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ABSTRACT

We study fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion conden-
sation in bosonic topological phases that contain a fermion. Our approach to fermion condensation can roughly be understood as coupling
the parent bosonic topological phase to a phase of physical fermions and condensing pairs of physical and emergent fermions. There are two
distinct types of objects in the resulting fermionic fusion categories, which we call “m-type” and “q-type” objects. The endomorphism alge-
bras of q-type objects are complex Clifford algebras, and they have no analogs in bosonic theories. We construct a fermionic generalization of
the tube category, which allows us to compute the quasiparticle excitations arising from the condensed theories. We prove a series of results
relating data in fermionic theories to data in their parent bosonic theories; for example, if C is a modular tensor category containing a fermion,
then the tube category constructed from the condensed theory satisfies Tube(C/ψ) ≅ C×(C/ψ). We also study howmodular transformations,
fusion rules, and coherence relations are modified in the fermionic setting, prove a fermionic version of the Verlinde dimension formula,
construct a commuting projector lattice Hamiltonian for fermionic theories, and write down a fermionic version of the Turaev-Viro-Barrett-
Westbury state sum. A large portion of this work is devoted to three detailed examples of performing fermion condensation to produce
fermionic topological phases: we condense fermions in the Ising theory, the SO(3)6 theory, and the

1
2
E6 theory and compute the quasiparticle

excitation spectrum in each of the condensed theories.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5045669., s

I. INTRODUCTION

A large program in condensed matter physics in recent years has been to classify topological phases of matter that host emergent quasi-
particle excitations with topological properties, such as exotic braiding statistics. The mathematical framework of category theory has proven
to provide the right framework needed to formally develop classification efforts. Thus far, the bulk of these efforts have focused on under-
standing bosonic topological phases. These phases are “bosonic” because the topological excitations emerge from bosonic local degrees of
freedom.

By contrast, much less is known about how to complete a classification program for fermionic topological phases in which fermions
constitute the underlying degrees of freedom. Early work in this direction was presented by one of the authors in a series of talks.1–3 Progress
on understanding the coherence relations used to classify fermionic topological phases and the identification of a class of examples of such
phases was made in Refs. 4–6. Recently, Majorana dimer lattice models have appeared,7–9 which give an explicit Hamiltonian construction of
a nontrivial fermionic phase closely related to the Ising theory. There has also been some recent work in the math community10–13 devoted to
studying the formal category-theoretic description of fermionic topological phases and spin-topological quantum field theories (spin-TQFTs).

Intimately related to the description of fermionic topological phases is the concept of fermion condensation, whereby one passes to
a phase in which the emergent (anyonic) fermions have become local particles (meaning that they can be created and destroyed locally).
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There have been several recent approaches related to understanding fermionic topological phases with field theoretic methods, fermion
condensation, and bosonization,14–20 with a more algebraic take on fermion condensation given in Ref. 21.

In this work, we perform a systematic study of fermionic topological phases and fermion condensation from a category-theoretic point
of view. The strategy we will use to construct examples of fermionic topological phases will be to start with a bosonic phase described by a
tensor category C, which contains an emergent fermion ψ. To obtain a fermionic theory, we will “condense” ψ. The resulting fermionic fusion
category (or fermionic fusion theory) is described by a super pivotal category, which we denote as C/ψ. C/ψ is intrinsically fermionic because
in order for a phase to support local fermionic excitations, its underlying degrees of freedom must be fermionic.

Due to their nontrivial spin and statistics, condensing fermions is not a straightforward business. From a mathematical perspective,
in order to perform the condensation, it is necessary to equip the configuration space of ψ worldline endpoints with a certain complex
line bundle. Physically, the construction of this bundle amounts to attaching a phase of physical (not emergent) fermions f to the parent
bosonic theory. Fermion condensation then heuristically proceeds by coupling the ψ fermions to the f fermions and condensing ψf bound
states. In most cases (when ψ is not transparent in C), we will also need to perform the condensation with a construction we call the “back
wall,” which is a codimension-1 surface on which ψ worldlines are allowed to end. Because of this construction, the resulting condensed
theory does not inherit the braiding of the parent theory, and thus, the condensed theory only describes fusion data, not braiding data. (In
mathematical language, the result of condensation is merely a tensor category, not a braided category.) The condensed theory can then be
used as input data to a generalized string-net model, which produces a braided fermionic topological phase. [If ψ is transparent or if ψ
is nontransparent but we are willing to countenance vortices in the condensed theory, then we can retain the braiding (see Secs. IV A 2
and IV A 4)].

An important difference between fermionic topological phases and their bosonic counterparts is that the former possesses two distinct
classes of simple objects (or anyons). One class of simple objects, which we refer to as “m-type” objects, are identical in character to the
simple objects found in bosonic theories. The other class of objects, which we call “q-type” objects, have no bosonic analogs. From a formal
perspective, they are distinguished by their nontrivial endomorphism algebras—if a is a q-type simple object, then End(a) ≅ Cℓ1, the first
complex Clifford algebra. From a physical point of view, these can be thought of as “Majorana objects,” which have the ability to “absorb”
fermions. In string-net constructions, strings labeled by q-type objects are “Kitaev strings” in that they behave like Kitaev chains in the
topological phase: the fermion parity of a closed loop of such a string is determined by the spin structure inherited by the string and is
delocalized in the sense that fermions living on the q-type string are allowed to fluctuate freely along its length.

One rather trivial way to produce a fermionic phase is to simply form a noninteracting stack of a phase of physical fermions and a known
bosonic topological phase. To obtain examples of fermionic phases that do not arise in this way (which are called “primitive” in Ref. 6), it is
essential to examine theories that contain q-type objects, which are fundamentally fermionic in nature and which are impossible to obtain in
theories constructed through this stacking procedure.

A categorical description of the condensed phase C/ψ cannot be obtained within the framework of regular tensor categories, and one
needs to instead adopt the framework of so-called super pivotal tensor categories. The fermionic nature of C/ψ means that the fusion spaces of
the theory become super vector spaces (as opposed to normal vector spaces), tensor products of morphisms and coherence relations such as
the pentagon identity are modified to account for Koszul signs, the pivotal structure of the theory is changed to account for the presence of
fermions, and so on.

We should stress that all of the constructions we employ in this paper are mathematically well-defined and self-contained, independent of
their physical interpretations. Most of the paper uses techniques from category theory, TQFTs, and string nets to construct what onemight call
fermionic Turaev-Viro theory. This paper is mostly about fermionic TQFTs from this perspective, rather than ground states of Hamiltonians.
Indeed, not until near the end of this paper do we define a fermionic Levin-Wen style Hamiltonian whose ground states coincide with the
Hilbert spaces of this TQFT. Foreshadowing the introduction of this Hamiltonian, we will, throughout this paper, talk about physical notions
such as “excitations” and “ground state degeneracies,” even though strictly speaking this point of view does not make sense until after we have
introduced the Hamiltonian. We emphasize that the Hamiltonian point of view is optional; most of the paper can be viewed as taking place
in the self-contained world of (fermionic) string-net TQFTs.

In order to examine the quasiparticle excitation spectrum of fermionic phases, we use the tube category construction,22,23 which is
closely related to the Drinfeld center. This allows us to use the fermionic fusion categories produced by the fermion condensation pro-
cedure to construct examples of braided fermionic topological phases. In the fermionic context, we must modify the tube category con-

struction to take into account different spin structures on the circle. For bosonic theories, we have the isomorphism Tube(C) ≅ C × C
24

if C is modular, where C denotes the opposite category of C. We prove a fermionic version of this isomorphism, namely, that if C is
modular, then

Tube(C/ψ) ≅ C × (C/ψ). (1)

Because quasiparticle excitations are associated with circular boundary components of the ambient manifold on which the theory is
defined, there are two distinct classes of quasiparticles (also known as representations of the tube category) in fermionic theories: those with
antiperiodic fermion boundary conditions around the circle and those with periodic boundary conditions. The tubes in the tube category come
equipped with spin structures, which gives the tube category a Z2 grading and separates the quasiparticle spectrum into vortex quasiparticles
(those which bind spin structure defects) and nonvortex quasiparticles (which are similar in character to the quasiparticles present in bosonic
theories).
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The analysis of things related to the tube category, such as modular transformations, braiding statistics, and the computation of ground
state degeneracies on various spin surfaces, is also modified in the fermionic setting. The behavior of the S and T modular transformations on
the torus depends on the spin structure of the torus in question, and certain relations such as (ST)3 = id are modified in the fermionic setting,
becoming (ST)3 = (−1)F id, where (−1)F is the fermion parity operator.

We will also show how to construct a commuting projector lattice Hamiltonian for fermionic phases, whose excitation spectrum is given
by the objects in the fermionic tube category. It is similar in character to the Levin-Wen Hamiltonian,25 except that it includes an extra edge
term that is responsible for moving fermions along edges labeled by q-type objects. Spin structure defect excitations are realized as violations
of this edge term and are linearly confined.

Finally, we show how to construct a tensor network that produces the ground state wavefunction of our lattice Hamiltonian. We do
this using a cut-and-glue approach to the construction of the Turaev-Viro-Barrett-Westbury (TVBW) state sum, which allows us to write the
bosonic partition function as a tensor contraction. We then show how to modify this construction in order to obtain a fermionic version of
the TVBW state sum and a corresponding fermionic tensor network.

A series of in-depth examples occupies a large portion of this paper. Our presentation is characterized by an emphasis on examples, and
we often save formal definitions and more general statements for Secs. IV and V after relevant examples have been presented. Many general
observations are mixed in with the example sections, and we stress that the more general sections are intended as a supplement to Secs. II, III,
VI, and VII; they are not stand-alone.

In several places in this paper, we make use of a fermionic version of a Turaev-Viro type 2 + 1-dimensional TQFT. Constructing this
TQFT using the techniques of Ref. 26 is straightforward—one simply replaces oriented manifolds with spin manifolds and allows for the
possibility of nontrivial endomorphism algebras of minimal idempotents. In the interest of not further increasing the length of this paper, we
have not repeated the details found in Ref. 26 here.

We now give a quick section-by-section summary of this paper. Much of the content of Sec. II was presented in Ref. 1, and many of the
ideas contained in Secs. III A, III B, and IX were presented in Refs. 2 and 3.

Sections II and III are devoted to a detailed study of fermion condensation in the Ising TQFT, which is a simple case study that allows
us to build intuition for the condensation procedure. This condensed theory has been examined before in Refs. 17 and 19; here, we exam-
ine it in more detail. In Sec. II, we review the Ising TQFT, describe how to perform the fermion condensation, and write down the local
string-net rules in the condensed theory, which we call the C2 theory. In Sec. III, we compute the simple objects of the tube category of the
C2 theory, determine their fusion rules, compute the ground state degeneracy on the torus, and study the modular transformations of the
theory.

In Sec. IV, we present a collection of more general results on the machinery of fermionic theories. We show how to perform fermion
condensation in more general settings and discuss the fermionic version of the tube category construction in more generality. We also
discuss how to compute quantum dimensions and fusion rules, and we prove some general relations between the total quantum dimen-
sions of condensed theories, their parent theories, and their tube categories. Additionally, we present a Verlinde-type dimension for-
mula for fermionic theories. The general dimension formula is given by (144) and (145). For 3-punctured spheres, the general formula
specializes to

dimeven(Vabc) ≙
√
nanbnc

2

⎛
⎝∑x∈Bm

SaxSbxScx

S1x
+ ∑

x∈Nm∪Nq

SaxSbxScx

S1x

⎞
⎠ (2)

and

dimodd(Vabc) ≙
√
nanbnc

2

⎛
⎝∑x∈Bm

SaxSbxScx

S1x
− ∑

x∈Nm∪Nq

SaxSbxScx

S1x

⎞
⎠. (3)

Here, nx = 1 if x is m-type and nx = 2 if x is q-type, Sij denotes the modular S-matrix with unitary normalization, Bm denotes bounding (and
therefore m-type; see Sec. IV C) simple objects of the tube category, Nm denotes nonbounding (i.e., vortex) simple m-type objects of the tube
category, and Nq denotes nonbounding simple q-type objects of the tube category.

We devote Sec. V to a detailed study of the tube category for fermionic theories, which result from fermion condensation in a modular
tensor category (MTC). We introduce several tools for performing calculations in tube categories and use them to prove that if C is an MTC

containing a fermion ψ, then Tube(C/ψ) ≅ C × (C/ψ) as tensor categories. We also describe a way of easily computing the modular data for
Tube(C/ψ).

Section VI is devoted to the example of performing condensation in the SO(3)6 and SU(2)6 theories, while Sec. VII discusses fermion
condensation in the 1

2
E6 theory. Both of these examples are more involved than the C2 theory and illustrate some of the more interesting

features of general fermionic topological phases.
In Sec. VIII, we discuss super pivotal categories from a more formal point of view. We show how fermionic fusion spaces are constructed

and tensored together, how coherence relations such as the pentagon identity are modified in the fermionic case, and explain various other
modifications that are necessary in the fermionic case.
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Section IX is devoted to a discussion of a lattice Hamiltonian for fermionic theories, which is an extension of the Levin-WenHamiltonian.
It differs most significantly from the Levin-Wen Hamiltonian due to the presence of an edge term, which is responsible for allowing fermions
to fluctuate across q-type strings.

We show how to construct a tensor network realizing the ground state of our lattice Hamiltonian in Sec. X. We first review how to write
the partition function of a bosonic theory as a tensor contraction in a way amenable to generalization and then show how our construction
can be extended to cover the fermionic case.

In Sec. XI, we discuss the Kitaev chain within the framework of super pivotal categories. We show how the Kitaev chain Hamilto-
nian and ground-state wavefunctions can be succinctly written down using the diagrammatic calculus developed earlier in this paper and
discuss connections between the Kitaev chain and the C2 theory. This section also provides a connection between our work and recent
work on fermionic topological phases in the physics community.8,9,27 The only prerequisite for this section is a brief reading of Sec. II,
and physically inclined readers less interested in more general mathematical frameworks are invited to read this section after reading
Sec. II.

We end with a conclusion and discussion in Sec. XII. Several appendixes contain miscellaneous results and mathematical background
information.

A. Table of notation

For brevity, we summarize some of the most frequently used and/or least standard notation found herein in Table I.

TABLE I. Notation.

C Tensor category
C/ψ Fermionic quotient of C
S Super pivotal tensor category, e.g., C/ψ
T Super linear category
sobr(C) Complete set of representatives of simple objects for C
mor(x→ y) Morphisms from x to y
End(x) Endomorphism algebra of the object x; the same as mor(x→ x)
Cℓ1 First complex Clifford algebra

C
r∣s Super vector space with even dimension r and odd dimension s

m-type Simple object with End(x) ≅ C
q-type Simple object with End(x) ≅ Cℓ1
nx dim End(x), 1 if x is m-type and 2 if x is q-type
cl(x) Closure of x in either an annulus or torus depending on the context
clW(x) Closure of x with spin structureW assigned to a new cycle

f ⋅ g The composition of two morphisms x
f
Ð→ y

g
Ð→ z (arrow order)

g ○ f The composition of two morphisms x
f
Ð→ y

g
Ð→ z (function order)

A(Y) String nets modulo local relations on a 2-manifold Y ; predual Hilbert space
A(Y ; c) String nets, with fixed boundary condition c on ∂Y, modulo local relations
Z(Y) Functions on string nets invariant under local relations on a 2-manifold Y ; dual space A(Y)∗; Hilbert space
Z(Y ; c) Functions on string nets, with fixed boundary condition c on ∂Y, invariant under local relations
Z(M) Path integral of a 3-manifoldM
Z(M)(c) Path integral of a 3-manifoldM evaluated on a boundary condition c ∈ A(∂M)
Tube(C) Tube category of C

Tube
B(C) Bounding tube category

Tube
N(C) Nonbounding tube category

Tubex→y Morphisms from x to y in the tube category
B, N Bounding, nonbounding spin structures on the circle

S1B Spin circle with bounding (antiperiodic) spin structure

S1N Spin circle with nonbounding (periodic) spin structure
𝟙 Tensor unit in a tensor category; trivial object
da Quantum dimension of the object a; loop value of a
θa Twist eigenvalue of the simple object a

D
2 ∑a∈sobr(C) d

2
a in the bosonic case;∑a∈sobr(S) d

2
a/na in the fermionic case
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II. FERMION CONDENSATION IN THE ISING TQFT

Before discussing super pivotal categories in the abstract and general techniques for constructing examples thereof, we will give a detailed
account of one of the simplest examples: the C2 super pivotal category. This theory is obtained from the Ising TQFT by condensing the
emergent fermion ψ and provides a good demonstration of the qualitatively new features that occur as a result of fermion condensation. This
section (and Sec. III) is organized as follows: in Sec. II A, we briefly review the aspects of the Ising TQFT we will need in Secs. II A–II D. In
Sec. II B, we comment on the general procedure of anyon condensation, and in Sec. II C, we show how to condense ψ in the Ising theory,
obtaining the C2 super pivotal category.

28 Section II D details the diagrammatic properties of the C2 theory, and in Sec. III A, we compute the
quasiparticle excitations of the theory. In Sec. III B, we determine the fusion rules of these quasiparticles, and in Sec. III C, we compute the
modular S and T matrices of the theory.

A. Ising TQFT

Here, we provide a brief review the Ising TQFT (see, e.g., Ref. 29). There are three particles in the theory, which we label 𝟙 (the trivial
particle), σ (the non-Abelian Ising anyon), and ψ (the emergent fermion). The nontrivial fusion rules of the theory are as follows:

σ⊗ σ ≅ 𝟙⊕ ψ, σ⊗ψ ≅ σ, ψ⊗ψ ≅ 𝟙. (4)

The quantum dimensions of the particles are

d𝟙 ≙ 1, d ∶≙ dσ ≙ −A2 − A−2, dψ ≙ 1, (5)

where A is a primitive 16th root of unity. Graphically, this means that

(6)

where the blue (orange) circle denotes a circular ψ (σ) worldline. 𝟙 worldlines, being identified with the vaccuum, are not drawn in
diagrams.

Out of the eight possible choices for A, the four different choices A = ie±iπ/8, −ie±iπ/8 all give a positive quantum dimension for the

σ particle of d ≙ √2. The other four choices of A give d ≙ −√2, which can alternatively be defined with d ≙ √2 but with a negative

Frobenius-Schur indicator of κσ = −1. In what follows, we will specify A = ie±iπ/8, −ie±iπ/8 so that dσ ≙√2, κσ ≙ 1.
We now turn our attention to the graphical calculus of the Ising TQFT. We pick a normalization more common in the physics literature:

bubbles in diagrams can be eliminated by using the rule

(7)

In particular, we have

(8)

where again we are marking ψ worldlines in dark blue and σ worldlines in orange.
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The nontrivial F-moves in the theory are as follows:

(9)

(10)

The twist and braiding of the σ particle are given by

(11)

The formula for the topological twist on the left follows from the relation given on the right. Using that σ⊗ σ ≙ 𝟙⊕ ψ and (11), we can derive
the braiding data for the ψ particle. Most importantly for us, the ψ particle is fermionic in both its topological twist and statistics, regardless
of the choice of A,

(12)

Additionally, ψ is not transparent, as it braids nontrivially with σ,

(13)

Our goal in what follows is to describe how to condense the ψ particle in the Ising TQFT. To put this in context, we will first make a few
remarks on the more familiar bosonic condensation.

B. Condensation of transparent bosons

We now briefly review how to perform condensation with transparent bosons (see, e.g., Ref. 30). Let C be a ribbon category and let α be
a particle (simple object) of C, which we hope to condense. In category theoretic terms, we want to add morphisms to C so that α becomes
isomorphic to the trivial particle 𝟙 (or, more generally, to a direct sum of several copies of 𝟙). We can think of this as a categorical quotient,
denoted C/⟨α ≅ 𝟙⟩ or more simply as C/α. Physically, this amounts to turning the anyon α into a local particle (one which can be created
locally).

J. Math. Phys. 60, 121901 (2019); doi: 10.1063/1.5045669 60, 121901-6
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In our graphical calculus, condensing α means that α worldlines are allowed to have endpoints at locations where they are “absorbed”
into the condensate (allowing them to be created locally). We will mark the locations where α particles are absorbed into the condensate with
boxes

(14)

where the horizontal blue line is an α worldline. We can also think of these boxes as morphisms from α to the trivial particle. For simplicity,
we will assume that α⊗ α ≅ 𝟙 (which will be true in the examples considered in this paper), although most of the following discussion can be
made to work more generally.

In order for this condensation procedure to not cause unintended collapse in C (e.g., confine other particles of C or result in a trivial
theory), αmust satisfy three conditions:

● First, the twist of αmust be 1. This is because

(15)

and so if θα ≠ 1, diagrams in which α worldlines are absorbed into the condensate are identically zero and condensation is
impossible.

● Second, αmust be statistically bosonic, i.e., it must braid trivially with itself. This is because

(16)

where θα,α is the self-statistics of α. (By our assumption that α⊗α ≅ 𝟙, the last equality must hold with θα,α = ±1.) By the spin-statistics
relation, this condition is not independent of the previous one, but it will be useful to regard them as separate constraints for the
purpose of the fermion condensation procedure described in Sec. II C.31

● Finally, α must braid trivially with every particle in C. In category-theoretic language, this means that α must lie in the transparent
subcategory of C. If a particle β braids nontrivially with α (i.e., if the left and right braidings are not equal), then any string diagram
that includes a β particle must be zero (we assume the quantum dimension of alpha is one for convenience):

(17)

where the orange line is a β worldline and θα,β is the mutual statistics of α and β. The first two equalities follow from the fact that the
location of a particle being absorbed into the condensate is not physically significant: no operator can distinguish between states
that differ only by the location of an α endpoint. Therefore, if θα,β ≠ 1, condensing α causes unintended collapse in C, since it
confines β.

To summarize, in order to condense α, α must have a twist of 1, have bosonic self-statistics, and braid trivially with every other particle
in the theory. If any of these conditions are violated, we will have to work harder to construct C/α.
C. Condensing ψ in Ising

In this subsection, we describe our procedure for condensing ψ in the Ising theory. Again, the motivation for doing this is to produce
an example of a fermionic fusion category, which we can later feed into a fermionic string-net model to construct an example of an anyonic
topological phase. While we will focus on the Ising theory in this section, our discussion will be fairly general and can be applied to perform
fermion condensation in more general scenarios.

We would like to “condense” the ψ particle by constructing the quotient theory C/ψ. We will denote the condensed theory by C2, since
the fusion rules are described by the C2 Dynkin diagram (see below). We will denote the image of σ in the condensed theory C2 as β.
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First, from (12), we recall that ψ is fermionic in both spin and statistics, Additionally, we recall that ψ has nontrivial braiding with σ and
as such ψ is not transparent. Thus, ψ violates all three of the conditions that particles in a condensate must satisfy! To condense ψ, we will
clearly need some new tricks.

We will first examine how to address the nontransparency of ψ. As we saw above in (17), we cannot allow world lines of ψ to disappear
at arbitrary points in the 3-dimensional spacetime, since this would confine β (also known as σ),

(18)

However, if we restrict the ψ worldline endpoints to lie on a 2-dimensional subset of the boundary of the ambient 3-dimensional spacetime,
we can obtain a consistent graphical calculus.

In this paper, we will adopt the convention that ψ world lines are allowed to terminate on a codimension-1 “back wall,” a located on a
boundary of the system that is positioned “behind” all other world lines drawn in our graphical calculus.

Figure 1(a) demonstrates this graphically, with the gray back section of the box denoting the back wall on which the ψ worldlines can be
absorbed or emitted. String-net graphs in our (2 + 1)D spacetime can be reduced to string-net graphs in (1 + 1)D spacetime by introducing a
shorthand notation for ψ-lines terminating on the back wall. This notation is shown in Fig. 1(b), where we use boxes to denote places where
ψ worldlines head straight back into the back wall and terminate.

Even though we use the same box-at-the-end-of-the-string graphical convention to denote ordinary condensation and back wall con-
densation, there is an important difference. In both cases, we can slide a box behind another strand, with the before and after pictures differing
by an isotopy,

(19)

However, in the back wall case, we cannot slide a box in front of another strand,

(20)

This is because doing so would involve the other strand crossing the ψ strand as it heads into the page en route to the back wall; the
before and after pictures are not isotopic. Thus, restricting ψ emission/absorption to the back wall disallows the series of diagram equalities
in Fig. 18.

FIG. 1. (a) The “back wall” picture. The box represents a section of a (2 + 1)D Ising TQFT, with the codimension-1 back wall indicated by the gray back side of the box. ψ
worldlines are absorbed into (or emitted from) the back wall at marked points labeled by 1, 2, 3, 4. Free ψ endpoints that do not terminate on the back wall are not allowed.
(b) Our way of representing the picture (a) in a (1 + 1)D graphical calculus. We have squashed the box down to a two dimensional plane, with the blue boxes representing
the points at which the ψ lines “go straight back and hit the back wall.”
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An important consequence of the existence of the back wall is that the quotient category C2 is not braided (although there is a way
to perform the condensation so that the resulting theory is braided, which we mention briefly in Sec. IV A 4). String diagrams for braided
categories (such as Ising) can be glued together in three independent dimensions: right/left, top/bottom, and back/front. In more formal
terms, braided categories are (special cases of) 3-categories. Because of the back wall, it does not make sense to glue string diagrams for the C2

category in the back/front dimension. In more formal terms, C2 is a mere 2-category or, more specifically, a (super) tensor category. We can,
however, glue an Ising string diagram to the front (but not back) of a C2 diagram. In category theoretic language, C2 is a module 2-category
for the Ising 3-category; equivalently, C2 is a codimension 1 defect connecting Ising to the vacuum.

The back wall construction fixes the problems caused by ψ not being transparent. However, we have not yet addressed the spin and
statistics inconsistencies (15) and (16). To fix these inconsistencies, we will couple the boxes marking the ψ endpoints to a complex line
bundle associated with a spin structure. (When we later consider reflections, this spin structure will be promoted to a pin+ structure.) Readers
unfamiliar with spin and pin structures are referred to Appendix A. The spin structure will enable us to cancel out the factors of −1 arising
from the endpoints of ψ worldlines twisting through 2π as in (15). This “bosonizes” the ψ endpoints allowing the condensation process to go
through.

To make this precise, let Y be an oriented 2-manifold, let M = Y × [0, 1], and let B = Y × {1}. (Everything we do in this subsection will
work more generally forM any oriented 3-manifold and B some codimension 0 submanifold of ∂M.) In addition, choose a spin structure on
B. Our goal is to associate a Hilbert space with Y based on string nets inM = Y × I and some extra data on the back wall B.

Consider the configuration space R(B) of all ψ ribbon endpoints on B. Let R(B)k denote the subspace of R(B) corresponding to
configurations with exactly k endpoints. (If B is connected, then these are the connected components of R(B).) We can think of the ribbon
endpoint as a point p of B plus a tangent vector at p, which points out in the direction of the “front” of the ribbon.32 This means thatR(B)1
is diffeomorphic to the unit tangent bundle of B. We also stipulate thatR(B)0 consists of a single point.

In Subsection II D, we will construct a complex line bundle F(B), with flat connection, over R(B), which will provide us with the
additional structure we need to perform the condensation. The extra data alluded to above will be a vector in this vector bundle. More
specifically, for each string net S in M, we have an endpoint configuration e(S) ∈ R(B). Our Hilbert space will be generated by pairs (S, v),
where v ∈ F(B)e(S), the fiber of the bundle F(B) at the configuration e(S).

We impose the usual local string net relations in the interior of M. (Ribbon end points are fixed for these relations.) We also impose
the following additional relation: Let {St}, with 0 ≤ t ≤ 1, be a 1-parameter family of string nets. The ψ endpoints on B are allowed to move,
but any other ribbon endpoints must remain fixed. Let v ∈ F(B)e(S0). Using parallel translation for the connection on F(B) and the path of

configurations {e(St)}, we obtain v
′ ∈ F(B)e(S1). We now identify these configurations by imposing the relation

(S0, v) ≙ (S1, v′). (21)

Let us now see how coupling the system to F(B) fixes the inconsistencies (15) and (16). The crucial property of the flat connection on
F(B) is that the holonomies around loops corresponding to (15) and (16) are −1. In other words, in (21), we have v = −v′ if {St} is the family
of string nets depicted in (15) or (16).

So, (15) now becomes

(22)

and (16) becomes

(23)

Is the choice of F(B) together with its flat connection uniquely determined by the above holonomy requirements? No: in fact, there is a
natural bijection between the set of spin structures on B and flat connections fulfilling the above holonomy requirements. In other words, in
order to perform this sort of fermionic condensation, we need to choose a spin structure on B (or on Y, in the main case whereM = Y × I and
B ≅ Y).

The details of the construction of the bundle-with-connection F(B) are somewhat technical and can be found in in Appendix B. Some of
the key properties of F(B) are as follows:

● In order to specify an element v ∈ F(B)e(S), it suffices to (a) assign an ordering to the ψ-endpoints and (b) choose a spin-framing at each
such endpoint. Recall that a spin structure can be thought of as a double-covering of the unit tangent bundle of B. By “spin framing,”
we mean a choice of lift to this double cover from the unit tangent vector determined by the ribbon orientation.

● Themost general way of specifying a spin framing is via a “Dirac belt” connecting a base framing on B to the tangent vector in question.
For manifolds equipped with global framings, there are no ambiguities, and we can choose a “gauge” in which the orientation of the
belt is consistent with the global framing, allowing us to drop the belts from the figures. The standard Euclidean structure on a page of
this paper determines a global framing (the “blackboard framing”), and unless stated otherwise, we implicitly equip each ψ endpoint
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with a spin framing determined by this choice of global framing. In some figures, we have in mind a spin structure with a different
global framing, and in these cases, we will draw dashed “branch cut” lines to indicate how the framing differs from the standard
blackboard framing. The branch cuts will be chosen such that the spin framing rotates by 2π (switches sheets on the double cover)
across a branch cut.

● Another important property of F(B) is locality: The bundles behave well with respect to gluing surfaces. By “behave well,” we roughly
mean that for B = B′ ∪ B′′, there is an isomorphism between F(B) and F(B′) ⊗ F(B′′).

● F(B) comes equipped with a way to cancel pairs of ψ endpoints, which is required since the fermion ψ we will be condensing satisfies
the fusion rule ψ⊗ψ ≅ 𝟙. This requires us to supplement the parallel transport of the flat connection with additional isomorphisms of
fibers of F(B) connecting points ofR(B)k toR(B)k−2.

● Finally, in order to define Hermitian inner products on our Hilbert spaces, F(B) comes equipped with an antilinear bundle map F(B)
→ F(B′) for all orientation-reversing maps B→ B′.

Our spin-structure-equipped back wall construction admits a simple physical interpretation: coupling the theory to the bundle F(B) is
equivalent to adding a phase of physical (not emergent) fermions to the theory and binding single physical fermions to each ψ endpoint. The
physical fermion attached to each ψ endpoint compensates for the fermionic nature of the ψ particle in the condensate: the factors of −1 that
relate two different orderings of the ψ endpoints are the Koszul signs associated with the physical fermions, and the factors of −1 that we pick
up when rotating the ψ endpoint framing by 2π come from the spin 1/2 of the physical fermions. Thus, attaching physical fermions to the ψ
endpoints transforms them into bosonic objects, which are then allowed to undergo normal boson condensation. Therefore, although we are
indeed identifying emergent fermions with the vacuum, the term “fermion condensation” is a bit misleading, as what we are actually doing
is closer to boson condensation of bound states of ψ and a physical fermion. However, we reiterate that the ψ endpoints are not technically
bosons, since they see the background spin structure: the emergent ψ fermions do not see the spin structure, but the physical fermions attached
to their endpoints do.

To summarize, we have seen that by introducing the back wall and equipping it with a spin structure, all three conditions necessary for
ψ endpoints to condense are satisfied. We emphasize that we have utilized the back wall and the spin structure for two independent reasons
(the nontransparency of ψ and ψ′s fermionic spin and statistics, respectively). For example, if ψ were nontransparent but bosonic, we would
still need a back wall, but the back wall would not need a spin structure. Conversely, if ψ were transparent but fermionic, then we would not
need a back wall, but we would still need to introduce spin structures.

D. Local relations in the C 2 theory

Now that we have worked out how to condense ψ, we can determine the graphical rules that govern the condensed theory.
We have already seen that in order for the condensation procedure to go through, the manifold on which we define the C2 theory must

be equipped with a spin structure. The interaction of fermionic morphisms with this spin structure leads to relations in the diagrammatic
calculus that are not present in bosonic theories.

First, we observe that any ψ strands can be absorbed into the condensate at the expense of phase factors, and so in the condensed theory,
the only object remaining will be the image of σ under condensation, which will be denoted by β. β lines will be drawn in orange, and ψ lines
will be drawn in blue (and can also be distinguished from β lines through their termination points). In the condensed theory, the β line may
or may not have ψ fermions attached to them. We will introduce a blue dot as a compact notation for a ψ worldline that terminates on a β
line,

(24)

Note that in order for the dot notation to be unambiguous, we must specify a spin-framing at the dot. We will usually do this implicitly
as follows: The dots are only allowed to occur on vertical strands, and the spin framing at the dot is obtained from the base framing of the
manifold by rigidly translating with respect to the “blackboard framing” of the page. For diagrams that do not inherit their spin structure from
the blackboard, we will have to use other means to specify the spin-framing.

Because β lines in the condensed theory can have fermionic dots on them, there are several new diagrammatic rules involving them that
need to be included in our graphical calculus. One of the most important local relations is the addition and removal of an even number of
fermions on β lines. The process of removing two fermions can be done at the cost of a phase factor,

(25)

J. Math. Phys. 60, 121901 (2019); doi: 10.1063/1.5045669 60, 121901-10

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

where the labels 1 and 2 denote the ordering of the fermions in question. We have performed an F-move on the ψ worldlines to get the second
equality, used (8) to remove the ψ line attached to the σ line in the third diagram, and have used

(26)

in the last step to remove the semicircular ψ line, where λ ∈ C is some complex number. We show in Appendix B that we must have λ = ±i,
and since A4 = ±i in the Ising theory, we may choose either λ = A4 or λ = −A4 (the choice of A does not constrain the choice of λ). The choice
of λ = ±A4 affects the F-symbols in the condensed theory but does not affect observable quantities such as the twists or mutual statistics of the
quasiparticles in the theory.33 Therefore, without loss of generality, we may choose a gauge in which λ = A4, and so

(27)

Since ψ is statistically fermionic, exchanging two fermions on a β line results in a minus sign,

(28)

The braiding in the parent Ising theory means that we pick up nontrivial phase factors when sliding fermion dots over and around β caps
and cups. For example, we can compute

(29)

where in the last step we have used (13). Since in the Ising theory A4 = ±i, we can invert (29) to find

(30)

By a similar argument, we find

(31)

Because of the nontrivial rules for sliding dots through cups and caps, dots that live on the apex of a cup or the bottom of a cap (where the
β line is horizontal) are ambiguous, and we will not allow them to be drawn in our fusion diagrams. We stress that these phases are derived
completely from the braiding data of the Ising theory.

Note that the above relations imply that even-parity β loops are nonzero, while odd-parity β loops vanish,

(32)

This is as expected—dragging the fermionic dot around the circle rotates it through 2π.
The final local relations that will be important in what follows are the F-moves, which provide linear relations between different isotopy

classes of diagrams. The F-symbols in the condensed C2 theory can be worked out using our rules for manipulating condensed ψ worldlines
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and our knowledge of the F-symbols in the parent Ising theory. We begin with a diagram in the Ising theory, apply an F-move, and then
remove all ψ lines through condensation to evaluate the F-move in the C2 theory. For example, in the parent Ising theory, we have

(33)

When we condense ψ, the second diagram on the left-hand side becomes

(34)

Note that in the first step of (34), we have displaced the vertical ψ line to the right so that it never intersects the β line at the apex of a
cap or the bottom of a cup. We do this to avoid ambiguities in the fermion framing, which as discussed earlier always points “to the left,”
meaning that dots living on horizontal β lines are not well-defined. While we choose to displace the ψ line to the right in (34), this is merely
a gauge choice: we could have equally well chosen it to be displaced to the left. Recapitulating, we see that in the C2 theory, we have the
F-move

(35)

By similar reasoning, we can derive the other nontrivial F-move in the C2 theory, which is

(36)

The fact that β lines can host dots means that β has an endomorphism that is not a multiple of the identity, which is a hallmark of physics
that cannot be found in bosonic topological phases. Indeed, any section of a given β worldline may look like

(37)

The two diagrams in (37) are the generators of the endomorphism algebra of β. Since we have one even generator and one odd generator, we
see that End(β) ≅ Cℓ1, where Cℓ1 is the first complex Clifford algebra (generated by 1 and a single odd-parity generator). More generally,
the vector space assigned to a disk with 2n β strings ending on its boundary has dimension 2n, and the endomorphism algebra of β⊗n (i.e., n
copies of β on a line) is isomorphic to Cℓn.

In more general contexts, we will refer to simple objects whose endomorphism algebras are isomorphic to Cℓ1 as “q-type objects”
and those whose endomorphism algebras are isomorphic to C as “m-type objects.” From the above information, we can infer the fusion
rule

β⊗β ≅ C1∣1 ⋅ 𝟙, (38)
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where C1∣1 is the complex vector space with a single even generator and a single odd generator, corresponding to the even and odd channels
of the fusion product β ⊗ β.

In bosonic theories, having End(β) ≅ Cℓ1 would imply that β is not a simple object, since by Shur’s lemma the endomorphism algebra
of any simple object must be a division algebra and since C is the only ungraded division algebra. Nevertheless, β is a simple object.34 This
is possible because in fermionic theories, the Hilbert spaces we use are supervector spaces compared to the regular vector spaces of bosonic
theories. Unlike in the bosonic case, there are two super division algebras, C and Cℓ1. This means that simple objects in the fermionic setting
can have endomorphism algebras of eitherC orCℓ1. Later on, we will see that the existence of simple objects withCℓ1 endomorphism algebras
is responsible for a large part of the novel physics that occurs as a result of fermion condensation.

Finally, we mention a higher-level way of understanding the content of the C2 theory from the parent Ising theory. We begin by noting
that the principle graph for the Ising theory is given by the A3 Dynkin diagram (see the top left of Table II). Condensing ψ means estab-
lishing an isomorphism between ψ and 𝟙 so that in the condensed theory, 𝟙 and ψ correspond to the same node of the principal graph.
This identification can be done by “folding” the A3 principal graph about the central node so that the 𝟙 and ψ nodes are identified. Note
that σ is preserved under the folding, which translates into the fact that the image of σ in the condensed theory (namely, β) has a nontrivial
endomorphism algebra. The resulting folded principal graph is shown in the top right of Table II: the double line indicates the two fusion

channels in β⊗β ≅ C
1∣1 ⋅ 𝟙, the double circle indicates that β has a two-dimensional endomorphism algebra, and the arrows have been

chosen to point away from the object with larger endomorphism algebra. The resulting principal graph is precisely the C2 Dynkin diagram,
which is why we call the condensed theory the C2 theory. This idea can be applied to perform fermion condensation in many other theories
(most straightforwardly the other theories in the An series that contain a fermion). We will explore several examples along these lines in later
sections.

TABLE II. Summary of C2 data.
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III. QUASIPARTICLE EXCITATIONS AND THE TUBE CATEGORY OF C 2

In this section, we identify the quasiparticle excitations in the C2 theory. We will discuss the quasiparticles in the theory, their fusion
rules, their statistics, and the modular transformations of the ground states on the torus. We will identify the excitations using a fermionic
generalization of a device known as the tube category. We will briefly review the tube category as applied to the C2 theory below; for a more
detailed overview and for an explanation of why the fermionic version of the tube category computes the excitations, we refer the reader to
Sec. V, where we discuss the construction in full generality.

For the benefit of more physically inclined readers, we will use the “Hamiltonian/ground-state/excitation” terminology in this section,
even though (as discussed in the Introduction) we will not define the relevant Hamiltonian until Sec. IX. The constructions in this section
all take place within the self-contained world of TQFTs defined via string nets; the Hamiltonian/ground-state/excitation interpretation is
optional.

A. Finding the quasiparticle excitations

We now turn to a detailed study of the tube category for C2. The objects of Tube(C2) are given by spin circles with a finite number
of marked points labeled by simple objects of C2. There are two spin structures on the circle: bounding (antiperiodic boundary conditions;
nonvortex) and nonbounding (periodic boundary conditions; vortex). Each object in Tube(C2) thus determines a choice of spin structure of
the underlying circle.

It suffices to consider only objects with at most one labeled point. This is because any other object is isomorphic to a direct sum of objects
with at most one labeled point. Note also that an object with a point labeled by 𝟙 (the trivial object of C2) is isomorphic to the object obtained
by erasing that marked point. In particular, a circle with no marked points is isomorphic to a circle with a single point labeled by 𝟙.

Since there are two simple objects in C2, for a fixed spin structure, there are only two possible labels that can be assigned to a marked
point,

(39)

where B and N denote bounding and nonbounding spin structures, respectively.
Morphisms of Tube(C2) are defined to be cylinders (which we will draw as annuli) decorated by C2 string-nets. A given morphism

a→ b is thus an annulus whose outer (inner) boundary conditions are determined by the object a (b).
After applying local relations (F-moves, dot-cancelations, removing trivial loops), an arbitrary string-net diagram on any tube can be

reduced to a linear combination of the following diagrams:

(40)

with J = B for bounding spin structure and J = N for nonbounding spin structure. In the first row, we have listed all possible tubes that take
the trivial boundary condition back to itself and in the second row the tubes that take the βmarked point back to itself. Note that all nonzero
tubes for C2 have the same label at the two marked points. This will not happen for general input categories (e.g., see Secs. VI and VII).

Depending on the spin structure on the annulus, some of the above diagrams may be zero. With a bounding spin structure, a fermionic
dot picks up a factor of −1 if it moves around the annulus. On the other hand, a fermionic dot picks up a factor of +1 if it moves around the
annulus with a nonbounding spin structure.

