FERMION - FIELD NONTOPOLOGICAL SOLITONS

II. MODELS FOR HADRONS

R. Friedberg

Bamard College and Columbia University, New York, N. Y. 10027
and
T. D. Lee

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, Paris, France,
and
Columbio University, New York, N. Y. 10027

This research was supported in part by the U. S. Energy Research and Development Administration.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Abstroct

We examine the possibility, ond its consequences, thot in o relativistic lacal field theory, consisting of color quarks q, scalor gluon σ, color gauge field V and color Higgs field ϕ, the mass of the soliton solution may be much lower than any mass of the plane wave solutions; i.e., m_{q} the quark mass, m_{0} the gluon mass, etc. There appears a rather clean separation between the physics of these low mass solitons and that of the high energy excitations, in the range of $\mathrm{m}_{\mathbf{q}}$ and m_{σ}, provided that the parameters $\xi \equiv\left(\mu / m_{q}\right)^{2}$ and $\eta \equiv \mu / m_{\sigma}$ are both $\ll 1$, where μ is an overall low energy scale appropriate for the solitons but the ratio η / ξ is assumed to be $O(1)$, though otherwise abitrary).

Under very general assumptions, we show that independently of the number of parameters in the original Legrangian, the mathematical problem of finding the quasiclassical soliton solutions reduces, through scaling, to that of a simple set of two coupled first-order differential equations, neither of which contains any explicit free parometers. The general properties and the numerical solutions of this reduced sel of differential equations are given. The resulting solitons exhibit physical chorocteristics very similar to those of a "gas bubble" immersed in a "medium" : there is a constant surface fension and a constant pressure exerted by the medium on the gos; in addition, there are the "themodynamical" energy of the gas and the reloted gos pressure, which are determined by the solutions of the reduced equations. Both a SLAC-like bog and the Creutz-Soh version of the MT bag may appear, but only as special limiting cases.

These soliton solutions are applied to the physical hadrons; their static properties ore calculated and, within a 10-15\% accuracy, ogree with observations.

Contents

L. Introduction 1
II. System of Quarks and Scalar Gluons 8

1. Hamiltonion 8
2. Reduction of differential equations 11
3. Proof of Theorem 1 15
4. Solutions of the reduced equations 23
III, Inclusion of Vector and Higgs Fields 32
IV. Stotic Properties of Hadrons 44
5. Phenomenological description 44
6. Baryon and meson mosses 48
7. Charge radius, magnetic moment and
$9_{A} / g_{V}$ of the nucleon 50
V. Remarks 58
Appendix A 60

l. Introduction

In a previous poper ${ }^{1}$ (hereafter called I), we have mode a systematic comparison between the quasiclassical soliton results and the exact answer in o quantum field theory, whenever the exact answer is available. In a fully relativistic renormalizable theory of a Fermion field interacting with a scalor gluon field, the exact answer is known only in the weak coupling region. There, it is found that the quasiclassical result becomes exact when the Fermion number N is large. Even when $N=2$, the quasiclossical result remains a fair approximation. For example, the ratio between the exact two-body binding energy and the corresponding quosielassical soliton result is $\cong .77$ in the weak coupling limit. When the Fermions are nonrelativistic (like electrons in a crystal), but the scalar field remains relativistic, exact answers are also known in the strong coupling limit. We find that the quasiclassical soliton result becomes exact for arbitrary N, provided that the coupling is suffi ciently strong; it is also exact in any coupling range, when N is sufficiently large. If is not difficult to trace the underlying reason for the validity of the quasiclassical description. When N is $\gg 1$, there is a large number of real particles in the system. Similarly, when the coupling is strong, the number of vitual porticles becomes large. In either case, the system possesses some large coherent modes of field quanto, which ore accessible to quasiclassical descriptions. It is quite remarkable that even in the worst case, $N=2$ and weak coupling, the quasiclassical binding energy derived from the soliton solution remains a fairly reasonable approximation to the exact quantum value. [The same conclusion can be reached if the conserved quantum number, say N, is corried by a Boson field, instead of a Fermion field.]

From these comparisons, we infer that strong coupling is by no means detrimental to a quasiclossical approximation. ${ }^{1,2}$ Rother, because of the large number of virtual
quanta involved, and because of the strong potential energy which may develop against fluctuations, one expects the quasielassical approximation to be more relioble in the strong coupling region. With this assumption, we shall in this paper extend our studies of quasiclassical soliton solutions to quark models for hadrons, where strong coupling is clearly required. Our starting point is identical to that of Bardeen, Chanowitz, Drell, Weinstein and Yan; ${ }^{3}$ it is also similor to the work of mony others. ${ }^{4-6}$ On the other hand, as we shall see, the details are different; our analysis of the quasiclassieal soliton solutions will be more systematic. Both a SLAC-like bag ${ }^{3}$ and the Creutz-5sh version ${ }^{5}$ of the MJT borg ${ }^{7}$ will appear only as speciol limiting cases.

The specific system that we wish to study contoins a quark field ψ, which hes nine compenents representing the $(3,3)$ representation of the color ${ }^{8}$ SU(3) times the usual ${ }^{9} \operatorname{SU}(3)$ symmetry. [The generalization to $\mathrm{SU}(4)$ is straightforward.] Instead of a permanent confinement, we assume a very large mass m_{q} for the free quark, which accounts for its escape from detection so far. A scalar gluon field σ is introduced to bind the quarks inte observed hadrons. By applying the some mechanism os that used in the discussions on abnomal nuclear states, ${ }^{10}$ we con reduce the effective mass of a bound quark to almost zero inside the hadron, and thereby realize some of the well-known fectures of a relativistic quark madel, such as $S U(6)$ symmetry ${ }^{11}$ and the related electromagnetic properties. In addition, we follow the suggestion of Nambu ${ }^{12}$ ro introduce a color-gauge vector field V_{μ} to unglue the colornonsinglet states; this necessitotes that the vector forces be strong and long range ${ }^{13}$ inside the hadron. Consequertly, the vector field must also be of a very small effective mass inside the hadron, though its physical mass m_{V} in a free state has to be rother large since it has escaped derection so far. A color Higgs ${ }^{14}$ field \uparrow is then
introduced to achieve this purpose.
The general Lagrangian density $\&$ of these four fields Ψ, σ, V_{μ} and ϕ is given by Eq. (3.8) in Sec. III. In the Lograngion density, the potential function $U(\sigma, \varphi)$ between the scalor gluon field σ and the color Higgs field ϕ is assumed to have an absolute minimum at the vacuum value

$$
\begin{equation*}
\sigma=\sigma_{\text {voc }} \neq 0 \quad \text { and } \quad \phi=\phi_{\text {vac }} \neq 0 \tag{1.1}
\end{equation*}
$$

with the convention

$$
\begin{equation*}
U\left(\sigma_{\mathrm{Vac}}, \phi_{\mathrm{Vac}}\right)=0 . \tag{1,2}
\end{equation*}
$$

