The lepton is

apparently coming in six “flavours” or three

generations. This result is in agreement with

the key empirical property of elementary particle

physics that the leptons in the SM come in six

flavours. The multiplicity originates from, and in

fact is enabled by, the chiral spin (2.3), i.e., by the

notion that the lepton exists as a doublet.

Use of the chiral spin matrices (2.3) leads to

somewhat awkward algebra, and therefore it

seems more convenient to make use of the

Pauli matrices to describe the physical spin.

For example, when using Γµ
1 = (τ1 ⊗ 14, iΣ1),

we obtain the connected equations (with the

Minkowski spinor Φ† = (Φ†
1,Φ

†
2)) for the particle

and antiparticle in the form

6
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i( ∂
∂t

− 1√
2
Σ+ · ∂

∂x
)Φ1 = (− 1√

2
Σ− · ∂

∂x
+m)Φ2

i( ∂
∂t

+ 1√
2
Σ+ · ∂

∂x
)Φ2 = (+ 1√

2
Σ− · ∂

∂x
+m)Φ1

.

(4.12)

These twin equations are analogous to the

standard Weyl ones given in (4.6). When

multiplying them up and exploiting the properties

of the Sigma matrices, we of course retain the

Klein-Gordon [18] equation for each of them. The

above chirally symmetric equations can be made

more transparent by an adequate replacement of

the chiral spin by σ. When solving them in terms

of the plane wave solutions, we have to deal with

the helicities H± = Σ± · p̂, with the momentum

unit vector p̂. Obviously, H2 = 14, and thus the

eigenvalues are ±1 and twofold degenerate. As

the two chiral spin matrices in (2.3) commute,

the H± can have common eigenfunctions. The

following four eigenvalue pairs are thus possible

in (4.8) and (4.12), namely

(+,+), (+,−), (−,+), (−,−).

They can be captured and described by the

replacement

τ2⊗Σ++τ3⊗Σ− 7−→ (τ2±τ3)⊗12⊗σ. (4.13)

This replacement leaves the physical content

unchanged. If we introduce τ± = 1√
2
(τ2 ± τ3),

with τ2± = 12 and τ1τ± + τ±τ1 = 0, and

τ+τ− = −iτ1, we can decompose the Minkowski

spinor Φ into a doublet of two Dirac spinors,

Φ† = (ψ†
+, ψ

†
−). They obey the Dirac equation

coming in a new representation guise in a right-

and left-chiral version as

(τ1(i
∂

∂t
) + iτ±(σ · i ∂

∂x
))ψ± = mψ±. (4.14)

Since U1τ±U
−1
1 = −τ∓, these versions are

physically equivalent, including a spin flip, and

thus the chiral invariance of (4.14) becomes

obvious. Furthermore, a permutation of

the indices at the taus indicates that three

representations are possible, corresponding to

the already mentioned flavour degrees. Yet, it is

not obvious to us whether they can be connected

by a similarity transformation.

The main conclusion of this analysis is that, when

the chiral symmetry is enforced at the outset

and maintained, the fermion comes as a doublet,

and thus has two new independent degrees of

freedom, in addition to the common four degrees

described by a single Dirac spinor.

4.3 Different Gamma Matrices
for the Quarks

Are there possible four-dimensional

representations of the LG generators other than

the genuine ones, which are given by the normal

LT in Minkowski space-time after (2.2) and (2.3)?

To recall, we are looking for mathematical objects

obeying the angular momentum commutation

relation (2.2) and commute with each other.

Indeed one can obtain lucid representations,

where the requested 4 × 4 matrix is constructed

by tensor multiplication. Let us first define the

following projection operators

P
±
j =

1

2
(12 ± τj); (P±

j )2 = P
±
j . (4.15)

The index j runs from 1 to 3. The idempotence is the key enabling property, since we can define

J± j =
1

2
P

±
j ⊗ σ. (4.16)

Then we obtain by taking the cross product of this three-vector the result

J± j × J± j =
1

4
(P±

j )2 ⊗ (σ × σ) = i
1

2
P

±
j ⊗ σ = iJ± j . (4.17)

Since P±
j P

∓
j = 0, we herewith ensure that J± j × J∓ j = 0. These three representations of the