As we said above, not every string diagram in the annulus is consistent with a given spin structure. For example,

(41)
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where we have simply pulled the fermion around the noncontractible loop on the tube. A nonbounding tube with a horizontal β line is also
zero, since

(42)

where in the second step, we have dragged one of the two fermions around the annulus. All other tubes are nonzero for both spin structures,
and so a complete basis for tubes in the bounding sector is given by

(43)

(44)

while a basis for the nonbounding sector is given by

(45)

(46)

The multiplication operation in the tube category is given by stacking tubes on top of one another and simplifying the resulting tube
using local relations. For example, in the nonbounding sector, we have

(47)

Note that since the spin structures on two tubes being fused must agree on the boundary at which they are fused, nonbounding tubes can
only be stacked on top of nonbounding tubes and similarly for bounding tubes.

Relations such as the ones above allow us to find the (isomorphism classes of) minimal idempotents of the tube category. First, we turn
to an analysis of tubes with bounding spin structures.

1. Nonvortex spin structure

Let us first examine the tubes with no charge,35 that is, cylinders with bounding spin structures and empty boundary conditions on
both their top and bottom, which are the cylinders in Tube

B
𝟙→𝟙. We see that this algebra (43) has two even generators, and so as a vector

space,
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Tube
B
𝟙→𝟙 ≅ C2∣0. (48)

There is only one possible super algebra structure on C
2∣0; it is the sum of two trivial 1-dimensional algebras End(C)⊕End(C) (or C⊕C for

short, where here C denotes a 1-dimensional algebra rather than a 1-dimensional vector space). This sector, therefore, contains two minimal
idempotents, which we will callm𝟙 andmψ . Explicitly, they are

(49)

One can check that the action of any element from Tube
B
𝟙→𝟙 on bothm𝟙 andmψ is simply scalar multiplication.

Now, we turn to the endomorphism algebra Tube
B
β→β, defined in (43), of charged tubes: those whose top and bottom boundary

conditions consist of a single marked β point. There are two nonzero even tubes and two nonzero odd tubes; hence, as a vector space,
we have

Tube
B
β→β ≅ C2∣2. (50)

This means that as an algebra TubeBβ→β is either Cℓ2 (also known as End(C1∣1)) or Cℓ1 ⊕Cℓ1.
To figure out which case we have, we begin by writing down the multiplication rules. By using the local relations in the C2 theory, we can

work out the multiplication table, which is presented in the following table. In the table, A × Bmeans “stack A (left most column) on top of B
(top most row).” For multiplications involving odd tubes, we always take fermions in the A tube to have a higher ordering than the fermions
in the B tube,

(51)
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Since the multiplication table for TubeBβ is non-Abelian, as an algebra it must be Cℓ2, as the other possibility (namely, Cℓ1 ⊕ Cℓ1) is
Abelian. In order to show that the previous table is indeed the multiplication table of Cℓ2, one can identify

(52)

and check that the odd generators γ1 and γ2 satisfy γ
2
1 ≙ γ22 ≙ 1 and {γi, γj} = 2δij. These are precisely the defining relations of Cℓ2 ≅ ⟨1, γ1, γ2⟩,

and so we have TubeBβ→β ≅ Cℓ2.
The super algebra Cℓ2 contains exactly two minimal idempotents, which we will callm+

σ andm−σ . Explicitly,

(53)

These two idempotents are isomorphic in the sense that there exist endomorphisms (tubes) u and v such that uv ≙ m+
σ and

vu ≙ m−σ .
36 The existence of this isomorphism means that m+

σ and m−σ correspond to isomorphic simple modules and so rep-
resent the same quasiparticle type. Note that in this case, u and v are necessarily odd; we say that m+

σ and m−σ are oddly iso-
morphic. When doing calculations, we fix a particular representative of the m±σ equivalence class, which we will choose to be
m+
σ .

2. Vortex spin structure

As in Sec. III A 2, we first examine the endomorphism algebra Tube
N
𝟙→𝟙, consisting of tubes with no charge and nonbounding spin

structure. As shown in (45), this algebra is two dimensional and generated by a single even vector and a single odd vector, and so as a vector
space, we have

Tube
N
𝟙→𝟙 ≅ C1∣1. (54)

The only possible algebra structure on C
1∣1 is Cℓ1. Cℓ1 ≙ ⟨1, γ⟩ has only one simple module, namely, C1∣1 with the matrix rep-

resentation ρ(1) = σ0, ρ(γ) = σx. Therefore, this endomorphism algebra will support only one quasiparticle. Since idempotents
must always be even, the explicit presentation of this quasiparticle is simply the empty tube. We will denote this quasiparticle
by qσ ,

(55)

Now we examine the charge sector, corresponding to the algebra TubeNβ→β of vortex tubes with nontrivial charge. As we have seen in
(45), this subalgebra again has two even generators and two odd generators, and so as a vector space,

Tube
N
β→β ≅ C2∣2. (56)

Therefore, as an algebra, we must have TubeNβ→β ≅ Cℓ2 or Tube
N
β→β ≅ Cℓ1 ⊕ Cℓ1. To determine which choice is correct, we work out the

multiplication table, which is
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(57)

Since the multiplication table is Abelian, we must have TubeNβ ≅ Cℓ1 ⊕ Cℓ1 (as the other choice, Cℓ2, is non-Abelian). To see this explicitly,
we make the identifications

(58)

If we then rewrite the multiplication table for TubeNβ→β in terms of these generators, we see that it is indeed isomorphic to ⟨𝟙+, γ+⟩⊕ ⟨𝟙−, γ−⟩
≙ Cℓ1⊕Cℓ1, with (γ±)2 ≙ 𝟙±. We, therefore, have two (nonisomorphic) idempotents, q𝟙 ≙ 𝟙+ and qψ ≙ 𝟙−. Thus, theTubeNβ→β endomorphism

algebra gives rise to two q-type quasiparticles. (Recall that a q-type object is a simple object whose endomorphism algebra is C1∣1. Simple
objects whose endomorphism algebras are isomorphic to C are referred to as m-type.)

To summarize, we have found six types of quasiparticles in the theory: three nonvortex quasiparticles associated with tubes possessing
bounding spin structures and three vortex quasiparticles associated with tubes possessing nonbounding spin structures. They are displayed
in Table III. The quantum dimension of these excitations can be computed by tracing out the idempotents associated with each excitation,
which we elaborate on in Sec. IV B 1. The quantum dimensions are displayed in Table IV.

B. Quasiparticle fusion rules

With all quasiparticles in hand, we are ready to compute their fusion rules. We postpone a more general discussion of how to compute
fusion rules in fermionic theories to Sec. IV D, and in this section, we restrict ourselves to working out examples for the C2 theory.

Recall that to each minimal idempotent e, we can associate an irreducible module (also known as irreducible representation) Me as
follows: Let T denote the tube category, and let x be an object of T, which hosts e [i.e., e ∈ End(x)]. To each object y of T, the module
Me associates the subspace of mor(x → y) consisting of morphisms of the form ef, where e is our chosen idempotent and f is an arbitrary
morphism from x to y. We can express this compactly as

Me ≙ eT. (59)
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TABLE III. Representative idempotents for the six quasiparticles in the C2 theory. The nonbounding (i.e., vortices) are all q-type particles, while the bounding (i.e., nonvortex)
particles are all m-type. We have chosen m+

σ as the representative of the isomorphism class given by m+
σ and m−σ .

It is easy to check that if e and e′ are isomorphic idempotents, then Me and Me’ are isomorphic modules, and conversely. Geometrically, the
moduleMe consists of tubes with e fixed at one end and arbitrary string nets (f above) at the other end.

We will frequently simplify the notation and denote both the idempotent e and the corresponding moduleMe as simply e.
It is important to note that there are many idempotents within a given equivalence class, and these idempotents might be hosted at

different objects. Furthermore, the isomorphism relating two idempotents might be odd (i.e., it reverses fermion parity). Despite these differ-
ences, all of the idempotents within an equivalence class should be thought of as representing the same anyon type. To do calculations, we
must choose a particular idempotent within the equivalence class. This is analogous to a gauge choice. For example, the idempotent given
by m+

σ constitutes a choice of representative of the equivalence class containing m
+
σ and m−σ , but we could have just as easily chosen m−σ as a

representative.
Given two modules a and b of T, we can construct a tensor product module a ⊗ b. Intuitively, forming a ⊗ b amounts to fusing the

quasiparticles a and b together by bringing them close to one another and “zooming out” to view a and b as a single composite quasiparticle.
To make this precise, we can impost the idempotent versions of a and b as boundary conditions on the two inner boundary components of
a twice-punctured disk P (also known as a pair of pants). Adding tubes to the outer boundary component of P gives a module for the tube
category, and this module is, by definition, a⊗b. We will discuss this in more detail in Sec. IV D.

We define the fusion space Vab
c as the space

V
ab
c ≡ mor(c→ a⊗ b). (60)

Geometrically, Vab
c corresponds to the space of all string-net configurations (modulo local relations) on a pair of pants whose outgoing legs

are labeled by the quasiparticles a and b, and whose incoming leg is labeled by c.

One subtle property of fermion theories is that the vector spacesVab
c are not the vector spaces that appear in the direct sum decomposition

of a ⊗ b. Instead, we define the fusion rule coefficients Δab
c via37

a⊗ b ≅⊕
c

Δ
ab
c c, (61)

TABLE IV. Tube(C2) quantum dimensions. The total quantum dimension is D ≙
√
8. The quantum dimensions above have been normalized so that the trivial idempotent m𝟙

has unit quantum dimension.

Particle m𝟙 m+
σ mψ q𝟙 qσ qψ

Quantum dimension 1
√
2 1

√
2 2

√
2
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where the sum runs over a set of representatives for the equivalence classes of irreducible representations (equivalently, of minimal

idempotents). In bosonic theories, Vab
c ≙ Δab

c , but in fermionic theories, the fusion spaces can be larger than the fusion coefficients,

V
ab
c ≅ Δab

c ⊗End(c). (62)

We demonstrate and elaborate on this in Sec. VIII D.
We will now illustrate how to compute the fusion spaces with simple examples in the C2 theory. Suppose we want to find the fusion

rule for qσ ⊗m𝟙. We first note that spin structure considerations on the pair of pants require that any quasiparticle appearing in qσ⊗m𝟙 be
a vortex-type quasiparticle (one with a nonbounding spin structure). Furthermore, since both m𝟙 and qσ have no charge (no β lines fixed to
the boundaries of their tubes), we know that their fusion products cannot have any charge. Since qσ is the only vortex-type quasiparticle with
no charge, we know that it is the only particle that can appear in the tensor product of qσ and m𝟙. By searching for pants invariant under the

applications of the appropriate idempotents, we see that the super vector space V
qσm𝟙

qσ is isomorphic to C1∣1, with the even subspace generated
by a single even vector

(63)

and the odd subspace generated by a single odd vector

(64)

Note that to find the odd generator from the even one, we apply the odd endomorphism of qσ to the “exterior” boundary of the pair of pants.
Graphically, this corresponds to taking a β loop with a single dot on it and inserting it in a position parallel to the outer boundary of the pair
of pants.

A more nontrivial fusion rule is qσ ⊗ qσ . Since qσ has no charge, any quasiparticles appearing in qσ ⊗ qσ must also carry no charge, since
for the C2 theory, charge is a good quantum number. Additionally, any quasiparticles in qσ ⊗ qσ must have nonvortex spin structures, so we
know that only m𝟙 and mψ can appear in qσ ⊗ qσ . This lets us work out the fusion spaces explicitly. We first work out the fusion space for
V

qσqσ
m𝟙

. The even part is generated by a single vector,

(65)

As with (64), we find the odd generator by using the odd endomorphism coming from qσ ,

(66)

Therefore, V
qσqσ
m𝟙
≙ ∥Vqσ⊗qσ

m𝟙
∥0 ⊕ ∥Vqσ⊗qσ

m𝟙
∥1 ≅ C1∣1. An analogous calculation shows that V

qσqσ
mψ
≅ C1∣1, and it is generated by the two vectors

(67)

Summarizing, we have qσ⊗qσ ≅ C1∣1m𝟙 ⊕C
1∣1mψ , with V

qσqσ
m𝟙
≅ Vqσqσ

mψ
≅ C1∣1.

As a final example, we will examine the fusion channelm+
σ ⊗mψ . Sincem

+
σ has nonzero charge whilemψ has no charge, anything appear-

ing in m+
σ ⊗mψ must carry nonzero charge. Additionally, since both m+

σ and mψ have nonvortex spin structures, their fusion products must

possess nonvortex spin structures as well. Therefore, they must fuse to m±σ . Determining the fusion space V
m+
σmψ

m±σ
thus amounts to identifying

string-nets on the pair of pants, which are invariant under the application of m+
σ and mψ on the inner legs of the pants and invariant under

the application ofm±σ on the outer leg of the pants.
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TABLE V. The fusion rules in Tube(C2). We have defined A ≙ {m𝟙,m
+
σ ,mψ} and V ≙ {q𝟙, qσ , qψ} as the set of anyons

and set of vortices, respectively. The (a-b)th entry in each table is the sum ⊕cΔ
ab
c c, where we have omitted any Δ

ab
c that

is equal to C and used ● ≙ C
1∣1 to signify that the associated Δ

ab
c is isomorphic to C

1∣1. Entries with C
0∣1 indicate that

the fusion channel is purely odd. The fusion spaces can be obtained from this table according to Vab
c ≅ Δ

ab
c ⊗ End(c), for

example, V
mψqσ
qσ ≅ C⊗C1∣1 ≙ C1∣1.

A⊗A m𝟙 m+
σ mψ

m𝟙 m𝟙 m+
σ mψ

m+
σ m+

σ m𝟙 ⊕C
0∣1mψ C

0∣1m+
σ

mψ mψ C
0∣1m+

σ m𝟙

A⊗V q𝟙 qσ qψ

m𝟙 q𝟙 qσ qψ
m+
σ qσ q𝟙 ⊕ qψ qσ

mψ qψ qσ q𝟙

V⊗A m𝟙 m+
σ mψ

q𝟙 q𝟙 qσ qψ
qσ qσ q𝟙 ⊕ qψ qσ
qψ qψ qσ q𝟙

V⊗V q𝟙 qσ qψ

q𝟙 ●m𝟙 ●m+
σ •mψ

qσ ●m+
σ ●(m𝟙 ⊕mψ) ●m+

σ

qψ •mψ ●m+
σ ●m𝟙

First, applym+
σ andmψ on the inner legs andm+

σ on the outer leg to a generic linear combination of string nets on the pants. By using the
linear relation

(68)

one can check that the resulting vector space will be zero dimensional if the pair of pants has even parity, and will be one dimensional if the
pair of pants has odd parity, generated as follows:

(69)

Hence, m+
σ⊗mψ ≅ C0∣1m+

σ . Repeating the calculation for m−σ on the outer leg results in a one dimensional vector space if the pair of pants has

even parity and zero otherwise; m+
σ⊗mψ ≅ C

1∣0m−σ . This reflects the fact that m
−
σ is oddly isomorphic to m+

σ . We emphasize that to write the
fusion rules, we need to work with actual idempotents, not merely equivalence classes of idempotents.

By following the approach outlined in these examples, it is straightforward to write down the table of fusion rules in the theory,
which we present in Table V. In Table V, we list the fusion rule coefficients from (61), with the bullets (•) representing cases where

Δ
ab
c ≅ C1∣1, and the appearance of C0∣1 indicating a purely odd fusion channel. The fusion spaces Vab

c can then be obtained through the use of

Vab
c ≅ Δab

c ⊗End(c).
C. Modular transformations and ground states on the torus

1. C2 string-nets on the torus

In this section, we compute a standard basis for C2 string-nets-modulo-local-relations on spin tori as well as the action of the mapping
class groupoid (i.e., the modular S and T matrices).
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Because the C2 theory is dependent on the existence of a spin structure, in order to talk about ground states on a torus, we must first
specify the spin structure on the torus. There are ∣H1(T2;Z2)∣ ≙ 4 different spin structures on the torus, obtained by choosing either bounding
or nonbounding spin structures for two of the torus’ three noncontractible cycles (with the spin structure along the third noncontractible cycle
determined by those of the other two). To go from the annulus to the torus, we identify the inner and outer circles and label the different spin
structures by

(70)

where X and Y specify the spin structure along the longitudinal and meridional cycles, respectively (see Fig. 2).
If there was no interplay between a chosen spin structure and the string-net pictures drawn on the torus and if the fermion parity of a

ground state is fixed by the spin structure and the string-net picture drawn on the torus, we would expect ∣H1(T2;Z2)∣ ≙ 4 degenerate ground
states for each choice of spin structure, since the β lines obey Z2 fusion rules. We will see that this naive guess is incorrect: instead, for each
spin structure, one of the four putative states is a null vector, meaning that there is only a 3-dimensional groundstate for each choice of spin
structure.

We will first use elementary arguments to find a spanning set for each of the four spin tori. Later, using more sophisticated techniques,
we will prove that these spanning sets are in fact bases.

Since β lines obey Z/2 fusion rules (see Sec. II), it is easy to see that any string net on a spin torus is a linear combination of the following
seven diagrams:

(71)

Indeed, using (35) and the ability to remove topologically trivial β loops, we can transform the β loops into a standard representative of their
Z/2 homology class. The resulting loop will be decorated by some number of fermionic dots; using dot cancelation, we can assume that
the loop will contain either 0 or 1 dot. The seven diagrams listed above are the only independent diagrams that remain after applying these
relations.

However, for a given spin structure, some of the diagrams in (71) will be zero. To determine which of the diagrams are zero, we use the
following three observations:

1. If one of the nontrivial cycles of the torus has an antiperiodic spin structure, then any odd diagram is zero. This is because we can
translate the entire string net in the direction of the antiperiodic cycle. When we arrive back at our starting point, we have picked up a
factor of −1 from the antiperiodicity. Thus, odd diagrams are equal to −1 times themselves and are, therefore, zero. In particular, the
three odd diagrams of (71) are zero in the BB, BN, and NB spin structures.

2. If a diagram contains a β loop without a dot (even fermion parity) and if that loop inherits the periodic spin structure, then the diagram
is zero. To see this, we create two dots on the loop, slide one around the loop, and then cancel the dots again. Because of the Koszul sign,
we see that the diagram is equal to −1 times itself. (If the spin structure along the cycle were antiperiodic, there would be an additional
sign to cancel the Koszul sign.) In particular, in theNN spin structure, all three of the even β loops are zero. For the BB, BN, andNB spin
structures, exactly one of the three even β loops fails this test and is zero.

3. Finally, the empty diagram with NN spin structure is zero. To show this, we first create a topologically trivial circular β loop. We then
wrap it around the tube and fuse it with itself to get the sum of two diagrams with parallel β loops wrapping around the tube, one of
which has no fermion dots (the even channel of β⊗ β) and one which has one dot on each β loop (the odd fusion channel of β⊗ β). The
diagram corresponding to the even fusion channel is zero by observation 2 above, while the diagram with two odd loops is zero by an
argument similar to observation 2: we slide one of the loops in the direction orthogonal to itself and pick up a Koszul sign, showing that
the diagram must be zero.

Figure 3 shows the remaining nonzero diagrams for each spin structure. It is easy to see that these diagrams are linearly independent if
they are nonzero, but we have not yet proved that they are in fact nonzero. To do this, we will employ a fancier argument relating a basis of
the torus Hilbert space to minimal idempotents of the tube category.

Let TubeB denote the bounding tube category and Tube
N denote the nonbounding tube category. We can make use of the following

results, which we prove in a more general context in Theorem IV 1: The ground state spaces of the BB, NB, and BN tori are purely even, with

FIG. 2. To go from the annulus to the torus, we identify the inner and outer circles and label the different spin structures by X and Y for the longitudinal and meridional cycles
on the torus, respectively.
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FIG. 3. The ground states on the four different spin tori. Note that the nonbounding torus (with NN spin structure) has only odd fermion parity ground states.

an orthogonal basis given by closed-up minimal idempotents of TubeB. Additionally, the ground state space of the NN torus is isomorphic

to C
p∣q, where p is the number of m-type idempotents of TubeN and q is the number of q-type idempotents of TubeN . An orthogonal basis

is given by closures of a set of representatives of the minimal m-type idempotents of TubeN , union {cl(γj)}, where γj runs through a set of

representatives of odd endomorphisms of the minimal q-type idempotents of TubeN . We use cl to denote the closure of an annular diagram
on the torus.

For the C2 theory, we have shown that TubeB has three m-type minimal idempotents and TubeN has three q-type minimal idempotents.

Letting A(T2
JK) denote the Hilbert space on the torus with JK spin structure, it follows that A(T2

BB) ≅ A(T2
NB) ≅ A(T2

BN) ≅ C3∣0 and A(T2
NN)≅ C0∣3, and so the diagrams of Fig. 3 must indeed all be nonzero.

For future reference, we also tabulate the change of basis between the ground-state tori in Fig. 3 and the closed-up minimal idempotents.
To form string-net pictures drawn on tori from the idempotents, we close up the idempotents along the longitudinal direction by identifying
the inner boundary of the annulus on which the idempotent lives with the outer boundary, specifying a choice of spin structure along the
newly made cycle. We then express the result as a linear combination of the tori in Fig. 3. For simplicity of notation, we will define

(72)

and append subscripts to denote a particular spin structure. We will also use an overscript • if we are closing up an odd endomorphism rather
than the idempotent itself, for example,

(73)

We can then compute the change of basis shown in Fig. 4.

2. The modular S and T matrices

In this section, we will compute the representation of themodular S and Tmatrices in theC2 theory, which together generate themodular
groupoid. The modular S-matrix acts on states on the torus by interchanging the meridional and longitudinal cycles of the torus. If we draw
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FIG. 4. Change of basis between the quasiparticle (idempotent) basis given in Table III and the topological bases in Fig. 3 for the torus. These are simply given by expressing

the idempotents in the topological bases. Note that the odd torus has a sign ambiguity on each of the idempotents. We can require that (●q)2 ≙ q but that leaves
●
q ambiguous

up to a ± sign. This ambiguity can lead to different S matrices (see (84) and the surrounding text for more details).

the torus as a square with opposite sides identified, then S acts by rotating the square by π/2 clockwise. The modular T matrix represents the
action of the Dehn twist on the torus, which corresponds to cutting the torus along a meridional cycle, twisting the boundary conditions at
the cut by 2π relative to one another, and gluing the torus back together. In terms of the annular pictures we have been drawing of the tubes,
the twist is accomplished by twisting the inner boundary of the annulus by 2π counterclockwise relative to the outer boundary.

Importantly, the S and T modular transformations do not always preserve the spin structure of the torus they act on. Figure 5 shows how
the different possible spin structures are permuted under S and T. Since T does not preserve the spin structures, it cannot have well-defined
eigenstates with a definite spin structure, meaning that it will not be diagonal in the idempotent (quasiparticle) basis. This means that the
topological spins of bounding (nonvortex) quasiparticles, defined as their eigenvalues under T, will not be well-defined. In contrast with T,
the action of T2 preserves spin structures, and so we are still able to associate definite T2 eigenvalues with the quasiparticles in the theory.
Putting aside the issue of spin structures, the twist of an idempotent (defined as the phase acquired when performing a 2π twist on the tubes
in a given idempotent) is, in general, only defined up to a ± sign (which has been discussed in Refs. 5, 12, and 38). More precisely, the twist of
a given simple object in the tube category is ambiguous across the isomorphism class of that object. Indeed, we will see that the twists of the
two idempotents in themσ isomorphism class (namely,m+

σ andm−σ ) have twists that differ by a factor of −1.
We now proceed to examine the action of the S and T modular transformations on the four spin tori, which compose the 12-dimensional

space listed in Fig. 3. Although the calculations are most easily performed in the topological basis in Fig. 3, it is more natural to analyze the
resulting transformations in the idempotent basis given in Table III. As mentioned earlier, the basis vectors in the idempotent basis are
constructed by taking the idempotents associated with the quasiparticles identified in Sec. III C 1 and closing them up (with different choices
of spin structure) along the longitudinal direction. The change of basis between the topological and idempotent bases is written explicitly in
Fig. 4.

We will start with the BB spin structure, which is preserved under the action of S. In the topological basis (e, v, h)T , we find

⎛⎜⎝
e
v

h

⎞⎟⎠
BB

SBB→BBÐÐÐ→ ⎛⎜⎝
1 0 0
0 0 1
0 1 0

⎞⎟⎠
⎛⎜⎝
e
v

h

⎞⎟⎠
BB

. (74)

To transform SBB→BB into the quasiparticle basis, we use Fig. 4. After the change of basis, we find the familiar matrix

⎛⎜⎝
m𝟙

m+
σ

mψ

⎞⎟⎠
BB

SBB→BBÐÐÐ→ 1

2

⎛⎜⎝
1 d 1
d 0 −d
1 −d 1

⎞⎟⎠
⎛⎜⎝
m𝟙

m+
σ

mψ

⎞⎟⎠
BB

, (75)

which is identical to the S-matrix for the Ising TQFT.
Now, for the BN and NB spin structures, these are interchanged by the S-matrix, as indicated in Fig. 5. In the idempotent bases, these

induce transformations between the nonvortex and vortex quasiparticles. We obtain

⎛⎜⎝
e
h
t

⎞⎟⎠
BN

SBN→NBÐÐÐ→ ⎛⎜⎝
1 0 0
0 1 0
0 0 A10

⎞⎟⎠
⎛⎜⎝
e
v

t

⎞⎟⎠
NB

and
⎛⎜⎝
e
v

t

⎞⎟⎠
NB

SNB→BNÐÐÐ→ ⎛⎜⎝
1 0 0
0 1 0
0 0 A6

⎞⎟⎠
⎛⎜⎝
e
h
t

⎞⎟⎠
BN

. (76)

FIG. 5. The action of the mapping class group on the four spin tori.
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Note that if we compose both transformations, we get the identity. These can each be transformed into the idempotent bases using (4), where
one finds ⎛⎜⎝

m𝟙

m+
σ

mψ

⎞⎟⎠
BN

SBN→NBÐÐÐ→ 1

2

⎛⎜⎝
1 d 1−d 0 d−1 d −1

⎞⎟⎠
⎛⎜⎝
q̂𝟙
q̂+σ
q̂ψ

⎞⎟⎠
NB

(77)

and ⎛⎜⎝
q̂𝟙
q̂+σ
q̂ψ

⎞⎟⎠
NB

SNB→BNÐÐÐ→ 1

2

⎛⎜⎝
1 −d −1
d 0 d
1 d −1

⎞⎟⎠
⎛⎜⎝
m𝟙

m+
σ

mψ

⎞⎟⎠
BN

. (78)

In order to make the matrix unitary, we have defined q̂ ≙ q/√2 so that each q̂ idempotent has unit norm (how to compute the norms of
idempotents will be discussed in Sec. IV B 1). To collect the results we have arrived at so far, we define

M ≙ ∥m𝟙 m
+
σ mψ∥T , Q̂ ≙ ∥q̂𝟙 q̂σ q̂ψ∥T . (79)

Then, we have

⎛
⎜
⎝

MBN

Q̂NB

MBB

⎞
⎟
⎠

SÐÐ→ ⎛⎜
⎝

SBN→NB

SNB→BN

SBB→BB

⎞
⎟
⎠

⎛
⎜
⎝

MBN

Q̂NB

MBB

⎞
⎟
⎠
. (80)

Similarly, we can compute the modular T-matrix, the action of which twists the inner boundary of an annulus by an angle of 2π coun-
terclockwise with respect to its outer boundary. This definition ensures that the T-matrix acts as the identity on tubes with no charge line
(i.e., with no strings ending on their inner annular boundaries). Within each spin structure sector, the T-matrix is diagonal in the idempotent
basis. We can read off the structure of the T-matrix with the help of Fig. 5 to find

⎛
⎜
⎝

MBN

Q̂NB

MBB

⎞
⎟
⎠

TÐÐ→ ⎛⎜
⎝

TBN→BB

TNB→NB

TBB→BN

⎞
⎟
⎠

⎛
⎜
⎝

MBN

Q̂NB

MBB

⎞
⎟
⎠
, (81)

with

T
BN→BB ≙

⎛
⎜
⎝

1
A3

1

⎞
⎟
⎠
, T

NB→NB ≙
⎛
⎜
⎝

A5

1 −A5

⎞
⎟
⎠
, T

BB→BN ≙
⎛
⎜
⎝

1
A3

1

⎞
⎟
⎠
. (82)

One can check that the usual modular group relation (ST)3 ≙ 𝟙 holds as expected.
More interesting is the NN torus, whose spin structure is preserved under both S and T. This has been investigated before in Ref. 9, and

our results agree with theirs in this case. According to Fig. 3, the Hilbert space is spanned by
●
h,
●
v, and

●
t, where the •means that the associated

tubes have odd fermion parity. In the topological basis, we obtain

⎛
⎜⎜⎜
⎝

●
h
●
v
●
t

⎞
⎟⎟⎟
⎠
NN

SNN→NNÐÐÐ→ ⎛⎜
⎝

0 1 0
A4 0 0
0 0 A10

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

●
h
●
v
●
t

⎞
⎟⎟⎟
⎠
NN

. (83)

Now, we need to transform into the idempotent (quasiparticle) basis. With the choice of basis in Fig. 4, we find

⎛
⎜⎜⎜
⎝

●
q
𝟙●
qσ●
qψ

⎞
⎟⎟⎟
⎠
NN

SNN→NNÐÐÐ→ −A2

2

⎛
⎜
⎝

1 d −1
d 0 d−1 d 1

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

●
q
𝟙●
qσ●
qψ

⎞
⎟⎟⎟
⎠
NN

. (84)

Note that the requirement
●
q
2 ≙ q only determines

●
q up to a ± sign. Consequently, the off-diagonal matrix elements (SNN→NN)ij between

q-type idempotents are only determined up to a sign (indeed, sending
●
qj → sj

●
qj, sj = ±1 conjugates the S-matrix by a diagonal matrix of ±1’s).

Similarly, we can compute the modular T-matrix,

⎛
⎜⎜⎜
⎝

●
q
𝟙●
qσ●
qψ

⎞
⎟⎟⎟
⎠
NN

TNN→NNÐÐÐÐ→ ⎛⎜
⎝

A5

1 −A5

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

●
q
𝟙●
qσ●
qψ

⎞
⎟⎟⎟
⎠
NN

. (85)

One can check that we have the modular relations

(SNN→NN
T
NN→NN)3 ≙ (SNN→NN)4 ≙ A8id ≙ −id. (86)
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The minus sign comes from the fact that acting by S4 or (ST)3 performs a 2π rotation of the fermion framing, resulting in a phase of −1, since
all states on theNN torus have odd fermion parity. For general theories, these relations become (ST)3 = S4 = (−1)F , where (−1)F is the fermion
parity operator. See Secs. VI D and VII E 2 for examples of this more general scenario.

Collecting these results, we can now write down the complete modular S and T matrices in the C2 theory, which act across all spin

structures. In the quasiparticle basis ∥(m𝟙,m
+
σ ,mψ)BB, (m𝟙,m

+
σ ,mψ)BN , (q𝟙, qσ , qψ)NB, (●q𝟙, ●qσ , ●qψ)NN∥T , we have

S ≙ 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 d 1
d 0 −d
1 −d 1

1 d 1−d 0 d−1 d −1
1 −d −1
d 0 d
1 d −1 −A2 −A2d A2

−A2d 0 −A2d

A2 −A2d −A−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (87)

where we have only listed the nonzero entries. S has two different direct-sum decompositions. First, essentially by construction, it splits into
a direct sum over blocks according to spin structures under the S modular transformation. Additionally, we have S = Seven ⊕ Sodd, where
Sodd is the S-matrix acting on ground states with odd fermion parity. This decomposition is always possible, but it will not always match a
decomposition based on spin structures. That is, while Sodd = SNN→NN in this theory, spin structure blocks of SNN→NN will not have a definite
fermion parity in general (see Secs. VI and VII for example). Also, note that S4 ≙ 𝟙9×9 ⊕ (−𝟙3×3) in accordance with S = Seven ⊕ Sodd and
S4 ≙ (−1)F𝟙.

Now, for the T-matrix, in the same quasiparticle basis as before, the T-matrix is

T ≙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 A3 0
0 0 1

1 0 0
0 A3 0
0 0 1

A5 0 0
0 1 0
0 0 −A5

A5 0 0
0 1 0
0 0 −A5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (88)

The T-matrix is not completely diagonalized in the idempotent basis, since it acts nontrivially on the spin structures (although it is
diagonalized within each spin structure block).

IV. GENERALITIES ON FERMION CONDENSATION AND TUBE CATEGORIES

The techniques used in Sec. II work more generally. In this section, we discuss the general case and some variants thereof.

A. General comments on fermion condensation

In this section, we will explore fermion condensation in more general. In Sec. IV A 1, we make some general remarks on fermion
condensation in a generic unitary braided fusion category (UBFC) C. In Sec. IV A 2, we add the stipulation that the fermion we aim to
condense is transparent in that it braids trivially with the other particles in the theory. Section IV A 3 examines the more general case where
the parent category C is not braided, but the object we want to condense lifts to a fermionic object in the Drinfeld center Z(C). Finally,
Sec. IV A 4 sketches a construction in which the braiding of the parent theory is retained after condensation and spin structure defects are
bound to particles that the fermion braids nontrivially with.

First, some preliminary remarks. In what follows, we will work with a unitary braided fusion category C, which contains a fermionic
object ψ that we aim to condense. We require that ψ satisfy the following conditions:

● ψ ⊗ ψ ≅ 𝟙.● The Frobenius-Schur indicator of ψ is 1.
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● The topological twist of ψ is fermionic, i.e., θψ = −1.● The braiding of ψ with itself [see (16)] is equal to −1 times the identity.● The quantum dimension dψ of ψ is 1.

Note that there is some redundancy in this list. For example, in unitary theories, we have the spin-statistics relation, and dψ = 1 can be inferred
from ψ⊗ψ ≅ 𝟙.

We remark that the above assumptions allow us to endow the object 𝟙⊕ ψ with the structure of a fermionic commutative algebra object
in C. We can more generally condense any fermionic commutative algebra object φ. In the quotient category C/φ, any simple summand of φ
becomes isomorphic to 𝟙 or perhaps isomorphic to a direct sum of copies of 𝟙.

1. Condensing nontransparent fermions in a braided category

In this subsection, we will assume C is a unitary braided fusion category (UBFC). We will also assume that ψ is nontransparent, meaning
that it braids nontrivially with at least one nontrivial object in C. We will examine the case where ψ is transparent in Subsection IV A 2.

We will proceed as in Sec. II and define a super pivotal category C/ψ. Since ψ is fermionic in spin and statistics and since it braids
nontrivially with at least one other nontrivial object in C (from its assumed nontransparency), we must utilize both spin structures and the
back wall construction in the condensation procedure.

The objects of C/ψ are the same as the objects of C. Similarly, morphisms of the condensed theory are defined via morphisms in the
parent theory: the even and odd parts of the morphism super vector space are given (up to isomorphism) by

morC/φ(a→ b)0 ≅ morC(a→ b), (89)

morC/φ(a→ b)1 ≅ morC(a→ b⊗ψ). (90)

To be more precise, the morphism space assigned to a disk with a boundary condition is the space of all back wall diagrams modulo
local relations. [More concretely, the even part of this morphism space is the corresponding morphism space in the parent category C, and
the odd part of this morphism space is (up to isomorphism) the morphism space of C obtained by adding ψ to the boundary condition.] In
order for these relations to make sense, the disk must be equipped with a spin structure. This morphism space is a super vector space, with
the Z2-grading given by the number of ψ endpoints in the diagram modulo 2. The composition of morphisms is given by gluing diagrams
together. We can take the domain of the composition map to be the unordered tensor product (see Sec. VIII E) of the two morphism spaces
we are combining. When doing computations, it is necessary to choose an ordering and to take Koszul signs into account.

It follows from our assumptions about ψ that if α is a simple object of C, then α ⊗ ψ is also a simple object of C. There are two cases:

● If α ⊗ ψ is not isomorphic to α, then α and α ⊗ ψ are both m-type objects of C/ψ. While α and α ⊗ ψ represent distinct equivalence
classes of simple objects in C, they belong to the same equivalence class in C/ψ. More specifically, α and α⊗ ψ are oddly isomorphic in
C/ψ via a diagram with a single ψ dot [see Fig. 6(a)].● If α ⊗ ψ ≅ α, then α becomes a q-type simple object in C/ψ. The odd endomorphism from α to itself is as shown in Fig. 6(b).

FIG. 6. (a) An m-type particle α. The fermion ψ (blue dot) is an odd map from α to α ⊗ ψ, with α ≇ α ⊗ ψ. (b) A q-type particle α with α ≅ α ⊗ ψ, where ψ now acts as an
odd endomorphism.

J. Math. Phys. 60, 121901 (2019); doi: 10.1063/1.5045669 60, 121901-27

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

We will sometimes use the notation

sobr(C/ψ) ≙ sobmr (C/ψ) ⊔ sobqr (C/ψ), (91)

with sobmr (C/ψ) being a complete set of representatives for m-type simple objects and sob
q
r (C/ψ) being a complete set of representatives for

q-type simple objects.
C/ψ is not a braided category, since the back wall used in the condensation procedure prevents us from braiding particles completely

around one another. However, it does have the structure of a front-braiding by C, since we are allowed to pass ψ worldlines between other
particle worldlines and the back wall. [Another way of saying this is that C/ψ is a (fermionic) module 2-category for the 3-category C. Yet
another way of putting it is that C/ψ is a codimension-1 defect between C and the vacuum.]

A particularly simple class of condensed theories obtained from condensing a nontransparent fermion in a braided theory are provided
by the C2(n+1) = A4n+3/ψ series, where Ak is the category whose principal graph is the Dynkin diagram of the Lie algebra slk+1, and Ck is the
category whose principal graph is the Dynkin diagram of the Lie algebra sp2k. The choice n = 0 corresponds to the Ising example considered
in Sec. II.

2. Condensing transparent fermions in a braided category

In this subsection, we make the same assumptions about ψ and C as in Sec. IV A 1, but we replace the assumption of nontransparency of
ψ with the assumption that ψ is transparent in C, meaning that it braids trivially with every other particle in C.

Since ψ is transparent, we do not need the back wall when performing the condensation. We still need a spin structure, however (since
θψ = −1), and we also need to keep track of Koszul signs (since ψ has fermionic statistics).

The resulting category C/ψ is a fermionic braided pivotal category. The absence of the back wall is what allows for C/ψ to possess a full
braiding (rather than the “front-braiding” forced on condensed theories where back walls are needed). We will construct an example of such
a theory in Sec. VI, where we condense a transparent fermion in the SO(3)6 theory.

We note that q-type particles can never arise in the condensed theory if ψ is transparent. To see this, we note that if α ⊗ ψ = β for α and
β simple objects of C, it follows that

θβ ≙ θαθψ ≙ −θα, (92)

where the first equality is because ψ is transparent. It follows that α ≇ β in C, and hence, α descends to an m-type simple object in C/ψ, since if
α were q-type, we would have α ⊗ ψ ≅ α.
3. Condensing objects that lift to fermions in the Drinfeld center

In this section, we drop the assumption that C has a braiding. We will describe how to condense an object y of C, which lifts to a fermion
in the Drinfeld center Z(C). An instance of this construction is the 1

2
E6 theory we study in detail in Sec. VII.

The basic idea is as follows: The tensor category C can be thought of as a module for the braided category Z(C). In terms of string net
pictures, this means that C string nets can be thought of as living on the 2d boundary of a 3d bulk of Z(C) string nets. We can, if we like,
restrict the bulk to only contain strings from a subcategory of Z(C), in particular, the subcategory generated by 𝟙 and the lift of y. We can
now do the back wall construction on the opposite side of the bulk and proceed as before (see Fig. 7).

Now, for a few more details.
To condense y, we first need to lift y to Z(C), which means defining half-braidings for y. For a formal definition of half-braid, see Ref. 24

(Definition 3.1 and Lemma 3.3). A half-braid on an object y ∈ C is an isomorphism from y ⊗ r → r ⊗ y for each r ∈ C, the isomorphism being
the half-braiding of y with r. We will denote these isomorphisms as ey(r) and write them diagrammatically as

FIG. 7. On the left, we have a 3d box. The front of the box is a 2d boundary on which C string nets are drawn (viewed as a module for Z(C)). The bulk of the box contains
braided nets from Z(C), which we restrict to ψ. The back of the box can be viewed as a trivial boundary to the vacuum. The right picture shows the box after performing
back wall condensation on ψ ∈ Z(C). The ψ lines terminate on the back boundary at marked points 1, 2, 3, and 4.
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(93)

One should think of the box braiding y under r. We could equally well think of this as braiding y over r, but since we will use the “back wall
condensation” procedure to condense y, it is natural to choose y braiding under r.

Using the semisimplicity of C, we can write ey(r) as

(94)

Not any isomorphism ey(r) is allowed; ey(r) must satisfy some consistency conditions. For example, braiding with the identity object
should be trivial (up to unitors),

(95)

The most important property of the braiding isomorphisms is that they commute with fusion, meaning that they can freely slide past the

fusion spaces Vab
c ,

(96)

Taking (94) and inserting it into (95) and (96) allows one to find the ∥ey(r)∥w defined in (94).
In order to do fermion condensation, we require y to lift to a fermionic object. Fermionicity under exchanges means that

ey(y) ≙ − idy ⊗ idy. (97)

If the quantum dimension of y is 1, then the spin-statistics theorem will imply that the lift of y is also fermionic with respect to twists.
Once a fermion has been defined, one can proceed with the techniques of Secs. IV A 1 and IV A 2. We will provide an example of such a

condensation in Sec. VII.

4. Condensing nontransparent fermions using spin defects instead of a back wall

In this section, we briefly comment on another way to condense nontransparent fermions through a type of flux attachment, which does
not make use of the back wall construction and allows the condensed theory to remain braided (for a braided input category). For related
ideas, see Refs. 19 and 39.