The free quark mass m_{q} and the free vector mass m_{V} are

$$
\begin{equation*}
m_{q}=g \sigma_{v a c} \quad \text { and } \quad m_{V}=f \Phi_{v a c} \tag{1.3}
\end{equation*}
$$

where g and f are the appropriate coupling constants in the theory. These two masses are both heavy, $\gg 1 \mathrm{GeV}$. In addition, the potential function $\mathrm{U}(\alpha, \phi)$ is assumed to have a local minimum ot the origin

$$
\sigma=\Phi=0
$$

where the effective masses of the quark and the vector field are both zero. We define

$$
\begin{equation*}
P \equiv U(0,0)>0 \tag{1.4}
\end{equation*}
$$

For color-singlet stotes, the overage value of the color gauge field V_{μ} is zero; therefore, we can simply ignore V_{μ} in a quasiclassical calculation for observed hodrons, since these ore all color-singlets,

As we shall see, in occordance with the aforementioned description inside the
hodron, we expect the interior of our soliton solution to be in the neighborhood of $\sigma=\Phi=0$. Consequently, the energy scale of the low-lying solitons is expected to be of least partly determined by P. Since, in this poper, we are interested only in solition models for hodrons, which ore supposed to be much lighter than the quark and the glvon, we shall alwoys assume

$$
\begin{equation*}
m_{q} \gg p^{\frac{1}{4}} \quad \text { and } \quad m_{0} \gg p^{\frac{1}{4}} \tag{1.5}
\end{equation*}
$$

where m_{σ} is the mass of the glvon field σ. [In the case of σ - coupling, m_{σ} must be more carefully defined. See (3.29) in Sec. It1.]

Near the surface of the soliton, as we shall atso see, there is a rapid transition of the scalar fields, σ and ϕ, changing from values near $(\sigma, \phi)=(0,0)$ to ($\sigma_{\text {voc }}, \varphi_{\text {voc }}$). The simplest way to calculate this transition is to solve the corresponding mechanical analog problem of a point particle, whose "caordinates" are (α, ϕ), moving in a "potential" $-\mathrm{U}(0, \phi)$, starting from the origin $(0,0)$ ot ofinite "time" and reaching the point $\left(\sigma_{\text {vac }}, \phi_{\text {vac }}\right)$ at an "infinite time". Such a tronsition of a and Φ gives rise to a surface energy density s, which will be denoted by

$$
\begin{equation*}
s=\text { surfoce energy } / \text { areo } \equiv \frac{1}{6} \mu^{3} \equiv \frac{1}{6} \bar{m}_{0} a_{\text {vac }}^{2} \tag{1.6}
\end{equation*}
$$

where μ, thus defined, has the dimensionality of a mass. It can be reodily verified that if there is only the σ-field, without the Higgs field ϕ, then $\bar{m}_{\sigma}=m_{\sigma}$, the free σ-mass; thus, if one wishes, one may regard \bar{m}_{σ}, defined by (1.6), to be an "effective" σ-moss, relevant for the description of the soliton surface. [See (2.44) and (3.27) below.] In parallel with (1.5), we assume

$$
\begin{equation*}
m_{q} \gg \mu \quad \text { and } \quad m_{0} \gg \mu \tag{1.7}
\end{equation*}
$$

where, in accondance with (1.6),

$$
\begin{equation*}
\mu=\left(\bar{m}_{\sigma} \sigma_{\mathrm{vac}}^{2}\right)^{\frac{1}{3}} . \tag{1.8}
\end{equation*}
$$

Under the assumptions (1.5) and (1.7), the low-lying solitons are characterized by the energy scoles $\mathrm{p}^{\frac{1}{4}}$ and μ (or $\mathrm{s}^{\frac{1}{3}}$). For convenience in order of magnitude estimations, the dimensionless ratio between P and μ^{4},

$$
\begin{equation*}
\lambda \equiv p / \mu \tag{1.9}
\end{equation*}
$$

though arbitrary, will be regarded os $\mathrm{O}(1)$; i.e., $\lambda^{\frac{1}{4}}$ is considered to be much smaller than either $\left(\mathrm{m}_{\mathrm{q}} / \mu\right.$) or ($\mathrm{m}_{\sigma} / \mu$), so that (1.7) implias (1.5). Hence, in a soliton model of hadrons, we expect ${ }^{15}$

$$
\begin{equation*}
\stackrel{\mu}{\mu}=O\left(m_{B}\right) \tag{1.10}
\end{equation*}
$$

where $m_{8} \cong 1316 \mathrm{MeV}$ is the overage baryon mass of the observed lowest SU(6) $56-$ multiplet. It is useful to define

$$
\begin{equation*}
\xi=\left(\mu / m_{q}\right)^{2} \quad \text { and } \quad \eta \equiv\left(\mu / m_{\sigma}\right) . \tag{1.11}
\end{equation*}
$$

Both dimensionless parameters are assumed to be quite small.
In the limit ξ and η both $\rightarrow 0$, at a fixed but arbitrary ratio η / ξ, a rather remarkoble simplification arises. As we shall see, the low-lying soliton solutions con be onalysed independently of the high energy excitations (which may involve free quarks, free gluons, etc.). Furthemore, through scaling, the mathemotical problem caribe reduced to a simple system of two coupled first order differential equations neither of which contains any explicit free parameters:

$$
\frac{d \hat{u}}{d \rho}=\left(-1+\hat{v}^{2}-\hat{v}^{2}\right) \hat{v}
$$

and

$$
\begin{equation*}
\frac{d \hat{v}}{d p}+\frac{2}{p} \hat{v}=\left(1+\hat{v}^{2}-\hat{v}^{2}\right) \hat{u} . \tag{1.12}
\end{equation*}
$$

This reduction is estoblished first in 5 sec . II for a simple system of only color quarks and scalar gluons, and then in Sec. III for a more general system including vector color gouge fields and color Higgs fields. The generol properties of the reduced equations (1.12) together with the numerical solutions ore given in Sec. II. 4 .