Lorentz algebra are connected through similarity transformations which were already presented in

equations (4.2) and (4.3). They can easily be transferred to the above projection operators. This

procedure yields

7
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U1P
±
2 U

−1
1 = P

±
3 , U2P

±
3 U

−1
2 = P

±
1 , U3P

±
1 U

−1
3 = P

±
2 . (4.18)

We may enhance the similarity transformation to act, formally but trivially, also on the spin operator σ

as follows

Ũj =
1√
2
(12 − iτj)⊗ 12, Ũ

−1
j =

1√
2
(12 + iτj)⊗ 12. (4.19)

Thus we obtain finally that

Ũ1J± 2Ũ
−1
1 = J± 3, Ũ2J± 3Ũ

−1
2 = J± 1, Ũ3J± 1Ũ

−1
3 = J± 2. (4.20)

As the result of this somewhat tedious procedure

we find that the three angular momentum

relations (4.17) are equivalent and closely related

by similarity transformations. Apparently, the

fermion constructed this way is coming in three

versions. This is in agreement with the empirical

result of elementary particle physics that the

quarks come in three different “colours” (and

the baryons in the SM come as colourless

composites of three quarks). The related

symmetry group is SU(3), to which the Yang-

Mills gauge theory can be applied. The threefold

multiplicity in colour originates from, and is

facilitated by, the fact that the key group SU(2)
in terms of the tau matrices has exactly three

generators.

So, the threefold chiral-spin representation (4.16)

of the fermion can describe the quark as a

colour triplet. It remains to construct the

corresponding Gamma matrices and to define the

related Clifford algebra. Before we do this in the

subsequent paragraphs we may define the chiral

spin matrices for the three quarks by inspection

of (4.16) as follows

σ
±
j = P

±
j ⊗ σ. (4.21)

They obey (σ±
j )

2 = 3P±
j ⊗ 12, and thus

by summing up over the plus and minus

sign one obtains three times the unit matrix

14. Furthermore, the scalar product of them

with opposite sign index vanishes due to the

projectors involved, i.e., we have σ+
j · σ−

j = 0.

The resulting sigma matrices for the three colour

indices j = 1, 2, 3 are listed in the appendix.

The aim then is to construct various versions of

the Clifford algebra for a fermion based on the

chiral spin matrices (4.21). Again, we ought to

use both chiral spin matrices and employ them

on an equal footing in our calculation. This goal

can be achieved by a linear combination of them,

while both are acting on a complex Minkowski

vector. So, we define the new hermitian 8 × 8-

matrix vector operator

Σ1j = τ2⊗σ
+
j +τ3⊗σ

−
j = (τ2⊗P+

j +τ3⊗P−
j )⊗σ,

(4.22)

which can be described as a triple tensor product

of the particle-antiparticle, left- and right-chiral,

and spin-up and -down doublets. Consequently,

Σ1j ·Σ1j = 3 18.

We emphasize again that Σ1j has the same

metric properties as the Pauli matrices, and

thus as the fermion matrices (4.9) based on the

four-vector representation of the LG. This metric

condition is prerequisite for the validity of the

Clifford algebra (3.2). It is worth stressing that the

degrees of freedom associated with chirality and

particle type become entangled via the definition

(4.22).

We omit the colour index j in what follows. We

can now define the Gamma matrices for the Dirac

equation by tensor multiplication in the following

way

Γ0 = τ1 ⊗ 14, Γ = iΣ1. (4.23)

According to the derivations in the appendix we

can after a unitary transformation rewrite this as

Σ01 =

(

τ1 0
0 τ1

)

⊗12, Σ1 =

(

τ2 0
0 τ3

)

⊗σ.

(4.24)

Close inspection of equation (4.24) reveals the

permutation symmetry, namely we can permute

the indices of the tau matrices without changing

the physical content. As there are only

three SU(2) generators, we obtain a threefold

multiplicity of the constructed representations,

and consequently a triple of Gamma matrices

8



Marsch; PSIJ, 23(3): 1-13, 2019; Article no.PSIJ.51873

describing the quark. It is apparently coming in

six flavours or three generations. This multiplicity

originates essentially from the triple chirality-

particle-spin as expressed by (4.16) and (4.22),

i.e., it is enabled by the notion that the quark (of

any colour) exists as a chiral-spin doublet. The

Gamma matrices of the Clifford algebra for the

flavours are given explicitly in the appendix.