The construction proceeds schematically as follows: We allow the ψ worldlines to be absorbed into the vacuum at any point. In this
picture, the ψ lines end anywhere in 3-space, and they are not restricted to terminate on a back wall. In order to resolve problems with
the twist and self-statistics of ψ, we must couple the ψ endpoints to a spin structure and introduce Koszul signs, as before. This yields an
inconsistent theory if ψ is not transparent [see (17)].
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However, this inconsistency is rather mild. A natural way to distinguish the simple objects in C to use the Z2 grading inherited from the
full braid of objects with ψ. This can be defined by the indicator

(−1)νx ∶≙ Saψ/Sa0 ∈ {+1,−1}. (98)

It is easy to check that this grading is preserved under fusion. Hence, we can partition the simple objects in C as

sobj C ≙ I0 ∪ I1, (99)

where Ik is the set of simple objects x with νx = k. Since Ia ⊗ Ib = Ia+b mod 2, this is a Z2 grading of the simple objects. It can be shown that in
any UBFC, νx = 1 for all q-type objects (those for which x ⊗ ψ ≅ x). Indeed, if x braided trivially with ψ and x ⊗ ψ ≅ x, then it would follow
that θx = θxθψ = −θx, a contradiction. Therefore, for a given object a ∈ C, ψ must either be transparent with respect to a or be nontransparent
only by a minus sign.

We now observe that the problem in (17) would be surmounted if the “box” (the physical fermion attached to the ψ endpoint) had a −1
braiding phase when taken around any anyon with which ψ braids nontrivially. This extra −1 braiding phase cannot be due to the presence
of any additional anyonic degrees of freedom, since the physical fermions braid trivially with any emergent anyon. However, there is actually
a very natural way to do this: bind spin structure defects to the worldlines of anyons x with which νx = 1. If the x worldlines get bound to
spin structure defects during the condensation process, then a box will pick up a factor of −1 when traveling around a x line (when it passes
through the branch cut), which cancels the −1 sign from the braiding of x and ψ and solves the transparency inconsistency. The spin structure
defects have Z2 fusion rules, and so this procedure is consistent since the Z2 grading of objects in (99) is preserved under fusion. This allows
the condensation to go through without the use of the back wall construction, which allows us to perform fermion condensation without
sacrificing the existence of a braided structure.

This picture also gives us a schematic physical interpretation of how to invert the condensation procedure. To go the other way and
uncondense ψ, we just decouple the x lines from the spin structure defects. This gives us a phase consisting of the MTC C together with a loop
gas of spin structure defects. The loop gas of spin structure defects confine free ψ endpoints, forcing all ψ worldlines to be closed and restoring
the original phase.

B. The tube category of C/ψ
The quasiparticle excitations in a bosonic topological phase obtained from a category C are given by the simple objects in the Drinfeld

center Z(C).25 These excitations are also naturally described by minimal idempotents of a category called the tube category of C (see, e.g.,
Refs. 24 and 40–45, also variously referred to as the tube algebra and the Q-algebra), which we will write as Tube(C).

The tube category was first introduced by Ocneanu22 and has since been dubbed “Ocneanu’s tube algebra;” it is also referred to as
the annular category Ann(C) or the categorified degree zero Hochschild homology of C. It is closely related to the Drinfeld center: If C is
pivotal, then there is a natural isomorphism Rep(Ann(C)) ≅ Z(Rep(C)), and if C is semisimple, then we can drop the Reps and obtain
Ann(C) ≅ Z(C). With appropriate modifications accounting for spin structure issues, a similar construction holds in the more general
fermionic setting considered here.

We will now define two categories TubeB(S) and Tube
N(S) for a string-net TQFT derived from a given super pivotal category S. We

will postpone the most general definition of a super pivotal category until Sec. VIII. However, categories obtained from fermion condensation
S ≅ C/ψ all constitute examples of super pivotal categories (and provide all the examples of super pivotal categories discussed explicitly in this
paper), and so the reader may substitute C/ψ for S in what follows before reading the more general definitions in Sec. VIII.

The objects of the two spin tube categories TubeB(S) and Tube
N(S) are defined as isomorphism classes of string-net boundary condi-

tions on spin circles with bounding and nonbounding spin structures, respectively. For each spin tube category, we will fix a representative spin
circle with which to define its objects. Other possible choices of spin circles are related to the chosen representative by spin diffeomorphisms,
and the exact specification of the particular representative will be unimportant in our analysis.

Themorphism spaces of the tube category are finite linear combinations of spin annuli decorated with different string-net configurations.
Again, we will fix a particular representative spin annulus for each spin structure to use when defining morphisms, with other choices being
related by spin diffeomorphisms. Figure 8 shows some examples of morphisms in the tube category.

FIG. 8. Some examples of morphisms in Tube(S), with S being a super pivotal category obtained through a fermionic quotient (S/ψ) or more generally a category satisfying
the assumptions laid out in Sec. VIII. We have written the annulus as a square with (unmarked) left and right sides identified. At the bottom left of each annulus, we have
denoted the spin structure of the annulus by B (or N) for bounding (or nonbounding). The labels a, b, c, d ∈ sobr(S), and ν ∈ morS(d⊗ b→ c), and μ ∈ morS(a→ b⊗ d).
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Up to isomorphism, every object in the tube category is isomorphic to a direct sum of objects with an exactly one string net endpoint on
the circle. Put another way, the full subcategory spanned by such one-endpoint objects is Morita equivalent to the entire category. This means
that for purposes of, for example, enumerating equivalence classes of minimal idempotents or computing Hilbert spaces (ground states),
we can restrict our attention to the one-endpoint subcategory. Indeed, we will usually do so without comment. [Note, however, that it is
sometimes convenient to work in the larger category (see, e.g., Sec. V B).]

In the one-endpoint subcategory, morphism spaces can be presented as

(100)

where a, b, c, and d are simple objects in S and X ∈ {B, N} denotes the spin structure of the annulus. The multiplicity indices μ and ν are

collective indices that denote the vector in the fusion spaceVdb
a andVcd̄

b as well as the ordering of the tensor product (Vdb
a ⊗Vcd∗

b orVcd∗

b ⊗Vdb
a ),

which forms the Hilbert space of the tube.
We define the full tube category Tube(S) to be the direct sum

Tube(S) ≅ TubeB(S) ⊕ Tube
N(S). (101)

In what follows, we will mostly think of Tube(S) as the fundamental category of interest. This is because in what follows, we will be led to
consider a ⊗ structure on Tube(S), which mixes the two spin components (we defer a discussion of this to Sec. IV D).

The composition of morphisms in Tube(S) is defined by stacking tubes together. Graphically,

(102)

The δ functions ensure that if the string labels of the two tubes do not agree on the boundary on which they are being glued (i.e., if b ≠ c) or if
the spin structures of the two tubes disagree, the two tubes compose (or multiply) to zero.

Before moving on, we briefly remark on the physical interpretation of the tube category. In Sec. IX, we will define a Hamiltonian whose
ground state wavefunctions assign amplitudes to string nets in such a way that equivalent string nets receive equal amplitudes. [In other
words, the ground states are naturally identified with the string net TQFT Hilbert space Z(Y ; c), where Y is a spin surface and c is a boundary
condition.] Let S be a boundary component of Y, which we will think of as a puncture. We can act on the space of string nets of Y [also known
as A(Y ; c)] by gluing morphisms of the tube category (which are string-net-decorated spin annuli) to Y at S. Dually, we get an action of the
tube category on the ground state vector spaces Z(Y ; c) (for various values of c). If we like, we can think of this action of the tube category as a
scale transformation (see Ref. 44). We can also think of it as a generalized symmetry of the Hamiltonian. The collection of ground states Z(Y ;
c) can be decomposed as a direct sum of irreducible representations of the tube category. The irreducible representations of the tube category
are thus identified with the elementary particles (i.e., anyons) of the theory. Using the usual correspondence between minimal idempotents
and irreducible representations, we can also identify the minimal idempotents of the tube category with anyons (see the end of Sec. IX C 3 for
more details).

1. Traces and inner products

Recall that a trace on a super linear category T is an even linear function from endomorphisms to C, satisfying

tr(fg) ≙ tr(gf ), (103)

for all f ∈mor(x→ y) and g ∈mor(y→ x). [Note that tr(f ) = 0 if f is odd, since tr is an even function. Note also that there is no Koszul sign in
(103).]

All of the categories we consider have a reflection structure46 (more specifically, a pin+ reflection structure), which is an order 2 antilinear
antiautomorphism of T [i.e., mor(x → y) is sent to mor(y → x), for all objects x and y]. We will denote the image of a morphism f under
reflection as f̄ . The antiautomorphism property has the usual Koszul sign

fg ≙ (−1)∣f ∥g∣gf . (104)
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A trace is equivalent to a collection of sesquilinear inner products on mor(x→ y) satisfying

⟨fg,h⟩ ≙ (−1)∣g∥h∣⟨f ,hḡ⟩ and ⟨fg,h⟩ ≙ (−1)∣f ∥h∣⟨g, f̄ h⟩. (105)

The trace and inner products are related by

tr(f ) ≙ ⟨f , idx⟩ and ⟨g,h⟩ ≙ tr(gh̄) (106)

for f ∈ mor(x → x) and g, h ∈ mor(x → y). A trace is called nondegenerate if the corresponding inner product is nondegenerate in the usual
sense (on each morphism space individually).

We now recall two facts about TQFTs. The first is that we can define a nondegenerate pairing on the predual Hilbert space A(Y ; a1, . . .,
ak), where Y is a spin surface with k disjoint boundary components and the ai are tube category idempotents, satisfying āi ≙ a∗i , which specify
boundary conditions at each boundary component. The nondegenerate pairing is defined via

⟨u, v⟩ ≙ Z(Y × I)(u ∪ v̄), (107)

where the bar denotes the reflection map from A(Y ; a1, . . ., ak) to A(−Y ; a1, . . ., ak). Here, we are using the “pinched boundary” condition for
Y × I so that ∂(Y × I) = Y ∪−Y. In other words, we glue together the string nets u and v̄ to get a string net on ∂(Y × I), and then we evaluate
the path integral of Y × I with the u ∪ v̄ string net as the boundary condition.

The second fact concerns the path integral of 3-manifolds of the form Y ×S1B or Y ×S1N . Let c be a string net on (∂Y) × S1 (with either spin
structure on S1). (∂Y) × S1 is a disjoint union of tori, and we can cut these tori open into a disjoint union of annuli. Let c′ denote the cut-open
string nets on the annuli. Note that c′ is not uniquely determined by c; c′ depends on where we cut the tori. The string net c′ determines a
linear map

g(c′) : A(Y ; ai)→ A(Y ; ai), (108)

given by gluing the c′ annuli on to the boundary of a string net on Y. The gluing rules for the path integral imply that

Z(Y × S1B)(c) ≙ tr(g(c′)) (109)

and

Z(Y × S1N)(c) ≙ str(g(c′)), (110)

where str denotes the supertrace, which is the trace weighted by the fermion parity operator, i.e., str(f ) = tr((−1)Ff ). The association of the
trace (supertrace) with the B (N) spin structure was also noted in Ref. 27. Note that the partition functions above are independent of the details
of the cutting procedure; any choice of cutting curves and any choice of c′ will yield the same answer on the RHS above.

We now apply the above to the case where Y is an annulus to obtain a nondegenerate trace on the tube category. In what follows, we
will continue to let S be a super pivotal fusion category satisfying the assumptions of Sec. VIII (e.g., one coming from a fermionic quotient).
Letting t ∈ TubeW(S) and writing tr(t) for the trace of t, we can use (106) to write

tr(t) ≙ ⟨t, id⟩ ≙ Z((S1W × I) × I)(t ∪ id) ≙ Z(S1W ×D2)(t ∪ id) ≙ Z(S1W ×D2)(cl(t)). (111)

Diagrammatically, we can write the evaluation of the partition function on the right-hand side of (111) as the trace of a matrix, through

(112)

where we have made use of the graphical representation of the endomorphism t in the first equality. The solid cylinder in the third equality
provides a linear map from the disk at the origin of the x line to the disk at the end of the x line, with each disk possessing a single marked
point on its boundary labeled x. The subscript W denotes that the solid cylinder was found by cutting open a cycle with spin structure W.
From (109) and (110), we see that trW will be a trace if W is bounding and a super trace if W is nonbounding. The source and target of this
linear map is mor(𝟙→ x), which we write as the vector space assigned to a disk with one marked point labeled x,

(113)
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with μi denoting a complete basis of morphisms for mor(𝟙 → x). We allow for x ≅ a1 ⊗ a2 ⊗⋯ ⊗ ak so that a basis of mor(𝟙 → x) could be
relatively large. Often x will denote a simple object and so mor(𝟙→ x) will be zero or one dimensional,

(114)

The linear map induced by the cut on these basis elements is given by

(115)

The coefficients gij are found by reducing the middle diagram using local relations. As usual, the trace is basis independent and any basis of
mor(𝟙→ x) will do.

Let us introduce the notation

s(X) ≙ {1 if X ≙ B Bounding

−1 if X ≙ N Nonbounding.
(116)

Explicitly, (112) is then given by

trW(g) ≙∑
j

gjjs(W)∣μj ∣. (117)

IfW is bounding, then s(W) = 1 and (117) is just tr(g). On the other hand, ifW is nonbounding, then s(W) = −1, and (117) is the super trace
str(g).

This trace is defined for the tube category of any super pivotal category satisfying the assumptions of Sec. VIII. The inner product
obtained from the trace is even, in the sense that ⟨v, w⟩ = 0 if |v| ≠ |w|.

In summary, the trace on the tube category is obtained as follows: Start with a string net t on the annulus S1W × I. Cut t along an interval
to obtain a string net on a square. Rotate this square π/2 and then reglue (with bounding spin structure) to obtain a new annular string net
rot(t) on S1B × I. Gluing rot(t) to the boundary of a disk induces a linear map rt on disk string nets. IfW = B, then tr(t) = tr(rt), where the tr on
the RHS is the usual linear algebra trace. If W = N, then tr(t) = str(rt), where the str on the RHS is the usual linear algebra super trace. Note
that rot(t) and rt depend on the choice of initial cut, but tr(rt) and str(rt) are independent of this choice.

We now compute some traces that illustrate the techniques described in this section, which will also be of use to us later.
First, we compute the norm squared of a single strand on an annulus with empty boundary conditions. We denote by clB(x) the closure

of x ∈ sobr(S) on an annulus with bounding spin structure,

(118)

The norm squared of clB(x) is

⟨clB(x), clB(x)⟩ ≙ trB{id : mor(𝟙→ x ⊗ x
∗)→ mor(𝟙→ x ⊗ x

∗)}. (119)

Since mor(𝟙→ x ⊗ x∗) ≅ mor(x → x) ≅ End(x), we get
⟨clB(x), clB(x)⟩ ≙ dimEnd(x) ≙ {1 if x is m-type

2 if x is q-type.
(120)

We can also compute the quantum dimensions dej of the minimal idempotents in Tube(S). The un-normalized quantum dimension d̃ej
is defined by the trace of the idempotent,

d̃ej ≙ tr(ej). (121)

The normalized quantum dimension dej is then given by d̃ej/d̃e0 , where e0 is the trivial idempotent. For example, in the C2 theory, we can use

this approach to obtain d̃m𝟙/ψ
≙ 1/2, d̃m+

σ
≙ d̃q𝟙/ψ ≙ 1/√2, d̃qσ ≙ 1. Normalizing so that dm𝟙

≙ 1, we obtain the normalized quantum dimensions
listed in Table IV.
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The total squared dimension D
2 of the theory is defined to be ⟨S2ϕ, S2ϕ⟩, the inner product of the empty diagram on the 2-sphere with

itself. We can then compute

⟨S2ϕ, S2ϕ⟩ ≙ Z(S2 × I)(S2ϕ ∪ S2ϕ) ≙ ∑
x∈sobr(S)

Z(B3, cl(x))Z(B3, cl(x))
⟨clB(x), clB(x)⟩ , (122)

where B3 is the 3-ball and Z(B3, cl(x)) denotes the partition function of a 3-ball with a closed x loop on its surface. To obtain the second
equality, we have written S2 × I as a union of two manifolds homeomorphic to B3 glued along a bounding annulus and have made use of

the gluing axioms of TQFT. We can compute Z(B3, cl(x)) ≙ Z(B3, cl(x)) ≙ dx by definition of the quantum dimension, and hence, the total
squared dimension is given by

D
2 ≙ ∑

x∈sobr(S)

d2x
dimEnd(x) . (123)

A similar derivation recovers (42), where we pointed out that clN(β) is zero. Let us see how this works out in the tube category Tube(S).
Let x ∈ sobr(S), and it follows that

⟨clN(x), clN(x)⟩ ≙ trN{id : mor(𝟙→ x ⊗ x
∗)→ mor(𝟙→ x ⊗ x

∗)} ≙ {1 if x is m-type

0 if x is q-type.
(124)

The last equality follows from mor(𝟙 → x ⊗ x∗) ≅ End(x) and that trN is the super trace of id: End(x) → End(x). More explicitly, if x is

m-type, then as a vector space, End(x) ≅ C and str{id : C → C} ≙ 1. On the other hand, if x is q-type, then as a vector space, End(x) ≅ C1∣1

and

str{id : C1∣1 → C
1∣1} ≙ tr{(−1)F : C1∣1 → C

1∣1} ≙ 1 − 1 ≙ 0. (125)

Hence, a q-type idempotent closed up to an annulus with nonbounding spin structure has norm zero. Similarly, one can show that ⟨clN(γ),
clN(γ)⟩ = 2 when x is q-type and gamma is an odd endomorphism such that γ2 = id.

We now show that closing up a q-type idempotent ofTube(S) onto a torus results in a state with norm√2. Let x be aminimal idempotent
of Tube(S) and clW(x) ∈ A(T2) be the string net found by closing x onto a torus with spin structure W along the newly closed cycle. First,
consider the case whereW = B. The norm squared of clB(x) is

⟨clB(x), clB(x)⟩ ≙ Z(T2 × I)(clB(x) ∪ clB(x)) ≙ Z((S1 × I) × S1B)(clB(x) ∪ clB(x)). (126)

In the third equality, we have rewritten the torus in a form where we can readily apply Eq. (109) or Eq. (110). The role of Y is played by
S1 × I, an annulus with the spin structure determined by x. Furthermore, we can assume a boundary condition given by the idempotent x on
each boundary component of the annulus. We will also assume that x̄ ≙ x. The linear map we need to take the matrix (super) trace of is just
the identity map, so

⟨clB(x), clB(x)⟩ ≙ dimEnd(x). (127)

A similar calculation for the nonbounding torus yields the same answer; however, the q-type idempotents need to be closed with an odd
endomorphism.We can now justify the mysterious normalization factor introduced in (78) when closing up q-type idempotents on the torus.
A complete orthogonal basis for the torus is given by closing up a complete set of representatives of minimal idempotents. To find a unitary

S-matrix, we require each of the basis states to have unit norm; hence, we divide closed up q-type idempotents by
√
2.

Finally, we point out a useful relation between the total dimension of a pivotal fusion category C and its fermionic quotient C/ψ. Let C be
a pivotal fusion category, ψ ∈ Z(C) be a fermion with ψ ⊗ ψ ≅ 𝟙, and C/ψ be the fermionic quotient of C, then

D
2
C ≙ 2D2

C/ψ (128)

if in addition we assume that C is a modular tensor category, we also have

D
2
Tube(C/ψ) ≙ D2

CD
2
C/ψ . (129)

To show (128), we simply note

D
2
C ≙ ∑

x∈sobr(C)
d
2
x ≙ ∑

x∈sobmr (C/ψ)
d
2
x + d

2
x⊗ψ + ∑

q∈sobqr (C/ψ)
d
2
x . (130)

Since dx⊗ψ = dxdψ = dx, we can write

D
2
C ≙ 2 ∑

x∈sobmr (C/ψ)
d
2
x + ∑

x∈sobqr (C/ψ)
d
2
x ≙ 2 ∑

x∈sobr(C/ψ)

d2x
dimEnd(x) ≙ 2D2

C/ψ , (131)
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and hence (128). For the C2 theory, this works out as DC2 ≙
√
2 ≙ DIsing/√2. Using (128) and specializing to the case where C is a modular

tensor category, then Tube(C/ψ) ≅ C × (C/ψ) (a result that we prove in Sec. V C) and we have

DTube(C/ψ) ≙ DCDC/ψ . (132)

For example, in the C2 theory, this is verified byDTube(C2) ≙
√
8 ≙√2(√2)2 ≙√2D2

C2
.

2. The sum-of-squares formula

When analyzing tube categories, we are often presented with a collection of nonsimple objects x1, x2, . . . (e.g., single string net endpoints),
together with the super dimensions of the vector spaces mor(xi → xj). From this, we want to deduce a complete set of minimal idempotents
{eα}, together with isomorphisms

xi ≅⊕
α

Wiα ⋅ eα, (133)

where the {W iα} are supervector spaces. We will show in (318) how to compute morphism spaces between objects that are of the form of those
in the RHS of (133). Applying (318) yields

mor(xi → xj) ≅⊕
α

Hom(Wiα →Wjα)⊗C End(eα). (134)

When i ≠ j, this is merely an isomorphism of supervector spaces, but when i = j, this is an isomorphism of super algebras.
It is frequently possible, given the left hand side of (134) and a small amount of additional information, to solve for the things on the

right-hand side: the idempotents {eα}, their types, and the coefficients W iα. This is useful since the morphisms that constitute the left-hand
side are often very easy to enumerate: they are simply the different tubes in Tubexi→xj . In terms of super dimensions, setting i = j, we have

dim(mor(xi → xi)) ≙∑
α

dim(End(Wiα))dim(End(eα)). (135)

This is a fermionic “sum-of-squares” formula since dim End(W iα) will always be the square of an integer.
For example, we can consider the space morX(𝟙 → 𝟙) in the C2 theory. Letting X = B, we see immediately from (40) that mor(xi → xi)

has super dimension 2|0, meaning that there must be two summands on the RHS of (135) and hence two minimal idempotents in Tube
B
𝟙→𝟙.

Letting X = N, we read off a super dimension of 1|1, which implies that there is only one q-type idempotent in Tube
N
𝟙→𝟙. Similarly, from (40),

one verifies that the super dimensions of morX(β → β) are each 2|2, meaning that each sector must contain either one m-type idempotent
with dim End(Wα) = 22 or two q-type idempotents eα with dim End(Wα) = 1 (although the latter is ruled out if X = B since TubeB can host no
q-type idempotents). Thus, one can learn a good deal about the number of minimal idempotents and their type in the tube category simply
from a list of the nonzero linearly independent tubes.

In Sec. VII D, we will see a further example of these techniques.

C. Ground states on the torus

In what follows, we will let TXY with X, Y ∈ {B, N} denote the torus with spin structure XY (with spin structure X along the meridional
cycle and Y along the longitudinal cycle) and A(TXY ) denote the Hilbert space of ground-state string-net configurations on TXY . As before,
we will also let TubeB denote the bounding tube category and Tube

N denote the nonbounding tube category.
We have the following theorem, valid for any super pivotal category, which allows us to determine the ground states on a torus from the

tube category:

Theorem IV.1 Let X equal B or N. The Hilbert space A(TXB) is purely even, with an orthogonal basis given by closed-up idempotents

{cl(ei)}, where ei runs through a set of representatives of the minimal idempotents of TubeX . The Hilbert space of TXN is isomorphic to C
p∣q,

where p is the number of m-type idempotents of TubeX and q is the number of q-type idempotents of TubeX . An orthogonal basis is given by
{cl(ei)}, where ei runs through a set of representatives of the minimal m-type idempotents of TubeX , union {cl(γj)}, where γj runs through a set

of representatives of odd endomorphisms of the minimal q-type idempotents of TubeX .

The proof of the above claim consists of a sequence of fairly simple observations:

1. Let c be an object of TubeX and let f ∈ End(c). Recall that f is a linear combination of string nets on the annulus (with spin structure X),
with boundary conditions c on both boundary components of the annulus. We can, therefore, glue up f to obtain a new string net cl(f )
(the closure of f ) on either TXB or TXN . This map is clearly linear, so we have a linear map clc: End(c)→ A(TXY ), where Y is either B or
N. (For future reference, we will call the image of the boundary of the annulus in the torus K.)

2. Taking (finite) sums over different boundary conditions, we have a linear map

cl :⊕
c

End(c)→ A(TXY), (136)

where c ranges over all possible boundary conditions. (Note that even though c ranges over an uncountable set, the direct sum consists
only of finite linear combinations; there are no convergence issues.)
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3. The map cl is surjective. This is because any string net on the torus is, after a small isotopy, transverse to the gluing locus K.However, cl
is very far from being injective, so our next task is to characterize the kernel of cl.

4. One way of constructing elements in the kernel of cl is as follows: Let c and d be two objects of TubeX . Let g: c→ d and h: d→ c. Then,
gh ∈ End(c) and hg ∈ End(d). We have

cl(gh) ≙ (−1)∣g∣∣h∣s(Y)∣h∣cl(hg), (137)

where s(B) = −1 (antiperiodic) and s(N) = 1 (periodic). This follows from the fact that the two string nets cl(gh) and cl(hg) are isotopic

via a “shift” isotopy, which pushes h past the gluing locus K. The factor of (−1)|g||h| is the usual Koszul sign. The factor of s(Y)|h| comes
from sliding h past the spin structure branch cut at K (see Fig. 9). It follows that elements of the form

gh − (−1)∣g∣∣h∣s(Y)∣h∣hg ∈⊕
x

End(x) (138)

are in the kernel of cl.
5. In fact, elements of the form (138) generate all of the kernels of cl. In the bosonic case, this is a standard fact (see Ref. 26). The proof for

the fermionic case is exactly the same, except that we have to keep track of Koszul signs and signs coming from the spin structure. The
key idea of the proof is that any isotopy of the torus can be decomposed into (a) isotopies that are fixed near K and, therefore, can be
lifted to isotopies of the annulus and (b) a “shift” isotopy as described above. In summary,

A(TXY) ≅ (⊕
x

End(x))/⟨gh − (−1)∣g∣∣h∣s(Y)∣h∣hg⟩. (139)

6. In the semisimple case, expression (139) can be greatly simplified. Let {ei} be a complete set of minimal idempotents for TubeX . Any
endomorphism f can be written as a sum of endomorphisms of the form f ′eif

′′. Using (138), we see that the subspace (of the big direct
sum) ⊕

i

End(ei) (140)

maps surjectively to A(TXY ). Furthermore, because the minimal idempotents are orthogonal (in the sense that eifej is zero for any f
unless i = j), the only relations we have to consider are of the form

gh − (−1)∣g∣∣h∣s(Y)∣h∣hg, (141)

where both g and h are endomorphisms of ei. The theorem now follows:

If ei is m-type, then (141) is always zero and we get a summand of C1∣0 in A(TXY ). If ei is q-type and Y is B, then any odd endomorphism

is of the form (141) and we get a summand of C1∣0. If ei is q-type and Y is N, then any even endomorphism is of the form (141) and we get a

summand of C0∣1.
A useful corollary of Theorem IV.1 is that all the idempotents of TubeB must be m-type. Since TBN is spin diffeomorphic to TNB, we can

compute the Hilbert space for these spin surfaces in two different ways, one using idempotents of TubeB and the other using idempotents of
Tube

N . By the first part of the theorem, the Hilbert space of TNB is purely even. By the second part of theorem, the dimension of the odd part
of the Hilbert space of TBN is given by the number of q-type idempotents of TubeB. Since the two Hilbert spaces are isomorphic, there can be
no q-type idempotents in Tube

B.
A similar argument shows that the total number of (equivalence classes of) minimal idempotents of TubeB must equal that of TubeN .

D. Fusion rules

In this subsection, we will define the fusion (tensor product) of representations of the tube category.
We begin with some general observations. Let Y be a spin surface with k boundary components, denoted by S1, . . ., Sk. Let Ti denote

the tube category corresponding to the circle Si. Each Ti is (noncanonically) isomorphic to either TubeB or TubeN . (In order to make the
isomorphisms canonical, we must choose a spin framing in each boundary component.) Given objects ci of Ti, for 1 ≤ i ≤ k, we have a super
vector space A(Y ; c1, . . ., ck) consisting of string nets on Y, modulo local relations, with boundary conditions ci at Si.

FIG. 9. A graphical illustration of how to interchange morphisms in the tube category. The labels 1 and 2 denote the order in which the morphisms g and h appear in tensor
products. The factor of s(Y ) comes from transporting h around the torus, and the factor of (−1)|g∥h| is the usual Koszul sign.
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We can then glue morphisms of Ti (tubes) onto Si to obtain a new string net with (possibly) different boundary condition. A concise
way to describe this algebraic structure is to say that the collection of super vector spaces {A(Y ; c1, . . ., ck)} (for all possible values of c1, . . ., ck)
affords a representation of the category T1 ×⋯ × Tk. We will denote this representation by A(Y).

To define the fusion rules of excitations, we take Y to be the pair of pants (also known as a three-punctured sphere), which we will denote
as P.

There are four spin structures on P. In one of them, all three boundary components have a bounding spin structure, while in the remain-
ing three, two out of the three boundary components have a nonbounding spin structure. We will choose a standard representative for each
of these spin pairs of pants so that each boundary component is equipped with a spin diffeomorphism to a standard copy of S1B or S

1
N .

Let Ta, Tb and Tc denote the three copies of the tube category associated with the boundary components of P. Given representations ρa
and ρb of Ta and Tb, we can define a new representation of Tc, denoted ρa ⊗ ρb, via

ρa ⊗ ρb ≙ (ρa ⊠ ρb)⊗Ta×Tb
A(P). (142)

Here, ρa ⊠ ρb denotes the “outer” tensor product (so that ρa ⊠ ρb is a representation of Ta × Tb) and A(P) is the trimodule defined above, built
out of vector spaces of string-net configurations (modulo local relations) on P with all possible boundary conditions. Informally, ρa ⊗ ρb is
found by taking a superposition of tubes carrying ρa and ρb (which is the outer product ρa ⊠ ρb) and gluing them onto a pair of pants [given
by A(P)]. The algebraic implementation of gluing is the tensor product ⊗Ta×Tb

.
If ρ is the representation (i.e., module) determined by an idempotent e (as described at the start of Sec. III B), then the above association of

ρ with a boundary component is equivalent to imposing e as a boundary condition in an annular neighborhood of that boundary component.
Note that the spin structure grading of the tube category (and its modules) is respected by the above tensor product,

B ⊗ B ≙ B, B ⊗ N ≙ N, N ⊗ N ≙ B, (143)

where B(N) is shorthand for the bounding (nonbounding) sector of the tube category.

E. Dimension formula

In this subsection, we give a Verlinde-type formula for the super dimension of the Hilbert space of a surface Y.

1. The formula

Let Y be a spin surface with boundary components U1, . . ., Uk. Each U i inherits either a bounding (also known as antiperiodic or
nonvortex) spin structure or a nonbounding (also known as periodic or vortex) spin structure.

Let a1, . . ., ak be a set of labels for ∂Y. Each ai is a minimal idempotent in the tube category TubeUi(C) (which is isomorphic to either
Tube

B(C) or TubeN(C)), either a nonvortex anyon or a vortex anyon (according to the spin structure on U i). The predual Hilbert space of

string-net configurations on Y with boundary conditions determined by the ai is A(Y ; a1, . . . , ak) ≅ Cp∣q for some integers p, q. Our goal is to
compute p and q.

Let Sab denote the normalized, unitary S-matrix. The indices a and b are closed-up idempotents on a spin torus. They are specified by giv-
ing an idempotent (either bounding or nonbounding) together with the way the annulus was glued to obtain the torus (again either bounding
or nonbounding, independent of the bounding/nonbounding status of the idempotent). The idempotent a is glued up in a (non)bounding

way if b is a (non)bounding idempotent, and vice versa.47 If the idempotent is q-type, it is rescaled by 1/√2 to obtain a unit vector in A(T2),
the vector space of string-net configurations modulo local relations on the torus (see Sec. IV B 1). (Note that there is still some ambiguity for
entries in the S-matrix corresponding to odd vectors in T2

NN , but the formulas below will not use these S-matrix entries.)

Let S′ab be Sab if a is m-type and
√
2 ⋅ Sab if a is q-type. Note that S′ab is asymmetric in a and b; we are undoing the normalization for a but

not for b. The idempotents we will be summing over fall into three classes: Bm (bounding and m-type), Nm (nonbounding and m-type), and
Nq (nonbounding and q-type). Recall (from the discussion at the end of Sec. IV C) that bounding idempotents are always m-type; in other
words, the potential fourth class Bq is empty.

We can now state the dimension formula: We have

p + q ≙ ∑
x∈Bm

S1x
χ(Y)∏iS

′
aix, (144)

where χ(Y) is the Euler characteristic of Y. If any of the ai are q-type, then we know that p = q and we are done, since in that case Cp∣q has an
odd isomorphism coming from the action of an odd element of End(ai).

Now assume that none of the ai are q-type. In this case, we have

p − q ≙ ∑
x∈Nm

S1x
χ(Y)∏iS

′
aix + (−1)Arf(Y) ∑

x∈Nq

S1x
χ(Y)∏iS

′
aix, (145)

where Arf(Y) is the Arf invariant of Y. If Y is closed, then Arf(Y) = 0 if Y has a bounding spin structure and Arf(Y) = 1 if Y has a nonbounding
spin structure. For a torus, the BB, BN, and NB spin structures are bounding and the NN spin structure is nonbounding. Arf(Y) for a higher
genus spin surface can be determined by writing Y as a connected sum of spin tori and using the fact that Arf(Y) is additive under connected
sums.
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If Y has a nonempty boundary and each boundary component has a bounding spin structure, we define Arf(Y) to be the Arf invariant of
the closed surface obtained by capping each boundary component off with a disk.

If Y has a nonbounding boundary component, say, U1, then by assumption the label a1 is m-type. It follows that S′a1x ≙ 0 if x is q-type,
so there is no need to define Arf(Y) in this case. We can see that S′a1x ≙ 0 because the torus basis vector corresponding to x is odd (odd
endomorphism of x glued up periodically), while the basis vector corresponding to a1 is even (the idempotent a1 glued up periodically), and
S is an even operator. This can be observed, for example, the NN block of the S-matrix for the 1

2
E6/ψ theory, (293).

Note that the formula for p + q above does not depend on the Arf invariant of Y, while the formula for p − q does. Thus, the total
dimension of the Hilbert space is not sensitive to the spin structure of Y, but the even and odd Hilbert space dimensions do depend on the
spin structure.

2. Sketch of proof

In this subsection, we sketch the proof of the above dimension formula.
Let Z denote the 2 + 1-dimensional TQFT associated with the super pivotal category C. Let Y be a closed spin surface with Hilbert space

Z(Y), and let p|q = dim(Z(Y)). Then, we have

p + q ≙ tr(id : Z(Y)→ Z(Y)) ≙ Z(Y × S1B) (146)

and

p − q ≙ tr((−1)F : Z(Y)→ Z(Y)) ≙ Z(Y × S1N). (147)

More generally, if Y has nonempty boundary and the boundary components are labeled by a1, . . ., ak (minimal idempotents of the tube
category), then

p + q ≙ tr(id : Z(Y ; a1, . . . , ak)→ Z(Y ; a1, . . . , ak)) (148)

≙ Z(Y × S1B)(clB(a1) ⊔⋯⊔ clB(ak)) (149)

and

p − q ≙ tr((−1)F : Z(Y ; a1, . . . , ak)→ Z(Y ; a1, . . . , ak)) (150)

≙ Z(Y × S1N)(clN(a1) ⊔⋯ ⊔ clN(ak)). (151)

Here, clX(ai) denotes the element of Z(T2
UX) obtained by closing up the idempotent ai, and U is the spin structure (B or N) on the i-th

boundary component. Note that if ai is q-type, then clN(ai) ∈ Z(T2
NN) is zero. However, in this case, we also know that p − q = 0, since the

odd endomorphism of ai maps the even part of Z(Y ; a1, . . ., ak) isomorphically to the odd part.
Recall that we can define reduced 1 + 1-dimensional TQFTs ZS1B

and ZS1N
via

ZS1B
(M) ≙ Z(M × S1B), ZS1N

(M) ≙ Z(M × S1N), (152)

whereM is a manifold of dimension 0, 1, or 2. Combining the above we have, for closed spin surfaces Y,

p + q ≙ ZS1B
(Y) (153)

and

p − q ≙ ZS1N
(Y), (154)

and there are similar formulas when Y has a boundary.
We can now outline the remainder of the proof of the dimension formula. We have just seen that the super dimension p|q can be cal-

culated entirely in terms of the reduced 1 + 1-dimensional TQFTs ZS1B
and ZS1N

. Because 1 is a small number, we can completely classify

1 + 1-dimensional spin TQFTs and give an explicit expression for the path integral in terms of basic structure constants of the 1 + 1-
dimensional TQFT. Then, all that remains to be done is express the structure constants of the 1 + 1-dimensional TQFTs in terms of the
structure constants of the original 2 + 1-dimensional TQFT Z. It turns out that the only structure constants we will need are the list of
minimal idempotents of the tube category, their types (m or q), and the S-matrix.

Spin 1 + 1-dimensional TQFTs are determined by two pieces of data: the cylinder category of a point, which is a linear super category C,
and a nondegenerate trace on C. The trace is the path integral of the disk D2; if f is an endomorphism of C, then

tr(f ) ≙ ZC,tr(D2)(cl(f )), (155)

where, as usual, cl(f ) denotes the closure of f, an element of the (predual) Hilbert space associated with S1B ≙ ∂D2. The nondegenerate trace
implies that C is semisimple. Up to Morita equivalence, there are only two indecomposable semisimple super categories, the trivial algebra C,
and the complex Clifford algebra Cℓ1.
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We first consider the case C ≙ C. Let e be the unique minimal idempotent of C (i.e., e ≙ 1 ∈ C). Let λ = tr(e). Let Y be a spin surface with
k boundary components, and let cl(e) ⊔ ⋯ ⊔cl(e) denote the boundary condition given by placing cl(e) on each boundary component of Y.
The path integral for the TQFT determined by (C, λ) is

ZC,λ(Y)(cl(e) ⊔⋯ ⊔ cl(e)) ≙ λχ(Y), (156)

where χ(Y) denotes the Euler characteristic of Y.
Next, we consider the case C ≙ Cℓ1. Again, let e be the unique minimal idempotent of Cℓ1. Let λ = tr(e). Let Y be a spin surface with k

boundary components. We will assume that each boundary component of Y has the bounding spin structure, since that is the only case we
will need for the dimension formula. Let

ê ≙ 1√
2
e (157)

be the normalized idempotent. [The norm of cl(ê) in A(S1B) is 1.] The path integral for the TQFT determined by (Cℓ1, λ) is
ZCℓ1 ,λ(Y)(cl(ê) ⊔⋯ ⊔ cl(ê)) ≙ (−1)Arf(Y)( λ√

2
)χ(Y), (158)

where χ(Y) denotes the Euler characteristic of Y, and Arf(Y) is the Arf invariant of Y with its boundary components capped off by disks.
A general 1 + 1-dimensional spin TQFT is a direct sum of instances of the two theories described above.
All that remains to be done is to write the reduced theories ZS1B

and ZS1N
as a direct sum of the (C, λ) and (Cℓ1, λ) theories described

above.
The first task is to obtain a list of the idempotents (and their type, m or q) of the minimal idempotents of ZS1B

and ZS1N
. This is easily done:

the category that ZS1B
assigns to a point is TubeB and the category that ZS1N

assigns to a point is TubeN . The m-type idempotents correspond to(C, λ) theories, and the q-type idempotents correspond to (Cℓ1, λ) theories.
The second task is to determine, for each idempotent a in Tube

B and Tube
N , the number λ above (path integral of the disk evaluated on

a closed-up idempotent). This is exactly the S-matrix entry S1a if a is m-type. If a is q-type, then (since we have normalized the S-matrix) S1a
is equal to λ/√2, but this is the value we need for (158).

The third and final task is to convert the cl(ai) boundary conditions from the beginning of Sec. IV E 1 to the cl(e) and cl(ê) boundary
conditions appearing in (156) and (158). Both of these boundary conditions are (after undoing the dimensional reduction along S1B or S1N)

vectors in A(T2), and both boundary conditions are closed-up idempotents (possibly normalized with a factor of 1/√2). However, the cl(ai)
boundary condition cuts the torus along a longitude, while the cl(e) and cl(ê) boundary conditions cut the torus along a meridian. So we need
to apply the S-matrix (actually S′ because ê is normalized while ai is not) to change basis,

cl(ai) ≙∑
x

S
′
aixcl(x̂), (159)

where for convenience we have defined x̂ ≙ x if x is m-type.
Combining (153), (154), (156), (158), and (159) yields the dimension formula.

3. Sample calculations

There are three specific S matrices calculated in this paper, for the TQFTs based on the C2, SO(3)6/ψ, and
1
2
E6/y theories. Note that all

three of these theories have just one nontrivial simple object. Plugging the S-matrix entries into the above dimension formula, we find, for
closed surfaces of genus g and a specified Arf invariant, the results in Fig. 10.

If we take Y to be a 3-punctured sphere (with various spin structures), then we can use the dimension formula to compute the fusion
rules of the tube category. For example, the fusion rules of Table XVII were computed using the dimension formula. Explicitly, we have

dimeven(Vabc) ≙ √nanbnc

2

⎛⎝∑x∈Bm

SaxSbxScx

S1x
+ ∑

x∈Nm∪Nq

SaxSbxScx

S1x

⎞⎠ (160)

and

dimodd(Vabc) ≙ √nanbnc

2

⎛⎝∑x∈Bm

SaxSbxScx

S1x
− ∑

x∈Nm∪Nq

SaxSbxScx

S1x

⎞⎠. (161)

Recall that na is defined to be dim(End(a)), i.e., 1 if a is m-type and 2 if a is q-type.
We remark that the dimension formula is a useful check on S-matrix accuracy. Mistakes in calculating the S matrix typically lead to

noninteger outputs from the dimension formula.
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FIG. 10. Hilbert space dimensions for closed surfaces in various theories.

V. MORE ON FERMION CONDENSATION IN MODULAR TENSOR CATEGORIES AND THE TUBE CATEGORY

In this section, we investigate Tube(C/ψ) when C is a modular tensor category. If C is a MTC, it is a well known theorem that Tube(C)≅ C × C as braided tensor categories (see, for example, Theorem 7.10 of Ref. 24). In this section, we will prove an analogous theorem for the
super pivotal categories resulting from fermion condensation on MTCs. Specifically, if C is a MTC, we prove that

Tube(C/ψ) ≅ C × C/ψ (162)

as tensor categories. (Neither side of this equivalence is braided in the usual sense.)
The analogous result when ψ is a boson is a special case of Corollary 4.8 of Ref. 48 (see also the 1998 announcement by Ocneaunu referred

to therein).
To begin, we remind the reader of this known result for Tube(C). We then turn our attention to super pivotal categories of the form

Tube(C/ψ) and make the necessary modifications.