In See. IV, it is shown that the resulting low-lying stotes exhibit physical characteristics very similar to those of a "gas bubble" (i.e., the soliton) immersed in a "medium" (i.e., the vacuum) : there is a constont pressure p exerted by the medium on the gos and a constant surface tension 5. In oddition, there are the "thermodynamical" energy of the gas and the related gas pressure; both are determined by the solutions of the reduced equations. Also in Sec. IV, we apply these soliton solutions to the known hadrons. The static properties agree with observations to within 10-15\% accuracy.

Because of the rather elean separation of physies of the low energy hedrons states from the physics ar a much higher energy (\sim quark mass), identical results can be derived for these low-lying solutions, whether we assume the quarks are integer-ccharged ${ }^{16}$ or fractionally dharged, ${ }^{17}$ whether they are stable or unstable (provided that the interaction causing the instability does not play a major role in the binding). What emerges is the possibility of a relatively self-contoined description of hadron physics in the GeV range that is bosed on the quasiclassical soliton solutions of a relativistic local field theory. The foct that these low-lying stotes form almast a closed system indiectes that the theary car at least be regarded as a phenomenological one, somewhat anologous to Fermi's theory of β-decog. The familior "current X current" description of the weak
interaction, though not fundamental, seems to be quite odequate up to the present enargy ronge; it con be fomulated without any specific reference to the precise noture of the underlying structure of the weak interaction. Likewise, the Lagrangian density used in our derivation of the soliton solutions may not be fundamental. Even some of the "local" fields used in our description, such as gluon, quork, etc., may turn out to be approximore concepts, valid only at relatively lorge distances, $\sim 10^{-13}-10^{-15} \mathrm{~cm}$.

11. Systems of Quarks and Scatar Gluans

1. Hamiltonian

From the discussions given in the previous section, we see that for colorsinglets, the system can be reduced to that of a spin $\frac{1}{2}$ quark field and some scolar fields. For clarity of presentation, in this section we excmine a simpler system, consisting of only the quark field and the scalar gluon field σ, without the Higgs field. [The complete Lagrangion, which contains the vector and Higgs fields as well, is given in Sec. III.] The Homiltonian density $\mathfrak{t h}$ of this simpler system may be written as

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2} \Pi^{2}+\frac{1}{2}(\nabla a)^{2}+U(\sigma)+\sum_{j, k} \psi_{j} k^{\dagger}(-i \vec{a} \cdot \vec{\nabla}+g \beta \sigma) \psi_{j}^{k}+\text { counterterms } \tag{2,1}
\end{equation*}
$$

where $\vec{\alpha}$ and β are the standord Dirac matrices, σ is the gluon field, Π its conjugate momentum, and $\psi_{\mathbf{j}}^{\mathbf{k}}$ is the quark field, with the subscript \mathbf{j} and the superseript k vorying independently from 1 to 3 representing, respectively, the "color" SU(B) index and the usual "flayor" SU(3) index. In this section, for definiteness, we assume $U(\sigma)$ to be a fourth order polynomial of σ. Since, on accaunt of (1.4) $\sigma=0$ is assumed to be a local minimum, we have

$$
\begin{equation*}
U(\sigma)=\frac{1}{2} a \sigma^{2}+\frac{1}{3} b \sigma^{3}+\frac{1}{4} c \sigma^{4}+P \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
b^{2}>3 a c \tag{2.3}
\end{equation*}
$$

so that the absolute minimum of $U(\sigma)$ is at $\sigma=\sigma_{\text {vae }} \neq 0$. In accordance with (1.2) and (1.4), the constant P is introduced in order that

$$
\begin{equation*}
U\left(\sigma_{\text {vac }}\right)=0 \text { and } U(0)=P \tag{2.4}
\end{equation*}
$$

9.

Without any loss of generality, we may choose $b<0$, and therefore $a_{\text {vac }}>0$:

$$
\begin{equation*}
\sigma_{\text {vac }}=\frac{3}{2 c}\left[-b+\left(b^{2}-\frac{8}{3} a c\right)^{\frac{1}{2}}\right] \tag{2.5}
\end{equation*}
$$

The free gluen mass m_{o} and the free quark mass m_{q} are given, respectively, by

$$
\begin{equation*}
m_{\sigma}^{2}=d^{2} U / d \sigma^{2} \quad \text { of } \quad \sigma=\sigma_{v a c} \tag{2.6}
\end{equation*}
$$

and

$$
m_{q}=9 \sigma_{\mathrm{vac}}
$$

The porameters o, b, c and p in $U(\sigma)$ ond \mathcal{F} all refer to the appropriate renormalized constonts, and the counterterms in (2.1) are for renormalization purposes.

By following exactly the same steps used in Sec. I of I, leading from Eq. (1.1) to Eq. (1.16) in that paper, we can decompose our total Hamiltonian $H=\int \mathfrak{f e} \mathrm{d}^{3} \mathrm{r}$ into a sum of two terms: a quasiclassical part $H_{\text {qcl }}$ and a quantum correction $H_{\text {corr }}$

$$
\begin{equation*}
H=H_{q c l}+H_{c o r r} \tag{2.7}
\end{equation*}
$$

In the present poper, we are interested only in states with quark number $N \leqq 3$. For these states, just os in Eq. (1.19) of I, the lawest eigenvalue E of $H_{q C l}$ is given by the minimum of the functional

$$
\begin{equation*}
E(\sigma) \equiv N_{\epsilon}+f\left[\frac{1}{2}(\vec{\nabla} \sigma)^{2}+U(\sigma)\right] d^{3} r \tag{2.8}
\end{equation*}
$$

where $\sigma(\vec{r})$ is σ c. number function of \vec{r} and ε is defined to be the lowest positive eigenvalue of the c.number Dirac equation

$$
\begin{equation*}
(-i \vec{a} \cdot \vec{\nabla}+g \beta \sigma) \phi=\epsilon \psi . \tag{2.9}
\end{equation*}
$$