Are the three (or six) flavour states physically

equivalent and perhaps connected by a similarity

transformation? To answer this question we used

again (4.3) and (4.4), but we did not succeed in

finding an appropriate similarity transformation.

Apparently, flavour is not related to the SU(3)
symmetry, and cannot be gauged or described

by Yang-Mills theory.

5 DISCUSSION AND

CONCLUSION

Our analysis indicates that the fermion may

have another dual degree of freedom, which

is not apparent in the standard Dirac equation

but emerges from the use of manifestly four-

dimensional generators of the LG, by which chiral

symmetry is entirely ensured in our calculations.

The resulting doublet is related to the SU(2)
group and thus can be gauged. Technically

speaking, this doublet can for a free fermion

be decomposed into two Dirac spinors. Yet this

important relativistic dual trait is missing in the

original Dirac equation, because it consists of two

Weyl spinors, and thus employs the chiral ( 1
2
, 0)

or the chiral (0, 1

2
) irreducible representations of

the LG.

When use is made at the outset of the ( 1
2
, 1

2
)

reducible representation of the LG, the Pauli

spinors are replaced by what we called complex

Minkowski vectors, related to the combined chiral

and physical spin, and two such spinors are

assembled into the 8-component spinor Φ. It

turns out that this “blown-up” description of the

fermion reveals two permutation symmetries

which are intimately linked to the SU(2)
symmetry, namely a threefold (due to three

generators of SU(2)) permutation symmetry,

yielding three generations (flavour) and three

colours. This procedure naturally produces

colour triplicity, given by the three possible

versions of the J± generators of the LG,

which can be transformed into each other by a

similarity transformation. Thus colour represents

a permutation symmetry related to SU(3) that

can be gauged.

As emphasized in the paper, the various

presented representations of the Clifford algebra

or gamma matrices are connected by similarity

transformations. Therefore, one can make

use of just one of these representations as

a standard, of which nowadays the most

convenient choices are the chiral or Weyl and the

Dirac representations. In the case of the SU(2)

and SU(3) symmetry groups, the resulting single

Lagrangian consequently is just the usual one of

the SM, and one does not have to worry about

using different gamma matrix representations in

Feynman diagrams.

In conclusion, when use is made of the chirally

symmetric ( 1
2
, 1

2
) representation of the LG,

the resulting fermion is endowed with another

dual degree of freedom, which induces the

SU(2) symmetry, and furthermore comes as

lepton singlet and as quark triplet with three

colours, which induces the SU(3) symmetry.

Also, the flavour degrees of freedom naturally

emerge from permutation symmetry, but are not

connected by a similarity transformation. The

theoretical consequences of our study require

further investigation.
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APPENDIX: IMPORTANT MATRICES

Matrices of the Rotation and Boost Operators in Minkowski Space

We quote here for completeness the component matrices for the rotation operator J, which read

Jx =









0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0









, Jy =









0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0









, Jz =









0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0









. (5.1)

The component matrices of the boost vector operator K are

Kx =









0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0









,Ky =









0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0









,Kz =









0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0









. (5.2)

These formulas can be found in the textbook of [4], for example.

Chiral Spin Matrices for the Quarks

After equations (4.15) and (4.21) the chiral spin matrices were defined as

σ
±
j =

1

2
(12 ± τj)⊗ σ. (5.3)

By insertion of the tau matrices after (4.1) we thus obtain for the three colours the results

σ
±
1 =

1

2

(

σ ±σ

±σ σ

)

, (5.4)

σ
±
2 =

1

2

(

σ ∓iσ
±iσ σ

)

, (5.5)

and finally

σ
+
3 =

(

σ 0
0 0

)

, σ
−
3 =

(

0 0
0 σ

)

. (5.6)

Therefore we obtain, (σ+
j )

2 + (σ−
j )

2 = 3 14. Let us just consider the last colour index j = 3. The

associated flavour matrices defining the gamma matrix vector after (4.24) read

Σ1 = τ2 ⊗ σ
+
3 + τ3 ⊗ σ

−
3 = Σ̃1 ⊗ σ, (5.7)