A. ω loops

An essential tool in what follows will be the ω loop.29 We take C to be a MTC and sobr(C) be the set of the simple objects of C. The ω
loop is defined by

ω ≙ 1

D2 ∑
x∈sobr(C)

dx ⋅ cl(x), (163)

where cl(x) denotes a closed loop labeled by x, i.e., the closure of x inside a solid torus.
One way to think of the ω loop is as follows: In any premodular category, string nets in the solid torus (with the empty boundary

condition) form a semisimple commutative algebra (isomorphic to the fusion ring of the premodular category). Therefore, this vector space
has a basis given by the minimal idempotents of the algebra structure. The S-matrix gives a bijection between these idempotents and sobr(C).
The ω loop is the minimal idempotent in the solid torus corresponding to the trivial object of C.

Diagrammatically, we will denote the ω loop embedded in an ambient 3-manifold by

(164)

where the gray disk in the center indicates that this relation holds in the solid torus. If the gray region is empty (i.e., if the solid torus is
standardly embedded in the 3-ball), then the ω loop can be shrunk and evaluated using the rules of MTC [since in that case, cl(x) is equal to
dx times the empty diagram], and since 1 ≙ ∑x d

2
x/D2, the ω loop simply acts as the identity. We summarize all the properties of the ω loop,

which we will make use of in Table VI.
For a modular theory, we can easily use part (a) of Table VI to see that

(165)

J. Math. Phys. 60, 121901 (2019); doi: 10.1063/1.5045669 60, 121901-40

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

TABLE VI. All unlabeled lines in the figures (a)-(c) are ω loops as defined in (163). For a modular theory, the ω loop projects onto the vacuum as shown in part (a) (agreeing with
the interpretation of ω as the minimal idempotent in the solid torus corresponding to the trivial object of C). Part (b) shows that arbitrary string-net lines can be deformed across
any ω loop. Part(c) shows the same move as in part (b) but with an ω loop, rather than a single simple object x.

Note that this is true independent of what is inside the gray disk. In Sec. V B, we will see that this allows us to rewrite elements in the tube
algebra in a particularly nice basis.

B. Minimal idempotents of Tube(C), when C is a modular tensor category

The starting point for our proof of (162) will be a convenient set of minimal idempotents of Tube(C).22 We will give two constructions
for complete sets of minimal idempotents of Tube(C): one set is more conventional (and appeared first historically), while the second is more
suited to the proof of (162).

The first construction of a set of minimal idempotents utilizes annuli that possess only one marked point at each boundary. A basis for
the morphism space from a to b in the annular category Tube(C) is given by

(166)

with r in each summand labeling the string wrapping around the annulus. With the help of (165), we can change to a much more convenient
basis via

(167)

where we have written the annulus as a rectangle with the left and right (blank) edges identified and the indices μ and ν run over complete

orthogonal bases of V
xy
a and Vb

xy, respectively. The constants Ct,xyμν can be determined by fusing the ω loop into the strand labeled b in the
second to last diagram, and then using a series of F and Rmoves to reduce the diagram to the form of the final diagram on the right. Since C
is assumed to be modular and all transformations shown above are invertible, we have shown that the morphism spaces can be alternatively
presented as

(168)

Equivalently, we have shown that

(169)

This basis for the morphism space of Tube(C) is rather special, and we will see that the diagonal elements (those with a = b) are proportional
to the minimal idempotents.
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Letting μi, i ≙ 1, . . . ,Na
xy, be a basis of V

xy
a and similarly letting νi be a basis for V

a
xy, we take the normalization convention

(170)

It then follows that

(171)

where the + . . . represents diagrams that have a nontrivial string connecting the x and y strings (if admissible diagrams of such a form exist).
From the properties of the ω loop, we thus have

(172)

Our normalization is thus chosen so that there is no numerical prefactor in front of the right-hand side of the above equality.
With these conventions, we define a basis of morphisms by

(173)

where νj is a basis of V
b
xy and μi is a basis of V

xy
a , which are normalized according to (170). It follows that the f ba morphisms compose as

f
b
a (x, y, j, i) ⋅ f cb (x′, y′, j′, i′) ≙ δxx′δyy′δij′ f ca (x, y, j, i′). (174)

Therefore, the f ba (x, y, j, i) is a basis of matrix units for Tube(C). In other words, Tube(C) [strictly speaking, the subcategory of Tube(C)
spanned by objects with only a single marked point] splits as a direct sum of full matrix categories49 labeled by pairs of simple objects in
sobr(C) × sobr(C),

Tube(C) ≅⊕
xy

Mat(x, y), (175)

with the vector space associated with the object a of Tube(C) at the (x, y) summand being Va
xy, and

mor(a→ b) ≅⊕
x,y

hom(Va
xy → V

b
xy). (176)

It follows from (174) that the “diagonal” morphisms

e(a, x, y, j) ≙ f aa (x, y, j, j) (177)

are each a minimal idempotent. The idempotents e(a, x, y, i) and e(b, x′, y′, j) are equivalent50 if and only if x ≅ x′ and y ≅ y′, with the

isomorphism given by e(a, x, y, i) ≙ f ba (x, y, i, j) ⋅ f ab (x, y, j, i) and e(b, x, y, j) ≙ f ab (x, y, j, i) ⋅ f ba (x, y, i, j). This presentation of the minimal
idempotents also appeared in Ref. 22.

It will be useful to have another complete set of minimal idempotents for Tube(C) at our disposal. These are the minimal idempotents
that live in the annular category with two marked points on each of the circles bounding the annulus (rather than one marked point on each
circle). The idempotents are given by

(178)
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To show that the exy are a complete set of minimal idempotents, we first show that exyTube(C)ex′y′ is zero unless x = x′ and y = y′ in which
case it is 1-dimensional. (This implies that the exy are minimal and pairwise orthogonal.) Using the spine lemma,51 a basis for exyTube(C)ex′y′
is spanned by

(179)

The RHS is derived from the LHS by first sliding the p loop over the lower ω loop and then sliding the lower ω loop over the upper ω loop.
The “no tadpole” axiom implies that the diagram is zero unless r ≅ 𝟙, and (a) of Table VI implies that c (and hence also c′) must be 𝟙 in any
nonzero diagram. This proves the claim.

Completeness of the idempotents follows from the resolution of the identity

(180)

It is easy to show directly that the idempotents exy and e(a, x, y, j) are equivalent. Let

(181)

Then, we have

exy ≙ g(a, x, y, j) ⋅ h(a, x, y, j) (182)

and

e(a, x, y, j) ≙ h(a, x, y, j) ⋅ g(a, x, y, j). (183)

The idempotents above can be used to show that Tube(C) ≅ C × C. In Subsection V C, we will state and prove an analogous theorem for
Tube(C/ψ).
C. Double of the fermionic quotient

In this subsection, we prove that Tube(C/ψ) ≅ C × C/ψ as tensor categories when ψ is a fermion satisfying conditions of Sec. IV A 1 and
C is a modular tensor category.

To gain insights into the relation between Tube(C/ψ) and C, we will first construct the minimal idempotents of the condensed theory,
which are useful objects in their own right. To facilitate this construction, we note that any string net configuration in the parent theory C

descends to a string net configuration in the condensed theory C/ψ. Conversely, we can always take an even morphism in C/ψ and lift it to C,
giving us a way of lifting tubes in Tube(C/ψ) to those in Tube(C). These two facts allow us to find the minimal idempotents of the quotient
theory using knowledge of the minimal idempotents of the parent theory. The details of the condensation functor Tube(C) → Tube(C/ψ)
are important: for example, the image of some of the idempotents may simply be zero, while the images of nonisomorphic idempotents of
Tube(C) may map to the same isomorphism class in Tube(C/ψ). These details, as well as minimality and completeness of the idempotents,
will have to be addressed carefully. Once this is done, we arrive at the following theorem:

Theorem V.1. Let C be a modular tensor category, and let ψ be a fermion in C as in Sec. IV A 1. Let C/ψ be the super pivotal category
resulting from the fermionic quotient. Let Tube(C/ψ) ≙ TubeB(C/ψ)∪TubeN(C/ψ) be the annular category of C/ψ. Then, as tensor categories,

Tube(C/ψ) ≅ C × C/ψ. (184)

In particular, sobr(Tube(C/ψ)) ≅ sobr(C) × sobr(C/ψ). Let a ∈ sobr(C/ψ) and ã ∈ sobr(C) be a lift of a. If ã is transparent with respect to ψ,
then (x, a) is in the bounding sector TubeB(C/ψ) of Tube(C/ψ) (for any x ∈ sobr(C)). If ã is not transparent with respect to ψ, then (x, a) is in
the nonbounding sector TubeN(C/ψ).
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The above result can also be written in terms of the tube category of the parent theory Tube(C). We first write C × C̄/ψ ≅ (C/𝟙) × (C̄/ψ)≅ (C× C̄)/(𝟙×ψ). Using the isomorphism Tube(C) ≅ C× C̄, we can embed ψ ∈ sobr(C) into Tube(C) by ψ ↦ ψ̃, where ψ̃ ≅ 𝟙×ψ. This means
that as tensor categories

Tube(C/ψ) ≅ Tube(C)/ψ̃, (185)

showing that fermion condensation commutes with constructing the tube category.

We prove the theorem by defining a tensor functor E : C × C/ψ → Tube(C/ψ) and showing that it is an equivalence of tensor categories.
It is given by

(186)

where J(y) = B if νy = 0 and J(y) = N if νy = 1, with νy being the indicator defined in (98). This is clearly a functor; it preserves the composition
of morphisms in an obvious way. To show that E is a tensor isomorphism, we need to show two things:

1. If {ei} and {f j} are a complete set of minimal idempotents for C and C/ψ, respectively, then {E(ei, f j)} is a complete set of minimal
idempotents for Tube(C/ψ),

2. E is a tensor functor.

We first establish that {E(ei, f j)} are a complete set of minimal idempotents for Tube(C/ψ). This is done in three parts, first we show
completeness, then that the idempotents are nonzero, and finally that they are minimal and orthogonal.

A complete basis of morphisms for Tube(C/ψ) is given by

(187)

with t being an even morphism of Tube(C/ψ) and α ≙ 𝟙 or ψ denotes whether the morphism of Tube(C/ψ) has even fermion parity or odd

fermion parity. An even parity tube (α ≙ 𝟙) has t ∈ ⊕x V
xbx∗

a , while an odd parity tube (α = ψ) has t ∈ ⊕x V
xbx∗

a⊗ψ . Since t is an even morphism
in Tube(C/ψ), we can (trivially) lift it to Tube(C), use the completeness relation in (167), and then (trivially) include the morphism back into
Tube(C/ψ). Hence, we have

(188)

for some coefficients Ct;xyμν. The morphism on the right-hand side of the equation is isomorphic to E(x, y). Making use of the fact that E(x, y)

≅ E(x, y ⊗ ψ)52 allows us to replace the sum over y ∈ sobr(C) by a sum over y ∈ sobr(C/ψ). Therefore, any morphism t ∈ Tube(C/ψ) can be
written as

t ≙∑
k

xk ⋅ E(eik , fjk) ⋅ yk, (189)

and hence, the {E(ei, f j)} are complete.
We now establish that the set of idempotents {E(ei, f j)} are nonzero. We do this using the trace defined Sec. IV B 1. We

have
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(190)

(191)

≙ 1

D2
(1 + s(J)(−1)νy)dxdy. (192)

The second line follows from linearity of the trace and the last line from

(193)

≙ (δr𝟙 + s(J)(−1)νyδrψ)dxdy. (194)

We have used that when cl(ψ) is pushed past y, the trace picks up the phase (−1)νy (see Sec. IV B 1 for more details on the trace). Hence,
tr(E(ei, fj)) is nonzero so long as s(J) ≙ (−1)νfj , which is true by definition of the E idempotents [recall (186)].

Now we show that the {E(ei, f j)} are minimal and orthogonal. We do this by computing the dimension of E(x, y) ⋅Tube(C/ψ) ⋅ E(x′, y′).
By the spine lemma, a generic element of E(x, y) ⋅ Tube(C/ψ) ⋅ E(x′, y′) can be written as the LHS of

(195)

with δ ∈ Vx′

xc , ρ ∈ Vy′⊗α
cy , σ ∈ Vc′c

r , κ ∈ Vpr
p . We have suppressed the spin structure index [the spin structure is determined by y; recall (186)].

All vector spaces appearing are written in terms of the parent theory, C, and α is either 𝟙 or ψ denoting whether the tube is even or odd in
Tube

J(C/ψ).
The LHS is equal to the RHS by sliding the p strand over the lower ω loop and then sliding the lower ω loop over the upper ω loop.

On the RHS, the no tadpole axiom guarantees that r ≅ 𝟙 and consequently that c∗ ≅ c′. The remaining loop labeled p can be removed at the
expense of multiplying by its quantum dimension dp. Using property (a) of Table VI, we see that c ≅ 𝟙 ≅ c′. Using the orthogonality of the
idempotents in the parent theory, we have

E(x, y) ⋅ Tube(C/ψ) ⋅ E(x′, y′) ≅
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C
1∣0 if x ≅ x′ and y ≅ y′ and y ≇ y′⊗ψ

C
0∣1 if x ≅ x′ and y ≅ ψ⊗y′ and y ≇ y′

C
1∣1 if x ≅ x′ and y ≅ y′ and y ≅ y⊗ψ

0 otherwise.

(196)

Taking x′ = x and y′ = y, it follows that E(x, y) is a minimal m-type idempotent if y ≇ y ⊗ ψ and is a minimal q-type idempotent if y ≅ y ⊗
ψ. This also confirms that E(x, y) and E(x, y ⊗ ψ) are oddly isomorphic. The orthogonality of the idempotents follows from the fourth line of
(196). This completes the proof that {E(ei, f j)} is a complete set of minimal idempotents.

The tensor structure on Tube(C/ψ) is initially defined on Rep(Tube(C/ψ)) and then transferred to Tube(C/ψ) using semisimplicity

(Tube(C) ≅ Rep(Tube(C)) in the semisimple case). Consequently, we only need to show that E induces a tensor functor from Rep(C × C/ψ)
to Rep(Tube(C/ψ)). To establish this, we show that

V
E(a,x),E(b,y)
E(c,z) ≅ Vab

c (C)⊗Vxy
z (C/ψ), (197)
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where V(C) denotes the fusion space for C and V(C/ψ) denotes the fusion space for C/ψ. This isomorphism is established by the following
figure:

(198)

with α ≙ 𝟙 for the even fusion space and α = ψ for the odd fusion space. By the spine lemma, the internal lines (red), labeled k, h, r, s, t, u,
v, p, and q (multiplicity indices suppressed) span the entire space of net configurations for V(P) with marked points, (a, x), (b, y), and (c, z)
living at the boundary circles (as before, P is the pair of pants). Near each boundary circle, we have applied the corresponding minimal
idempotent to each boundary condition. Using the arguments similar to those following (195), we can simplify the diagram using the ω loop
(green) relations of Table VI to find the diagram on the right. One finds that r ≅ s ≅ t ≅ u ≅ v ≅ 𝟙, k ≅ x, h ≅ b, and the left over p and q
loops can be removed by multiplying the picture with their quantum dimensions. The span of the resulting simplified pictures is isomorphic

to Vab
c (C)⊗Vxy

z (C/ψ). Using semisimplicity, this implies that E is a tensor functor.

D. Modular transformations

The explicit representation of the minimal idempotents allows us to compute the modular transformations for the condensed theory.
We first examine the S transformation on bounding spin tori (i.e., the three spin tori that have at least one bounding cycle). The S

transformation acts to interchange the longitudinal and meridional cycles of the torus, and so it acts as

(199)

In the first two pictures, we have drawn the torus as an annulus with inner and outer boundaries identified, while in the last picture, we have
rewritten the torus on the plane as a square with the top and bottom as well as left and right edges identified. Additionally, recall that from
the way we constructed the idempotents, if the spin structure along the azimuthal direction is bounding, then b must be transparent with
respect to ψ, and if the azimuthal spin structure is nonbounding, then bmust be nontransparent with respect to ψ. Since we are working with
bounding spin tori, and since we always transform to the standard basis of idempotents, the spin structure can be inferred from context, and
so we will suppress the labels in some of the diagrams.

We now need to perform a series of manipulations that returns the right-hand side of (199) to a linear combination of pictures that are
written in the standard basis [the same as the left-hand side of (199) with the spin structures interchanged]. We first investigate the part of the
diagram with the a string and the ω loop,

(200)

We can now do the same for the b loop,

(201)

J. Math. Phys. 60, 121901 (2019); doi: 10.1063/1.5045669 60, 121901-46

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

where we have used that the ω loop is a projector onto the vacuum. In the last summation, we need to replace∑y∈sobr(C) with∑y∈sobr(C/ψ),

(202)

The factor of s(J) appeared due to clJ(ψ ⊗ y) = s(J)clJ(y), where the subscript J means we close up y around a cycle with spin structure J. The
normalization factor 2−ny ≙ 1/dimEnd(y) is inserted so that we do not overcount the q-type simple objects from sobr(C) [recall, for example,
(131)]. Using that Sb∗(y⊗ψ) ≙ (−1)νbSb∗y and that (−1)νb s(J) ≙ 1 by assumption, the right-hand side of (202) can be simplified so that (201)
becomes

(203)

Putting all calculations together and removing leftover ω loops (which provide an additional factor of D−2), we find that the matrix elements
of the (un-normalized) S-matrix can be written as

(204)

In the above formula, the Sax and Sb∗y are matrix elements of the S-matrix in the original input theory C (which we assumed to be an MTC).
Note that νb must be 0 if J is bounding, 1 if J is nonbounding and similarly for νy. The simple object y appearing in Sb∗y on the right-hand side
of (204) is a trivial lift of the y written in the closed up idempotent (recall that the first is a simple object of C, while the latter is a simple object
of C/ψ). One can change the representative of the isomorphism class of y ∈ C/ψ with an odd isomorphism mor(y → ψ ⊗ y). Under this odd
isomorphism, the right-hand side of (204) picks up a factor of s(J)(−1)νb , which is equal to 1 since s(J(b)) ≙ (−1)νb .

In order for the S-matrix to be unitary, we need to normalize each q-type idempotent properly. In the discussion following (196), we
pointed out that E(a, b) is q-type if b is q-type. Hence, we can normalize our idempotents by rescaling the q-type idempotents by a factor of

1/√2. This results in the “pseudoidempotents”

Ê(a, b) ≙ E(a, b)/(√2)nb , (205)

which have unit norm. The resulting unitary S-matrix is given by

clW(Ê(a, b)) SJW→WJÐÐÐ→ ∑
x∈sobr(C)

y∈sobr(C/ψ)

2(√2)nb+ny SaxSb∗yclJ(Ê(x, y)). (206)

Note that clJ(Ê(x, y)) on the right-hand side of (206) is zero unless y is compatible with the spin structure inherited from the left-hand side
of (206); explicitly, ymust satisfy s(W) ≙ (−1)νy .

The matrix elements of the S-matrix on the torus with nonbounding spin structure (periodic boundary conditions around both cycles)
can be calculated in an analogous way. The first half of the calculation remains the same as in (200). The second half of the calculation changes
only if b is q-type in which case the idempotent E(a, b) is q-type, and has to be closed up on the torus with an odd endomorphism. As discussed
in the caption of Fig. 4, closing an idempotent with an odd endomorphism always results in a sign ambiguity for the closed up idempotent. In
such a case, we have
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(207)

where we have used (Sz)xy ≙ 1
D

.

This completes our calculation of the S-matrix of the condensed theory in terms of the modular data of the input theory.
The T-matrix is found by twisting one boundary of an idempotent by 2π before closing it up. For the annulus, the twisting is implemented

by performing a 2π counterclockwise rotation of the inner S1 with respect to the outer S1. The matrix elements are given by

clW(Ê(a, b)) TJW→JW̃ÐÐÐÐÐ→ θaθ
∗
b clW̃(Ê(a, b)), (208)

where again J = J(b) and where W̃ can be read off from Fig. 5. The phases θa and θb are the twists of the lifts of a and b to the parent theory.
For example, in the C2 theory, one verifies that θm𝟙

≙ θ𝟙θ∗𝟙 , θm+
σ
≙ θσθ∗𝟙 , θq𝟙 ≙ θ𝟙θ∗σ , θqσ ≙ θσθ∗σ and θψ ≙ θψθ∗σ , where θσ = −A3.

Note that if J = B, then replacing b with b ⊗ ψ changes the sign of the twist. Since we can choose either b or b ⊗ ψ for the lift, this gives
a sign ambiguity in the twist (for the C2 theory, this is manifested by θm+

σ
≙ θσθ∗𝟙 , θm−σ ≙ θσθ∗ψ ≙ −θm+

σ
). This sign ambiguity is expected, since

only T2 has well-defined eigenvalues on idempotents (see the discussion near the beginning of Sec. III C 2).

VI. FERMION CONDENSATION IN SO (3)6

Here, we provide more examples of fermion condensation in two theories that are closely related to each other: SU(2)6 and SO(3)6.
Each theory contains a fermion ψ, which we will condense. The main difference between these two theories is that in SO(3)6, the fermion
ψ is transparent (i.e., it braids trivially with every other particle in the theory), while in SU(2)6, it is not. This means that when condensing
ψ in SO(3)6, we do not need to use the “back wall” construction employed earlier, and the quotient theory will be braided. However, the
transparency of ψ also means that the S-matrix in the SO(3)6 theory is degenerate, and hence, the theory is not modular. In this case, the lack
of modularity is fairly benign, and SO(3)6 is a subcategory of the modular tensor category SU(2)6. This will allow us to infer the minimal
idempotents of SO(3)6/ψ from the minimal idempotents of SU(2)6/ψ. From the minimal idempotents, one can also compute the mapping
class group action, which we will work out for the SO(3)6/ψ example. First, we will establish some notation for UBFC’s with fermions.

A. Fusion theory of SU (2)6/ψ and SO (3)6/ψ

We will now briefly review SU(2)6 and its connection with SO(3)6. Since these are well known theories, we only list out some of their key
properties and point out the reader to some references for more details (see, e.g., Refs. 53 and 54). There are seven objects in SU(2)6, labeled
0, 1, 2, . . ., 6. The principle graph for the theory is shown in the upper left of Fig. 11. The 0 particle is the trivial object, 6 is a fermion, and we
have 6 ⊗ x = (6 − x). Hence, the particle 3 is invariant under fusion with 6, and so under condensation of the 6 particle, 3 becomes a q-type
simple object in SU(2)6/ψ. Since one m-type particle is always related to another by fusion with ψ and there are six m-type particles, there are
only three distinct equivalence classes of m-type particles under fusion with ψ. We can take {0, 1, 2} as the complete list of representatives.

We give the principle graph for SU(2)6/ψ in Fig. 11 in the upper right, where q3 is the q-type image of 3 under condensation. The
particles 0, 2, 4, and 6 form a closed subcategory of SU(2)6. The principle graph of this theory is shown in the bottom left of Fig. 11. This is
the subcategory known as SO(3)6, and it is a braided theory, with braiding and fusion inherited from SU(2)6; however, it is not modular. The
6 particle braids trivially within this subcategory and is therefore transparent, which breaks the modularity.

We now perform fermion condensation in SU(2)6 and SO(3)6 to obtain two super pivotal categories SU(2)6/ψ and SO(3)6/ψ. Since ψ is
not transparent in SU(2)6, we must perform the back-wall condensation process described earlier. However, since ψ is transparent in SO(3)6,
condensation of ψ is possible without employing a back-wall (although a spin structure is still needed). The principle graphs of the condensed

FIG. 11. The upper left diagram is the principle graph of SU(2)6, and the lower left diagram is the principle graph for SO(3)6. On the right, we give the principle graphs of the
condensed theories SU(2)6/ψ (top right) and SO(3)6/ψ (bottom right), both with the identification ψ = 6. The naming convention of the condensed theories has been inherited
from the parent theories, along with an m or q denoting whether the particle is m-type or q-type. Black links denote even fusion channels, and the red link connecting m2 to
itself denotes an odd fusion channel in accordance with the rule m2⊗m2 ≅ m0 ⊕C

1∣1m2.
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TABLE VII. Fusion rules for SU(2)6/ψ.

I0 ⊗ I0 m0 m2 I0 ⊗ I1 m1 q3

m0 m0 m2 m0 m1 q3
m2 m2 m0 ⊕C

1∣1m2 m2 m1 ⊕ q3 C
1∣1m1 ⊕ q3

I1 ⊗ I0 m0 m2 I1 ⊗ I1 m1 q3

m1 m1 m1 ⊕ q3 m1 m0 ⊕m2 C
1∣1m2

q3 q3 C
1∣1m1 ⊕ q3 q3 C

1∣1m2 C
1∣1m0 ⊕C

1∣1m2

theories are shown on the right of Fig. 11. The simple objects of the two theories are given as follows:

SU(2)6/ψ : m0 m1 m2 q3,
SO(3)6/ψ : m0 m2.

(209)

The particles have a natural grading given by (98) with the even set given by I0 = {m0, m2} and the odd set given by I1 = {m1, q3}, with Ia ⊗
Ib = Ia+b mod 2. The closed subfusion algebra given by I0 contains all of the objects in SO(3)6/ψ, which occurs since ψ is transparent in SO(3)6.
Note that there are no q-type objects in SO(3)6/ψ.

The nontrivial fusion rules of SU(2)6/ψ are given in Table VII. The quantum dimension of the remaining object in the condensed theory,

namely,m2, is dm2 ≙ 1 +
√
2, which can be obtained from the fusion rules of the parent theory.

We note two features of these examples, which were not present in our earlier C2 example:

● Even thoughm2 is an m-type particle,C1∣1m2 appears in the tensor product ofm2 with itself. So SO(3)6/ψ provides us with an example
of a theory that has no q-type objects but which is still fermionic in the sense that its fusion spaces contain both even and odd elements.● The q-type particle q3 appears in the tensor product of twom-type particles, namely,m2 ⊗m1. Thus, the classification of simple objects
as m- or q-type should not be thought of as a Z/2 grading, since the types of a and b in no way constrain the possible types of the
simple objects appearing in a ⊗ b. (In Sec. VI B, we will also see an example of two q-type particles fusing to another q-type particle.)

The F-symbols of the condensed theories can be deduced from those of the parent theories, so we will not list them here. We now
compute the minimal idempotents of the tube category in the condensed theories.

B. Minimal idempotents of SU (2)6/ψ

The minimal idempotents of the tube category of SU(2)6/ψ can be computed directly using the techniques of Sec. V. They are given by

(210)

where we require that s(J) ≙ (−1)νb . It will be useful to recast these idempotents in a form that can be easily used to compute the idempotents
for SO(3)6. We first define

(211)

and for x ≙ 𝟙 or x = ψ, we define the ωx loop

ωx ≙ dx

D2
C/ψ

∑
r∈sobr(C/ψ)

dr

dimEnd(r)( SxrS𝟙r
)cl(r). (212)

The S-matrix above is that of the parent theory, and the labels are trivial lifts from C/ψ. When x ≙ 𝟙, Sxr
S𝟙r
≙ 1, this is just the standard ω loop,

when x = ψ, Sxr
S𝟙r
≙ (−1)νr , and ωψ is a projector onto the ψ strand. The factor D2

C/ψ ≙ ∑x∈C/ψ d
2
x/dimEnd(x) is the total quantum dimension

of the condensed theory in the sense of (123). The minimal idempotents given by E(a, b) in (186) can be rewritten as

E(a ⊗ x, b) ≅ Ẽ(a, b,ωx), (213)
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TABLE VIII. Bounding idempotents for SU(2)6/ψ where c ∈ a ⊗ b and j denotes a basis vector in the fusion space Vab
c (C/ψ). Some of these labels are determined, e.g.,

m00(ω0, c, j) can be simplified to m00(ω0, m0, 0). The prefactor σ j is ±1 denoting the parity of μj ∈ Vab
c .

Type Twist Type Twist Type Twist ×σj
m00(ω0, c, j) 1 m00(ωψ , c, j) 1 m30(ω0, c, j) e15iπ /16

m10(ω0, c, j) e3iπ /16 m10(ωψ , c, j) −e3iπ /16 m32(ω0, c, j) −ie15iπ /16

m20(ω0, c, j) i m20(ωψ , c, j) i

Type Twist ×σj Type Twist ×σj
m02(ω0, c, j) −i m02(ωψ , c, j) −i

m12(ω0, c, j) −ie3iπ /16 m12(ωψ , c, j) ie3iπ /16

m22(ω0, c, j) 1 m22(ωψ , c, j) 1

with a, b ∈ C/ψ and x ≙ 𝟙,ψ. The isomorphism relating the two idempotents is an odd isomorphism if x = ψ. Note that running over all
pairs a, b ∈ C/ψ and x ≙ 𝟙 or ψ runs over all possible E(a, b). Additionally, if a ⊗ ψ ≅ a, then Ẽ(a, b,ω𝟙) and Ẽ(a, b,ωψ) are equivalent. This
presentation of the idempotents is more symmetric than those discussed in Sec. V.

We now write these idempotents so that they have a single strand at the boundary rather than two. We use the fermionic analog of (181)
to write down the single strand idempotents

(214)

These idempotents are similar to the ones described earlier in (177). The particular representative of the isomorphism class is given by

choosing c ∈ a ⊗ b and appropriately normalized vectors μj ∈ Vab
c (C/ψ) and νj ∈ Vc

ab(C/ψ). We will denote the parity of μj ∈ Vab
c (C/ψ) by

σj = 1 (σj = −1) if the chosen basis vector μj in the fusion space Vab
c (C/ψ) is even (odd). The twists of the idempotents are given by

T ⋅ ẽ(a, b,ωx, c, j) ≙ ⎧⎪⎪⎨⎪⎪⎩
θa
θb
(−1)x(νa+νb)σj ẽ(a, b,ωx, c, j) if bounding

θa
θb
(−1)x(νa+νb) ẽ(a, b,ωx, c, j) if nonbounding.

(215)

We will write ẽ(a, b, ωx, c, j) as mab(ωx, c, j) if the idempotent is m-type and qab(ωx, c, j) if the idempotent is q-type. For SU(2)6/ψ, we list a
complete set of representatives of minimal idempotents. We find 14 m-type idempotents for the bounding spin structure and 14 idempotents
for the nonbounding spin structure, 7 are m-type and 7 are q-type. Explicitly, the idempotents and the corresponding twists are listed in
Tables VIII and IX. Note that if a is q-type, then ẽ(a, b,ω𝟙, j) is isomorphic to ẽ(a, b, ωψ , j) and so we only list one of them. We now turn our
attention to the SO(3)6 theory.

C. Minimal idempotents of SO (3)6/ψ

Finding the idempotents in the SO(3)6/ψ theory is more difficult, since the parent theory SO(3)6 is not modular. However, since SO(3)6
is obtained from SU(2)6 by discarding the elements in SU(2)6 that braid nontrivially with ψ, SU(2)6 is a modular extension of SO(3)6 (in fact,

TABLE IX. Nonbounding idempotents for SU(2)6/ψ.

Type Twist Type Twist Type Twist

m01(ω0, c, j) −e−3iπ /16 m01(ωψ , c, j) −e−3iπ /16 m31(ω0, c, j) e3iπ /4

m11(ω0, c, j) 1 m11(ωψ , c, j) 1 q33(ω0, c, j) 1
m21(ω0, c, j) −ie−3iπ /16 m21(ωψ , c, j) −ie−3iπ /16

Type Twist Type Twist

q03(ω0, c, j) −e−15iπ /16 q03(ωψ , c, j) −e−15iπ /16

q13(ω0, c, j) e−3iπ /4 q13(ωψ , c, j) e−3iπ /4

q23(ω0, c, j) −ie−15iπ /16 q23(ωψ , c, j) −ie−15iπ /16
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it is the minimal modular extension). This fact will allow us to compute the idempotents in the SO(3)6/ψ theory using our knowledge of the
SU(2)6 theory.

Applying (214) directly to SO(3)6 will not yield a complete set of minimal idempotents due to the lack of modularity. Instead, we use
(214) by taking pairs of simple objects (a, b) from SU(2)6/ψ × SU(2)6/ψ whose tensor product is in SO(3)6/ψ. Additionally, within this subset,
we need to take an appropriate linear combination of the SU(2)6/ψ idempotents so that the resulting annulus only has strands labeled by
objects in SO(3)6/ψ. This linear combination is given by taking ẽab(ω𝟙, c, j) + ẽab(ωψ , c, j), which results in the minimal idempotent

ẽab(ω𝟙 + ωψ , c, j) ∈ Tube(SO(3))6 ), (216)

where the labels (a, b) ∈ I0/ψ × I0/ψ ∪ I1/ψ × I1/ψ.
55 One can show that the procedure creates a complete set of minimal idempotents by

direct calculation. The bounding idempotents are found when (a, b) ∈ I0/ψ × I0/ψ, and these are the minimal idempotents found from a naive
application of (214). The nonbounding idempotents are given by (a, b) ∈ I1/ψ × I1/ψ.

We now write down the minimal idempotents of SO(3)6/ψ and their twists using the same notation as in Sec. VI B. In the bounding
sector J = B, we have 4 m-type idempotents, given by

type twist
m00(ω𝟙 + ωψ , 0, 0) 1
m02(ω𝟙 + ωψ , 2, 0) −i
m20(ω𝟙 + ωψ , 2, 0) i
m22(ω𝟙 + ωψ , c, j) σj

(217)

with c ∈m2 ⊗m2 and j labeling a vector in the fusion space Vm2m2
c (C/ψ). Meanwhile, the nonbounding idempotents are given by

type twist
m11(ω𝟙 + ωψ , c, j) 1

q13(ω𝟙 + ωψ , 2, j) e−3iπ/4
q31(ω𝟙 + ωψ , 2, j) e3iπ/4

m33(ω𝟙 + ωψ , c, j) 1

. (218)

Similarly, c ∈ m1 ⊗ m1 and j labels a vector in Vm1m1
c for m11 and c ∈ q3 ⊗ q3 and j labels a vector in V

q3q3
c (C/ψ) for m33. Here, we have made

use of the above observation that only a ⊗ b need be in SO(3)6/ψ, and hence, the pairs (a, b) in these idempotents are labeled m1 and q3. As
the notation suggestsm33 is not q-type: to see this, we note that if it were, then there would be an odd endomorphism of Tube(SO(3)6/ψ) with
trivial boundary conditions (sincem0 ∈ q3 ⊗ q3). That would require SO(3)6/ψ to contain a q-type simple object, but as explained in (92), this
is not possible since ψ is transparent in SO(3)6. One can explicitly construct an odd endomorphism for q13 by putting a fermion on q3 and
fusing all strands into the annulus and similarly for q31.

D. Modular transformations

The modular transformations can be computed directly by manipulating string diagrams. We already have the twists (which are read
off from the string-net labels of the idempotents), and the modular T-transformation can be obtained directly from the twists. The modular
S-transformation requires a little more work, and so we discuss this in a little more detail.

We first close the minimal idempotents onto the torus. Using the basis above, one finds that the image under clY is given by

(219)

where a and b label the idempotent as before, X denotes the spin structure of the idempotent, which is fixed by b, Y denotes the spin structure
around the newly closed cycle, and ω ≙ ω𝟙 + ωψ . Note that when X is nonbounding, a, b ∈ {m1, q3}, which lies outside of SO(3)6/ψ. However,
ẽab ∈ clYTube(SO(3)6/ψ) since when the diagram is fused into the torus we find a torus string net labeled with objects only in SO(3)6/ψ, as
required.

In this graphical convention, the modular S-transformation acts as

(220)
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The matrix elements can be computed explicitly using the S-matrix of SU(2)6. Explicitly, the S-matrix acts on each of the three bounding spin
tori as ⎛⎜⎜⎜⎝

m00

m02

m20

m22

⎞⎟⎟⎟⎠
BB

SBB→BBÐÐÐ→ 1

2
√
2

⎛⎜⎜⎜⎝
1
d

1 1 d

1 − 1
d

d −1
1 d − 1

d
−1

d −1 −1 1
d

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m00

m02

m20

m22

⎞⎟⎟⎟⎠
BB

, (221)

⎛⎜⎜⎜⎝
m11

q13
q31
m33

⎞⎟⎟⎟⎠
NB

SNB→BNÐÐÐ→ 1

2

⎛⎜⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m00

m02

m20

m22

⎞⎟⎟⎟⎠
BN

, (222)

⎛⎜⎜⎜⎝
m00

m02

m20

m22

⎞⎟⎟⎟⎠
BN

SBN→NBÐÐÐ→ 1

2

⎛⎜⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m11

q13
q31
m33

⎞⎟⎟⎟⎠
NB

, (223)

where d ≙ dm2 ≙ 1 +
√
2.

As mentioned earlier, the Dehn twists follow directly from the twists computed above [see (215)]. Again for the bounding spin tori, we
find ⎛⎜⎜⎜⎝

m00

m02

m20

m22

⎞⎟⎟⎟⎠
BB

TBB→BNÐÐÐ→
⎛⎜⎜⎜⎝
1 −i

i
1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m00

m02

m20

m22

⎞⎟⎟⎟⎠
BN

, (224)

⎛⎜⎜⎜⎝
m11

q13
q31
m33

⎞⎟⎟⎟⎠
NB

TNB→NBÐÐÐ→
⎛⎜⎜⎜⎝
1

e−3iπ/4

e3iπ/4

1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m11

q13
q31
m33

⎞⎟⎟⎟⎠
NB

, (225)

⎛⎜⎜⎜⎝
m00

m02

m20

m22

⎞⎟⎟⎟⎠
BN

TBN→BBÐÐÐ→
⎛⎜⎜⎜⎝
1 −i

i
1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m11

q13
q31
m33

⎞⎟⎟⎟⎠
BB

. (226)

One can verify that (TS)3 = id, which holds since all three of the spin tori discussed above have even fermion parity [recall that the more
general identity is (ST)3 = (−1)F].

The modular S transformations on the torus with NN spin structure are a little more tedious to calculate. A complete basis of net
configurations on the NN spin torus is given by

(227)

On the nonbounding torus, m-type idempotents always close up into even parity states, while q-type idempotents close up into odd parity
states. The first two vectors have even parity and provide a basis for clN(m11) and clN(m33), while the second two have odd parity and provide
a basis for clN(q13) and clN(q31). After some calculation, one finds that the S and T modular matrices act as

⎛⎜⎜⎜⎜⎝

m11

m33
●
q13
●
q31

⎞⎟⎟⎟⎟⎠
NN

SNN→NNÐÐÐ→
⎛⎜⎜⎜⎝
1 0
0 1

e−iπ/4 0

0 eiπ/4

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

m11

m33
●
q13
●
q31

⎞⎟⎟⎟⎟⎠
NN

(228)
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and

⎛⎜⎜⎜⎜⎝

m11

m33
●
q13
●
q31

⎞⎟⎟⎟⎟⎠
NN

TNN→NNÐÐÐÐ→
⎛⎜⎜⎜⎝
1 0
0 1

e−3iπ/4 0

0 e3iπ/4

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

m11

m33
●
q13
●
q31

⎞⎟⎟⎟⎟⎠
NN

. (229)

As required, the odd part of the S-matrix satisfies S4 = −id and (TS)3 = −id, while the even part satisfies the usual S4 = id and (TS)3 = id.

VII. FERMION CONDENSATION IN 1
2E6

In this section, we perform fermion condensation in the category 1
2
E6. This provides an example of a super pivotal category with fusion

multiplicity. After condensation, we will obtain a theory with one nontrivial q-type particle, which we will denote by ρ. ρ obeys the fusion rule

ρ⊗ρ ≙ C1∣1
𝟙⊕C

1∣1
ρ, (230)

which is similar to the Fibonacci fusion rule but with q-type objects.56 The nontrivial fusion spaces are V
ρρ
ρ ≅ C

2∣2 and V
ρ𝟙
ρ ≅ C

1∣1, with the
first telling us that the theory has nontrivial fusion multiplicity.

This theory is richer than the examples we have considered previously and serves as a good case study for the features that appear in
phases described by more general super pivotal categories. These more general features include the following:

● There is a quasiparticle excitation that has a nonbounding spin structure, which is m-type [this also occurs in the SO(3)6/ψ theory
discussed previously] and is oddly self-dual.● The ground state degeneracy on the three spin tori with a bounding cycle (with spin structures BB, BN, andNB) isC3∣0, and the ground

state degeneracy on the nonbounding torus (with NN spin structure) is C1∣2. In particular, the fermion parity of a ground state on the
torus is not uniquely determined by the torus’ spin structure [this also occurs in the SO(3)6/ψ theory discussed previously].● As a fusion category, there is a fusion rule that takes two q-type particles to another q-type particle.57

Performing the condensation requires one additional step that did not appear in the previous examples. This is because the category 1
2
E6

is not braided and so does not have a fermion to condense. However, as described in Sec. IV A 3, it suffices to lift a particle in 1
2
E6 to a fermion

in the Drinfeld center of 1
2
E6.

In what follows, we will first introduce the fusion theory of 1
2
E6 and its properties that are pertinent to the rest of this section. We will

then compute the half braid for the emergent fermion and condense it in the same way we did in the previous examples. Following this, we
will compute the idempotents in the condensed theory as well as the modular S and T matrices.

A. Fusion theory of 1
2E6

The E6 fusion category is the fusion category whose principle graph is given by the E6 Dynkin diagram, shown to the left in Fig. 12. The
E6 fusion category has two subcategories: one subcategory has the fusion rules of the Ising theory, while the other is known as 1

2
E6

58 and has
more complicated fusion rules.