If has been shown elsewhere 1,18 that the eigenvalue e of (2.9) is never zero
10.
(in contrast to the topological soliton ${ }^{19}$). Furthermore, because of charge-conjugation symmetry, ϵ always appears in pairs: $\pm\left|\epsilon_{1}\right|, \pm\left|\epsilon_{2}\right|, \cdots$. From (2.8) and (2.9), one sees that the minimum of $E(\sigma)$ occurs when σ is the solution of

$$
\begin{equation*}
-\nabla^{2} \sigma+U(\sigma)=-g N \psi^{\dagger} \beta \psi \tag{2.10}
\end{equation*}
$$

where $U^{\prime}(\theta)=d U / d \sigma$ and $f \psi^{\dagger} \Psi d^{3} r=t$.
It is useful to define

$$
\Delta \equiv \text { maximum of } U(\sigma) \text { between } \sigma=0 \text { and } \sigma_{\text {vac }},
$$

and

$$
\zeta \equiv \mathrm{p} / \Delta .
$$

As already mentioned in the introduction [and as we shall also show later in (2.44)]. in the present simple case, the mass \bar{m}_{σ} defined by (1.6) is the some as m_{σ}; thus, (1.8) becomes simply

$$
\begin{equation*}
\mu=\left(m_{\sigma} a_{\text {voe }}^{2}\right)^{\frac{1}{3}} . \tag{2.11}
\end{equation*}
$$

From (1.9) and (1.11), we see that $p /\left(m_{0} \sigma_{\text {vac }}\right)^{2}=\lambda_{\eta}$. Thus, when $\eta \rightarrow 0$, so does ζ, since in this limit. $\Delta=m_{\sigma}^{2} \sigma_{\text {voc }}^{2} / 32$, and therefore

$$
\lambda_{\eta}=\zeta / 32 .
$$

It is convenient to express the parameters a, b, c and p in terms of $\zeta, \sigma_{\text {vac }}$ and m_{σ}. For $\zeta \ll 1$, we find

$$
\begin{align*}
& a=m_{a}^{2}\left[1-\frac{3}{8} \zeta+O\left(\zeta^{2}\right)\right], \\
& b=-6\left(m_{\sigma}^{2} / \sigma_{\mathrm{vac}}\right)\left[1-\frac{1}{4} \zeta+O\left(\zeta^{2}\right)\right], \\
& c=12\left(m_{\sigma} / \sigma_{\mathrm{vac}}\right)^{2}\left[1-\frac{3}{16} \zeta+O\left(\zeta^{2}\right)\right] \tag{2.12}
\end{align*}
$$

and

$$
P=\frac{1}{32} m_{\sigma}^{2} \sigma_{\mathrm{vac}}^{2}\left[\zeta+O\left(\zeta^{2}\right)\right]
$$

Through (1.11) and (2.11); $m_{\sigma}, \sigma_{\text {vac }}$ and m_{q} may in turn be expressed in terns of μ, η and ξ. Thus the problem defined by (2.9) and (2.10) contains a moss μ and four dimensionless parameters ξ, η, λ and N (or ξ, η, ζ and N).

2. Reduction of differential equations

In this section, we discuss the simplification of the differential equations (2.9)
and (2.10), when the parameters $\xi=\left(\mu / m_{q}\right)^{2}$ and $\eta=\mu / m_{\sigma}$, defined by (1.11) and (2.11), are both small.

It is convenient to make the standard separation of angular variables for the lowest positive energy solution of (2.9). We write

$$
\psi=\left\{\begin{array}{c}
u \tag{2,13}\\
i(\vec{\sigma} \cdot \vec{r} / r) v i
\end{array}\right) s
$$

where $\overrightarrow{\boldsymbol{o}}$ is the Pauli matrix, $u=u(r), v=v(r)$ and

$$
S=\binom{1}{0} \quad \text { or } \quad\binom{0}{1}
$$

Equations (2.9) and (2,10) take on the radial form

$$
\begin{align*}
& \frac{d u}{d r}=(-e-g \sigma) v \\
& \frac{d v}{d r}+\frac{2}{r} v=(\epsilon-g \sigma) u \tag{2.14}
\end{align*}
$$

and

$$
\frac{d^{2} \sigma}{d r^{2}}+\frac{2}{r} \frac{d \sigma}{d r}-U^{\cdot}(\sigma)=N_{g}\left(u^{2}-v^{2}\right)
$$

with $f\left(u^{2}+v^{2}\right) d^{3} r=1$. From (2,14), we see that

$$
\begin{equation*}
\frac{d}{d r}\left(u^{2}-v^{2}\right)=-4 v[\epsilon u-(v / r)] \tag{2.15}
\end{equation*}
$$

We define the dimensionless vorioble

$$
\begin{equation*}
p=\varepsilon r \tag{2.16}
\end{equation*}
$$

As we sholl see, for $N=2$ or 3 , in the limit ξ and η both $\rightarrow 0$ at a fixed but abitrary ratio η / ξ, through scaling the above rather complizated set of coupled equations in r con be reduced to the following simple set of two coupled first order differential equations in p :
and

$$
\frac{d \hat{u}}{d_{\rho}}=\left(-1+\hat{u}^{2}-\hat{v}^{2}\right) \hat{v}
$$

$$
\begin{equation*}
\frac{d \hat{v}}{d \rho}+\frac{2}{\rho} \hat{v}=\left(1+\hat{u}^{2}-\hat{v}^{2}\right) \hat{u} \tag{2.17}
\end{equation*}
$$

The relation between these two sets of equations, (2.14) and (2.17), will be given below. It is quite remarkoble that (2.17) does not explicitly contain any free parometer, while in the originol set of equations (2.14) there are five independent parameters \mathbf{a}, \mathbf{b}, $\epsilon, 9$ and N (or μ, ξ, η, λ and N).