Σ2 = τ3 ⊗ σ
+
3 + τ1 ⊗ σ

−
3 = Σ̃2 ⊗ σ, (5.8)

Σ3 = τ1 ⊗ σ
+
3 + τ2 ⊗ σ

−
3 = Σ̃3 ⊗ σ. (5.9)

The three resulting hermitian 4×4 matrices, which combine the chiral spin and the particle type, then

have the following simple form

Σ̃1 =









0 0 −i 0
0 1 0 0
i 0 0 0
0 0 0 −1









, Σ̃2 =









1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0









, Σ̃3 =









0 0 1 0
0 0 0 −i
1 0 0 0
0 i 0 0









(5.10)
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Their squares all give the unit matrix 14, and they obey cyclically the relation Σ̃1Σ̃2 = iΣ̃3, and thus

have all the properties of the Pauli matrices. By help of the unitary matrix

U =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









(5.11)

they can therefore be brought into block-diagonal form reading finally

Σ̃1 =

(

τ2 0
0 τ3

)

, Σ̃2 =

(

τ3 0
0 τ1

)

, Σ̃3 =

(

τ1 0
0 τ2

)

. (5.12)

Similarly we obtain for the Σ0j matrices

Σ̃01 =

(

τ1 0
0 τ1

)

, Σ̃02 =

(

τ2 0
0 τ2

)

, Σ̃03 =

(

τ3 0
0 τ3

)

. (5.13)

These equations exactly correspond to the six ones of (4.5) for the standard Dirac equation, whereby

the previously only assumed doublets now appear naturally as chiral-spin related doublets. The

corresponding Gamma matrices for the three generations (with index f = 1, 2, 3) read

Γ0f = Σ̃0f ⊗ 12; Γf = iΣ̃f ⊗ σ. (5.14)

These Gammas obey the Clifford algebra (3.2). As the chiral spins are equivalent for the three colours

due to the similarity transformations after (4.17), we can choose (5.14) as the standard representation

of the Gammas for all three colours.

APPENDIX: LORENTZ TRANSFORMATION OF THE DIRAC

SPINOR AND SOLUTION OF THE DIRAC WAVE EQUATION

In completion of the discussion of the Dirac equation in terms of the abstract Clifford algebra, we

introduce here the hermitian spin (rotation) operator and antihermitian rapidity (boost) operator associ-

ated with the spinor wave equation (3.4) as follows

S =
i

4
(Γ× Γ), R =

i

2
Γ0Γ. (5.15)

According to their definitions, the spin and rapidity operators obey the linked three-vector equations

of the Lorentz algebra, i.e., we have S × S = iS, R × R = −iS, S × R = R × S = iR. This

can be shown by straightforward application of the rules given by the Clifford algebra (3.2). Moreover,

S2 = 3

4
as expected for a fermion. We define like in (2.2) the right- and left-chiral spin and find that

S± =
1

2
(S± iR) = SP∓, (5.16)

involving the projection operators. The associated spinorial LT named Λ acts on the spinor Ψ and can

after some algebra (exploiting the properties of the projection operator) be written

Λ = exp (iθ · S+ iβ ·R) = exp (iθ+ · S)P− + exp (iθ− · S)P+ , (5.17)

with the complex angle θ± = θ ± iβ. Because of this complex angle, the LT is not a hermitian

operator.

The linear wave equation (3.4) has two fundamental plane wave solution with positive (antiparticle)

12
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and negative (particle) frequency. We make for the particle and its antiparticle the standard plane

wave ansatz

Ψ(t,x) = U±(p) exp (∓i(E(p)t− p · x)). (5.18)

Here the positive relativistic energy reads E(p) =
√

m2 + p2. Thus we obtain the algebraic equation

for the two related polarization spinors, reading

(Γµ
pµ ∓m)U±(p) = 0, (5.19)

which just differ by the sign in front of the mass. Here pµ = (E(p),−p) is the covariant four
momentum. To calculate explicitly the polarization spinors U±(p) we need to know the detailed form
of the gamma matrices. When operating with Γ5 on the wave equation (3.4) or its Fourier version
(5.19), we find that ΓΨ solves it for a negative sign at the mass. So, we may also call the operator Γ5

the mass conjugation operator.
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