The fusion category 1
2
E6 has three particles, 𝟙, x, and y. The nontrivial fusion rules are

y ⊗ y ≅ 𝟙, y ⊗ x ≅ x,⊗y ≅ x, x ⊗ x ≅ 𝟙⊕ 2x⊕ y, (231)

FIG. 12. On the upper left, we have the E6 Dynkin diagram. The E6 fusion theory has two closed fusion subcategories whose simple objects are {𝟙, σ, y} and {𝟙, x, y}.
The first satisfies the Ising fusion rules, while the second satisfies those of 1

2
E6 given in (231). The figure on the upper right denotes the principal graph of the theory after

condensing y (after first lifting y to the Drinfeld center). On the bottom left, we have drawn the 1
2

E6 principal graph. The figure on the bottom right is the principal graph of
1
2

E6/y studied in this section. The fermionic quotient of the 1
2

E6 fusion subcategory reduces the particle content to {𝟙, ρ}.
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and the quantum dimensions are given by

d𝟙 ≙ 1, dx ≙ 1 +√3, dy ≙ 1. (232)

Note that one of the fusion spaces (Vxx
x ) has dimension greater than 1. Note also that x is invariant under fusion with y and that y has quantum

dimension 1. If the theory were braided and y were fermionic, then condensing y would lead to a super pivotal fusion theory with only two
objects, 𝟙 and ρ, the image of x under condensation of y. This theory, however, is not braided, and so we will have to domore work to condense
y, as discussed in Subsection VII B (see also the discussion in Sec. IV A 3).

We now lay out some of the basic data of 1
2
E6, which will be useful to us in what follows. Specifically, we will give all information required

to manipulate the y line, which will be useful knowledge to have on hand when we condense y.
From looking at (231), we note that all particles are self-dual, and therefore, we must specify their Frobenius-Schur indicators. In this

case, both Frobenius-Schur indicators are equal to 1. These can be found from the associators κx ≙ dx∥Fxxx
x ∥𝟙𝟙 and similarly for y. We list all

the F-symbols (as found in Refs. 59 and 60) in Appendix D 1. Using the F-symbols in Appendix D 1, we can check that, in this gauge, y has
nice pivotal properties,

(233)

The fact that these diagrams are trivially pivotal is a reflection of the gauge choice used for the splitting spaces.
Next, we look at what happens when we slide a y line past a Vxx

x fusion space. Since dimVxx
x ≙ 2, the fusion space requires a multiplicity

index labeling the independent vectors spanning this vector space. We denote them v1 and v2 and diagrammatically label them with an index
at the fusion vertex,

(234)

The next three relations show what happens when y shifts past the fusion space Vxx
x ,

(235)

where the σw , w = x, y, z are the standard Pauli matrices.61 When we condense y, these sliding moves will determine the action of End(ρ) ⊗
End(ρ) ⊗ End(ρ) on V

ρρ
ρ .

Finally, we have

(236)

(237)
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These will be of use to us when we specify the pivotal properties of 1
2
E6 after condensing y (see Sec. VII B 1 for more details). The only data

left to specify are the associators for the Vxxx
x fusion space, which we list in Appendix D 1.

B. Fermion condensation in 1
2E6

In this subsection, we will describe the procedure for condensing the y particle in 1
2
E6. As mentioned earlier, 1

2
E6 is not braided, and so

when we say condense y, we actually mean that we lift y to the Drinfeld center (where it is an emergent fermion) and condense the lift of y.
Since the center of 1

2
E6 has been computed in several places,48,58,62 we will not provide all details.

The lift of y to the Drinfeld center can be found by solving (94) subject to the constraints (95) and (96). Using the fusion theory of 1
2
E6

defined above in Sec. VII A, one readily finds the unique solution,

(238)

The negative sign on the last term makes the statistics and twist of (the lift of) y fermionic.
We are now in a position to condense y. Since x is invariant under fusion with y after condensation, it becomes a q-type simple object,

which we will denote by ρ,

x
condense yÐÐÐÐÐÐ→ ρ, End(ρ) ≅ Cℓ1. (239)

ρ is the only nontrivial simple object in the condensed theory. Furthermore, since x has fusion multiplicity in the parent theory, ρ has fusion
multiplicity in the condensed theory. This is captured by the fusion space

V
ρρ
ρ ≅ C2∣2. (240)

The nontrivial fusion rule of the condensed theory is

ρ⊗ρ ≙ C1∣1 ⋅ 𝟙⊕C
1∣1 ⋅ ρ. (241)

The fusion rule coefficients Δ
ρρ
ρ ≙ Δ

ρρ
𝟙
≅ C

1∣1 appearing in the above formula are determined by the relation Vab
c ≅ Δ

ab
c ⊗End(c) and the

knowledge of the fusion spaces V
ρρ
ρ ≅ C2∣2,Vρ𝟙

ρ ≅ C1∣1.63

1. Pivotal structure

Since End(ρ) ≅ Cℓ1, End(ρ) possesses an odd endomorphism that we will denote as f. We will denote the even basis vectors of V
ρρ
ρ as

v1 and v2 so that the odd basis vectors are fv1 and fv2, where the fvi are obtained by acting with f on the bottom leg of the fusion space.
Diagrammatically, we can denote this vector space by

(242)

where f is represented graphically by the blue dot. We can then use our knowledge of local relations in the parent 1
2
E6 theory and the lift of y

to derive the following relations in the condensed theory:

(243)

where the σw are the standard Pauli matrices [compare (235)]. We can also obtain the following pivoting moves:

(244)
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(245)

Note that we have P3 ≙ 𝟙, (●P)3 ≙ −𝟙, which is consistent with the fact that P acts on even vectors, while
●
P acts on odd ones (so that (●P)3

rotates an odd vector by 2π, which produces a minus sign).

C. The tube category and the torus

1. Tube category morphism spaces

In this subsection, we compute bases for tube category morphism spaces. We will make use of the notation s(X) defined in (116). Using
the relations

(246)

we see that a complete basis of morphisms from trivial (empty) boundary to the empty boundary is listed in Table X. (The relations are found
by taking two fermions out of the vacuum and sliding them around the annulus.)

Similarly, we have

(247)

Hence, some of these states are linearly dependent, and so a complete basis of morphisms is found if we fix the fusion space and also consider
the action of the odd endomorphism. The basis we choose is listed in Table XI.

The morphisms of mor(ρ→ ρ) satisfy

(248)

and also

TABLE X. A complete basis of morphisms for morB(e→ e) ∈ Tube( 1
2

E6/y). The labels above each tube are shorthand for
that tube: e—empty tube; h—tube with a horizontal ρ line. The dot above h denotes that the morphism is an odd morphism.
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TABLE XI. A complete basis of morphisms mor(ρ→ e) ∈ Tube( 1
2

E6/y) and mor(e→ ρ) ∈ Tube( 1
2

E6/y). We have denoted these by k,
●
k, k̃, and

●
k̃.

TABLE XII. A complete basis of morphisms for mor(ρ→ ρ) ∈ Tube( 1
2

E6/y). The labels above each tube are shorthand for that tube: v—tube with a vertical ρ strand; t—tube

with a ρ strand wrapping both cycles; and X—tube with all labels given by ρ. As before, a dot denotes an odd vector.

(249)

We can use these results to obtain a basis for mor(ρ→ ρ), which is given in Table XII.

2. Bases for tori

In this subsection, we compute bases for the Hilbert spaces of spin tori. We could, of course, do this using knowledge of tube category
idempotents and Theorem IV.1, but it is an instructive exercise to also compute bases using more elementary means. In addition, when
computing S and T matrices, it will be useful to have a topologically simple basis at our disposal.

On the torus, there are four spin structures. We will first investigate the local relations on the three bounding tori, which have the spin
structure (X, Y) = (B, B), (N, B), (B, N). Then, we will consider the (N, N) torus separately. We use the same notation as in Sec. III C.

Depending on the spin structure, some of the annular tubes become zero after identifying the boundaries to form tori. Since there is
always one cycle with the bounding spin structure, an odd tube is identified with zero for the same reason as discussed in Sec. III C 1. For
another example, due to (246), we have

(250)
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We also get another local relation from (248) after closing up the annulus to a torus, namely,

(251)

The two relations above can be multiplied to find a third one,

(252)

We take the state with (a, b) = (1, 1) as the representative of this set of linearly dependent vectors.
There is one additional useful linear relation to be found. This relation comes from nucleating a ρ loop and extending it around the torus

before fusing it back into the canonical basis,

(253)

where cλ are coefficients that depend on the F-symbols. The string of equalities gives an additional local relation, in particular, it allows us
solve for the tubes in (252) in terms of the other nonzero tubes. Explicitly, in the three sectors (B, B), (B, N), and (N, B), we have

(254)

(255)

(256)

We now move on to the torus where the spin structure is nonbounding along both cycles. We first note that

(257)

which can be seen by nucleating two fermions out of the vacuum along each ρ line and dragging one of them along the entire ρ line before
fusing them back to the vacuum. Furthermore, the same calculation as (253) implies that the empty tube is identified with zero,

(258)

The only nonzero tube with even parity is given by
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(259)

and those which are proportional to it are given by (252).
As one may expect from the Ising example, there are odd tubes that are nonzero. Indeed, we can find four of them,

(260)

However, these four tubes are not linearly independent. There are two independent linear relations that can be found between them by
multiplying the tadpolelike diagrams in two different ways,

(261)

This is an instance of the familiar relation cl(a ⋅ b) = cl(b ⋅ a). Despite the indices μ and ν varying over four distinct values, this yields only two
linearly independent relations on the torus. They are given by

(262)

and64

(263)

We can now solve for any two of the above four states. We choose

(264)

(265)

In summary, the Hilbert spaces on each of the different spin tori are
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(266)

D. The tube category of 1
2E6/y

In this subsection, we compute the minimal idempotents of the tube category of 1
2
E6/y. The tube category is somewhat exotic and

highlights many of the nontrivial features, which arise when studying fermionic theories. We start by analyzing the idempotents from a purely
algebraic point of view using only the dimensions of the morphism spaces, which can be inferred from Tables X–XII. We also provide explicit
representations of the idempotents, which are given in Tables XIII–XV.

We begin by examining the bounding tube category. A basis for the morphism space morB(e→ e) is given in Table X. As a vector space,

morB(e → e) is isomorphic to C
2∣0, and [as we have seen before in (48)] there is only one possible super algebra structure on C

2∣0, given
by C ⊕ C. (As before, C is shorthand for the trivial 1-dimensional algebra.) Therefore, this subcategory contains two inequivalent minimal
idempotents. One is the trivial idempotent that we denote m1 and the other we denote m2. Explicit representations of these idempotents are
given in Table XIII. The trivial idempotent is the usual one, just given by the quantum dimensions. The nontrivial idempotent m2 is easily
computed from the constraintm1 +m2 = ide and is also listed in Table XIII.

Next, we look at morB(ρ → e), a basis for which is listed in Table XI. As a vector space, morB(ρ → e) ≅ C
1∣1. This implies that

morB(ρ → ρ) contains a two by two matrix algebra M(1|1). One may think that it could just have easily been Q(1) ⊕ Q(1), but we know
that the bounding tube category does not admit q-type simple objects (see the discussion at the end of Sec. IV C). Thus, we find two minimal
idempotents in morB(ρ → ρ), both isomorphic to m2 (they cannot be isomorphic to m1 due to the no tadpole axiom). One of these mini-
mal idempotents is evenly isomorphic to m2, which we denote m+

2 , and the other is oddly isomorphic and denoted m−2 . The two isomorphic

idempotents are explicitly written in Table XIV. (They are proportional to k ⋅m2 ⋅ k̃ and ●k ⋅m2 ⋅ ●k̃.)

TABLE XIII. Quasiparticles of 1
2

E6 with bounding spin structures and trivial boundary condition. The particle is a linear

combination of the tubes shown at the top of the table multiplied by the coefficients in the row.
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TABLE XIV. Quasiparticles of 1
2

E6 with bounding spin structures and boundary condition ρ. The tube with a single ρ line is a

direct sum of four simple objects, two of which we name m+
2 and m+

3 . The other two are oddly isomorphic to m+
2 and m+

3 and
we denote them m−2 and m−3 .

TABLE XV. Quasiparticles of 1
2
E6 with vortex (periodic) spin structures. Two are q-type and one is m-type. The m-type particle is two-dimensional, consisting of two smaller

simple modules. Π is an odd isomorphism, α ≙ 1
2
(1 + 1/√2d + 1), and β ≙ 1

2
(1 − 1/√2d + 1).

TABLE XVI. The 1
2

E6 quantum dimensions and twists. We have normalized the quantum dimensions by the quantum dimension of the trivial idempotent. The total quantum

dimension is given by D ≙ d
√
6.

We now look at morB(ρ → ρ) and ask which part of it has not been accounted for. We see from Table XII that morB(ρ → ρ) ≅ C
4∣4 as

a vector space. An M(1|1) matrix algebra has been accounted for by m±2 . Thus, the only consistent super algebra structure is morB(ρ → ρ)≅M(1|1) ⊕M(1|1). The remainingM(1|1) contains two equivalent oddly isomorphic minimal idempotents, which we labelm+
3 andm−3 .

The super algebra structure of the nonbounding tube category is more exotic but equally well tamed by the classification of semisimple

super algebras. We begin by looking at morN(e → e) ≅ C1∣1. There is a unique simple algebra structure on C
1∣1 given by Q(1). We denote the

corresponding q-type minimal idempotent by q1.

Next, we look at morN(e→ ρ) that is isomorphic to C
1∣1 as a vector space. It follows that morN(ρ→ ρ) contains a Q(1) summand and a

minimal idempotent isomorphic to q1 that we denote q
′
1 and list in Table XV.
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We now turn to morN(ρ → ρ) ≅ C
4∣4. A C

1∣1 dimensional subalgebra has been accounted for by q1. Hence, we only need to look at

the complement of this subalgebra, which as a vector space is isomorphic to C
3∣3. There are two possible super algebra structures available:

either three copies of Q(1) or one copy of Q(1) and one copy of M(1|1). However, TubeB and Tube
N must contain the same number of

nonisomorphic minimal idempotents, as shown at the end of Sec. IV C. Since TubeB( 1
2
E6/y) has three nonisomorphic minimal idempotents,

so must TubeN( 1
2
E6/y). Hence, the algebra structure on the remaining C

3∣3 must be Q(1) ⊕ M(1|1). Correspondingly, we find one q-type
minimal idempotent that we label q2 and two oddly isomorphic m-type minimal idempotents that we label m+

4 and m−4 . These idempotents
are given explicitly in Table XV.

It is useful to write the isomorphisms between the idempotents in a standard form. Namely, if e and e′ are isomorphic, we can write
e = u ⋅ v and e′ = v ⋅ u for some u and v. In an obvious notation, we have

(267)

which can be used to track the isomorphisms across the three representativesm2,m
+
2 , andm−2 . Similarly, we have

(268)

Finally, we note thatm+
3 ⋅ ●v ≙ ●v ⋅m−3 andm+

4 ⋅ ●v ≙ ●v ⋅m−4 , where ●v is listed in Table XII. Consequently, we have

m
+
3 ≙ λ−1(m+

3 ⋅ ●v) ⋅ (●v ⋅m+
3), m

−
3 ≙ λ−1(●v ⋅m+

3) ⋅ (m+
3 ⋅ ●v) (269)

and similarly

m
+
4 ≙ λ−1(m+

4 ⋅ ●v) ⋅ (●v ⋅m+
4), m

−
4 ≙ λ−1(●v ⋅m+

4) ⋅ (m+
4 ⋅ ●v). (270)

The twists and quantum dimensions of the idempotents can be computed with the techniques developed in previous sections; we list the
results in Table XVI.

We also note that an idempotent of the parent tube category can always be included into the tube category of the condensed theory.
As in Sec. V B, the inclusion can be nontrivial: some of the idempotents may become isomorphic or even equal to zero. In Appendix D 2,
we compute the minimal idempotents of Tube( 1

2
E6) and track their images under the inclusion into Tube( 1

2
E6/y). This also provides an

additional crosscheck on the minimal idempotents given in Tables XIII–XV.
The fusion rules in the condensed theory can be calculated using (144) and (145) as well as the S-matrix that we compute in Sec. VII E.

We list the fusion rules in Table XVII. A particularly noteworthy fusion rule is

m
+
4 ⊗ m

+
4 ≅ C0∣1

m1 ⊕m2 ⊕m
+
3 . (271)

The odd vector space coefficient of the trivial object m1 implies that m+
4 is oddly self-dual. Let us show explicitly that mor(𝟙 → m+

4 ⊗m+
4)

≅ C0∣1. We first note the following linear relations:

(272)

(273)

The boundary is labeledm𝟙 and allows us to treat the pair of pants as if it were a sphere with two disks removed, each with one marked point
labeled ρ. Indeed, (272) follows directly from this observation, while (273) also requires some pivots. After plugging in the coefficients and
using (248), one finds that

(274)
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TABLE XVII. 1
2

E6 fusion rules. We define A ≙ {m1,m2,m
+
3} and V ≙ {q1, q2,m+

4} as the set of nonvortex and vortex quasiparticles, respectively. The Cp∣q denote the vector

space associated with Δ
ab
c , which is related to the fusion space through Vab

c ≙ Δ
ab
c ⊗ End(c). Note that m+

4 is oddly self-dual (the relevant fusion channel is marked in red),
and hence, it has a Frobenius-Schur indicator of ± i.

A⊗A m1 m2 m+
3

m1 m1 m2 m+
3

m2 m2 m1 ⊕C
1∣1m2 ⊕C

1∣1m+
3 C

1∣1m2 ⊕C
0∣1m+

3

m+
3 m+

3 C
1∣1m2 ⊕C

0∣1m+
3 m1 ⊕C

0∣1m2 ⊕m+
3

V⊗A m1 m2 m+
3

q1 q1 C
1∣1q1 ⊕ q2 ⊕C

1∣1m+
4 q1 ⊕ q2 ⊕C

1∣1m+
4

q2 q2 q1 ⊕C
1∣1m+

4 q1 ⊕ q2
m+

4 m+
4 q1 ⊕ q2 ⊕C

0∣1m+
4 q1 ⊕C

0∣1m+
4

V⊗V q1 q2 m+
4

q1 C
1∣1m1 ⊕C

2∣2m2 ⊕C
1∣1m+

3 C
1∣1m2 ⊕C

1∣1m+
3 C

1∣1m2 ⊕C
1∣1m+

3

q2 C
1∣1m2 ⊕C

1∣1m+
3 C

1∣1m1 ⊕m+
3 C

1∣1m2

m+
4 C

1∣1m2 ⊕C
1∣1m+

3 C
1∣1m2 C

0∣1m1 ⊕m2 ⊕m+
3

(275)

Under interchanging X11 with X12, we see that m
+
4 is interchanged with m−4 . It follows that inserting the m+

4 idempotent on the right-hand

side of the pair of pants is equivalent to insertingm−4 on the left-hand side of the pair of pants. Using that
●
v ⋅m−4 ≙ m+

4 ⋅ ●v, a basis for Vm+
4m

+
4

𝟙
is

generated by a single odd vector,

(276)

and so V
m+

4m
+
4

𝟙
≅ C0∣1.

E. Modular transformations

1. Topological and idempotent bases

There are two natural bases on the torus. One is the topological basis, corresponding to (266), and the other is the idempotent basis (or
quasiparticle basis) given in Tables XIV and XV. We will compute the modular transformations in the topological basis first and then change
over to the idempotent basis.

We define the shorthand notation for the tubes as in Tables X–XII. We will then denote the spin structure by a subscript, for example,

(277)
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Every state on the torus can be expanded in terms of the above states, as long as we are also careful to use the relations provided in
Sec. VII C 2. Hence, one can directly compute the change of basis by taking the particles in Tables XIII, XIV, and XV and projecting them
onto the torus and then modding out by the relations described in Sec. VII C 2. The change of basis matrices in the spin sectors with at least
one bounding cycle are

⎛⎜⎜⎜⎝
m1

m2

m+
3

⎞⎟⎟⎟⎠
BB

≙
⎛⎜⎜⎜⎜⎝

1

d
√

3
0 1

2
√

3

d

2
√

3
0 − 1

2
√

3− d

2
√

3

1
2

1

2
√

3

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
e

v

h

⎞⎟⎟⎟⎠
BB

, (278)

⎛⎜⎜⎜⎝
m1

m2

m+
3

⎞⎟⎟⎟⎠
BN

≙
⎛⎜⎜⎜⎜⎝

1

d
√

3
0 1

2
√

3

d

2
√

3
0 − 1

2
√

3

de2πi/3

2
√

3

e−iπ/3

2
e−iπ/3

2
√

3

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
e

t

h

⎞⎟⎟⎟⎠
BN

, (279)

⎛⎜⎜⎜⎝
q1

q2

m+
4

⎞⎟⎟⎟⎠
NB

≙
⎛⎜⎜⎜⎜⎜⎝

1 0 0√
1+d
3
e−3iπ/4 eiπ/6√

3

eiπ/3√
3

e7iπ/12√
6

e−iπ/6

2
√

3

e−2iπ/3

2
√

3

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
e

v

t

⎞⎟⎟⎟⎠
NB

. (280)

For the nonbounding NN spin structure, the q-type idempotents need to be closed up into a torus with an odd isomorphism. We define

[●qi]2 ≙ qi. This has a ± ambiguity, and we denote the ± signs by σi. We can also change to the idempotent basis with

⎛⎜⎜⎝
●
q1
●
q2
m+

4

⎞⎟⎟⎠ ≙
⎛⎜⎝
σ1e
−iπ/4 0 0

0 σ2e
−iπ/4 0

0 0 1

⎞⎟⎠
⎛⎜⎜⎜⎝

e−iπ/4√
2

0 0

− e−iπ/4√
2

1 0

0 0 − e5iπ/6√
2+d

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
●
h
●
v

X

⎞⎟⎟⎠. (281)

The q-type idempotents have norm square of 2 (due to their two-dimensional endomorphism algebras), as opposed to the m-type

idempotents that have norm square of 1. To ensure that the modular matrices are unitary, we adjust for this by defining q̂ ≙ q/√2. When
written in terms of the q̂, the modular matrices are unitary.

2. S transformation

The S transformation exchanges the longitudinal and meridional cycles of the torus. Since we are drawing the tori as annuli with their
boundaries identified, the S transformation looks like

(282)

with the transformed spin structure X̃Ỹ being found with the aid of Fig. 5. In terms of the matrix elements of S, we have

(283)

where we have taken ψ, λ ∈⊕ab V
aba∗

b modulo local relations.
We can now work out the S-matrix for each spin structure in the topological basis and then change over to the idempotent basis. The

calculation is the same in each case, we find the linear map on the topological basis based on (282) and then change back to the particle basis
using (280) and (281).
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For the BB spin structure, one simply finds that v and h are interchanged so that

⎛⎜⎝
e
v

h

⎞⎟⎠
BB

SBB→BBÐÐÐ→ ⎛⎜⎝
1 0 0
0 0 1
0 1 0

⎞⎟⎠
⎛⎜⎝
e
v

h

⎞⎟⎠
BB

. (284)

We can now write down the S-matrix in the idempotent basis using the change of basis in (278),

⎛⎜⎜⎝
m1

m2

m+
3

⎞⎟⎟⎠
BB

SBB→BBÐÐÐ→ 1√
3

⎛⎜⎜⎜⎝
1
d

d
2

1

d
2

1
d
−1

1 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m1

m2

m+
3

⎞⎟⎟⎟⎠
BB

. (285)

Next, we compute the S-matrix elements that transition between the BN and NB tori. We first find the action of S on the BN torus,

⎛⎜⎜⎜⎝
e

h

v

⎞⎟⎟⎟⎠
BN

SBN→NBÐÐÐ→
⎛⎜⎜⎜⎝

1 0 0

0 1 0

de−iπ/6 e5iπ/6 e2πi/3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
e

v

t

⎞⎟⎟⎟⎠
NB

, (286)

which can be written in the idempotent basis as

⎛⎜⎜⎜⎝
m1

m2

m+
3

⎞⎟⎟⎟⎠
BN

SBN→NBÐÐÐ→
⎛⎜⎜⎜⎜⎝

1
2

1

2
√

3

1√
3

1
2
− 1

2
√

3
− 1√

3

0 1√
3
− 1√

3

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
q1

q2

m+
4

⎞⎟⎟⎟⎠
NB

. (287)

Similarly, we can work out the S-matrix in the topological basis for the (N, B) torus,

⎛⎜⎜⎜⎝
e

v

t

⎞⎟⎟⎟⎠
NB

SNB→BNÐÐÐ→
⎛⎜⎜⎜⎝

1 0 0

0 1 0

deiπ/6 e−5iπ/6 e−2iπ/3

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
e

h

t

⎞⎟⎟⎟⎠
BN

. (288)

Again, we can write this in the idempotent basis

⎛⎜⎜⎜⎝
q1

q2

m+
4

⎞⎟⎟⎟⎠
NB

SNB→BNÐÐÐ→
⎛⎜⎜⎜⎜⎝

1 1 0

1√
3
− 1√

3

2√
3

1√
3
− 1√

3
− 1√

3

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m1

m2

m+
3

⎞⎟⎟⎟⎠
BN

. (289)

Note that the S-matrix is invertible but not unitary. This is because we did not normalize our idempotents appropriately. As mentioned earlier,

we write the normalized Q idempotents with a hat, Q̂i ≙ Qi/√2. Doing so, we find the appropriately normalized S-matrix that is given by

⎛⎜⎜⎜⎝
m1

m2

m+
3

⎞⎟⎟⎟⎠
BN

SBN→NBÐÐÐ→
⎛⎜⎜⎜⎜⎝

1√
2

1√
6

1√
3

1√
2
− 1√

6
− 1√

3

0
√

2
3
− 1√

3

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
q̂1

q̂2

m+
4

⎞⎟⎟⎟⎠
NB

, (290)

⎛⎜⎜⎜⎝
q̂1

q̂2

m+
4

⎞⎟⎟⎟⎠
NB

SNB→BNÐÐÐ→
⎛⎜⎜⎜⎜⎝

1√
2

1√
2

0

1√
6
− 1√

6

√
2
3

1√
3
− 1√

3
− 1√

3

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
m1

m2

m+
3

⎞⎟⎟⎟⎠
BN

. (291)

Note that the matrix is symmetric and unitary.
Finally, we can work out the S-matrix on the nonbounding torus,

⎛⎜⎜⎝
●
h
●
v

X

⎞⎟⎟⎠
NN

SNN→NNÐÐÐ→ ⎛⎜⎝
0 i 0
1 0 0
0 0 −i

⎞⎟⎠
⎛⎜⎜⎝
●
h
●
v

X

⎞⎟⎟⎠
NN

. (292)
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In the idempotent basis, this is

⎛⎜⎜⎝
●
q1
●
q2
m+

4

⎞⎟⎟⎠
NN

SNN→NNÐÐÐ→ eiπ/4√
2

⎛⎜⎝
1 Σ 0
Σ −1 0

0 0 −√2eiπ/4

⎞⎟⎠
⎛⎜⎜⎝
●
q1
●
q2
m+

4

⎞⎟⎟⎠
NN

, where Σ ≙ σ1σ2. (293)

Note that SNN→NN splits as SNN→NN
q ⊕ SNN→NN

m into blocks that operate on q-type and m-type particles as it must: the basis vectors coming
from m-type (q-type) idempotents are even (odd) and S preserves fermion parity.

In summary, we have (293) together with

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝
m1

m2

m+
3

⎞⎟⎠
BN⎛⎜⎝

q̂1
q̂2
m+

4

⎞⎟⎠
NB⎛⎜⎝

m1

m2

m+
3

⎞⎟⎠
BB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

SÐ→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1√
6

1√
3

1√
2
− 1√

6
− 1√

3

0
√

2
3
− 1√

3
1√
2

1√
2

0

1√
6
− 1√

6

√
2
3

1√
3
− 1√

3
− 1√

3
1

d
√

3

d

2
√

3

1√
3

d

2
√

3

1

d
√

3
− 1√

3
1√
3
− 1√

3

1√
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝
m1

m2

m+
3

⎞⎟⎠
BN⎛⎜⎝

q̂1
q̂2
m+

4

⎞⎟⎠
NB⎛⎜⎝

m1

m2

m+
3

⎞⎟⎠
BB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (294)

3. T transformation

The Dehn twist (T-transformation) corresponds to cutting the torus open along one cycle, applying a full 2π rotation and then gluing
the torus back together along that cycle,

(295)

with the spin structure transforming according to Fig. 5. In terms of the matrix elements of T,

(296)

Aside from spin structure considerations, all idempotents are eigenstates of the Dehn twist, with T acting diagonally within each spin-
structure block.

To find the eigenvalues, we compute the Dehn twist in the topological basis and then change back to the idempotent basis as usual. We
find

⎛⎜⎜⎝
●
q1
●
q2
m+

4

⎞⎟⎟⎠
NN

TNN→NNÐÐÐÐ→ ⎛⎜⎝
1 0 0
0 −i 0

0 0 e5iπ/6

⎞⎟⎠
⎛⎜⎜⎝
●
q1
●
q2
m+

4

⎞⎟⎟⎠
NN

(297)
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for the NN torus and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝
m1

m2

m+
3

⎞⎟⎠
BN⎛⎜⎝

q̂1
q̂2
m+

4

⎞⎟⎠
NB⎛⎜⎝

m1

m2

m+
3

⎞⎟⎠
BB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

TÐ→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0

0 0 eiπ/3

1 0 0
0 −i 0

0 0 e5iπ/6

1 0 0
0 1 0

0 0 eiπ/3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝
m1

m2

m+
3

⎞⎟⎠
BN⎛⎜⎝

q̂1
q̂2
m+

4

⎞⎟⎠
NB⎛⎜⎝

m1

m2

m+
3

⎞⎟⎠
BB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(298)

for the spin tori with at least one bounding cycle. One can check that the modular matrices defined above satisfy S4 = (−1)F and
(ST)3 = (−1)F .
VIII. SUPER PIVOTAL CATEGORIES

In this section, we give a more formal (though not completely formal) definition of super pivotal categories. Since the usual bosonic case
is well covered in the literature, we will concentrate on the differences between the bosonic case and the fermionic/super case. We will also fix
some notation and conventions used elsewhere in this paper.

There are various ways of axiomatizing string nets, including Kuperberg spiders,65 planar algebras,66 disklike 2-categories,67 and pivotal
tensor categories.68

The first three are better suited to our applications, but the last one is likely the most familiar to a majority of our readers, so we will
describe a fermionic/super version of pivotal tensor categories.

So far as we know, the earliest definition of a super pivotal tensor category was given in Ref. 67. In the higher category definition given
in that paper, one of the parameters was the type of balls used to specify morphism spaces. If we take those balls to be 2-dimensional and
equipped with spin structures, then one has a definition of a super pivotal 2-category. We can then take a super pivotal tensor category to be a
super pivotal 2-category with only one 0-morphism. The more traditional-style definition given below is reverse-engineered to be equivalent
with the definition already contained in Ref. 67.

Recall from Ref. 68 that the data of a pivotal category includes the following:

● A set of objects S1.● A set of morphisms S2.● A binary operation ⊗ (horizontal composition) on objects and morphisms.● A binary operation ○ on morphisms.● A pivotal structure ∗ defined on both objects and morphisms.

The definition of a super pivotal category differs from the usual bosonic case in the following ways:

1. The space of morphisms between two objects has the structure of a super vector space. Morphisms also satisfy the super interchange
law,11

( f1⊗f2) ○ (g1⊗g2) ≙ (−1)∣ f2 ∣∣g1 ∣( f1 ○ g1)⊗( f2 ○ g2), (299)

where | f | is the parity of the morphism f.
2. There are two distinct types of simple object, “m-type” and “q-type.” m-type simple objects have trivial endomorphism algebras C, as is

the case in bosonic theories. q-type simple objects have endomorphism algebras isomorphic toCℓ1, and so their endomorphism algebras
contain odd elements in addition to scalars (see Sec. VIII A).

3. In order to keep track of Koszul signs arising from exchanging fermions, we must keep track of a sign-ordering of individual fusion
spaces (see Sec. VIII E).

4. Fusion spacesVabc,Vab
c ,Vabcd, etc., are not merely supervector spaces; they come equipped with an action of the endomorphism algebras

of the objects being fused. For example, Vabc possess an action of End(a) ⊗ End(b) ⊗ End(c) (see Sec. VIII B).

5. When combining basic 3-valent fusion spaces Vab
c to form fusion spaces of higher valence, we must take tensor products over the

endomorphism algebras of the simple objects that connect two fusion spaces. For example, we form the fusion space Vab
cd as Vab

cd

≅ ⊕e V
ab
e ⊗End(e)V

e
cd. If e is m-type, this is just the usual tensor product over C, as in the bosonic case. However, if e is q-type, then

we must take a nontrivial tensor product over Cℓ1 (see Sec. VIII F).
6. The square of the pivotal antiautomorphism is the fermion parity functor (−1)F , rather than the identity functor (see Sec. VIII C). If ∗ is

the pivotal antiautomorphism, then

f
∗∗ ≙ (−1)∣ f ∣f . (300)
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In order to keep track of minus signs that result from rotating fermions by 2π, we must keep track of a spin-framing at each fusion
space.

7. The coherence equations for the basic data of the theory (e.g., the pentagon relations) are modified to incorporate Koszul signs result-
ing from reordering various fusion spaces. They are also modified to incorporate the tensor products over endomorphism algebras
mentioned above (see Sec. VIII G).

8. In order to define an inner product, we need to equip the manifold on which our string-nets are defined with a pin± structure, which is
discussed in Appendix B.

A. Simple objects

We will assume that our category S is idempotent complete—every idempotent is the identity morphism of an associated object. We also
assume that S is additive—we can take direct sums of objects.

An object a of S is called simple if any homogeneous nonzero endomorphism of a is an isomorphism. Equivalently, a is simple if it has
no quotient objects. (We also stipulate that the zero object is not a simple object.)

In the usual bosonic, nonsuper case, the only possible endomorphism algebra for a simple object is the trivial algebra C (scalars). In the
fermionic/super case, there is a second possibility: the complex Clifford algebra Cℓ1, which is the only nontrivial Z2-graded division algebra
other than C. Cℓ1 is generated over C by the identity (which is even) and an odd element f such that f 2 = λ ⋅ id (or f 2 = λ for short) for some
nonzero complex number λ. Note that by rescaling the odd generator f, we can make λ in the definition ofCℓ1 any nonzero complex number.

It follows that simple objects in a super pivotal category fall into two classes, according to whether their endomorphism algebras are C
or Cℓ1. These are the m-type and q-type objects discussed earlier. A simple object is m-type if its endomorphism algebra is C and q-type if its
endomorphism algebra is Cℓ1,

End(x) ≙ C←→ x is a simple m-type object,

End(x) ≙ Cℓ1 ←→ x is a simple q-type object.
(301)

This terminology comes from the notation of Ref. 69, which classifies simple super algebras overC as eitherM(p∣q) ≙ End(Cp∣q) or Q(n) (see
Appendix C). Note that we are using “simple” here in two different (and well-established) senses: anyM(p|q) orQ(n) is a simple super algebra
(because it has no nontrivial ideals), but the endomorphism algebra of a simple object must be either M(1∣0) ≅ M(0∣1) ≅ C or Q(1) ≅ Cℓ1
because all of the largerM(p|q) or Q(n) contain noninvertible elements.

The existence of q-type particles is responsible for much of the novel physics present after performing fermion condensation. q-type
objects were also discussed in Ref. 10 and 16, where they were referred to as “Majorana objects.” (We prefer the m-type/q-type terminology,
since it makes clearer the relationship to the Morita classification of simple super algebras.)

B. Fusion spaces

Arbitrary morphism spaces in a super pivotal category can be built out of basic fusion spaces Vab
c ≙ mor(c→ a⊗b), where a, b, and c are

simple objects (equivalently, minimal idempotents). This is a super vector space of dimension Nab
c ≙ dimVab

c ≙ p∣q, where p is the dimension

of the even part of Vab
c and q is the dimension of the odd part of Vab

c .

Alternatively, we can treat a, b, and c more symmetrically and define Vabc ≙ mor(𝟙 → a ⊗ b ⊗ c), a super vector space of dimension

Nabc. In most of this paper, we use Vab
c , but in Secs. IX and X, we find it more convenient to use Vabc. The elements of the morphism spaces

Vabc and Vab
c are depicted by

(302)

We call the fusion spaces Vabc “pitchforks” because of their graphical depiction. Of course, we have Vab
c ≅ Vabc∗ (see Sec. VIII C).

More generally, we define Vab
cd ≙ mor(c ⊗ d → a ⊗ b), Vab

cde ≙ mor(c ⊗ d ⊗ e → a ⊗ b), Vabcd ≙ mor(a ⊗ b ⊗ c ⊗ d → 𝟙), and so on.
In general, we do not require that the objects a, b, etc., be simple.

It is very important to note that Vab
c is not merely a super vector space—it also comes equipped with an action of (i.e., module structure

for) the endomorphism algebras of a, b, and c and, hence, admits an action of End(a) ⊗ End(b) ⊗ End(c). It is impossible to construct the full
super pivotal category without knowing this module structure (see Sec. VIII F), so the module structure is part of the input data. Note that

the module structure implies that Nab
c ≙ n∣n if any of a, b, or c is q-type. This is because any representation of Cℓ1 has equal even and odd

dimensions. Acting with the odd (and invertible) element of Cℓ1 gives an isomorphism between the even and odd parts of Vab
c , and hence,

they must have the same dimension.
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The explicit matrix elements of these isomorphisms can be defined in the following way. Let ψ ∈ Vab
c and suppose that b is a q-type simple

object, and let Γb ∈ End(b) be an odd endomorphism. Then,

(303)

where the matrix elements are obtained from

(304)

where the η∗ provide a complete orthogonal basis [with respect to the pairing (306)] forVb∗a∗

c∗ . If either a or c is q-type, then Γa and Γc matrices
can be defined in a similar way.

If at least one of a, b, c is q-type, we can simplify the description of Vab
c slightly, which we have done when working out the examples

considered earlier. Suppose c is q-type and that {∣ψi⟩} ∈ ∥Vab
c ∥0, i ≙ 1, . . . , r are the even basis vectors in Vab

c . Then, we can define a complete

set of odd basis vectors {|ηi⟩} for ∥Vab
c ∥1 by |ηi⟩ = f |ψi⟩, where f is the odd element of End(c) ≅ C1∣1. When we write |ηi⟩ graphically, we will

write it as f |ψ⟩, which allows us to “shift the oddness out of the vertex onto the edge” by transferring the fermion residing on the fusion space
to the q-type particle c. Graphically, this means that we are allowed to “displace” dots from trivalent vertices onto q-type worldlines,

(305)

where the picture on the left is |ηi⟩ and the one on the right is f |ψi⟩, and c is assumed to be q-type. Although this is not a deep fact, it proves to
be helpful when doing graphical manipulations and operators implementing transformations like (305) will be crucial for writing down the
lattice Hamiltonian that realizes the super pivotal version of the Levin-Wen Hamiltonian.

Finally, we will define a nondegenerate bilinear pairing between vectors in the vector space assigned to a disk with nmarked points. We
will focus on fusion spaces of the form Vx1...xn , but the construction for different types of fusion spaces is analogous. The pairing is defined by

(306)

where μ ∈ Vx∗n⋯x
∗
2 x
∗
1 and ν ∈ Vx1x2⋯xn . We are working with the convention that the Koszul ordering of the tensor product increases in a

left-to-right fashion [indicated by the numbers 1, 2 in the bottom right of (306)]; we will elaborate on this convention in Sec. VIII E. This
bilinear pairing is just the evaluation map and is C-linear in both its arguments. It is nondegenerate, meaning that if νj is a complete basis for

the fusion space Vx1x2⋯xn and μi is a complete basis for the dual fusion space Vx∗n⋯x
∗
2 x
∗
1 , then the matrix Bij ≙ B(μi ⊗ νj) is invertible. Hence,

we can define a set of vectors μ∗j ≙ ∑i(B−1)jiνi so that B(μ∗j ⊗ μi) ≙ δij. Alternatively, we can choose the normalization convention

B(μ∗j ⊗μi) ≙√dadbdc δij, (307)

with μi ∈ Vabc and μ∗j ∈ Vc∗b∗a∗ .

C. Pivotal structure

The pivotal structure assigns to each object a a dual object a∗. It also provides linear isomorphisms

PL : mor(a→ b ⊗ c)→ mor(b∗⊗ a→ c) (308)
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and

PR : mor(a ⊗ b→ c) → mor(a→ c ⊗ b
∗) (309)

for any objects a, b, and c. These isomorphisms are required to be functorial with respect to a and c. In addition, they are required to be
twisted-functorial with respect to b/b∗, where we use the ∗ functor (defined below) to relate morphisms with domain b to morphisms with
range b∗.

For objects a, we require that a∗∗ = a on the nose (strict pivotal). For morphisms f : a → b, we define f ∗: b∗ → a∗ by f ∗ = PL(PR(f )),
diagrammatically by

(310)

[We have implicitly added and then removed some tensor units (trivial objects) here appearing in fusion spaces like Vaa∗

𝟙 .] We think of f ∗ as
a + π rotation of the morphism f. We have

( f ⋅ g)∗ ≙ (−1)∣f ∥g∣g∗ ⋅ f ∗. (311)

In other words, ∗ is a contravariant functor if one takes Koszul signs into account.
For (strict) pivotal bosonic categories, one requires that ∗∗ is the identity functor, but in the fermionic case, one requires that ∗∗ is the

spin-flip functor (−1)F . More specifically, we require

f
∗∗ ≙ (−1)∣f ∣f , (312)

since f ∗∗ is a 2π rotation of f.
The part of the pivotal structure most used in calculations is the +2π/3 rotation on the basic trivalent fusion spaces. We define the “pivot”

Pab
c : Vab

c → Vbc∗

a∗ as PR ○PL. In terms of diagrams and matrices, this looks like

(313)

The Frobenius-Schur indicator κa can be computed in terms of pivot maps. If a ≅ a∗, then κa is the eigenvalue of the composite map

V
a
a∗

UrÐ→ V
a1
a∗

PÐ→ V
1a
a∗

U−1lÐ→ V
a
a∗ , (314)

where Ur and U−1l are given by postcomposition with the canonical isomorphisms (also known as unitors) a
∼→ a ⊗ 𝟙 and a

∼→ 𝟙 ⊗ a. (If a is
q-type, then we take the eigenvalue for the even part of Va

a∗ .)
We also note that the modular Smatrix gives the square of the Frobenius-Schur indicator. If a ≅ a∗, we have κ2a ≙ (S2)aa. For a bosonic

theory, the Frobenius-Schur indicators are ±1, and this provides no new information. However, in fermionic theories, the oddly self-dual
simple objects have Frobenius-Schur indicators of ±i, and this is detected by the diagonal entries of S2. Them4 particle in the 1

2
E6/y theory is

an example of this [see (293)].