To see how the solutions of $(2,14)$ can be expressed in terms of those of $(2,17)$, we first comment on some simple properties of the reduced equations (2.17). At $p=0$, the initial value $\hat{U}(0)$ can be arbitrary, while $\hat{\mathrm{v}}(0)=0$ because of the temn $2 \hat{v} / \rho$ in the second equation of (2,17). By assigning on initial value $\hat{U}(0)$, we can integrate (2.17) from $\rho=0$ to the point when $\hat{U}(\rho)=\hat{v}(\rho)$, say at $\rho=\rho_{1}$. Let us define

$$
\begin{align*}
& \hat{u}_{1} \equiv \hat{v}\left(\rho_{1}\right)=\hat{v}\left(\rho_{1}\right) \tag{2.18}\\
& n \equiv 4 \pi \int_{0}^{\rho_{1}} \rho^{2}\left(\hat{U}^{2}+\hat{v}^{2}\right) d \rho \tag{2.19}
\end{align*}
$$

ond

$$
\begin{equation*}
q \equiv 4 \pi \int_{0}^{\rho_{1}} \rho^{2}\left(\hat{u}^{2}-\hat{v}^{2}\right)^{2} d \rho \tag{2.20}
\end{equation*}
$$

Each initial value $\hat{u}(0)$ leads to a given set of \hat{U}_{1}, ρ_{1}, n and q. It is just as convenient to choose n to be the independent parameter; and regard $\hat{u}(0), p_{1}$, \hat{u}_{1} and q as functions of n. The following theorem (proved in the next section) establishes the relation between the solutions of (2,14) and (2.17) :

Theorem 1 In the limit ξ and η both $\rightarrow 0$ at a fixed, though arbitrary, ratio η / ξ, for $N=2$ or 3 , the lowest soliton energy $E(\sigma)$, which is determined by $(2,8)$ and (2,14), is given by

$$
\begin{equation*}
\frac{E}{\mu}=\left(\frac{N}{n}\right)^{\frac{1}{2}}\left(\frac{\xi}{\eta}\right)^{\frac{1}{2}}\left(n+\frac{1}{2} q\right)+\frac{2}{3} \pi\left(\frac{N}{n}\right)\left(\frac{n}{\xi}\right) \rho_{1}{ }^{2}+\frac{4}{3} \pi\left(\frac{N}{n}\right)^{\frac{3}{2}}\left(\frac{n}{\xi}\right)^{\frac{3}{2}} \lambda \rho_{1} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
0=-2\left(\frac{N}{n}\right)^{\frac{1}{2}}\left(\frac{\xi}{\eta}\right)^{\frac{1}{2}}\left(\rho_{1}-1\right) \hat{u}_{1}^{2}+\frac{1}{3}\left(\frac{N}{n}\right)\left(\frac{\eta}{\xi}\right)+\left(\frac{N}{n}\right)^{\frac{3}{2}}\left(\frac{\eta}{\xi}\right)^{\frac{3}{2}} \lambda_{\rho_{1}} \tag{2.22}
\end{equation*}
$$

where μ and λ are defined by (2.11) and (1.9) respectively.
Before giving the proof of the theorem, it may be useful first to discuss its content. For definiteness, let us consider in (2.14) a given set of parameters a, b, c, P, g and N. The other parameters such as $\mu, \eta / \xi$ and λ are then all determined. On the other hond, from the solution of (2.17), one hos $q=q(n), \rho_{1}=\rho_{1}(n)$ and $\hat{u}_{1}=\hat{u}_{1}(n)$. We moy then use (2.22) to determine n, and (2.21) to determine E. The physical meaning of the theorem becomes clearer if we express (2.21) and (2.22) in the fallawing alternotive (but equivalent) form, (2.29) and (2.24), also proved in the next section:

$$
\begin{equation*}
E=N \in\left[1+\frac{1}{2}(q / n)\right]+\frac{3}{3} \pi R^{2} \mu^{3}+\frac{4}{3} \pi R^{3} p \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
-2 N u_{1}^{2}\left(\varepsilon-R^{-1}\right)+\frac{1}{3}\left(\mu^{3} / R\right)+\varphi=0 \tag{2.24}
\end{equation*}
$$

where

$$
\begin{align*}
& n=\left(g \epsilon / m_{\sigma}\right)^{2} N=\frac{\varepsilon^{2} N_{\eta}}{\mu^{2} \xi} \tag{2,25}\\
& R=\rho_{1} / \epsilon \tag{2.26}
\end{align*}
$$

and

$$
\begin{equation*}
u_{T}=\left(\epsilon^{3} / n\right)^{\frac{1}{2}} u_{1} \tag{2.27}
\end{equation*}
$$

In this new form, we moy first derive the functions $q=q(n), \rho_{1}=\rho_{1}(n)$ and $\hat{u}_{1}=\hat{u}_{1}(n)$ from the solution of (2.17), just as in the preceding paragraph. Next, we use (2.25)-(2.27) to obtain $\varepsilon=\varepsilon(n), R=R(n)$ and $u_{1}=u_{1}(n)$. We then thoose R to be the independent parometer insteod of n; i.e., we regard $n=n(R), \varepsilon=e(R), u_{1}=u_{\underline{1}}(R), q=q(R)$, efc. Equotion (2.23) can now be used to derive $E=E(R)$, and (2.24) to determine R. The porameter R will turn out to be ersentially the rodial extension of the soliton solution. The physical origin of the various terms in (2,23) for $E(R)$ can be Praced rather directly. As we shall see, the Fermions contribute an energy $N \in$. The Boson field gives o surface energy $\frac{2}{3} \pi R^{2} \mu^{3}$; in oddition, it has a volume energy ${ }_{3}{ }^{4} R^{3}{ }_{p}+\frac{1}{2} N_{f}(q / n)$, in which the first term is due to the integral of $U(0)=p$ over the volume $\frac{4}{3} \pi R^{3}$, and the second term is due to the deviation $\sigma \neq 0$, and therefore $U(\sigma) \neq p$, in the same volunte. As will be shown in Appendix A, Eq. 2.24) is simply the condition $\mathrm{dE}(\mathrm{R}) / \mathrm{dR}=0$.

Since $\{2,21$) and $(2,22)$ depend on π and ξ only through their ratio n / ξ, one sees thot when the parameters ξ and π are both $\ll 1$, the physics of these lowlying states becomes separated from that of high energy excitations which may consist of free quarks and free gluans.

As we shall see in Sec. III, Theorem I is equally applicable to the generol case, which includes not only the quark and the scalar gluon fields but also the gauge and the Higgs fields. The applicotions of Theorem 1 to the observed hadrons will be discussed in Sec. IV. Because of Theorem 1, the resulting soliton admits of o phenomenological description very similor to thot of a gos bubble immersed in a medium: there is a constant surface tension $s=\frac{1}{6} \mu^{3}$, and a constant pressure p exerted by the medium on the gas bubble; in addition, there is the "thermodynomical" energy $N_{f}\left[1+\frac{1}{2}(q / n)\right]$ of the gos bubble itself. The detoils are given in Sec. IV.1,

3. Proof of Theorem 1

In this proof, we shall assume ξ and η both to be infinitesimal, but regard their ratio η / ξ to be $O(1)$. It is convenient to divide the spoce into three regions:
and

$$
\begin{array}{ll}
\text { the inside region } & r \leqq R_{1}=R-O\left(m_{q}^{-1}\right), \\
\text { the outside region } & r \leqq R_{2}=R-O\left(m_{q}^{-1}\right) \tag{2.28}\\
\text { the transition region } & R_{1} \leqq r \leqq R_{2}
\end{array}
$$

where R is defined by (2.26), and R_{1} and R_{2} will be determined below.
(i) inside region $r \leqq R_{1}$

According to (2.12), when $\zeta \equiv \mathrm{P} / \Delta$ is $\ll 1$, the focal minimum $\sigma=0$ of $\mathrm{U}(\sigma)$ is almost degenerate with the absolute minimum $a=\sigma_{\text {vac }}$. Thus, we expect the classical scolar field σ to be neor $\sigma=0$ over a large region of space, which is defined to be the inside region $\mathrm{r} \leqq \mathrm{R}_{\mathrm{f}}$. As we shall see, $R_{1}<R$, although their difference is small. Let $\vec{\sigma}$ be the average volue of a in the inside region. The volume energy due to the integral of $U(\sigma)$ is $\sim \frac{e_{3}}{3} \pi R^{3}\left[\rho+\frac{1}{2}\left(m_{\sigma} \bar{\sigma}\right)^{2}\right]$, which should be \leq the
total energy $E=O(\mu)$. [The justification of $E=O(\mu)$, of course, comes from $(2,21)$ and (2.22), which are yet to be proved. To facilitote our order of magnitude estimations, we shall first assume if to be true.] As already mentioned in the introduction, $p=O\left(\mu_{\mu}^{4}\right)$. Since $\eta \equiv \mu / m_{\sigma}$ and R will tum out to be $O\left(\mu^{-1}\right)$, it follows then that

$$
\begin{equation*}
\bar{\sigma}=O(\mu \eta) \tag{2.29}
\end{equation*}
$$

From (2.11), we see that $\sigma_{\mathrm{vac}}^{2}=\mu^{3} / m_{\sigma}=\mu^{2} \eta$; i.e.,

$$
\begin{equation*}
\sigma_{\text {vac }}=\left(\mu \pi^{\frac{1}{2}}\right) . \tag{2.30}
\end{equation*}
$$

By using (2.12), we obtain

$$
\begin{equation*}
c=O\left(\eta^{-3}\right) \quad \text { and } \quad b \bar{\sigma} / a=O\left(\eta^{\frac{1}{2}}\right) \tag{2.31}
\end{equation*}
$$

Since $g \sigma_{v a c}=m_{q}$ and $\xi \equiv\left(\mu / m_{q}\right)^{2}$, we also have

$$
\begin{equation*}
\mathbf{g}=\left(\xi_{\eta}\right)^{-\frac{1}{2}}=O\left(n^{-1}\right) \tag{2,32}
\end{equation*}
$$

Thus, in the inside region, since. $\sigma=C(\bar{\sigma})$ and $d \sigma / d r:=O(\bar{\sigma} / R)$, we can approximote

$$
\begin{equation*}
U(\sigma)=p+\frac{1}{2} m_{\sigma}^{2} \sigma^{2}\left[1+O\left(\eta^{\frac{1}{2}}\right)\right] \tag{2,33}
\end{equation*}
$$

and reglect the derivatives of σ in the last equation in (2.14). This leads to

$$
\begin{equation*}
\sigma \cong-\left(\mathrm{Ng} / \mathrm{m}_{\sigma}^{2}\right)\left(u^{2}-v^{2}\right) \tag{2.34}
\end{equation*}
$$

As a result, (2.14) becomes

$$
\frac{d u}{d r}=\left[-\epsilon+\left(N_{g}^{2} / m_{\sigma}^{2}\right)\left(u^{2}-v^{2}\right)\right] v
$$

and

$$
\begin{equation*}
\frac{d v}{d r}+\frac{2}{r} v=\left[\varepsilon+\left(\mathrm{Ng}^{2} / m_{\sigma}^{2}\right)\left(u^{2}-v^{2}\right)\right] u \tag{2,35}
\end{equation*}
$$

with $f\left(u^{2}+v^{2}\right) d^{3} r=1$. By defining

$$
\begin{equation*}
u=\left(\epsilon^{3} / n\right)^{\frac{1}{2}} \hat{u} \quad \text { ond } \quad v=\left(\epsilon^{3} / n\right)^{\frac{1}{2}} \hat{\mathbf{v}} \text {, } \tag{2.36}
\end{equation*}
$$

where n is given by $(2,25)$, we see that (2.35) becomes simply (2.17) on account of (2.16), and that n is expressed in terms of \hat{u} and \hat{v} by (2.19).
(ii) outside region $r \geqslant R_{2}$

In the outside region, we cossume o rises from near zero to its asymptofic value $\sigma_{\text {vae }}$ at $r=\infty$. As we shall see, although $R_{2}<R$, which is given by (2.26), R_{2} is also $=R-O\left(\mathrm{~m}_{q}^{-1}\right)$, like R_{1}. From the definition (2.26) of R, we see that the extropolation of the inside solution gives $u^{2}-v^{2}=0$ at $r=R$ (which is in the outside region, but quite near $r=R_{2}$). Therefore, we expect $u^{2}-v^{2}$ to be small in the entire outside region; i.e.

$$
\begin{equation*}
\mu^{-3}\left(u^{2}-v^{2}\right) \ll 1 \tag{2,37}
\end{equation*}
$$