We can similarly define Pabc: Vabc → Vbca. In terms of diagrams,

(315)

We will usually write simply P, since the a, b, and c are typically clear from context.
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Since P3 acts as a 2π rotation, we have P3 = (−1)F . Diagrammatically, when acting on Vabc this is written

(316)

D. Fusion rules and fusion spaces

In this section, we elaborate on the differences arising in fermionic theories between fusion spaces and the super vector spaces appearing
in the fusion rules.

We assume that our categories are additively complete, which means that it makes sense to multiply objects by super vector spaces. (This
is a categorified version of multiplying vectors by scalars. Vectors are promoted to objects and scalars are promoted to vector spaces.) For any
collection of super vector spaces {Wa} indexed by a finite set of objects {a} in our category, we, therefore, have an object of the form

⊕
a

Wa ⋅ a. (317)

Morphisms between these more general objects are calculated as

mor(⊕
a

Wa ⋅ a→⊕
b

W
′
b ⋅ b) ≙⊕

a,b

Hom(Wa →W
′
b)⊗C mor(a→ b). (318)

Because our category is semisimple, there exists a finite collection sobr(S) of mutually nonisomorphic simple objects x such that any
object a is isomorphic to one of the form

a ≅ ⊕
x∈sobr(S)

Wx ⋅ x. (319)

If we want the isomorphism to be canonical, we can takeWx = mor(x→ a) if x is m-type orWx to be the even morphisms in mor(x→ a) if x
is q-type.

Combining (319) and (318), we can compute endomorphisms of objects by

End(a) ≅ ⊕
x∈sobr(S)

End(Wx)⊗C End(x). (320)

We are now ready to discuss fusion rules. For any a and b, define the vector spaces Δab
c by

a⊗ b ≅ ⊕
c∈sobr(S)

Δ
ab
c ⋅ c. (321)

The Δab
c are the fusion rule coefficients.
The fusion spaces Vab

c are defined as the vector space of morphisms from c to a ⊗ b,

V
ab
c ≙ mor(c→ a⊗b), (322)

where a, b, c are simple objects. Decomposing the tensor product and using the simplicity of c, we see that

V
ab
c ≅ Δab

c ⊗mor(c→ c) ≅ Δab
c ⊗ End(c). (323)

Thus, the fusion spaces can be larger than the vector spaces appearing in the fusion rules (in contrast to bosonic theories, where the fusion
spaces and fusion rule coefficients are always equal). As examples, in the C2 theory studied earlier, we have

Δ
qσqσ
mψ
≅ C1∣1, Δ

qσm𝟙

qσ ≅ C, (324)

while
V

qσqσ
mψ
≅ Vqσm𝟙

qσ ≅ C1∣1. (325)

Vab
x is cyclically symmetric (up to isomorphism) in a, b, x (if a and b are simple). Explicitly, this is because

mor(c→ a⊗b) ≅ mor(𝟙→ a⊗b⊗c∗) ≅ mor(a∗ → b⊗c∗), (326)

which allows us to cyclicly permute the indices of V, so long as we take the duals of any objects that move from subscripts to superscripts, and

vice versa. For example, we have Vab
c ≅ Vbc∗

a∗ ≅ Vc∗a
b∗ .

On the other hand, Δab
c is not cyclically symmetric in a, b, c, as the C2 theory example shows. Additionally, while Vab

c has an action of

End(a) ⊗ End(b) ⊗ End(c) (as mentioned earlier), Δab
c only has an action of End(a) ⊗ End(b).
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E. Koszul sign rule and unordered tensor products

We will treat Koszul signs as in Ref. 70 (Sec. 1.2). This approach does not really do away with Koszul signs. Rather, it pushes them to the
background, where they do not need to be mentioned as frequently. For explicit calculations, they must again be brought to the foreground.

Let I be a finite (and unordered) index set. For each i ∈ I, letW i be a super vector space. We define the unordered tensor product,

⊗
i∈I

Wi, (327)

as follows: For each bijection f : {1, . . .,m}→ I (i.e., for each ordering of I), we have the ordered tensor product

Tf ≙Wf (1) ⊗⋯⊗Wf (m), (328)

generated by elements

wf (1) ⊗⋯⊗wf (m). (329)

For any two orderings f and g, there is a Koszul isomorphism

Kfg : Tf → Tg , (330)

characterized by71

Kfg : wf (1) ⊗⋯⊗wf (k) ⊗wf (k+1) ⊗⋯⊗wf (m) ↦
(−1)∣wf(k)∥wf(k+1)∣wf (1) ⊗⋯⊗wf (k+1) ⊗wf (k) ⊗⋯⊗wf (m) (331)

when g differs from f by a simple transposition at k and

Kgh ○ Kfg ≙ Kfh. (332)

An element of the unordered tensor product is then defined as an assignment to each ordering f of an element tf ∈ Tf such that

Kfg(tf ) ≙ tg (333)

for all orderings f and g. In other words, an element of the unordered tensor product is a collection of elements in all possible ordered tensor
products that are related by the usual Koszul sign rules.

Note that to specify an element of the unordered tensor product, it suffices to give an element tf of one particular ordered tensor product
Tf . All of the other tg are uniquely determined by tf .

When writing equations involving particular ordered tensor products of fusion spaces, we will adopt the convention that the Koszul
ordering is left-to-right on the page, unless explicitly indicated otherwise. If we want to indicate an ordering that departs from this left-to-

right convention, we will indicate the ordering explicitly with numerical subscripts, e.g., Vab
c,1 ⊗ Vcd

e,2. This explicit notation is often better
suited to our diagrammatic calculus, where we frequently label the Koszul ordering of fermion dots in a way that is not tied to the left-to-right
order in which we write down tensor products (this was done throughout Secs. II and III, for example).

When drawing diagrams with a particular ordering inmind, we always indicate the ordering explicitly by numbers near each fusion space
(i.e., near each vertex in the string net). Another possible convention would be to use the ordering corresponding to (say) bottom-to-top on
the page, but this creates opportunities for error when changing diagrams by isotopies and is not really workable for diagrams drawn on
higher genus surfaces.

A map between unordered tensor products ⊗
i

Wi → ⊗
j

Vj (334)

is defined to be a collection of maps between all possible pairs of ordered tensor products. We will call such a collection an “unordered
map.” These maps are required to commute with the Koszul isomorphisms on either side. To specify such a map, it suffices to give a single
map between one particular pair of ordered tensor products. All other maps in the collection are uniquely determined by this choice and the
commutativity requirement. This map will be called an “ordered representative” of the unorderedmap. See Sec. VIII H for a further discussion
of the distinction between unordered maps and their ordered representatives.

F. Modified tensor product

Let sobr(S) be a complete collection of simple objects (minimal idempotents) in some input super fusion category S, one from each
equivalence class. (In this subsection, as inmost of the paper, we are assuming that our category S is semisimple with finitely many equivalence
classes of simple objects.) For arbitrary objects x and y, we have

mor(x → y) ≅ ⊕
a∈sobr(S)

mor(x → a)⊗End(a)mor(a→ y). (335)
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Recall that the relative tensor product ⊗End(a) on the RHS above is defined as the usual tensor product over scalars, modulo elements of the
form α ⋅ f ⊗ β − α⊗ f ⋅ β with α ∈mor(x→ a), β ∈mor(a→ y) and f ∈ End(a). Clearly, such elements are in the kernel of the composition map
mor(x→ a) ⊗mor(a→ y)→mor(x→ y). Our semisimplicity assumption implies that the composition map [summing over all a ∈ sobr(S)]
is surjective and that such elements generate all of the kernels.

In terms of diagrams, the relative tensor product is responsible for allowing fermionic dots to move across edges labeled by q-type simple
objects. Loosely, taking a tensor product over End(a) when a is q-type allows us to identify diagrams that differ only by the position of a
fermionic dot on an a strand.

It follows (though not quite directly) from (335) that we have isomorphisms

V
abc
d ≅ ⊕

x∈sobr(S)
V

ab
x ⊗End(x)V

xc
d (336)

and also

V
abc
d ≅ ⊕

y∈sobr(S)
V

ay

d
⊗End(y)V

bc
y . (337)

Diagrammatically, these read

(338)

where the unlabeled trivalent vertices denote the fusion spaces Vab
x , Vxc

d , V
ay

d
, Vbc

y , and the unlabeled tetravalent vertex in the middle diagram

denotes the fusion space Vabc
d . The tensor product over endomorphisms is implicit in the diagram. Similarly,

V
abcd ≅ ⊕

x∈sobr(S)
V

ab
x ⊗End(x)V

xcd, (339)

and using the isomorphism PR : Vab
x → Vabx∗ , this becomes

V
abcd ≅ ⊕

x∈sobr(S)
V

abx⊗End(x)V
x∗cd. (340)

[We are implicitly using the ∗ functor to convert an End(x) action into an End(x∗) action.] Alternatively,

V
abcd ≅ ⊕

x∈sobr(S)
V

bc
x ⊗End(x)V

axd ≅ ⊕
x∈sobr(S)

V
axd⊗End(x)V

x∗bc. (341)

Diagrammatically, we have

(342)
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G. F-symbols

It follows from (336) and (337) that there is an isomorphism

F
abc
d : ⊕

x∈sobr(S)
V

ab
x ⊗End(x)V

xc
d → ⊕

y∈sobr(S)
V

ay

d
⊗End(y)V

bc
y . (343)

For the pitchfork version, we instead use (340) and (341) to obtain

F
abcd : ⊕

x∈sobr(S)
V

abx∗⊗End(x)V
xcd → ⊕

x∈sobr(S)
V

bcx∗⊗End(x)V
axd. (344)

The tensor products appearing in the above isomorphisms are unordered tensor products. For numerical applications, particular ordered

representatives of the tensor products need to be chosen. For the ordered Fabc
d isomorphism, we will adopt the convention

F
abc
d : ⊕

x∈sobr(S)
V

xc
d ⊗End(x)V

ab
x → ⊕

y∈sobr(S)
V

ay

d
⊗End(y)V

bc
y , (345)

with implicit sign ordering that increases from left to right on the page. Graphically and written as a matrix equation, we thus have

(346)

where the Greek indices label particular fusion space basis vectors, with μ ∈ Vab
x , ν ∈ Vxc

d ,α ∈ Vbc
y , and β ∈ Vay

d
, and where the first sum is over

y ∈ sobr(S). We also stick with the left-to-right ordering convention for the Fabcd move,

F
abcd : ⊕

x∈sobr(S)
V

abx⊗End(x)V
x∗cd → ⊕

y∈sobr(S)
V

ayd⊗End(x)V
y∗bc, (347)

which written as a matrix equation is

(348)

We will also find the following identity helpful:

(349)

where the pairing B is defined in (306).
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H. Coherence relations

We will not list all coherence relations here. Instead, we will give a few examples in order to highlight how the bosonic case must be
changed to take account of Koszul signs and relative tensor products.

We will start with the well-known pentagon equation in the version that uses the basic fusion spacesVab
c . If we work in terms of unordered

maps, with (343) interpreted as an unordered map between direct sums of unordered tensor products, then the fermionic pentagon equation
looks just like the bosonic case, namely, that the following diagram commutes:

(350)

where all the sums are over a representative set of simple objects and we have used the notation ⊗x ≡ ⊗End(x).
However, if we peer under the hood and look at ordered representatives (as we would need to do if, for example, we were checking the

pentagon equation on a computer), then we see that a Koszul sign appears,

(351)

or, equivalently,
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(352)
Here, K23 denotes the Koszul isomorphism associated with transposing the second and third tensor factors. Again, we are using the implicit
left-to-right Koszul ordering of each tensor product. In terms of the matrix elements of the F-symbols, this reads

∑
r∈sobr(S)

∑
σ∈Vxr

q

∑
ω∈Vyz

r

∑
η∈Vrw

s

∥Fxyz
q ∥(p;μν)(r;ωσ)∥Fxrw

u ∥(q;σλ)(s;ηγ)∥Fyzw
s ∥(r;ωη)(t;αδ)

≙ ∑
β∈Vpt

u

∥Fpzw
u ∥(q;νλ)(t;αβ)(−1)∣μ∥α∣∥Fxyt

u ∥(p;μβ)(s;δγ), (353)

where μ ∈ Vxy
p , ν ∈ Vpz

q , λ ∈ Vqw
u , γ ∈ Vxs

u , δ ∈ Vyt
s , and α ∈ Vzw

t . The Koszul sign K23 appearing in (352) appears in the above formula as

(−1)|μ∥α|.
Other coherence relations are modified to take into account Koszul signs. For example, requiring consistency between F-moves and the

pivot means that the following diagram must commute:

(354)

I. Reflection structure

A reflection structure on S is an antilinear antiautomorphism r from S to itself, which preserves (rather than reverses) the tensor product,

a ↦ r(a), (355)

α : a→ b ↦ r(α) : r(b)→ r(a), (356)

r(λα) ≙ λ̄r(α), (357)

r(αβ) ≙ r(β)r(α), (358)

r(a⊗ b) ≙ r(a)⊗ r(b), (359)

r(α⊗β) ≙ r(α)⊗ r(β) (360)
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for objects a, b and morphisms α, β. Diagrammatically, the action of r reflects diagrams about the horizontal axis (while acting as complex
conjugation on C). Outside of this section, we usually denote r by a bar: ā = r(a) and ᾱ ≙ r(α).

For objects, we require that r(r(a)) = a.72 For morphisms, we have two choices. In a pin + reflection structure, we require r2 to be the
identity functor,

r
2 ≙ id. (361)

In a pin− reflection structure, we require r2 to be the spin flip functor,

r
2 ≙ (−1)F . (362)

The main examples of this paper all have pin+ reflection structures.
We require r to be compatible with the other structure maps of S (pivots, F, etc.). For example, we require the following diagrams to be

commutative:

(363)

and

(364)
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A pin+ reflection structure on S allows us to define the action of pin+ diffeomorphisms on S string nets.
It follows from the “back wall” line bundle construction of Appendix B that super pivotal categories C/ψ obtained via fermion

condensation will have pin+ reflection structures whenever the parent category has an ordinary bosonic reflection structure.
Our main use for pin+ reflections is to define a sesquilinear inner product on the string net space A(Y ; c). Let Y be a spin surface, and let−Y denote the same underlying surface but with the reversed spin structure. The “identity” map from Y to −Y is not a spin diffeomorphism

(as it reverses orientation), but it is a pin+ diffeomorphism. Using the reflection structure on S, we can use this pin+ diffeomorphism to map
string nets in A(Y ; c) to string nets in A(−Y ; r(c)). If r(c) = c∗, then string nets in A(Y ; c) and A(−Y ; r(c)) can be glued together to get a string
net on the closed spin surface Y ∪∂Y − Y = ∂(Y × I). Using the path integral Z(Y × I) : A(Y ∪∂Y −Y) → C now yields a sesquilinear inner
product on A(Y ; c). Since A(Y ; c) is finite-dimensional, we also get an inner product on the dual space Z(Y ; c).

LetM be a spin 3-manifold. Then, the path integrals Z(M) : A(∂M) → C and Z(−M) : A(−∂M) → C are related by

Z(−M) ≙ Z(M) ○ R, (365)

where R: A(−∂M)→ A(∂M) is the antilinear map induced by the orientation-reversing identity map from − ∂M to ∂M. Equivalently, Z(M) ∈
Z(∂M) and Z(−M) ∈ Z(−∂M) and

Z(M) ≙ R(Z(−M)). (366)

Let Y1 and Y2 be spin surfaces, and letM be a cobordism from Y1 to Y2 (i.e., ∂M = Y2 ∪ −Y1). Then, −M is a cobordism from Y2 to Y1.
The path integrals can be viewed as maps Z(M) : Z(Y1)→ Z(Y2) and Z(−M) : Z(Y2)→ Z(Y1). It follows from (366) that Z(−M) is the adjoint
of Z(M) with respect to the inner products on Z(Y1) and Z(Y2) defined above.

IX. SUPER PIVOTAL HAMILTONIAN

In this section, we will write down a commuting projector Hamiltonian for a generic fermionic topological phase. Since our goal in this
section is to be rather general, we will put a fair amount of efforts into making our construction mathematically precise—readers who are only
interested in the final result may skip to Sec. IX C.

We will follow the same basic construction as in Ref. 25, with modifications to take into account the fermionic nature of the phases
under consideration. The most important modifications are as follows: First, we will need to fix a spin structure on the manifold on which we
are working. This spin structure affects the details of the local projections that constitute the Hamiltonian and is a necessary feature of any
fermionic lattice model. Additionally, we will need to allow the local degrees of freedom that constitute the Hilbert space for our lattice model
to be super vector spaces, rather than the regular vector spaces in bosonic models. Finally, we will need to add a new term in the Hamiltonian
with support on the edges and pairs of neighboring vertices in the lattice that allows fermions to fluctuate across edges that host q-type strings.

To begin the construction of the lattice model, we will thus need the following data:

1. a super pivotal fusion category C,
2. a spin surface Σ, and
3. a graph G embedded in Σ (more precisely, a cell decomposition of Σ) that inherits information about the spin structure.

In Subsections IX A–D, we define the Hamiltonian explicitly in terms of the above data.
We will write a frustrationfree Hamiltonian as a sum of local projectors, which fall into three classes. Two of these classes of projectors

are the fermionic analogs of the plaquette and vertex terms from the usual Levin-Wen Hamiltonian, while the third is an edge term that allows
fermions to fluctuate across edges hosting q-type strings. The Hamiltonian takes the form

H ≙ λp∑
p∈F
(1 − Bp) + λe∑

e∈E
(1 −De) + λv∑

e∈E
(1 − Ae), (367)

where the sums are over the plaquettes (faces) F and edges E of the graph, and the λp, λe, λv are positive constants. As in the bosonic case, we

require a hierarchy in the couplings of λv ≫ λe ≫ λp.
73 This is because the operators appearing in the plaquette terms are not well-defined

unless the edge term energies are minimized, and in turn, the terms appearing in the edge operators are not well-defined unless the terms
involving Ae are minimized. Thus, the projectors associated with k-cells are only defined on the ground states of the projectors associated
with l-cells, for all l < k. In Fig. 13, we illustrate the support of each operator appearing in the Hamiltonian with dashed circles, where we have
drawn a section of the graph G embedded in the plane for the sake of visualization. For simplicity, we will assume that all vertices in G are
trivalent.74

A. Hilbert space

We will locate all degrees of freedom (spins) at the vertices of the graph G, so the big Hilbert space on which the Hamiltonian is
defined is

HG ≙⊗
v∈V

Hv . (368)

We are making use of the unordered tensor product defined in Sec. VIII E.
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FIG. 13. A cartoon of the support of the operators appearing in a super pivotal Hamiltonian on a section of a generic graph. The motivation for the strange-looking vertices
is explained in Sec. IX B. Dashed ellipses indicate the support of various terms in the Hamiltonian on edges e, e′, and a plaquette p. The vertex terms Ae act on edges
and project onto states with edge colorings that are consistent between adjacent vertices. The edge terms De are responsible for sliding fermions along q-type edges. The
plaquette terms Bp involve all of the vertices and edges neighboring p. They project onto graph configurations that contain no quasiparticles within the plaquette p.

The vertex Hilbert spacesHv will depend on three sets of choices. First, we must choose an orientation of each edge of G. This is because
of the possibility of nontrivial Frobenius-Schur indicators (see below). Second, we must choose an ordering of the edges incident to each
vertex, consistent with with the intrinsic cyclic ordering of those edges coming from the embedding of G in the oriented surface (so if the
vertex is r-valent, there are r possible orderings). Finally, we must choose a spin framing at each vertex.

In order to make the choice of cyclic ordering manifest in diagrams, and in order to simplify spin-structure-related aspects of our
construction, we will choose to draw our graphs in a way such that all of the edges at each trivalent vertex are “on the same footing.” This is
in contrast to the conventions in the physics literature and in the rest of this paper, where vertices are drawn with one edge extending below
the vertex and two edges extending above, since in this convention the edge extending below is distinguished from the two other edges. We
will choose a convention in which all three edges at each trivalent vertex extend above the vertex: with this choice, each vertex resembles a
pitchfork.

We must also choose a spin framing at each vertex, consistent with the “pitchforkization” convention. The pitchforkization and spin

framing are needed in order to define an unambiguous isomorphism between local degrees of freedom at v is standard vector spaces Vabc.
Without this standardization, the local Hilbert spaces would be ambiguous up to automorphisms. The standardization procedure is nothing
more than fixing a convenient choice of gauge in the way we present our fusion diagrams.

If all the edges incident to a vertex v point out of the vertex, we define the vertex Hilbert space at v by

(369)

where the sum is over the simple objects of S. If the first edge points in and the other two point out, then we define

(370)

and so on for all eight possible patterns of in/out of the three incident edges.
This completes the definition on the big Hilbert space for the Hamiltonian. Impatient readers should now skip to Subsection IX B, but

readers who are puzzled by some of the choices we made above are encouraged to read on.

Why there are no spins on edges, as in the original Levin-Wen Hamiltonian? Levin and Wen explicitly assumed that Vabc is at most
1-dimensional. This is true for theories based on Temperley-Lieb or Repq(sl2), but it is not true in general, so we need to add spins on vertices.

However, each basis vector in ⊕a,b,cV
abc “knows” the labels on the adjacent edges, so once we have these vertex degrees of freedom, the edge

degrees of freedom become redundant and can be eliminated.75

Why must we choose an orientation of each edge? The short answer: because of the possibility of nontrivial Frobenius-Schur indicators.
Now for the longer answer: If the edges are not oriented, then we would assign vertex Hilbert spaces as above, but with all edges pointing out
of each vertex. This means that each edge sees two inward pointing edges,
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(371)

If the two labels coming from the two adjacent vertices are a and b (which we will assume are both m-type, for simplicity), then the associated
vector space for the edge is Vab, which is 0-dimensional unless a ≅ b∗. If a is not self-dual or if a is evenly self-dual with FS indicator 1, then

there is a canonical identification of Vab with C ≙ C1∣0 and we can ignore it.
However, if a is evenly self-dual with Frobenius-Schur (FS) indicator −1, then there is a sign ambiguity in identifying Vaa with C and

we will have to keep careful track of this sign when defining the Hamiltonian. Even worse, if a is oddly self-dual (and a is m-type), with FS

indicator ±i (as occurs in the 1
2
E6 theory studied earlier), then Vaa is an odd vector space, noncanonically isomorphic to C

0∣1. Keeping track
of these odd vector spaces would entail even more bookkeeping.

Overall, we think the least annoying solution to the above problems is to orient each edge of the graph. This allows us to treat a and a∗

as distinct objects, even when they happen to be isomorphic. Now, instead of Vaa, we have Vaa∗ ≅ End(a), which has a canonical element id:
a→ a, even when Frobenius-Schur indicators are nontrivial.

Why the pitchforks? As alluded to earlier, rotations by 2π/3 can act nontrivially on Vaaa, and so it is helpful to choose a vertex
configuration where every outgoing edge is placed on the same footing. This is true even in the bosonic case.

Why the spin framings? Because Vabc has a spin-flip automorphism, and also because we need to enhance the graph G with information
related to the spin structure of the ambient manifold in order to write the edge terms, as explained below.

B. Spin structure considerations and the standardization of the graph

To derive the Hamiltonian (367) and explain the nature of the Bp, De, and Av operators, we will first need to describe how the graph
inherits spin structure data from the ambient spin manifold on which it is defined.

Recall that we have a graph G embedded in an orientable spin surface Σ. In order to define the super pivotal Hamiltonian we will need
to equip G with information about the spin structure σ. In order to talk about the spin structure data at the vertices and edges of G, we will
thicken the cell decomposition to a handle decomposition of Σ. A handle decomposition is essentially a fattened version of a graph (see Fig. 14
for an illustration). The handle decomposition can be obtained by expanding each vertex of the graph into a disk (0-handle) and each edge
into a thickened strip (1-handle). The remaining faces constitute the 2-handles, which are homeomorphic to disks.

Recall from Sec. IX A that in order to define the local vertex degrees of freedom, we choose an orientation for each edge, a
“pitchforkization” for each vertex and a spin framing at each vertex. These choices are analogous to choosing a gauge—different choices
lead to isomorphic Hamiltonians and ground states.

The choices of pitchforkization and spin framing are equivalent to choosing a spin diffeomorphism from a 0-handle to a standard model
for a 0-handle. We define a spin diffeomorphism φv from a generic 0-handle v to a disk in R

2 with its standard spin structure so that the
attaching regions for the 1-handles terminating on v are all located on the top part of the disk. That is, we use the spin diffeomorphisms to
turn each 0-handle into a “standardized 0-handle,” where the configuration of the 1-handles terminating on each 0-handle means that that
each 0-handle looks like a pitchfork. The spin diffeomorphism φv that maps a generic 0-cell v to a standardized 0-cell (thereby implementing
the pitchforkization procedure) is defined pictorially by

(372)

FIG. 14. A handle decomposition obtained from the graph on the far left. The 0 handles (green disks) are neighborhoods of the vertices, the 1-handles (purple strips) are
neighborhoods of the edges, and the 2 handles (orange polygons) are the compliment of the union of the 0- and 1-handles.
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where n is the number of edges that terminate at v and the black arrow in the picture on the right-hand side denotes the fermion framing of the
0-handle, which is constant throughout the 0-handle. When writing down the Hamiltonian, we always take n = 3 without loss of generality,
but when discussing tensor network constructions of these phases, it is helpful to let n be unspecified. Using the pitchforkization map φv , we
can pull back the standard spin framing of R2 to the 0-handle. This results in a spin framing that is parallel to the outgoing edges at the top of
the 0-handle.

Just as we do for the 0-handles, we will “standardize” the 1-handles so that they all assume the same form. After standardizing our
0-handles, 1-handles will always enter/exit from a 0-handle “vertically” (see Fig. 15), and so our standardized 1-handles will look like

(373)

For theories with q-type particles, the Hamiltonian will contain terms that allow fermions to fluctuate across a 1-handle from vertex to
vertex. The spin structure on a 1-handle (relative to the two attaching intervals) will determine what phase factor a fermion picks up when it
moves across a 1-handle.

Once we have chosen coordinates at each vertex, we can associate a spin rotation of + π or − π with each 1-handle. First, we choose
a standard spin framing at the incoming side (recall that each edge is directed) of the 1-handle. A standard choice exists because we have
chosen a standard spin framing for the 0-handle at the incoming end of the 1-handle. We then parallel transport the spin framing along the
1-handle, keeping the first basis vector of the spin framing tangent to the core of the 1-handle during the transporting process. This procedure
is illustrated in Fig. 16, where the red arrow denotes the first basis vector of the spin framing. When we arrive at the end of the 1-handle, the
spin framing we have transported will not agree with the standardized spin framing at the second 0-handle. We can see this from Fig. 16; we
have chosen the spin framing to point upwards at each 0-handle, but the red arrow points downward when it reaches the end of the 1-handle,
which disagrees with the framing at the 0-handle. These two framings are related by either a + π or − π spin rotation in Spin(2). We will
denote this element of Spin(2) by α(e), where e is the edge corresponding to the 1-handle.

Note that the collection {α(e)} is determined by the spin structure of Σ and the choice of spin framings at each 0-handle. Conversely, any
collection {α(e)} determines a spin structure on Σ/{2-handles}. In order for this spin structure to extend to all of Σ, {α(e)} must satisfy the
constraint that the boundary of each 2-handle has a bounding spin structure (see below).

Let b be a q-type simple object. We want to analyze the effect of sliding a fermionic dot over the edge e when e is labeled by b. At the
outset, we will choose an odd element γb ∈ End(b) such that γ2b ≙ idb and also γb∗ ∈ End(b∗) such that γ2b∗ ≙ idb∗ . The requirement that

FIG. 15. The mapping φ that maps a generic handle decomposition (top row) onto a “standardized” handle decomposition in which each 0-handle (green disk) has an identical
pitchfork configuration (bottom row).
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FIG. 16. Parallel-transporting a fermion along a q-type edge, which is oriented as shown. The red arrow keeps track of the fermion framing, which rotates by π when
proceeding along the direction of the edge’s orientation. The blue arrows at the ends of the edge indicate the fixed framing at each 0-handle at the endpoints of the edge.

FIG. 17. The action of sliding a fermion across an edge e labeled by the q-type object b is given by α(e, b). The spin framings of the 0-handles on either end of e are denoted
by the blue arrows, and the spin framing of the fermion on the right-hand side is taken to match that of the left 0-handle.

γ2b ≙ idb determines γb up to sign. Let r(b) ∈ C be such that Rπ ⋅ γb ≙ r(b)γb∗ , where
Rπ : End(b)→ End(b∗) (374)

denotes the spin rotation by +π. It is easy to see that r(b) = ±i. The exact value will depend on the choices of standard generators γb and γb∗ . If
b is not isomorphic to b∗, then we can always choose γb and γb∗ so that r(b) = i. However, if b = b∗ (as happens in the C2 theory, for example),
then γb ≙ γb∗ and the value of r(b) is forced upon us, independent of the choice of γb.

76

We can now, finally, describe the effect of sliding a standard fermionic endomorphism (dot) over an edge e labeled by a q-type particle
b. Let γb ∗ e denote the edge with the standard generator γb placed at the incoming end (left side of Fig. 17). Let e ∗ γb∗ denote the edge with
the standard generator γb∗ placed at the outgoing end (right side of Fig. 17). Then,

γb ∗ e ≙ α(e, b) ⋅ e ∗ γb∗ , (375)

where

α(e, b) ≙ {r(b) if α(e) ≙ Rπ
−r(b) if α(e) ≙ R−π . (376)

This is illustrated in Fig. 17.
Fermionic dots can also be “absorbed” into vertices using the action of Cℓ1 on fusion spaces involving q-type objects, as discussed in

Sec. VIII B. We can do this in analogy with (304) by constructing odd operators Γi, i ∈ {1, 2, 3}, which map a pitchfork with a standard dot on
the i-th outgoing pitchfork edge to a pitchfork without a fermion dot on the i-th leg. Graphically, Γ1 is defined by

(377)

where ψ, η are basis vectors for Vabc, and the fermionic dot has a higher sign ordering than the basis vector it sits on. Γ2 and Γ3 are defined
similarly,

(378)
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FIG. 18. An illustration of a +π spin framing rotation picked up as the path γ (drawn in dashed purple) passes through a 0-handle. If we were to proceed along γ in the
opposite direction, we would pick up a − π spin framing rotation instead.

Since only q-type objects can host fermionic dots, Γi is only defined when the i-th leg of the vertex is labeled by a q-type object. Since only
q-type objects have odd endomorphisms, Γi is only defined when the i-th label of the pitchfork is q-type. The Γi are all odd matrices, reversing
fermion parity.

We mentioned above that the collection of {α(e)} must satisfy some constraints if it is to extend over the 2-cells and give a specified spin
structure. Here are the details: let γ be an oriented framed loop in Σ. For simplicity, we will assume that (a) γ is embedded, (b) the framing
is the natural one coming from the tangent space of γ, and (c) γ is contained in the union of the 0- and 1-handles. We want to compute the
spin rotation, either 0 or 2π, which γ picks up from the spin structure on the 0- and 1-handles. When γ goes over a 1-handle e, it picks up a
rotation of α(e) or − α(e), depending on whether it goes over e with or against the orientation of e. Each time γ passes through a 0-handle,
it also picks up a rotation of ± π. Suppose γ enters the 0-handle at the i-th 1-handle and exits the 0-handle at the j-th 1-handle.77 With our
ordering conventions, this gives a rotation of + π if i < j and a rotation of − π if i > j (see Fig. 18). Combining all of these ±π rotations results
in a rotation of 0 or 2π. A bounding spin structure on γ yields a 2π rotation (since a 2π rotation acts as multiplication by −1 and produces the
requisite antiperiodic boundary conditions), and a nonbounding spin structure corresponds to no rotation. In particular, if γ is the boundary
of a single 2-cell/plaquette, then it must correspond to a spin framing rotation of 2π, since we assume that the spin structure around each
2-cell is bounding (which allows the spin structure on the 0- and 1-handles extends to a spin structure on all of Σ). More generally, γ will
always get a spin framing rotation by 2π if it is in the trivial homology class of H1(Σ).

C. Terms in the Hamiltonian

In this section, we will finally write down the Hamiltonian and then explain the terms appearing in it in detail. As mentioned earlier, the
Hamiltonian consists of three kinds of mutually commuting projections,

H ≙ λp∑
p∈F
(1 − Bp) + λe∑

e∈E
(1 −De) + λv∑

e∈E
(1 − Ae). (379)

We will start with a discussion of the “vertex” term Ae and then address the new edge term De, finally ending by describing the plaquette
term Bp.

1. Vertex term

Let v1 and v2 be two vertices joined by an edge e. We define

Ae(∣ψ1⟩⊗ ∣ψ2⟩) ≙ {∣ψ1⟩⊗ ∣ψ2⟩ if ψ1 and ψ2 assign the same label to e

0 otherwise.
(380)

In other words, Ae forces the labels on each end of an edge to agree.
Why do we call these “vertex terms” when they are indexed by edges, and the support is a pair of adjacent vertices, joined by an edge?

Because it does the same work as the vertex term of the usual bosonic Levin-Wen (LW) Hamiltonian. If our fermionic category happens to
be bosonic (i.e., it lacks fermions), then the ground state of our “vertex” term is isomorphic to the ground state of the vertex term in the usual
LW Hamiltonian.78 If we had chosen to put spins on edges as well as vertices, then we could write a vertex term that was actually indexed by
vertices. However, its ground state would be isomorphic to the above edgelike vertex term.

Note that vectors in the ground state of the vertex term can be interpreted as string nets. If K is the ground state of the vertex term, we
have maps

K →H(Σ/2-cells)→H(Σ), (381)
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whereH(Σ/2-cells) andH(Σ) are the ground-state Hilbert spaces of Σ/2-cells and Σ, respectively. The job of the edge term (below) will be to
pick out a subspace of K on which the first map is an isomorphism. The job of the plaquette term will be to further reduce to a subspace such
that the composite map to H(Σ) is an isomorphism.

2. Edge term

The edge terms are the qualitatively new feature of this Hamiltonian and are a necessary ingredient for the Hamiltonian of any theory
possessing q-type particles. They are only well-defined on ground states of the vertex term. They allow fermions to fluctuate across edges of
the graph that are labeled by q-type particles and provide a way of energetically implementing the isotopy relations associated with sliding
fermions along the worldlines of q-type particles. In Sec. VIII F, we solved the same problem in a different context by replacing a tensor
product over scalars with a tensor product over the endomorphism algebra of a q-type simple object. The edge term of the Hamiltonian is a
stand-in for the tensor product over a nontrivial endomorphism algebra.

The edge term will coherently add and remove fermions at the end points of the q-type bonds as well as tunnel them across.79 This term
favors an equal-weight (meaning equal up to a phase factor) superposition of fermions across all vertices connected by q-type simple objects
with a fixed fermion parity. Since the edge term is responsible for allowing fermions to fluctuate (“hop”) across edges labeled by q-type objects,
it will be absent in any theory with no q-type objects.

Fermion hopping across q-type edges is implemented by the Γ operators. To do this for an edge e, we can create a pair of fermions near
the vertex at the beginning of e, slide one of the fermions along e to the vertex at the end of e, and then use the Γ operators to “absorb” each
fermion into their respective vertices. For example, if e hosts a q-type edge label x, then we have

(382)

where we have defined tensor products of Γ operators to act so that operators located further to the left in tensor products absorb fermions
with higher order than the operators to their right. Note that although the diagrams in the first and last steps in the above sequence look the

same, they are not: the fermion parity of the vectors in the two vertex Hilbert spaces Vabx∗ and Vxcd has been switched.
For a generic edge e oriented from v1 to v2 and colored by a fixed object x, the edge term can be written as the projector

De ≙ 1

2
(1 + Je), (383)

where Je acts on vectors ∣ψ1⟩ ⊗ ∣ψ2⟩ ∈Hv1 ⊗ Hv2 by implementing the local relations coming from End(x),

Je(∣ψ1⟩⊗∣ψ2⟩) ≙ {λ−1α(e, x)∑η1 ,η2∥Γi∥ψ1η1 ∣η1⟩ ⊗ ∥Γj∥ψ2η2 ∣η2⟩ if x is q-type

∣ψ1⟩ ⊗ ∣ψ2⟩ if x is m-type.
(384)

Here, we have taken e to be the ith leg of the pitchfork at v1 and the jth leg at v2, and ∣η1⟩⊗∣η2⟩ ∈ Hv1⊗Hv2 . Since De acts as the identity on
edges colored by m-type objects, edges with m-type edges will automatically lie in the ground state of the edge term.

In summary, including De in the Hamiltonian provides a way of energetically enforcing the conditions that the ground states of theories
containing q-type particles are realized by superpositions of string-net configurations possessing all possible ways of arranging fermions on
the q-type strings. Ensuring that ground states are superpositions of different fermion configurations is tantamount to projecting from the
Hilbert space HG to the physical Hilbert spaceHphys in which redundant degrees of freedom created by different fermion configurations are
modded out.

As mentioned earlier, it can be conceptually helpful to note that a 1D Kitaev wire in the topological phase also exhibits the same behavior
as the q-type strings in our theories. However, since generic theories (like the 1

2
E6 example considered earlier) can have fusion rules in which

two q-type simple objects to fuse to a third q-type simple object, this analogy is not perfect, since at the junction of three Kitaev wires a zero
mode is left behind, which does not occur in the 1

2
E6 theory.
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3. Plaquette term

As with the vertex term, the plaquette term is essentially the same as the plaquette term in the usual string-net Hamiltonian: it inserts an
ω loop into each plaquette and uses local relations to fuse these ω loops into the boundaries of the plaquettes. Physically, it is responsible for
the dynamics of net configurations that reside in the ground space of the vertex and edge terms, and it is designed so that two string nets that
correspond to the same state vector receive the same amplitude.

Using the definition of the ω loop, we can write Bp as

Bp ≙ 1

D2 ∑
a∈sobr(S)

da

dim End(a)Ba
p, (385)

where the operator Ba
p fuses a loop labeled a into the edges and vertices neighboring the plaquette p (note that as discussed earlier, the operator

Ba
p is only defined when all vertices and edges neighboring the plaquette p satisfy the corresponding vertex and edge terms).

The matrix elements of Ba
p depend on the choice of cell decomposition and the pitchforkization procedure. For a generic cell decom-

position, it is somewhat tedious to write down these matrix elements, although the procedure is straightforward. To expedite this process,
we apply yet another standardization procedure. Suppose we are given a plaquette p with n neighboring vertices labeled from 1, . . ., n in a
counterclockwise fashion with respect to the orientation of Σ (see Fig. 19). The Hilbert space associated with the plaquette p is the subspace of

Hp ≙Hv1 ⊗Hv2 ⊗⋯⊗Hvn , (386)

which satisfies the vertex and edge terms. Diagrammatically, states in this space take the form of the figure on the right-hand side of Fig. 19. It
is useful to apply a number of pivots to vectors inHp so that the vector space takes on a standard form, which will facilitate the application of
Ba
p. Define the operator Rp by

Rp : Hp → ⊕
{xi ,zi}

V
x∗n x

∗
1 z
∗
1 ⊗ V

x1x2z2 ⊗ ⋯ ⊗ V
xn−1xnzn , (387)

which can be explicitly written as

Rp ≙ P1 ⊗ P2 ⊗⋯ ⊗ Pn (388)

with each Pj ≙⊕abc(Pabc)lj defined in (315) and with lj = −2, −1, 0, 1, 2 controlling the angle by which the jth vertex is pivoted (if the edges are
not all oriented out of the vertex, then the appropriate object in Pabc needs to be replaced by its dual). We choose the pivots so that a vector in
the image of Rp takes the form

(389)

FIG. 19. On the left, we have a single 2-cell along with its neighboring edges and vertices. Tiling this 2-cell results in a honeycomb latter. Each vertex has been standardized
into a pitchfork. On the right, we have stretched out the 2-cell in preparation for applying the plaquette operator. We can transform it into our standard basis (389) via
R = P ⊗ id ⊗ id ⊗ P−1 ⊗ P−1 ⊗ P−2.
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We now write down the matrix elements of Ba
p in this basis, which we call the standardized basis for the plaquette p. We choose an implicit

sign ordering that increases from left to right (in particular, the numerical subscripts on x, μ, z, etc., denote string-net labels and not Koszul
orders). As with (369), if some of the edges have a different orientation, then the object is replaced by its dual.

The following is identical to the standard Levin-Wen plaquette term written in the notation of Sec. VIII. To find the action of Ba
p in the

standardized basis of (389), we first insert a closed strand labeled a into the interior of p,

(390)

Next, we begin fusing the strand into the plaquette. We start with the strand labeled by x6 and use the resolution of the identity (349) on the a
and x6 strands, which gives the picture

(391)

Next, we use the associator (348) to pull the a string over x6 in the diagram on the right to obtain

(392)

(393)

It will be helpful to use the shorthand (F)(σ∗0 μ1)(ν1σ1) for (Fy∗6 ax
∗
1 z
∗
1 )(x6 ;σ∗0 μ1)(y∗1 ;ν1σ1), which is well-defined so long as σ0, μ1, σ1, and ν1 are defined,

which will be clear from the context. We keep applying F-moves until we are left with

(394)

(395)
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We note that the sign ordering is increasing from left to right. We now perform one last isotopy and remove the “bubble,”

(396)

(397)

(398)

(399)

In the last step, the factor of (−1)∣σ6 ∣ comes from applying a 2π pivot to the σ6 vertex and the factor of (−1)∣σ6 ∣(∣σ0 ∣+∣ν1 ∣+⋯+∣ν6 ∣) is the Koszul sign
coming from ensuring that σ6 is located immediately before σ0 in the ordering [recall that the pairing B is only defined on diagrams with a
specific Koszul ordering; see (306)]. B(σ6 ⊗ σ0) is zero unless σ6 is dual to σ0, and thus, the B(σ6 ⊗ σ0)/dy6 factor is canceled by the factor of
dy6/B(σ∗0 ⊗ σ0) introduced in (391). Noting that |σ6| = |σ0|, we can write [recall (389)]

∥Ba
p∥(μ1⋯μ6)(ν1⋯ν6) ≙ 1

D2

da

dimEnd(a) ∑σ1⋯σ6F(σ6μ1)(ν1σ1)F(σ1μ2)(ν2σ2)⋯F(σ5μ6)(ν6σ6)
× (−1)∣σ6 ∣(∣ν1 ∣+⋯+∣ν6 ∣). (400)

The plaquette term in the basisHp is given by conjugating Ba
p with Rp. Note that due to (354), the pivots commute with the F-moves, and so

the computation can be carried out in either basis.
We now briefly remark on surfaces with boundary. Let Y be such a surface and let c be a boundary condition for Y, i.e., a collection of

labeled string net endpoints on ∂Y. Choose a graph G in Y such that the “boundary” of G is c and each component of Y/G, which does not
meet ∂Y is a disk. Given this input, we construct a Hamiltonian similar to the above. There are plaquette terms only for the interior 2-cells.
There are edge terms only for interior edges of G. Vertices of G, which are adjacent to the labeled points of c, will have one or more of their
edge labels fixed. The ground state of this Hamiltonian can be identified with Z(Y ; c).