Thus, we may neglect $u^{2}-v^{2}$ in the equation for σ in (2,14). Because $r \gtrsim R=O\left(\mu^{-1}\right)$, we may also neglect the curvature term ($2 / \mathrm{r}$) $\mathrm{da} / \mathrm{dr}$. Since as shown in Sec. IL, T , $\zeta \equiv \mathrm{p} / \Delta \ll 1$, we may regard $U(\sigma)$ as appraximate degenerate of $\sigma=0$ and $\sigma=\sigma_{\text {vac }}$. To the zeroth order in the small parameter (2.37), we find in the outside region

$$
\begin{equation*}
\sigma(r) \cong \frac{1}{2} \sigma_{\operatorname{vac}}\left[1+\tanh \frac{1}{2} m_{\sigma}\left(r-R_{0}\right)\right] \tag{2,38}
\end{equation*}
$$

ond

$$
\begin{equation*}
u(r) \cong v(r) \cong \exp [-f g \sigma(r) d r] \tag{2.39}
\end{equation*}
$$

where R_{0} is o constant, and $r=R_{0}$ lies within the outside region. The indefinite
integral in (2.39) carries an integration constant, which will be determined by the connection to the inside solution. By using (2,38), we con simplify (2.3), and derive

$$
\begin{equation*}
u \cong v \cong \Psi_{0}\left[1+e^{m_{0}\left(r-R_{0}\right)}\right]^{-m_{q} / m_{\theta}} \tag{2,40}
\end{equation*}
$$

where v_{0} is a constant. Since both $\xi \equiv\left(\mu / m_{q}\right)^{2}$ and $\eta=\left(\mu / m_{\sigma}\right)$ ore $\ll 1$, for $\xi=O(\eta)$ we have $m_{\sigma} \gg m_{q}$. Thus, while σ changes rapidly from near 0 to ${ }^{0}$ vac in the region $r=R_{0}+O\left(m_{\sigma}^{-1}\right)$, s and v change much more slowly. The expression (2,40) can be further approximated:

$$
u \cong v \cong\left\{\begin{array}{ll}
u_{0} & \text { for } r \leqq R_{0} \tag{2.4I}\\
u_{0} \exp \left[-m_{q}\left(r-R_{0}\right)\right] & \text { for } r>R_{0}
\end{array} .\right.
$$

To first order in the small porameter (2.37), we may substitute (2.41) into the righthond side of (2.15), and approximate $r^{-1} \cong R_{0}^{-1}$. We obtain, for $r=R_{0}-O\left(m_{q}^{-1}\right)$, but $\leq \mathrm{R}_{0}$,

$$
\begin{equation*}
u^{2}-v^{2} \cong 2 u_{0}^{2}\left(e-R_{0}^{-1}\right)\left[m_{4}^{-1}+2\left(R_{0}-r\right)\right] \tag{2.42}
\end{equation*}
$$

and for $r \geqq R_{0}$

$$
\begin{equation*}
u^{2}-v^{2} \cong 2 u_{0}^{2}\left(t-R_{0}^{-1}\right) m_{q}^{-1} \exp \left[-2 m_{q}\left(r-R_{0}\right)\right] \tag{2.43}
\end{equation*}
$$

In passing, we note thot, by using (2.38), the energy $f\left[\frac{1}{2}\left(\nabla_{\sigma}\right)^{2}+U(\sigma)\right] d^{3} r$ integrated over the outside region is given by

$$
\begin{equation*}
\frac{2}{3} \pi R^{2} m_{\sigma} \sigma_{V O C}^{2}=\frac{2}{3} \pi R_{\mu}^{2} \equiv 4 \pi R_{s}^{2} \tag{2.44}
\end{equation*}
$$

where μ is given by (2.11) and sis, as defined before in (1.6), the surface energy per unit area. By comparing (2.44) to (1.6), we see that $\bar{m}_{0}=m_{0}$, and (1.8) is the same as (2.11).
(iii) transition region $R_{t} \leqq r \leqq R_{2}$

In this region o changes sign, so that neither $\nabla^{2} \sigma$ nor $u^{2}-v^{2}$ con be neglected in the last line of (2.14). However, it is easily seen from the first two lines of (2.14) that if and v do not change appreciably in this region, so that (2.42) continues to hald. We discuss first the connection between the Fermion wove function u and v in the inside solution and that in the outside solution. As before, let R be given by (2.26). Although the boundary of the inside region is within the surfoce $r=R$, we may extend the inside solution of (2,35), which we shall denore by u_{i}, v_{i}, up to $r=R$. At $r=R$, by definition, we have $u_{i}(R)=v_{i}(R)=v_{1}$. Thus, by using (2.15), we find $d\left(u_{i}^{2}-v_{i}^{2}\right) / d r=-4 u_{i}^{2}\left(\epsilon-R^{-1}\right.$) ar $r=R$; i.e., in the region $r=R=O\left(m_{q}^{-1}\right)$ we have

$$
\begin{equation*}
u_{i}^{2}-v_{i}^{2} \cong 4 u_{1}^{2}\left(\varepsilon-R^{-1}\right)(R-r) \tag{2.45}
\end{equation*}
$$

By matching (2.42) and (2.45) as well as their derivatives, at R_{1}, one finds

$$
\begin{equation*}
R_{0}=R-\left(2 m_{q}\right)^{-1} \tag{2.46}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{0}=u_{1} \tag{2.47}
\end{equation*}
$$

where u_{0} is given by (2.40) and u_{1} by (2,27). So far, the values of R_{1} and R_{2} are orbitrary, provided both are $R-Q\left(m_{q}^{-1}\right)$, and

$$
\begin{equation*}
R_{1}<R_{2}<R_{0} \tag{2,48}
\end{equation*}
$$

Next, we consider the joining of the scalar field σ. Let us choose the boundory $r=R_{2}$ of the outside region such that

$$
\begin{equation*}
\exp \left[m_{\sigma}\left(R_{0}-R_{2}\right)\right] \gg 1 \tag{2.49}
\end{equation*}
$$

The condition (2.49) is totally consistent with $\mathrm{R}_{2}=\mathrm{R}-\mathrm{O}\left(\mathrm{m}_{\mathrm{q}}^{-1}\right)$, since for $\eta=\mathrm{O}(\xi)$, m_{σ} is $\gg m_{q}$. From (2.38), one sees that
20.

$$
\begin{equation*}
\sigma\left(R_{2}\right) \cong \sigma_{\mathrm{vac}} \exp \left[m_{\sigma}\left(R_{2}-R_{0}\right)\right] \ll \sigma_{\mathrm{vac}} \tag{2.50}
\end{equation*}
$$

From (2.29) and (2.30), it follows that $|\bar{\sigma}| \ll \sigma_{\text {voc }}$. Thus, in both the transition and the inside region

$$
\begin{equation*}
|\sigma| \ll \sigma_{\text {vac }} . \tag{2.51}
\end{equation*}
$$

In the transition region, $u^{2}-v^{2}$ is given by (2.42); in addition, $r^{-1} \ll m_{\sigma}$. Therefore, the third equation of (2.14) takes on the approximate form