We will see in Sec. XI that one instance of this construction (with Y a disk and c consisting of two points labeled by a q-type particle and
its dual) yields the Kitaev chain Hamiltonian.

Beforemoving on, we brieflymention a high-level way of understanding the plaquette operator in terms of the tube category. Let Σ̂ denote
the surface Σ with a disk removed from each 2-cell. Each boundary component of Σ̂ corresponds to a plaquette term in the Hamiltonian.
There is an obvious bijection between the boundary components of Σ̂ and the plaquette terms of the Hamiltonian. For any collections c of
labeled string endpoints on the boundary of Σ̂, we have the string net Hilbert space Z(Σ̂; c). If c is the empty boundary condition (no labeled
endpoints), then this Hilbert space can be identified with the ground state of the vertex and edge terms of the Hamiltonian. The tube categories
of each boundary component act on the collection of vector spaces {Z(Σ̂; c)}, and consequently, we can decompose these spaces according
to the simple objects of the collective tube category. The summands of this decomposition correspond to the labelings of each boundary
component of Σ̂ with an anyon of the tube category. Now, consider gluing disks to each boundary component of Σ̂ to obtain Σ. This has the
effect of projecting to the summand corresponding to placing the trivial anyon at each boundary component. Another way of achieving the
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FIG. 20. A region of the graph G containing two vortex excitations. The two punctures hosting the vortex excitations are marked as circles, with the label N denoting their
nonbounding spin structure. The dashed blue line is the spin structure defect connecting the two punctures. The edge colored red intersects the spin structure defect and is
excited, violating the edge term De in the Hamiltonian.

same effect is to place a copy of the trivial tube category idempotent e0 on an annulus at each boundary component. This is exactly what the
plaquette term of the Hamiltonian does. This point of view also explains why the elementary excitations of the Hamiltonian correspond to
placing tube category idempotents at 2-cells.80

D. Excitation spectrum

Finally, we briefly comment on the spectrum of the Hamiltonian (367) and the types of excitations it supports. Each of the terms in
the Hamiltonian enforces one of the local relations of the vector space assigned to Σ by S. As such, the zero-energy ground space is just
the vector space assigned to Σ by S. The deconfined anyonic excitations in the model correspond to violations of the plaquette and vertex
terms. By construction, these are in one-to-one correspondence with the bounding idempotents of the tube category. This is simply because
as discussed earlier, the Bp operator in the plaquette term is the projector Π𝟙, which projects onto states containing no quasiparticles in the
interior of p. The fusion rules of the excitations can be computed with the tube category methods developed in Sec. V.

One can also consider the excitations corresponding to violations of the edge terms (note that these will only be present in theories with
q-type objects). If a given state has a +1 eigenvalue under an edge term (1 − De), then the fermions traveling across e pick up an additional
minus sign relative to the background spin structure. This is illustrated in Fig. 20, where the violated edge e is shown in red, and the two circles
markedN denote the vortices created on either side of e. Diagrammatically, we denote the additional minus sign with a branch cut (the dashed
line in Fig. 20). This implies that violating a single edge term nucleates a pair of vortices (the set of which are in one-to-one correspondence
with the nonbounding idempotents of the tube category) on the plaquettes adjacent to the edge e (recall that the plaquette terms are only
nonzero in the ground space of the edge and vertex terms). This means that the vortex excitations can only be separated at the expense of a
linear increase in energy and so are linearly confined.

Alternatively, by modifying the Hamiltonian, we can introduce vortices by hand. We remove the plaquette terms where we wish the
vortices to reside and require the corresponding plaquette boundaries to have a nonbounding spin structure. Relative to the unmodified
Hamiltonian, the vortices will be connected by spin structure branch cuts. (The edge terms of the modified and unmodified Hamiltonians
will differ for edges that intersect these branch cuts.) A ground state of the modified Hamiltonian will be an excited state of the unmodified
Hamiltonian, whose energy depends on the choice of branch cut. To deconfine the vortices, one needs to give the spin structure dynamics; we
leave the study of this possibility to future work.

X. SUPER PIVOTAL STATE SUMS AND TENSOR NETWORKS

In this section, we describe a version of the Turaev-Viro-Barrett-Westbury (TVBW) state sum81,82 for super pivotal fusion categories and
a tensor network for the ground state wavefunction of the Hamiltonian constructed in Sec. IX. Related work was presented in Ref. 17 (see also
Ref. 43). We first review the TVBW construction for bosonic spherical fusion categories. We then show how to write the state-sum as a tensor
contraction on a tensor network. Next, we detail the modifications needed for the fermionic versions of the state sum and tensor network.
Finally, we use the state sum to write down an explicit wavefunction for the ground state of (367).

Before we begin, we need to establish some terminology regarding cell and handle decompositions. Recall that a handle decomposition

for a 3-manifold M is built from a series of k-handles, with k = 0, 1, 2, 3, each of which is identified with Dk × D3−k. Handle decompositions
can be obtained from cell decompositions by thickening each k-cell into a k-handle. Conversely, each handle decomposition determines a cell
decomposition by taking the cores of the handles (see Sec. IX B for more details). We will often refer to a k-cell and its associated k-handle with
the same letter, since it will be convenient for us to be able to describe things in terms of both handle decompositions and their corresponding

cell decompositions. We call Sk−1 × D3−k the attaching region (or attaching boundary) of the k-handle and Dk × S3−k−1 the nonattaching
boundary. The attaching map of a k-handle is a homeomorphism from the attaching region to a submanifold of the boundary of the union of
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FIG. 21. The handles corresponding to a standard cubic cell decomposition (a). The 0-, 1-, and 2-handles are shown in (b), (c), and (d) with colors green, blue, and red. In
(b), the blue disks on the 0-handle indicate where the 1-handles attach to the 0-handle and the red rectangles indicate where the 2-handles attach to the 0-handle. In (c),
the green disks indicate where the 0-handles attach to the 1-handle and the red rectangles indicate where the 2-handles attach to the 1-handle. Similarly, in (d), the blue and
green rectangles indicate where the 2-handles attach to the 0- and 1-handles. We have omitted the 3-handles from the figure.

the lower-dimensional handles. The topology ofM is encoded by the various attaching maps. The different types of k-handles are illustrated
in Fig. 21.

A. Bosonic TVBW state sum

1. Definition of the state sum

Our first task is to describe the TVBW (bosonic) state sum. The original references are Refs. 81 and 82. We will use the form for a general
cell/handle decomposition, as described in Ref. 26.

Let M be a closed oriented 3-manifold equipped with a handle decomposition H. Choose auxiliary orientations of the 1- and 2-cells of
the cell decomposition corresponding toH. LetHi denote the set of i-handles (i = 0, 1, 2, 3). The state sum has the form

Z(M) ≙ ∑
β∈L(H)

∏
c∈H3

D
−2 ∏

f ∈H2

d(f ,β)∏
e∈H1

Θ̃(e,β)−1 ∏
v∈H0

Link(v,β). (401)

The next few paragraphs define the notation used in (401).
We use the 2-cell orientations to define an oriented graph (unlabeled string net) on the boundary of each 0-, 1-, and 2-handle, as shown

in Fig. 22. String-net graphs are assigned to the k-handles as follows:

● On 2-handles, the graph is a single loop along the core of the attaching annulus of a 2-handle. The orientation of the loop is determined
by the orientation of the 2-cell.● On 1-handles, the graph is a generalized Θ graph, which we will call a Θ̃ graph. The graph has one edge for each 2-handle adjacent
to the 1-handle. The middle part of each edge of the graph corresponds to where the cores of the 2-handles meet the boundary of
the 1-handle. The two vertices of the graph are on the two attaching disks of the 1-handle. The edges are oriented opposite to the
orientations used in the 2-handle loops above.● On each 0-handle, the graph is determined by the pattern of 2- and 1-handles adjacent to the 0-handle. The graph has one edge for
each adjacent 2-handle and one vertex for each adjacent 1-handle. The orientations of the edges are opposite to the orientations of the
2-handle loops. We denote this graph Link(v).

Recall that we have an orientation of each 1-cell. This allows us to distinguish an “initial” and “terminal” attaching disk for each 1-handle
(see Fig. 23). On the initial disk, we see a graph with a single vertex in the interior of the disk and k edges connecting the central vertex to
the boundary of the disk (where k is the number of 2-handles that cross the 1-handle). For each labeling ℓ of these edges by simple objects in

sobr(C), we have an associated vector space V(ℓ). For example, in the case of Fig. 23, the vector space is isomorphic to Vab∗c∗d. Let B(ℓ) be

FIG. 22. Graphs on the boundaries of 0-, 1-, and 2-handles in the case of a cubic cell decomposition. Compare Fig. 21.
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FIG. 23. On the left, we have an illustration of four 2-cells meeting a 1-cell. For clarity, we have put a small gap between the 1-cell and the four 2-cells. On the right, we have
the corresponding 1-handle and a particular labeling. We have denoted the corresponding attaching disks by “i” for initial and “t” for terminal.

some chosen basis of this vector space. For each 1-handle, e define B(e) to be the union over all labelings ℓ of B(ℓ) and also define V(e) to be
the direct sum of all the vector spaces V(ℓ).

We define the set of all labelings L(H) to be the product over all 1-handles e of the basis sets B(e). In other words, we choose (inde-
pendently, without any compatibility constraints) a labeling by simple objects of the edges of each initial disk graph and then choose a basis
vector for each associated vector space.

We also associate a vector spaceV∗(ℓ) to the terminal disk of each labeled 1-handle. In the example, this is isomorphic toVd∗cba∗ . There is
a nondegenerate bilinear pairing betweenV(ℓ) andV∗(ℓ), given by evaluating the labeled string net on the boundary of the 1-handle (which is
a 2-sphere). We will choose a basis ofV∗(ℓ) such that the pairing matrix is diagonal. (It is sometimes convenient to not insist that the diagonal
entries be δij.) We also define V∗(e) to be the direct sum (over all labelings ℓ) of V∗(ℓ).

We are now ready to define the weights appearing in the state-sum Z(M). Let β ∈ L(H) and let f be a 2-handle. The labeling β associates
a simple object with each intersection of f with a 1-handle. If these simple objects are not all the same, we define d(f, β) = 0. If they are all equal
to the same simple object a ∈ sobr(C), we define the weight d(f, β) appearing in (401) by d(f, β) = da.

Let e be a 1-handle. The labeling β associates a basis vector μwith the initial disk of e. Define Θ̃(e,β) to be the value of the bilinear pairing
evaluated on μ∗ and μ. Diagrammatically, Θ̃(e,β) is found by connecting the open strings in V(ℓ) to their dual counterparts in V∗(ℓ) and
evaluating the resulting diagram. Continuing with our example in Fig. 23, we have

(402)

Let v be a 0-handle. The labeling β determines a labeling of the graph Link(v) as follows: Near each vertex of Link(v), we place the basis
element μ∗ ∈ V∗(e) (or μ ∈ V(e)) assigned by β to the corresponding 1-handle if v is attached to the initial (terminal) end of the 1-handle. If
these vertex labels are incompatible along edges of Link(v), we define Link(v, β) = 0. If they are all compatible, then we define Link(v, β) to
be the evaluation of the resulting labeled graph (string net). For cell decompositions dual to a triangulation, the labeled graph is a tetrahedral
string net on a sphere. This is illustrated in Fig. 24, which shows an example 0-handle on which four 1-handles terminate.

FIG. 24. An example of the surface of a 0-handle on which four 1-handles are attached to. The attaching regions for the 1-handles are marked in green. The coloring β
assigns objects to the oriented strands and fusion space basis vectors to the green regions.
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This completes the definition of the state sum.
It follows from Sec. 8.2 of Ref. 26 that the state sum computes Z(M), independently of the choice of handle decomposition and choice of

orientations of 1- and 2-cells.
IfM has a nonempty boundary, then we choose the cell decomposition so that ∂M lies in the union of the 2-skeleton (union of 0–1, 1-,

and 2-cells). (An alternative choice would be to require that ∂M is transverse to the 2-skeleton. The two conventions each have strengths and
weaknesses.)

The 0- and 1-cells on ∂M will do double duty as the underlying graph of a string net on ∂M. Choose an orientation of each 1-cell on ∂M.
(This is analogous to choosing an orientation of the boundary of a 2-cell in the interior of M.) Choose a labeling of these oriented edges by
simple objects in sobr(C). For each vertex (0-cell) on ∂M, choose an element of the appropriate disk vector space.

We now have a labeled string net g on ∂M. The state sum will evaluate the path integral Z(M)(g) (i.e., the path integral of M with
boundary condition given by g). The labelings and weights are defined as before, except that some of the labels are already determined by the
string net g on the boundary.

2. The state sum as a tensor network

Our goal in this subsection is to reinterpret (401) as a tensor network. We will first discuss that case whenM is closed and then consider
the case when ∂M is nonempty.

If we (temporarily) ignore the factors of d(f, β) and D
−2 in (401), it is easily seen to compute the contraction of a tensor network. The

underlying graph of the tensor network is the union of 0- and 1-cells of the cell decomposition. The vector space associated with each edge e
is V(e) as defined above. The matrix elements of the tensor associated with a 0-cell v are the numbers Link(v, β) defined above. The factors of
Θ̃(e,β)−1 arise from the pairing of dual tensor indices.

To incorporate the factors of d(f, β) and D
−2, we make some ad hoc choices. We consider “dressed” 0-handle weights that incorporate

the factors of d(f, β) andD
−2 for certain adjacent 2- and 3-cells. For each 2-handle f, we choose an adjacent 0-handle vf . For a 0-handle v, we

modify the associated weight Link(v, β) by multiplying factors of d(f, β) for each 2-handle f such that v = vf . Similarly, for each 3-handle, we

choose an adjacent 0-handle and multiply the associated weight byD−2. Denoting the modified 0-handle weights by L̃ink(v,β), we define the
0-handle tensors Tv as follows: Let e1, . . ., ek be the 1-handles adjacent to the 0-handle v. Let

Vi ≙ {V(ei) if v is adjacent to the terminal end of ei

V∗(ei) if v is adjacent to the initial end of ei.
(403)

We define

Tv ∈ V∗1 ⊗ ⋯ ⊗ V
∗
k (404)

by

Tv(w1 ⊗ ⋯ ⊗ wk) ≙ L̃ink(v,w1 ⊗ ⋯ ⊗ wk), (405)

where wi ∈ V i. In other words, Tv evaluates the link graph with labels determined by w1, . . ., wk and multiplied by the factors of d(f, β) and
D
−2 as described above. To obtain the partition function, we trace out the tensor product of all the 0-handle tensors constructed in this way.

Because the vector space associated with the region on a 0-handle attached to the terminal end of a 1-handle e is dual to the vector space
associated with the corresponding region on the 0-handle attached to the initial end of e, there are precisely as many dual vectors as vectors
in the tensor product, and contracting each vector with its associated dual vector computes the complex number Z(M). That is, we have

Z(M) ≙ tr(⊗
v∈H0

Tv), (406)

where the trace tr denotes the tensor contraction. It is easy to see that this tensor network gives the same state sum as (401) and is independent
of the way we assign factors of d(f, β) andD

−2 to the vertex tensors.
In the case where ∂M ≠ 0/, we define the 0-handle tensors Tv as before, but in this case, some of the legs of the tensors are unpaired (not

contracted). Specifically, there is one unpaired leg for each 0-cell on ∂M. If W1, . . ., Wn are the vector spaces associated with the boundary
0-cells, we have

Z(M) ≙ tr(⊗
v∈H0

Tv) ∈W∗
1 ⊗ ⋯ ⊗ W

∗
n . (407)

Each string net on ∂M (i.e., each labeling of 0- and 1-cells as described above) determines an element ofW1⊗ ⋯ ⊗Wn (the vertex labels). By
evaluating (407) on this element, we obtain the amplitude of the wavefunction for the string net.

3. Standardization procedures

The above tensor network construction is irregular, in the sense that (potentially) every edge vector space is different and every 0-handle
tensor is different. There are several standardization procedures that reduce this irregularity.
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One standardization procedure is to start with a cell decomposition that is dual to a triangulation. This ensures that there are exactly
three 2-handles meeting each edge and that the vertex graphs Link(v, β) are all tetrahedral. However, this still leaves us with several different
types of edge vector spaces and vertex tensors. For example, depending on the choice of 1- and 2-cell orientations, there will be eight possible

vector spaces associated with 1-handles, corresponding to Vabc, Vab∗c, Va∗b∗c∗ , etc. (Note that if all Frobenius-Schur indicators are equal to 1,
then we can ignore these distinctions.) Similarly, there will be many different tetrahedral vertex tensors, depending on the orientations of the
edges of the tetrahedral graph.

We can further standardize the tensor network by choosing a global ordering of the 3-cells of the handle decomposition. (This is equiva-
lent to a global ordering of the vertices of the dual triangulation.) We then choose 2-cell orientations so that the orientation of a 2-cell together
with a normal vector pointing toward the higher-ordered of the two adjacent 3-cells agrees with the orientation of M. We can now choose
1-cell orientations so that the graph on the initial disk of each 1-handle has a trivalent vertex with two outgoing edges and one incoming edge.
With these orientation choices, we have, for every 1-handle e,

V(e) ≙ ⊕
a,b,c∈sobr(C)

V
abc∗ . (408)

Furthermore, all of the tetrahedral graphs have the same pattern of edge orientations, so all of the 0-handle tensors in the tensor network are
of the same form.

However, it is not always convenient to choose a global ordering. For example, our main application is a tensor network associated with
Y × I. If Y is a torus, we might hope that the network has translational symmetry, but this is not compatible with the global ordering trick. For
this reason, in what follows, we will work with a cell decomposition dual to a triangulation, but we will not employ the global ordering trick.

We will find it useful to employ a standardization procedure in which all fusion spaces in the string nets assigned to the 0-handles
assume the “pitchfork” form introduced in our treatment of the Hamiltonian. (These vertices are all trivalent since we are now assuming a cell
decomposition dual to a triangulation.) In this convention, the Tv tensor weights are all computed by the evaluation of tetrahedral diagrams,

(409)

where we have defined the tensor weight by its evaluation of the picture on the right with α ∈ ⊕abcV
abc, β ∈ ⊕abc V

a∗bc, γ ∈ ⊕abc V
a∗b∗c∗ , and

δ ∈ ⊕abc V
a∗bc∗ . The pitchforkization procedure does not entirely fix the form of the Tv tensors above, since the tetrahedral nets associated

with each 0-handle will, in general, have different edge orientations. Since there are 26 = 64 possible choices of edge orientations near a
0-handle, there will be 64 different types of Tv tensors, given by the appropriate diagram evaluation with α, β, γ, and δ chosen from the
appropriate fusion spaces.83

In this procedure, we choose standardizations (pitchforkizations) at each 0-handle independently. This means that the two ends of each
1-handle are standardized independently of each other and the pairing induced from the Θ̃ graph on the 1-handle (402) will not necessarily

agree with the standard pairing (306). Instead, the 1-handle pairing and the standard pairing will be related by a pivot operation Pe ≙ Ple

for le = 0, 1, 2, where P is the pivot defined in (315). We define Pe to rotate diagrams counterclockwise relative to the orientation of e. If
le ≠ 0, then the pitchforks at the initial and terminal vertices of e are twisted by 2πle/3 relative to one another, and this twisting data need to be
incorporated into the 1-handles. The 1-handles now look like

(410)

where the double arrows designate the orientation of e.
In summary, by standardizing each 0-handle independently, we have managed to make each 0-handle tensor isomorphic to a standard

(up to edge orientations) tetrahedral tensor. The price we pay for this is that we have to keep track of the pivots that relate the two ends of
each 1-handle. In terms of the tensor network, this means that we either need to insert two-legged pivot/1-handle tensors between each pair
or adjacent 0-handle tensors or need to further “dress” the 0-handle tensors by merging each such pivot tensor into one of the two adjacent
0-handle tensors (see Fig. 25).
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FIG. 25. A 1-handle and its attaching region on an adjacent 0-handle (the plane denotes a section of the surface of the 0-handle). Standardizing the 0-handle attaching
regions to be “pitchforks” requires that we have to add pivots either to the 1-handle (left, where one of the strands on the 1-handle is wrapped around the 1-handle) or to the
corresponding 0-handle attaching region (right, where one strand on the 0-handle is pivoted around the attaching region). In (411), we choose to include the pivots within
1-handles.

These standardizations also serve to make the original state sum (401) more uniform. We can now write

Z(M) ≙ ∑
β∈L(H)

∏
c∈H3

D
−2 ∏

f ∈H2

d(f ,β)∏
e∈H1

Θ(Pe,β)−1 ∏
v∈H0

Tet(v,β). (411)

Here, Θ(Pe, β) is a standard pairing as in (306) but modified by the pivot isomorphism Pe. The weight Tet(v, β) is a standard tetrahedral
symbol (though there are still variants that depend on the orientations of the edges of the tetrahedron). The point is that we have now written
the state sum for an arbitrary 3-manifold in terms of a finite number of standard weights.

B. The fermionic state sum

1. Definition of the fermionic state sum

We now extend the bosonic state sum to the fermionic case. We start with two pieces of data: a super pivotal fusion category S and a
spin 3-manifoldM possessing a cell decomposition with orientations of 1- and 2-cells. The fermionic version of the state sum is similar to the
bosonic version,

Z(M) ≙ ∑
β∈L(H)

(−1)κβ ∏
c∈H3

D
−2 ∏

f ∈H2

d(f ,β)
n(f ,β) ∏e∈H1

Θ̃(e,β)−1 ∏
v∈H0

Link(v,β). (412)

The fermionic version of the state sum differs from the bosonic version in the following ways:

● The string nets corresponding to the 0- and 1-handle weights require a sign-ordering of their string net vertices. This, in turn, requires
that the partition function is weighted by a Koszul sign (−1)κβ , whichmeasures the difference between the global sign ordering coming
from the 1-handles and the global sign ordering coming from the 0-handles.● The weights assigned to the 2-handles need to be properly normalized, resulting in a factor of n(f, β) = dim End(a) if a is the simple
object labeling the core of the attaching annulus for the 2-handle f by β.● The spin structure onM determines how the basis elements that make up the labeling β are inserted into the graphs Link(v).

As in Sec. X, we will now explain the factors appearing in (412).
As before, we use the 2-cell orientations to define an oriented graph (unlabeled string net) on the boundary of each 0-, 1-, and 2-handle.

String net graphs are assigned to the k-handles in the same way as in the bosonic case. The set of all labelings L(H) is defined as the product
over all 1-handles e of the basis sets B(e). For a fixed labeling β ∈ L(H), the weights are determined as follows:

The 2-handle weight d(f, β) is defined in the same way as before. However, we now divide by the factor n(f, β) = na = dim End(a), where
a is the simple object labeling the boundary of the core of the 2-handle. This factor is necessary because the norm-square of the a-labeled loop
is na.

The 1-handle weights are determined by the bilinear pairings given by each 1-handle e. When evaluating the graph on the boundary of
e, we choose the Koszul ordering that puts the terminal vertex immediately before the initial vertex in the ordering [similar to the convention
in (306)].

For each 0-handle v, Link(v, β) is defined in the same way as in the bosonic case: we evaluate a string net determined by the 1- and
2-handles incident on v and the labeling β. There are two subtleties here. First, when mapping a vertex label μ from the initial (terminal)
end of a 1-handle to the 0-handle adjacent to the terminal (initial) end of the 1-handle, we must employ the attaching map that connects the
terminal (initial) end of the 1-handle to the 0-handle. This attaching map is a spin diffeomorphism, and changing the attaching map by a spin

flip changes the sign of the label on the 0-handle by (−1)|μ|. It is here (and only here) that the state sum is sensitive to the spin structure on
M. The second subtlety concerns Koszul orderings. In order (pun noted but not intended) to evaluate the string net on the boundary of the
0-handle, we must choose an (arbitrary) ordering of the string net vertices of the graph on the boundary of the 0-handle. Thus, the evaluation
Link(v, β) is arbitrary up to a sign. However, we will see that a change of Koszul ordering that changes the sign of Link(v, β) also produces a
compensating change in the factor (−1)κβ , and so the overall state sum is well defined.
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FIG. 26. An example of how to compute the Koszul sign (−1)κβ diagrammatically for a graph consisting of three 0-handles and six 1-handles. The lower dashed regions
represent the 0-handles, while the upper dashed regions represent the 1-handles (with the initial and terminal ends marked as i and t, respectively). The Koszul orderings
indicated by the numbers are explained in the text, and κβ is given by the number of crossings of the blue strands (in this example, (−1)κβ ≙ −1).

The Koszul sign (−1)κβ is defined as follows: Consider, for fixed β, the tensor product of the all the super vector spaces associated with
the attaching disks on all the 0-handles. If there are k 1-handles, then there are 2k tensor factors in this tensor product, one for each 1-handle
end. We will compare two different orderings of the tensor factors. In the first ordering, we place each terminal disk immediately before each
initial disk in the ordering. Such an ordering is well-defined up to even permutations. In the second ordering, we choose a global ordering of
the 0-handles and then use the above choices of local ordering for the factors associated with each 0-handle. This is again well-defined up to
even permutations, since each 0-handle graph evaluates to zero when the total parity at that 0-handle is odd. (It depends on the choice of local
orderings but not on the choice of global ordering of the 0-handles.) We then define (−1)κβ to be Koszul sign relating these two orderings.

We now describe a convenient way to compute (−1)κβ graphically, with an example shown in Fig. 26 for a graph consisting of six 1-
handles (upper dashed regions) and 3 0-handles v1, v2, v3 (lower dashed regions). Each 0-handle has four 1-handle attaching regions, which
are indicated by the lower small dots and which possess a local ordering relative to one another (indicated by the numbers within the lower
dashed regions). Each attaching region can either be even (black) or odd (blue). If it is odd, we assign a Koszul ordering to the attaching
region, consistent with the local ordering at the 0-handle. This ordering is indicated by the numbers appearing just outside the lower dashed
regions.

Each 1-handle has either two even ends or two odd ends: if it has two odd ends, we assign an ordering to the ends by placing the terminal
end immediately before the initial end in the ordering. This ordering is denoted by the top row of numbers below the 1-handles in Fig. 26.

To evaluate (−1)κβ , we draw a fermion line connecting each odd 0-handle attaching region with Koszul order k to the respective 1-handle
end with Koszul order k. (−1)κβ is then simply (−1)nc , where nc is the number of crossings between fermion lines in the resulting diagram. In
the example of Fig. 26, we have nc = 11, and so (−1)κβ ≙ −1.

The case of nonempty ∂M presents one new issue not present in the bosonic version: we must pick a Koszul ordering of the labels
corresponding to string net vertices on ∂M. Once this has been done, we can combine that ordering with the ordering coming from the
1-handles. The Koszul sign (−1)κβ is now defined to be the sign arising from comparing the 0-handle ordering with the combined ∂M and
1-handle ordering.

2. The fermionic state sum as a tensor network

We now turn to the task of reinterpreting (412) as a tensor network.
We incorporate the factors of d(f, β)/n(f, β) and D

−2 into the 0-handle weights in the same way as in the bosonic case. As in the bosonic

case, we denote the dressed 0-handle weights by L̃ink(v,β). We define the vertex tensor in a similar fashion to (405). Let e1, . . ., ek be the
1-handles adjacent to the 0-handle v with the same ordering as the vertices of the graph Link(v). Let V i be defined in the same way as (403)
(with the modification that V i is a super vector space). We define

Tv ∈ V∗1 ⊗ ⋯ ⊗ V
∗
k (413)

by

Tv(w1 ⊗ ⋯ ⊗ wk) ≙ L̃ink(v,w1 ⊗ ⋯ ⊗ wk), (414)

wherewi ∈V i. In words, Tv evaluates the string-net graph determined by Link(v) with the ordered vertices labeled byw1, . . .,wk (in the same
order) and multiplied by the appropriate factors of d(f, β)/n(f, β) andD

−2.
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As in the bosonic case, the partition function is computed as a trace of the Tv tensors,

Z(M) ≙ tr(⊗
v∈H0

Tv), (415)

where the tr denotes contracting dual indices. In practice, to perform the trace, we require that the pair of vectors to be contracted be adjacent
in the Koszul ordering (with terminal preceding initial). To make the pair of vectors adjacent in the Koszul ordering, we need to apply a
number of Koszul isomorphisms. After contracting all vectors, we pick up the appropriate factor of (−1)κβ . Again, Z(M) is independent of
the way we assign factors of d(f, β)/n(f, β), andD

−2 to the vertex tensors.
If ∂M is nonempty, we again follow the bosonic prescription in (407) to obtain Z(M) ≙ tr(⊗v∈H0

Tv) ∈ W∗
1 ⊗ ⋯ ⊗ W∗

n , where W1,
. . .,Wn are the vector spaces associated with the boundary 0-cells and we are implicitly making use of the undordered tensor product. When
using Z(M) to compute amplitudes of different string-net boundary conditions, care must be taken when performing the tensor contraction
on ordered representatives because of Koszul sign issues.

3. Fermionic standardization procedures

As in the bosonic case, we can standardize the tensor network by choosing a generic cell decomposition (dual to a triangulation) and
“pitchforkizing” all trivalent vertices that appear on the boundaries of 0-handles. Note that in this fermionic setting, pitchforkizing includes
choosing a spin framing at each trivalent vertex. This standardization procedure results in string net vertices on 0-handles that are standardized
independently of their partners at the opposite ends of the 1-handles: the form of a given trivalent vertex at the initial edge of a 1-handle e
and the form of the associated vertex on the terminal edge of the 1-handle may be related by a pivot operation. Properly accounting for this

requires inserting pivot operators Pe ≙ Ple into the 1-handles, as in (410). Rather than tacking the spin-structure signs onto the 0-handle
weights, we incorporate them into the pivots. Indeed, we now have P3

e ≙ (−1)F so that le is valued in Z6 as opposed to Z3. (Alternatively, we

could keep le ∈ Z3 but insert (−1)F ⋅ Ple where appropriate.) Note that the spin structure of the underlying 3-manifold is encoded in the edge
pivots Pe (and the standardized 0-handles).

The standard tetrahedral string net on each 0-handle must, of course, incorporate a Koszul ordering in the fermionic case,

(416)

Note that there are still multiple versions of the standardized tetrahedral weights Tet differing by choices of the edge orientations. The
fermionic analog of (411) can now be written as

Z(M) ≙ ∑
β∈L(H)

(−1)κβ ∏
c∈H3

D
−2 ∏

f ∈H2

d(f ,β)
n(f ,β) ∏e∈H1

Θ(Pe,β)−1 ∏
v∈H0

Tet(v,β). (417)

Again, Θ(Pe, β) is a standard pairing as in (306) but modified by the pivot isomorphism Pe ≙ Ple .

C. The shadow world and ground state wavefunctions

In this subsection, we construct a state sum and the corresponding tensor network that produces the ground state wavefunction of the
Hamiltonian defined in Sec. IX. In a nutshell, the idea is to apply the general tensor network construction of Subsection X B to the spin
3-manifold Σ × I, where Σ is the spin surface that hosts the Hamiltonian.

Recall that the big Hilbert space for the Hamiltonian defined on a cell decomposition G is

HG ≙⊗
v∈V

Hv , (418)

whereHv is defined to be⊕a,b,cV
abc if all edges point away from the vertex, with similar definitions ofHv in the case of other edge orientation

arrangements. If a basis vector ofHG satisfies edge label compatibility for all adjacent pairs of vertices (equivalently, if the basis vector lies in
the ground state of the vertex term of the Hamiltonian), then it can be interpreted as defining a string net on Σ. A wavefunction (not “the”
wavefunction unless the ground state is 1-dimensional) Ψ assigns a weight Ψ(w) to each such basis vector w, in such a way that if ∑iciwi is
equal to zero in A(Σ), then∑iciΨ(wi) = 0. For basis vectors w that violate edge label compatibility, we have Ψ(w) = 0.

Given a string net g on Σ, we can define a wavefunction Ψg via

Ψg(w) ≙ Z(Σ × I)(ḡ ∪w). (419)
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FIG. 27. The cell decompositions described in the text. G′′ (left) is the cell decomposition on which the input string-net state is defined, and G′ (center) is the decomposition
on which the Hamiltonian acts. The union G = G′ ∪ G′′ (right) is the cell decomposition we use to construct the ground state wavefunctions.

In other words, we evaluate the path integral Z(Σ × I) with boundary condition ḡ on Σ × {0} ≅ −Σ and boundary condition w on Σ × {1}≅ Σ. (Recall that ḡ is the reflected version of the string net g on the orientation-reversed surface −Σ.) Note that as g runs through a basis of
A(Σ), Ψg runs through a basis of the wavefunctions for the ground state of the Hamiltonian. Our task now reduces to using the techniques of
Subsection X B to construct a tensor network that evaluates the RHS of (419).

First, we must specify a handle decomposition of Σ × I. LetG′ be the 1-skeleton of the cell decomposition of Σ associated withHG, and let
G′′ be the 1-skeleton of the cell decomposition of Σ underlying the input string net g. [In practice, G′ will be as fine a lattice as our computer
can handle, while G′′ will be as simple as possible subject to the constraint that g can represent a basis of A(Σ).] We stipulate that G′ and
G′′ are transverse (i.e., only their 1-cells intersect, and all the intersections are transverse) and are each dual to a triangulation so that their
vertices are all 3-valent. We define the cell decomposition G to be the union of G′ and G′′. The graph G has three types of vertices: vertices of
G′, vertices of G′′, and vertices corresponding to the points of G′ ∩ G′′ that are 4-valent (see Fig. 27).

Our handle decomposition for Σ × I will be a thickened version of G. We have a 0-handle for each vertex of G, a 1-handle for each edge
of G, and a 2-handle for each 2-cell of the complement of G. There are no 3-handles. Figure 28 illustrates this handle decomposition and also
shows how the string nets v and ḡ are situated on its boundary.

The next step is to standardize the string nets on the boundary of each 0-handle by following the procedures outlined in Secs. X A 3
and X B 3. This is illustrated in Fig. 29 for the three different types of 0-handle in our handle decomposition G (one of each type of 0-handle
is shown in the rightmost picture of Fig. 28). Note that our conditions on the handle decompositions G′, G′′ ensure that all three types of
0-handle string nets are tetrahedral.

We are now in a position to apply the state sum and tensor network constructions of Subsection X B. The state sum turns out to be a
version of the “shadow world” state sum of Refs. 53 and 84. In other words, the shadow world state sum is a special case of the Turaev-Viro
state sum. If we fix the (labeled) string net ḡ at the outset, the tensor network has an output corresponding to (418).

FIG. 28. An example cell decomposition on Σ × I. In the upper left figure, we show the cell decomposition G for a given simple choice of G′ (blue) and G′′ (orange). In the
lower left figure, we include the “time direction” in the picture, which thickens it into a box with boundary conditions set by ḡ on the initial boundary Σ × {0} and boundary
conditions set by w on the terminal boundary Σ × {1}. The right figure shows the full handle decomposition for this setup. Each box shows a 0-handle in the composite cell
decomposition G, while each cylinder shows a 1-handle. The green lines denote string nets in the interior of Σ × I, which are not fixed by either of the boundary conditions
ḡ, v.
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FIG. 29. The different types of 0-handles that appear in the cell decomposition of G. The top picture shows how a simple cell decomposition is standardized by putting each
of the trivalent vertices in the pitchfork form. In row (a), we show the three different types of standardized 0-cells that can appear in G. The cubes are drawn so that the 0-cells
are located in their centers. Orange (blue) lines represent 1-handles in G′′ (G′), and green lines represent intersections of 2-cells in G with the cube. In row (b), we show the
standardized string nets projected into the plane, and in row (c), we finish the standardization of the diagrams by making each trivalent vertex a pitchfork. The appropriate
0-cell tensors are found by evaluation of these diagrams.

To compute the tensor network, we just need to know how to assign tensors to the 0-handles inG. This is done by computing evaluations
of tetrahedral string-net diagrams, as in Secs. X A and X B. Explicitly, for a 0-cell v of G consisting of three 1-cells of G′ [middle column of
row (a) of Fig. 29], we assign the tensor Tv as follows:

(420)

In the diagrams, the green letters A, B, C denote the labels of the 2-cells in the “interior” of the cell decomposition on Σ × I (those drawn in
green in Fig. 28), which will be summed over when computing the amplitude Z(Σ × I)(ḡ ∪ v). The labels of the blue lines are fixed and are
determined by the labels of the 1-cells in the string-net graph v on Σ ×{1}.

Tensors for the other types of 0-cells in G are determined similarly. For the type of 0-cell in the left column of row (a) in Fig. 29 involving
three 1-handles from G′′, we assign the tensor

(421)
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where the labels of the orange lines are fixed by the input string-net state ḡ. Similarly, for the type of 0-cell in the right column (involving the
intersection of 1-handles in G′ and G′′), we assign the tensor

(422)

which corresponds to a string operator.
Now that we know how to assign tensors to each 0-handle, we can construct the partition function Z(Σ × I)(ḡ ∪ v) in the same way as

in Secs. X A and X B, namely, by performing a tensor contraction over ⊗v∈H0
Tv , where the tensor product runs over all 0-cells of G. (The

evaluation of this tensor contraction involves the same treatment of Koszul signs and 1-handle pivots as the fermionic state sum discussed in
Sec. X B.)

Instead of fixing a particular input string net g, we can put g and v on a more equal footing by constructing a tensor network that
computes an operator from HG′′ to HG′ , where HG′′ and HG′ are versions of (418) corresponding to the vertices of g and v, respectively. In
particular, we can take G′′ to be isotopic85 to G′ and compute a projection from the big Hilbert space to itself. This projection is, of course,
the projection onto the ground state of the Hamiltonian of Sec. IX.

There is one small technical hurdle to overcome before constructing this operator. Previously, we adopted the convention that boundaries
of 3-manifolds are contained in the 2-skeletons of cell decompositions corresponding to handle decompositions. This is convenient for many
purposes, but if we want to glue 3-manifolds along their boundaries (and perform analogous operations with tensor networks), then it would
have been more convenient to take the boundaries to be transverse to the cell decompositions. In practice, this means that we must assign
some additional factors ofD−2 and da/na to our 0-handle tensors [as described above (403)], corresponding to 3- and 2-cells that straddle the
surface along which we are gluing 3-manifolds. Specifically, for each 2-cell of G′′, we choose an adjacent 0-cell and assign a factor of D−2 to
the corresponding 0-handle tensor, and for each 1-cell of G′′, we choose an adjacent 0-cell and assign a factor of da/na to the corresponding
0-handle tensor. These 2- and 1-cells in Σ correspond to the 3- and 2-cells that straddle the gluing surface when we glue two copies of Σ × I
together.

Let H denote the resulting tensor network operator. The fact that (Σ × I) ∪ (Σ × I) ≅ Σ × I implies that H ○H = H. The fact that Σ × I≅ −(Σ × I) (via a homeomorphism that is the identity on the Σ factor and reverses the I factor) implies that H is self-adjoint (see the end of
Sec. VIII I).

XI. KITAEV CHAIN

In this section, we show how the graphical formalism developed in this paper can be used to capture the salient features of the “Kitaev
wire,” Kitaev’s toy model of a one-dimensional spinless p-wave superconductor.86 This highlights the connection between Majorana zero
modes and Ising anyons and serves as a nice application of the graphical calculus of the C2 theory. Most of what we say applies beyond the
C2 theory and can be carried out for any theory containing at least one q-type object. The Hamiltonian we write down is a special case of the
one constructed in Sec. IX for particular choices of cell decompositions of a disk (annulus) with fixed boundary conditions. The associated
wavefunctions we construct are the same as those found in, e.g., Ref. 87, but presented in a more graphical formalism that serves as a simple
example of the techniques discussed in Sec. X.

Recall that the C2 theory has two simple objects, 𝟙 and β, with β ⊗ β ≅ C1∣1
𝟙 and End(β) ≅ Cℓ1. We will focus on the β object in the C2

theory for concreteness, but the analysis can be applied q-type objects q in any theory.
In what follows, we will show that a single strand of β string is a diagrammatic description for the zero correlation length limit of the

Kitaev chain. This means that the string-net Hamiltonian in Sec. IX based on the C2 theory describes a phase of fluctuating Kitaev wires, an
idea previously investigated in Refs. 8, 9, and 19.

The basic strategy is to cut a single β strand into pieces and analyze how to glue those pieces back together to recover the uncut strand.
Physically, we will implement the gluing by requiring the vectors to be in the ground space of a particular Hamiltonian, which is similar to
what we did in Sec. IX. We first note that the vector space associated with a single interval I with boundary conditions labeled by β can be
written graphically as

(423)

Now we can consider splitting the interval I into two smaller intervals I1, I2 such that I1 ∪ I2 = I. We then can reconstruct
the vector space A(I; β, β) from the vector spaces A(I1; β, β), A(I2; β, β) by gluing the two intervals I1, I2 together. Algebraically,
this gluing is implemented by the tensor product. However, we must be sure to make the proper choice of tensor product to ensure
that we do not produce any extra degrees of freedom during the gluing. The standard tensor product ⊗ C does not work, since then
A(I1;β,β) ⊗ CA(I2;β,β) ≅ Cℓ2 /≅ A(I;β,β).
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The correct tensor product to use is the relative tensor product ⊗End(β) (also known as ⊗ Cℓ1
) discussed in Sec. VIII F. With this tensor

product, we (rather trivially) have

A(I;β,β) ≅ A(I1;β,β) ⊗ End(β)A(I2;β,β), (424)

which tells us how to split apart the I interval correctly.
Graphically, the relative tensor product ⊗End(β) is needed to mod out by local relations involving the sliding of fermions along β lines, as

was discussed Sec. VIII F. Utilizing ⊗End(β) is equivalent to performing the regular tensor product ⊗ C and modding out by the equivalence
relations

(425)

where we have assumed a Koszul ordering for the fermions, which increases from left to right (see Table II for the origin of the phase A4).
As we did with the string-net Hamiltonian in Sec. IX, we can implement these equivalence relations energetically, via an appropriately

defined Hamiltonian, which will be the same as the edge term in the lattice Hamiltonian defined in (383).
Consider an interval I of β string cut into n segments: I = I1 ∪ I2 ∪ ⋯ ∪ In. Each segment Ii will end up mapping to a single physical site

in the Kitaev chain. The local Hilbert space at each Ii segment is generated by two basis vectors ve, vo, which for convenience we draw as

(426)

The upward-curved ends on each β segment are drawn purely for esthetic purposes and exist solely to make drawing the Kitaev chain slightly
easier. The local Hilbert space is then

(427)

The total Hilbert space of the chain is given by tensoring each local Hilbert space together,

HI ≙ A(I1;β,β) ⊗ CA(I2;β,β) ⊗ C⋯ ⊗ CA(In;β,β). (428)

States in this Hilbert space are expressed graphically as

(429)

(430)

(431)

⋮ (432)

and so on. Instead of using the relative tensor product ⊗End(β) to mod out by the equivalence relations (425), we use ⊗ C (abbreviated as ⊗
above) and define a Hamiltonian so that the ground space is isomorphic to A(I; β, β). The Hamiltonian can be written as

(433)

which have a nontrivial action only on the adjacent Hilbert spaces associated with the intervals Ii and Ii+1.
88

The image of this projector on a pair of adjacent string endpoints is

(434)

so that using ⊗ C and projecting with H is equivalent to using ⊗End(β). Thus, Hi is responsible for gluing together ends of β strands. In terms
of electronic operators, Hi implements hopping and pairing between electrons in nearest neighbor sites i and i + 1.

We form our Hamiltonian from a sum of projectors, Hi, acting between each pair of strands,
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H ≙ t
n−1∑
i≙1

(1 −Hi). (435)

This Hamiltonian describes the zero correlation length limit of the Kitaev chain, albeit in a slightly unconventional language. To understand
this, we proceed to investigate the ground state wavefunctions.

We note that the nontrivial term in the Hamiltonian is proportional to the fermion parity measured between adjacent physical sites.
Indeed, acting with that term on the vectors ve, vo defined in (426), we find

(436)

which is precisely the action of (−1)F (which can be identified with iγ1γ2 in the conventional Clifford algebra language).
It is straightforward to find the ground states of (435). Noting that the nontrivial term in the Hamiltonian is just measuring the parity

shared between adjacent “physical” sites, we can do a change of basis using an F-move so that the Hamiltonian is diagonal and annihilates the
ground state. In this basis the (un-normalized) ground state wavefunctions take the form

(437)

In this basis, the Hamiltonian acts as (1 − (−1)F) on each pair of vertical strands, which is clearly zero.
To better understand the wavefunctions Ψe, Ψo, we can apply a series of F-moves to change to the physical “on-site” basis.89 In a Kitaev

chain with n physical sites (i.e., n intervals), we recover the well-known result

Ψe ≙ 1

dn−1
∑
{vi}

nf ≙even

(A4)nf /2 v1 ⊗ v2 ⊗ ⋯ ⊗ vn, (438)

where the sum is over all configurations of vi = vo, ve such that only an even number nf of odd vectors vo appear in the tensor product and
where ve, vo are defined as in (426). For the odd wavefunction Ψo, we find

Ψo ≙ 1

dn−1
∑
{vi}

nf ≙odd

(A4)(nf−1)/2 v1 ⊗ v2 ⊗ ⋯ ⊗ vn, (439)

where the sum is now restricted so that only an odd number nf of odd vectors vo vectors in the tensor product. From the expressions for Ψe,
Ψo in this basis, we see that they are given by configurations that are coherent sums over all fermion parity even and fermion parity odd states,
respectively.

Note that the fermion dot appearing in Ψo of (437) has zero energy (since the Hamiltonian does not act on either the beginning of the
first strand in the chain or the end of the last strand), while this is not true for fermion dots appearing on the interior cups. Physically, this is
due to the presence of a pair of Majorana zero modes localized at the ends of the chain. One can explicitly construct the zero mode operators
by considering the odd operators acting on either end of the chain; they commute with the Hamiltonian, anticommute with one another,
anticommute with (−1)Ftot (the total fermion parity), and up to a prefactor each square to the identity. These are exactly the properties of a
Majorana zero mode. A nice feature of the diagrammatic notation we use is that one can easily see that acting on the left end of the chain with
one zero mode operator is equivalent to acting on the right end with the other zero mode operator (up to a phase). To see this, one simply
slides the fermionic dot appearing from the zero mode operator along the bottom β strand appearing in the presentation of the wavefunction
[see (437)]. Physically, this means the ends of the wire share a fermionic mode, and no information about the occupancy of this mode can be
detected by local measurements.

By considering the same spin chain but using the regular Ising fusion category A3 (rather than the condensed A3/ψ theory), one finds
exactly the transverse field Ising model. Fermion condensation provides a map between these two models in the same way the Jordan-Wigner
transformation does. Of course, we have only discussed the zero correlation length limit, but on-site terms can be added as well, and the anal-
ysis carries through, except that the zero modes are exponentially localized to the boundary (for a small perturbation). In the zero correlation
length limit, excited states are easily constructed by putting dots on the intermediate cups.

We now turn our attention to the Kitaev chain defined on a circle. The bulk of the Hamiltonian is constructed from a sum of projectors
defined in (433). To “glue” the end points of the interval into a circle, we need to add an additional term across the boundary. There are two
ways to do the gluing, differing from one another by a 2π rotation of the spin framing (i.e., a spin flip). These choices correspond to the two
spin structures on the circle, S1B and S1N , corresponding to antiperiodic and periodic fermionic boundary conditions, respectively. To define
periodic boundary conditions, we define Hn+1, the Hamiltonian term that glues the two endpoints of the interval together, by

(440)
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where the leftmost string acts on the left side of I1 and the rightmost string on the right side of In. When closing the interval with antiperiodic
boundary conditions (to form the bounding spin structure), we need to apply a spin flip twist to Hn, resulting in an additional minus sign
multiplying the nontrivial term in the projector,

(441)

We note that these give us explicit matrices for the even linear maps clB : A(I;β,β) → A(S1B,β) and clN : A(I;β,β) → A(S1N ,β). In this
case, we are led to identify clB with HB

n+1 and clN with HN
n+1. To substantiate these identifications, we will explicitly compute the ground state

wavefunctions.
In Sec. III A, we noted that closing a q-type object along a bounding (nonbounding) spin structure results in an even (odd) parity vector;

if the identifications made above are correct, then the ground state of the bounding Hamiltonian should have even parity and the ground state
of the nonbounding Hamiltonian should have odd parity. To see that this is indeed the case, we note that when acting with the nontrivial term
in HX

n+1 for X ∈ {B, N} on the subspace spanned by (437) (with the outer legs now turned up), we need to slide one of the fermions around the
full S1X . Using this, the fact that the structure of the Hamiltonian is the same as in (433), and using our earlier results (437), we can write the
(un-normalized) wavefunctions on the B and N sectors as

(442)

where the subscripts denote the spin structure. Although our graphical presentation may give the impression that these pictures are drawn on
an interval, they are not: the presence of theHn+1 terms, which act on the left-most and right-most strands in the graphical presentation ofΨe

and Ψo, is responsible for gluing the interval into a circle.
Note that the other possible candidates for ground-state wavefunctions (an odd-parity version of ΨB or an even-parity version of ΨN)

are identically zero, which can be seen by using the graphical calculus of the C2 theory [see the discussion around (41)].
The above Hamiltonian can be viewed as a special case of the Hamiltonian in Sec. IX as follows: We take the ambient 2-manifold to be

a long, thin rectangle (i.e., a disk). We fix a β strand boundary condition at each of the short sides of the rectangle. On the long sides, we
impose empty boundary conditions. In the interior, the “lattice” contains only 2-valent vertices, as shown in Fig. 30. Applying the general
prescription in Sec. IX to this case yields essentially the same Kitaev wire Hamiltonian as defined above. The spins at each 2-valent vertex

are Vββ ≅ C1∣1. The vertex terms of the general Hamiltonian do nothing interesting, and there are no plaquette terms. The edge terms of the
general Hamiltonian (367), which we recall serve the purpose of allowing fermion dots to fluctuate along q-type strings, are the same as (433).
Thus, when acting on single strands of q-type string, the general Hamiltonian (367) reduces to the Kitaev chain Hamiltonian.

We can similarly glue the two ends of the rectangle together (either periodically or antiperiodically) to obtain the Kitaev chain
Hamiltonians for spin circles.

We now use the Hamiltonian to construct matrix product operators (MPOs) and their related matrix product states (MPSs) for the
ground state wavefunctions (437) of (435). This is a well-known result (see, e.g., Refs. 27, 87, and 90). We write it here as it in some sense gives
a “gentler” version of the tensor network discussed in Sec. X and provides a nice application of the graphical calculus developed in the body
of this paper.

We seek anMPO that projects a given state into the image of the projectorsHi defined in (433). For convenience, we writeHi ≙ 1
2
(ei+ fi),

with ei proportional to the identity operator on the junction between the intervals Ii and Ii+1, and f i proportional to the fermion parity operator
(−1)F across the junction. Temporarily putting aside the issue of boundary conditions, to find the MPO, we simply act with∏iHi on a given
initial vector V = v1⊗ ⋯ ⊗vn, where vi = ve, vo [graphically, these input vectors look like those appearing in (429)]. After expanding the
product ∏iHi, we find an operator that is a sum over all possible configurations of the operators ei and f i straddling the junctions between
intervals Ii and Ii+1. We will denote the resulting state by Ψ.

We now just need to simplify the resulting state Ψ using the local relations of the C2 theory. Each physical site vi can be acted on by two
terms in the Hamiltonian: Hi (acting on the right strand of vi) and Hi−1 (acting on the left strand). Hence, when we simplify Ψ, the phase
factor associated with a given physical site vi will depend on a pair of indices (e, e), (e, f ), (f, e), and (f, f ), where the left (right) index denotes
the term in Hi−1 (Hi) that contributes to the phase.

Focusing on a single site with input vector vi, we can succinctly write the action of the Hamiltonian as a matrix (Wvi→v
′
i )xy, where v′i

denotes the output vector obtained after acting with the Hamiltonian and where x, y ∈ {e, f }. These matrices are straightforward to compute

FIG. 30. A cell decomposition of I × I with two marked points on the boundary, each labeled β. The interior graph contains n “pitchforkized” 2-valent vertices.
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using the rules of the C2 graphical calculus. If the input vector is ve, we find

W
ve→ve ≙ 1

2
(1 0
0 1
), W

ve→vo ≙ 1

2
(0 A4

1 0
), (443)

while we get

W
vo→ve ≙ 1

2
( 0 1
A4 0
) W

vo→vo ≙ 1

2
(1 0
0 −1) (444)

if the initial input vector is vo.
We thus obtain an MPO on the interval,

Wblbr : HI →HI , (445)

v1 ⊗ ⋯ ⊗ vn ↦ ∑
{v′i }
(Wv1→v

′
1W

v2→v
′
2⋯Wvn→v

′
n)

blbr
v
′
1 ⊗ ⋯ ⊗ v

′
n, (446)

where bl, br ∈ {e, f } and br are boundary conditions for the interval. If bl = f (br = f ), an additional fermionic dot is present on the left-hand side
of the first interval (right-hand side of the last interval). For example, the diagrammatics allows one to check thatWef is an odd operator that

satisfiesWef = A4W fe ○ (−1)F . This is a consequence of β having an odd endomorphism. The additional (−1)F accounts for sliding a fermion
past an odd operator.

To obtain anMPS for the ground states, we simply fix an initial vector v1⊗⋯⊗vn and boundary conditions for theMPO. On the interval,
we can construct the even parity ground state by

Ψe ≙ ∑
{v′i }
(Wve→v

′
1W

ve→v
′
2⋯Wve→v

′
n)

ee
v
′
1 ⊗ ⋯ ⊗ v

′
n (447)

and the odd parity ground state with

Ψo ≙ ∑
{v′i }
(Wvo→v

′
1W

ve→v
′
2⋯Wve→v

′
n)

ee
v
′
1 ⊗ ⋯ ⊗ v

′
n. (448)

Setting the boundary conditions to be bl = br = f in both cases would provide the same wavefunction up to an overall phase.
Similarly using (109), one can find the (un-normalized) MPS on a bounding spin circle by

ΨB ≙ ∑
{v′i }

tr(Wve→v
′
1W

ve→v
′
2⋯Wve→v

′
n)v′1 ⊗ ⋯ ⊗ v

′
n (449)

and by using (110), we find the (unnormalized) MPS on the nonbounding circle,

ΨN ≙ ∑
{v′i }

str(Wvo→v
′
1W

ve→v
′
2⋯Wve→v

′
n)v′1 ⊗ ⋯ ⊗ v

′
n. (450)

In order to produce a nonzero state, we need to choose an even parity initial vector for the bounding spin structure and an odd parity initial
vector for the nonbounding spin structure.

To summarize, we showed that strands of q-type objects are intimately related to the Kitaev chain. One can think of the string net
Hamiltonian (defined in Sec. VIII) for the C2 theory as describing a phase of fluctuating Kitaev wires, a point of view adopted in Refs. 8, 9, and
19. We also noted that fermion condensation is closely tied with the Jordan-Wigner transformation. With the one-dimensional Hamiltonian
at hand, we showed how to explicitly construct the MPS for the ground state wavefunctions in this graphical language, recovering the same
MPS as Refs. 27, 87, and 90.

We also note that the same MPS can be found by employing the shadow world construction outlined in Sec. X C: we work on the 3-
manifold D × I, where D is a disk, and fix the string-net graph w on the D × {1} boundary to have two marked β points on the disk boundary
and n interior 2-valent vertices (this string-net state is illustrated in Fig. 30, where w is illustrated as being made up of a union of intervals).

XII. OUTLOOK

One potentially interesting aspect of the fermionic topological orders we have studied in this paper is their possible quantum infor-
mation applications, which we now briefly speculate on. We consider a hybrid system with spin structure defects and deconfined anyonic
excitations. Each spin structure defect harboring a q-type vortex admits an action by End(q), and so n such defects admit an action of
End(q1) ⊗ End(q2) ⊗ ⋯ ⊗ End(qn) ≅ Cℓ

⊗ n
1 ≅ Cℓn. One could then imagine utilizing this action to perform quantum computations.

Physically, the action of Cℓn is implemented by choosing pairs of vortices qi and qj and pumping a charge into qi and out of qj. A natural
platform for pumping charge through the q-type vortices is a Kitaev chain. Of course, in addition to the action of Cℓn, computations can also
be performed with the conventional braiding of the deconfined quasiparticles appearing in q1 ⊗ q2 ⊗⋯ ⊗ qn.
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It would be useful to make more precise connections between physical entities and some of the mathematical devices we have used to
construct the fermionic theories we have studied. In particular, it would be useful to clarify the precise physical meaning of the complex line
bundle and the “back wall” that we use to perform fermion condensation. In simple examples like the C2 theory, the most natural inter-
pretation for these constructs seems to be that they constitute a topological p-wave superconductor. Indeed, the way we treat the physical
fermions we use to perform condensation in our models is identical to the behavior of superconductors: they are free fermion states, where
wavefunctions that differ by pairs of fermions are related by a phase. The specialization to the p-wave pairing channel is made because of the
spinlessness of the fermions we use to induce the condensation, which we assumed from the very beginning. The superconducting nature
of the devices we use to perform condensation is forced on us by our assumption that the emergent fermion ψ we condense possesses Z2

fusion rules and that in the complex line bundle, we construct pairs of ψ worldline endpoints can be created or destroyed in pairs. Evi-
dence for the presence of a p-wave superconductor is clearly seen in the C2 theory: restricting our attention to the nonbounding torus with
NN spin structure, both the modular S and T matrices factorize as S = SIsing ⊗ Sp±ip, T = TIsing ⊗ Tp±ip (where the choice of ± is deter-

mined by the “angular momentum” of the fermionic dots in our graphical calculus, i.e., the choice of ± A4 when removing a semicircular
fermion worldline), suggesting a possible interpretation of this sector as a stack of the original Ising theory with a topological superconductor.
Indeed, this was noted recently in Refs. 9. Furthermore, the fact that the parity of the ground states on the torus with (N, N) spin structure is
always odd, which agrees with this interpretation, since the fermion parity of a topological p-wave superconductor on such a torus is always
odd.91

In our discussion of the modular S and T matrices in each of the examples we have worked out, we have focused on the modular
transformation perspective, rather than on the braiding statistics perspective. For example, we have computed the S-matrix by considering
the way it acts to exchange the two cycles of the torus and we have not focused on the statistical picture behind the S-matrix in which matrix
elements Sab correspond to double braids between a and b particles. While we have checked that the computation of double braids reproduces
the correct S-matrix for Tube(C2), some subtleties involving relative spin structures rear their heads when trying to compute particular
braiding data in more general settings. We plan to address these subtleties in future work.
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APPENDIX A: SPIN AND PIN STRUCTURES

In this appendix, we review the basic definitions and properties of spin and pin structures.
Roughly, a spin structure on an oriented n-manifold M is a specification for how fermions pick up phases of −1 as they move around

M. Locally, we, of course, require that fermions pick up a minus sign when rotated through 2π or when two fermions are exchanged within a
small neighborhood ofM. However, if a fermion moves along a noncontractible loop inM, it is not clear what sign we should assign. A spin
structure onM is a consistent set of answers to all possible questions of this form.

More formally, we can define a spin structure on M to be a double covering of the frame bundle F(M) such that on each fiber of F(M)
the covering is isomorphic to the standard double covering Spin(n) → SO(n). Such double coverings correspond to cohomology classes in
H1(F(M),Z/2), which restrict to the generator ofH1(SO(n),Z/2) on each fiber. It follows that the difference between any two spin structures
is canonically identified with an element ofH1(M,Z/2); spin structures onM form aH1(M,Z/2)-torsor. In particular, the number of distinct
spin structures on M is given by the number of elements in H1(M,Z/2). (Things need to said differently when n < 2. One way around this
problem is to work with the stabilized frame bundle for 0- and 1-manifolds.)

It is important to note that there is no canonical correspondence between spin structures on M and H1(M,Z/2), simply naming a
cohomology class does not pick out a spin structure.

One way to specify a spin structure is to specify a framing on the 1-skeleton of a cell decomposition ofM. We can think of this framing as
an embedded graph in the frame bundle F(M), and the spin structure is uniquely determined by requiring that the double covering of F(M)
be trivial when restricted to this graph. We can also think of the 1-skeleton framing as specifying a collection of possible fermion paths that
do not pick up a factor of −1.

In this paper, most of the diagrams we draw are embedded in the page/blackboard/R2. R2 has a standard framing, so the 1-skeleton of
any such diagram inherits a framing, and unless stated otherwise, we work in the spin structure associated with that framing. In practice, this
means that fermions pick up a minus sign only when their framing rotates with respect to the page.

If we have designated a reference spin structure onM (for example, the blackboard spin structure), then any other spin structure can be
specified by giving an element of H1(M,Z/2) or equivalently by giving the Poincaré dual element in H1(M,Z/2). In this context, we refer
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to the Poincaré dual homology class as a “branch cut.” Fermions obey the rules of the reference spin structure, except that they pick up a −1
whenever they cross the branch cut.

For unoriented manifolds, we must replace SO(n) with O(n) and replace Spin(n) with a Z/2 extension of O(n). There are two such
extensions, called Pin+(n) and Pin−(n). In Pin+(n), lifts of reflections in O(n) square to the identity, while in Pin−(n) such lifted reflections
square to the “spin flip” in Spin(n). (When n = 1, we have O(1) ≅ Z/2, Pin+(1) ≅ Z/2×Z/2, and Pin−(1) ≅ Z/4.) Roughly speaking, in pin+,
manifolds reflecting a fermion twice returns us to the same state, while in pin−, manifolds reflecting a fermion twice picks up a factor of −1.

None of the examples in this paper have a pin− reflection structure; we only work with pin+ structures.
Specifying pin+ structures in terms of framings (as we did above for spin structures) is a little awkward. It is usually more convenient to

use lifts of classifying maps or, when n = 2, quadratic refinements of intersection pairings.

APPENDIX B: CONSTRUCTING THE FERMION LINE BUNDLE

Recall our setup from the end of Sec. II C: We have a back wall B, which is a spin (and, therefore, oriented) 2-manifold. Associated with
B is the configuration space of ψ-ribbon endpoints,R(B). This configuration space is a disjoint union of piecesR(B)k, where k is the number
of ribbon endpoints in a configuration.

Our goal in this subsection is to construct a complex line-bundle-with-flat-connection F(B) over R(B), satisfying the following six
conditions alluded to in Sec. II C:

1. F is functorial with respect to spin diffeomorphisms. That is, if f : B→ B′ is a spin diffeomorphism, then there is a corresponding bundle
isomorphism F(B)→ F(B′), which preserves the flat connections and complex structure.

2. F is functorial with respect to orientation-reversing pin+ diffeomorphisms. That is, if f : B → B′ is an orientation-reversing pin+ dif-
feomorphism, then there is a corresponding map F(B) → F(B′), which preserves the flat connections and is complex antilinear on the
fibers. (Recall that any spin manifold has an associated pin+ structure. By “orientation-reversing pin+ diffeomorphism,” we mean a pin+
diffeomorphism of the associated pin+ manifolds that reverses the orientations of the underlying oriented manifolds.) This condition is
needed in order to define Hermitian/unitary structures.

3. The holonomy around a loop inR(B) corresponding to a 2π rotation of a ribbon endpoint is−1. This condition is needed to compensate
for fermionic twist of ψ.

4. The holonomy around a loop inR(B) corresponding to an exchange of two ribbon endpoints (inside a fixed disk) is −1. This condition
is needed to compensate for the fermionic statistics of ψ.

5. F is local in the following sense. Given a decomposition B = B′ ∪ B′′, there is an obvious map u : R(B′) × R(B′′) → R(B) and a
corresponding pull-back bundle u∗(F(B)) over R(B′) ×R(B′′). We require an isomorphism u∗(F(B))≅F(B′) ⊗ F(B′′) that is natural
with respect to spin diffeomorphisms.

6. F satisfies a cancelation property. Given a configuration r ∈R(B)k and a point x ∈ B distinct from the ribbon endpoints of c, we can create
a new configuration c+ ∈ R(B)k+2 by inserting a pair of endpoints in a standard configuration near x. We require an isomorphism of
fibers F(B)c ≅ F(B)c+ , which is compatible with the flat connection as explained below. This condition is needed to allow for well-defined
creation and annihilation of pairs of ψ endpoints in line with the fusion rule ψ ⊗ ψ ≅ 𝟙.
To represent an element of F(B), we will choose spin framings at each ribbon endpoint and also assign an ordering to the ribbon end-

points. The main idea is fairly simple, but making this construction compatible with orientation reversal and ribbon endpoint cancelations
requires a bit of fussiness with the details.

Recall the group Pin+(1) ≅ Z/2 × Z/2. We will call the nonidentity elements of Pin+(1) the “spin flip” [the nontrivial element of the
kernel of the covering map Pin+(1)→ O(1)], the “reflection,” and the “other reflection” [the latter two reflections map to the single reflection
in O(1)].

To construct F(B), we will first construct a principal Pin+(1) bundle P(B) over R(B). The construction of P(B) will be independent of
reversing the orientation of B. We define the action of Pin+(1) on C as follows: the spin flip sends z ∈ C to −z, the reflection sends z to the
complex conjugate z̄, and the other reflection sends z to −z̄. Using this action, we can now define F(B) to be

F(B) ≙ P(B) ×Pin+(1) C, (B1)

the associated C bundle overR(B). [Recall that this means that elements of F(B) are represented by pairs ( f , z) ∈ P(B) ×C and that for each
element a ∈ Pin+(1), we identify (f ⋅ a, z) with (f, a ⋅ z).] Since P(B) is a bundle with discrete fibers, it has a canonical flat connection. This
induces a flat connection on F(B).

Note that F(B), as defined above, has two different complex-linear structures, one the conjugate of the other. We will see below that the
orientation of B picks out one of the two possible complex structures.

We are now ready, finally, to construct P(B). Let r ∈ R(B)k be a configuration of k ribbon endpoints. At each endpoint of r, there is a
distinguished unit tangent vector v ∈ TB pointing out in the direction of the front of the ribbon. There are two unit tangent vectors w1 and
w2 in TB orthogonal to the distinguished vector. The orientation of B allows us to designate one of these two orthogonal vectors as “positive”
and the other as “negative.” [We call wi positive if (v, wi) is a positively oriented frame with respect to the orientation of B.] We will call
a collection of framings (v, wi) at each endpoint “consistent” if they are all positive or all negative. Note that there are exactly two possible
consistent collections of framings for each fixed configuration r. We will denote this set of two elements by cf (r). Note that reversing the
orientation of B does not change cf (r).92
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Now define c̃f (r) to be the set of all collections of Pin+(2)-framings (one at each endpoint), which cover an element of cf (r). At each

endpoint, there are two possible lifts of an O(2) framing, so c̃f (r) is a set with 2k+1 elements. Again, c̃f (r) does not change if we reverse the
spin structure on B.93

Let S(r) denote the set of all orderings of the endpoints of r. It is a set with k! elements. Now consider c̃f (r) × S(r), yet another set
associated with a ribbon endpoint configuration r. This set has a group of symmetries G that is generated by (a) spin flips acting on any single
endpoint and (b) the symmetric group Sk, acting on the S(r) component. Let Ge ⊂ G be the subgroup with even total parity, where parity in
this context is defined by the homomorphism from G to Z/2 characterized by the condition that is odd for single spin flips and transpositions.
Now, finally, define

P(B)r ≙ (c̃f (r) × S(r))/Ge. (B2)

We claim that P(B)r is naturally a torsor for Pin+(1). First, let us check the cardinality: c̃f (r) × S(r) has 2k+1k! elements, Ge has 2
k−1k!

elements, and G acts freely on c̃f (r) × S(r). Therefore, P(B)r has four elements.

Now, we define the action of Pin+(1) on P(B)r . The spin flip acts by changing (any) one of the spin framings of c̃f (r) by a spin flip.

The reflection acts diagonally on all of the spin framings of c̃f (r) (i.e., each spin framing is reflected). These two actions are well-defined and
commute, so we have an action of Pin+(1) ≅ Z/2 × Z/2. [If k = 0 and r ∈ R(B)0 is the unique configuration of zero ribbon endpoints, we
define P(B)r = Pin+(1) and let Pin+(1) act in the obvious way.]

In summary, an element of F(B)r is represented by a triple (f , o, z) ∈ c̃f (r) × S(r) ×C. Spin flips, permutations of ribbon endpoints, and
reflections act as follows:

● If f and f ′ differ by a spin flip at a single ribbon endpoint, then (f, o, z) = (f ′, o, −z).● If o and o′ differ by an odd permutation, then (f, o, z) = (f, o′, −z).● If f and f ′ differ by reflecting all of the spin framings, then ( f , o, z) ≙ ( f ′, o, z̄).
To define complex multiplication by a ∈ C on F(B)r , we choose a collection of framings f that is positive with respect to the orientation of

B and then define a ⋅ (f, o, z) = (f, o, az). If we were to reverse the orientation of B, then we would get the conjugate complex structure on F(B).
In other words, F(B)r = F(−B)r as sets (and even as vector spaces over R), but the identity map from F(B)r to F(−B)r is complex antilinear.

We began this subsection with a list of several desiderata for F(B). It is more or less obvious that F(B) has the right sort of functoriality
for both orientation-preserving and orientation-reversing spin/pin maps. It should also be clear that F(B) has the desired holonomies for
rotations and exchanges. So all that is left to discuss is locality (gluing) and ribbon endpoint cancelation.

We consider locality first. Let B = B1 ∪ B2. Let ri ∈R(Bi) and let (f i, oi, zi) represent an element of F(Bi)ri . If the spin framing collections

f 1 and f 2 are either both positive or both negative, then f 1 ∪ f 2 is a consistent spin framing in c̃f (r1 ∪ r2), and the triple (f 1 ∪ f 2, o1 ∪ o2, z1z2)
represents an element of F(B)r1∪r2 . It is easy to check that this map gives a well-defined isomorphism between u∗(F(B1) and F(B′) ⊗ F(B2),
both thought of as line bundles overR(B1) ×R(B2).

Now for cancelations, we want a relation of the type

(B3)

for some λ ∈ C. On the left hand side, we have two ribbon endpoints in a disk D ⊂ B connected by a ribbon in D × I. We have chosen
coordinates so that the front of the ribbon always points in the same direction. The spin framings at the two endpoints are chosen to be
related by a translation in these coordinates and to both be positive. We have chosen the ordering so that the second vector at endpoint 1
points toward endpoint 2; we will call this a “standard configuration.” As indicated, we want this standard picture to be equal to λ times the
empty picture.

We will show that in order for this relation to be compatible with reflections, we must have that λ ≙ −λ̄, i.e., λ must be
pure imaginary. Note that in order to define the action of a reflection on string-nets, it is essential that we have defined an action
of Pin+(1) on P(B)r [rather than merely an action of Spin(1)]. [A Pin−(1) structure would also work, but our examples happen
to have Pin+ rather than Pin− structures.] The existence of a reflection structure also allows us to define the inner products of
diagrams.

Consider first the RHS of (B3). Reflections take the empty picture to the empty picture, and so, since reflections act antilinearly on F(B),
the RHS of (B3) maps under reflection to λ̄ times the empty picture.

Now for the LHS of (B3), after a reflection (by which we mean an orientation-reversing map), the framings are no longer positive, and
so we must reflect them in order to compare to a standard configuration in the target manifold. After the framings are reflected, the second
vector at endpoint 1 points away from endpoint 2, so we must swap the ordering in order for it to be a standard configuration. This change
of orderings means that under a reflection, a standard configuration maps to −1 times a standard configuration. It follows that we must have
λ ≙ −λ̄, and so λmust be purely imaginary.

One can show that this cancelation relation satisfies the necessary coherence relations.
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APPENDIX C: BASIC FACTS ABOUT SUPER ALGEBRAS

In this appendix, we briefly recall some of the key mathematical facts about semisimple super algebras; details can be found in Ref. 69.
There are two distinct classes of simple super algebras over C. One class is the set of super algebrasM(r|s) for r, s ∈ Z≥0, which are (r + s)× (r + s) matrices whose even and odd subspaces take the form

M(r∣s)0 ≙ matrices of the form (A 0
0 B
), M(r∣s)1 ≙ matrices of the form (0 C

D 0
). (C1)

In these expressions, A is an r × r matrix, B an s × smatrix, C an r × smatrix, and D an s × r matrix.
The other class of simple super algebras are denoted by Q(n) for n ∈ Z>0, which are (2n) × (2n) matrices with even and odd subspaces of

the form

Q(n)0 ≙ matrices of the form (A 0
0 A
), Q(n)1 ≙ matrices of the form (0 B

B 0
), (C2)

where both A and B are n × nmatrices. In particular, Q(1) ≙ ⟨𝟙, σx⟩ is the first complex Clifford algebra Cℓ1.
Note that all of theM(r|s) are Morita equivalent to the trivial algebraM(1∣0) ≅ C. All of the Q(n) are Morita equivalent to Q(1) ≅ Cℓ1.
If x is an object in a super pivotal category, then End(x) will be isomorphic to a direct sum of instances ofM(r|s) and Q(n).
The form of a general simple super algebraA can be deduced by computing the center Z(A). [An element a is in Z(A) if it super commutes

with everything in A, i.e., if ax = (−1)|a∥x|xa for all x ∈ A, with |x| denoting the parity of x.] Since the super algebras Q(n) treat even and odd
vectors symmetrically, they expect that they will have odd elements in their center, while this will not be true for the super algebras M(r|s).

Indeed, we have that if Z(A) ≅ C1∣0, then A ≅M(r|s) for some r, s, while if Z(A) ≅ C1∣1, then A ≅ Q(n) for some n.
If A, B are super algebras, their tensor product C = A ⊗ B is defined as the super algebra such that C0 = A0 ⊗ B0 + A1 ⊗ B1, C1 = A0 ⊗ B1

+ B1 ⊗ A0. The simple super algebras presented above can be tensored together by using the following rules:

M(r∣s) ⊗ M(p∣q) ≅M(rp + sq∣rq + sp),
M(r∣s) ⊗ Q(n) ≅ Q(rn + sn),
Q(n) ⊗ Q(m) ≅M(nm∣nm).

(C3)

Note that all the Q(n) can be generated fromM(n|0) and Q(1) according to Q(n) ≅M(n|0) ⊗ Q(1).

APPENDIX D: 1
2E6 DATA

1. Associators

There are four solutions to the pentagon equation for 1
2
E6 fusion rules.94 They split into two sets, one pair has all positive quantum

dimensions, while the other has a negative quantum dimension on the x particle. The solutions in each set are related by complex conjugation.
Here, we present one of the solutions with positive quantum dimensions on all particles (they have been extracted from Ref. 60). Several of
the F symbols are trivial,

F
yyy
y ≙ Fxyy

x ≙ Fyyx
x ≙ Fxxy

y ≙ Fyxx
y ≙ Fxyx

𝟙
≙ Fxxy

𝟙
≙ Fyxx

𝟙
≙ 1. (D1)

Let v1, v2 be orthogonal unit vectors for the two-dimensional splitting space Vxx
x . We define the F symbols acting on these vectors by

V
xy
x ⊗ Vxx

x ≙ Fxyx
x Vxx

x ⊗ V
yx
x in the basis (v1, v2)T . Explicitly, we have

F
xyx
x ≙ ( 0 1

1 0
), F

xxy
x ≙ ( 0 −ii 0

), F
yxx
x ≙ ( 1 0

0 −1), (D2)

F
xxx
𝟙 ≙ c∗2 ( 1 −i1 i

), F
xxx
y ≙ c∗2 ( 1 −i−1 −i), c2 ≙ e7iπ/12√

2
. (D3)
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Finally, we have the F symbol whose four external legs are all labeled by x. We write this F symbol down in the basis (0, y, v1 ⊗ v1, v1 ⊗
v2, v2 ⊗ v1, v2 ⊗ v2), where we have

F
xxx
x ≙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d

1
d

c∗1√
2

c∗1√
2

c∗1√
2
− c∗1√

2

1
d

− 1
d

c∗1√
2
− c∗1√

2

c∗1√
2

c∗1√
2

e−iπ/4√
d

0 − 1
d

0 −ic∗4 0

0 eiπ/4√
d

0 c∗4 0 i
d

0 e−iπ/4√
d

0 − 1
d

0 ic∗4

eiπ/4√
d

0 c∗4 0 − i
d

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D4)

d ≙ 1 +√3, c1 ≙ e−5iπ/6√
d

, c4 ≙ e−iπ/4√
2

. (D5)

2. Idempotents

In this appendix, we provide the minimal idempotents of Tube( 1
2
E6) and give their images under condensation of y. The inclusion is

performed by simply condensing fermions off the tubes in Tube( 1
2
E6) to get tubes in Tube( 1

2
E6/y). Special care must be taken with respect

to spin structure issues, since removing y lines may force a pair of fermions to traverse a cycle of the tube.
The minimal idempotents of Tube( 1

2
E6) are listed in Tables XVIII–XX. They were found by brute force on a computer. We also identify

the minimal idempotents of Tube( 1
2
E6) with simple objects of the Drinfeld center Z( 1

2
E6) listed in Refs. 58 and 95. Under condensation of y

described in Sec. VII, we find the following maps from idempotents in Tube( 1
2
E6) to those in in Tube( 1

2
E6/y):

(D6)

where the center line lists the idempotents in Tube( 1
2
E6) and the upper and lower objects are the objects in Tube( 1

2
E6/y). The identifications

are made by taking a minimal idempotent in Tube( 1
2
E6) and using the inclusion to Tube( 1

2
E6/y), as discussed in Sec. V C.

Some of the idempotents are isomorphic. For example,W appears in Tables XVIII–XX (with its boundary condition 𝟙, y, or x implicit in
each table). As usual, if e and e′ are isomorphic idempotents, then we can findmorphisms u, v such that e = u ⋅ v and e′ = v ⋅ u. In the following,
we denote the boundary condition of each idempotent by a subscript and similarly for the morphisms so that, e.g.,Wx ≙ wx𝟙 ⋅w𝟙x ≙ wxy ⋅wyx,

TABLE XVIII. Minimal idempotents for Tube𝟙→𝟙. We have used the notation
e = empty diagram, lx = cl(x), and ly = cl(y).

Particle Spin e lx ly

𝟙 1 1
2+d2

1

2
√

3

1
2+d2

W 1 1
2

− 1
2

U 1 d

4
√

3
− 1

2
√

3

d

4
√

3
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TABLE XIX. Minimal idempotents for Tubey→y . We have used the notation vy = idy

∈ Tubey→y , ty ≙ ty𝟙yy;11, and ty lx = tyxyx;11.

Particle Spin ty tylx vy

W 1 1
2

1
2

Y 1/2 − 1
2+d2

e
6iπ
12

1

2
√

3

1
2+d2

V 1/2 − d

4
√

3
e
−6iπ
12

1

2
√

3

d

4
√

3

TABLE XX. Minimal idempotents for Tubex→x . We have used the notation tx ≙ tx𝟙xx;11, vx = idx ∈ Tubex→x , X ij = txxx;ij , vx ly = txxxy;11, and txhy = txyxx;11, where

α ≙ 1
2
(1 + 1/√2d + 1), and β ≙ 1

2
(1 − 1/√2d + 1), γ/α ≙ 1/(2√d31/4), and d ≙ 1 +

√
3.

Particle Spin tx vx X11 X12 X21 X22 vxly txhy

W 1 1
2d

1
2d

e
−9iπ
12

√
3d−8
4

e
−9iπ
12

√
3d−8
4

e
9iπ
12

√
3d−8
4

e
−3iπ
12

√
3d−8
4

e
6iπ
12

1
2d

e
−6iπ
12

1
2d

U 1 1

4
√

3

1

4
√

3
e

3iπ
12

1

4
√

d
e

9iπ
12 β e

−9iπ
12 β e

−3iπ
12

1

4
√

d
e
−6iπ
12

1

4
√

3
e

6iπ
12

1

4
√

3

V 1/2 − 1

4
√

3

1

4
√

3
e
−3iπ
12 β e

−9iπ
12

1

4
√

d
e
−3iπ
12

1

4
√

d
e
−9iπ
12 β e

−6iπ
12

1

4
√

3
e
−6iπ
12

1

4
√

3

X2 −5/12 e
−10iπ
12

1
2+d2

1
2+d2

e
−2iπ
12 γ e

10iπ
12 α e

4iπ
12 α e

4iπ
12 γ e

6iπ
12

1
2+d2

e
8iπ
12

1
2+d2

X1 1/4 e
6iπ
12

1
2+d2

1
2+d2

e
6iπ
12

1

2
√

6d
e

6iπ
12

1

2
√

6d

1

2
√

6d
− 1

2
√

6d
e

6iπ
12

1
2+d2

1
2+d2

X3 −5/12 e
−10iπ
12

1
2+d2

1
2+d2

e
10iπ
12 α e

−2iπ
12 γ e

−8iπ
12 γ e

−8iπ
12 α e

6iπ
12

1
2+d2

e
8iπ
12

1
2+d2

X5 1/3 e
8iπ
12

1
2+d2

1
2+d2

e
1iπ
12

1

2
√

3d
e

7iπ
12

1

2
√

3d
e
−6iπ
12

1
2+d2

e
−10iπ
12

1
2+d2

X4 −1/6 e
−4iπ
12

1
2+d2

1
2+d2

e
−11iπ
12

1

2
√

3d
e

7iπ
12

1

2
√

3d
e
−6iπ
12

1
2+d2

e
2iπ
12

1
2+d2

W𝟙 ≙ w𝟙x ⋅wx𝟙 ≙ w𝟙y ⋅wy𝟙, and so on. We have

w𝟙x ≙ i√
2
√
2d
(t𝟙xxx;11 − t𝟙xxx;12), (D7)

wx𝟙 ≙ −i√
2
√
2d
(txx𝟙x;11 − txx𝟙x;21), (D8)

wxy ≙ 1

(8d) 1
4

(txxyx;11 + txxyx;21), (D9)

wyx ≙ 1

(8d) 1
4

(tyxxx;11 + tyxxx;12) (D10)

w𝟙y
−e−iπ/4√

2
t𝟙xyx;11, (D11)

wy𝟙
−eiπ/4√

2
tyx𝟙x;11, (D12)

u𝟙x ≙ 1

2

√
d

6
(t𝟙xxx;11 + t𝟙xxx;12), (D13)

ux𝟙 ≙ 1

2

√
d

6
(txx𝟙x;11 + txx𝟙x;21), (D14)

vxy ≙ i

2
(d
6
) 1

4 (txxy x;11 − txxyx;21), (D15)

vyx ≙ i

2
(d
6
) 1

4 (tyxxx;11 − tyxxx;21) (D16)

J. Math. Phys. 60, 121901 (2019); doi: 10.1063/1.5045669 60, 121901-108

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

with

(D17)

In terms of diagrams, we have

(D18)

Composing the morphisms in various ways constructs all isomorphic idempotents.
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