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{2}}-m_{\sigma}^{2}\right) \sigma=N g\left(u^{2}-v^{2}\right)=A(R-r) \tag{2.52}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=4 u_{1}^{2}\left(\epsilon-R^{-1}\right) N g \tag{2.53}
\end{equation*}
$$

The desired solution is

$$
\begin{equation*}
\sigma=-\left(\Lambda / m_{\sigma}^{2}\right)(R-r)+o_{0} \exp \left[m_{a}\left(r-R_{2}\right)\right] \tag{2.54}
\end{equation*}
$$

where σ_{0} is a constant to be determined. By assuming $\xi=O(\eta)$, ond by using (2.27), (2,32) and $\varepsilon=O(\mu)$, we find $\lambda=O\left(\mu{ }^{4} / \eta\right)$. In the transition region, since $r=R-O\left(m_{q}^{-1}\right)$, the first term $\left(\Lambda / m_{0}^{2}\right)(R-r)$ in (2.54) is $O\left(\mu \eta^{\frac{3}{2}}\right)$. According to (2.31), $\sigma_{v a c}$ is $O\left(\mu \eta^{\frac{1}{2}}\right)$. We shall choose σ_{0} and R_{1} such that

$$
\sigma_{\text {vac }} \gg \sigma_{0} \gg O\left(\mu \eta^{\frac{3}{2}}\right)
$$

and

$$
\begin{equation*}
\sigma_{0} \exp \left[-m_{0}\left(R_{2}-R_{1}\right)\right] \ll O\left(\mu \eta^{\frac{3}{2}}\right) \tag{2.55}
\end{equation*}
$$

As $r \rightarrow R_{2},(2.54)$ becomes $\quad a \cong \sigma_{0} \exp \left[m_{\sigma}\left(r-R_{2}\right)\right]$, which approaches the same outside solution $(2,38)$, provided

$$
\begin{equation*}
\sigma_{0}=\sigma_{\text {vae }} \exp \left[m_{0}\left(R_{2}-R_{0}\right)\right] ; \tag{2.56}
\end{equation*}
$$

at $r=R_{1},(2.54)$ becomes

$$
\begin{equation*}
\sigma \cong-\left(\mathrm{Ng} / \mathrm{m}_{0}^{2}\right)\left(u^{2}-v^{2}\right) \tag{2.57}
\end{equation*}
$$

which is the same inside solution (2.34).
We note that (2.56) is consistent with $\sigma_{\text {vac }} \gg \sigma_{0}$ from (2.55) becouse of (2.49). Moreover, the two parts of (2.55) are consistent provided that $m_{\sigma}\left(R_{2}-R_{1}\right) \gg 1$. This in turn can be satisfied with $R_{1}=R-O\left(m_{q}^{-1}\right)$ since $m_{o} \gg m_{q}$. The obove discussion completes the joining of both the Dirac wove function, i and v, and the scalar field - between the inside solution and the outside solution. The total energy E of the sysfem is given by (2.8). In the inside region $(\nabla \sigma)^{2}$ is $\sim(\bar{\sigma} / R)^{2} \sim \mu^{4} \eta^{2}$ which is much smaller than $U(\sigma) \sim \rho+\frac{1}{2} m_{\sigma}^{2} \sigma^{2} \sim \mu^{4}$. Therefore, the integral $f\left[\frac{1}{2}(\nabla \sigma)^{2}+U(\sigma)\right] d^{3} r$ over the inside region becomes, becouse of (2.34),

$$
\begin{equation*}
\frac{4}{3} \pi R_{p}^{3}+\frac{1}{2}\left(N g / m_{\sigma}\right)^{2} f\left(u^{2}-v^{2}\right)^{2} d^{3} r . \tag{2.58}
\end{equation*}
$$

The some integral over the transition region con be neglected, and that over the outside region is given by (2.44). By using (2,16), (2,20), (2.25), (2.26) ond (2.36), one sees that the second temm in (2.59) is $\frac{1}{2} N \in q / n$. Thus, the total energy E is given by (2,23).

To derive (2.24), the simplest way is to multiply the last equation of (2.14) on both sides by $\frac{d \sigma}{d r}$, and then integrate from r to ∞. We find

$$
\begin{equation*}
\frac{1}{2}\left(\frac{d \sigma}{d r}\right)^{2}-U(\sigma)=\int_{r}^{\infty} d r\left[\frac{2}{r}\left(\frac{d \sigma}{d r}\right)^{2}-N g\left(u^{2}-v^{2}\right) \frac{d \sigma}{d r}\right] . \tag{2,59}
\end{equation*}
$$

According to (2.54) and (2.57), of $r=R_{T}, \frac{1}{2}(d \sigma / d r)^{2} \cong \frac{1}{2}\left(\Lambda^{2} / m_{0}^{4}\right)=O\left(\mu^{4} \eta^{2}\right)$, $\sigma \cong-\left(\Lambda / m_{\sigma}^{2}\right)\left(R-R_{1}\right)=O\left(\mu \eta^{\frac{3}{2}}\right)$ and therefore $U(\sigma) \cong p+\frac{1}{2} m_{\sigma}^{2} \sigma^{2}=p+O\left(\mu_{\eta}^{4}\right)$,
where $p=O\left(\mu^{4}\right)$. The righthand side of (2.59) is dominated by the integration over the region when a changes rapidly from near zero to $\sigma_{\text {vac }}$. After neglecting $O(n)$ as compared to 1 , and by using (2.38), (2.42) and (2.47), we find that, at $r=\mathrm{R}_{1},(2.59)$ becomes

$$
-p=\frac{1}{3}\left(\mu^{3} / R\right)-2 N u_{1}^{2}\left(\epsilon-R^{-1}\right)
$$

which is (2.24). From (2.23) and (2.24), and by using (1.11), (2.11) and (2.25), one derives $(2,21)$ and (2,22). This completes the proof of theorem 1 .

There is an alternotive way to derive (2.24), which will be given in Appendix A. We recoll that from the solution of (2.17), we can obtain the functions $P_{1}=\rho_{1}^{(n)}$, $q=q(n)$ and $\hat{u}_{j}=\hat{u}_{1}(n)$. Consequently, of a given set of parometers N, g, p, m_{σ} and m_{q}, (2.25) and (2.26) may be used to define $\epsilon=z(n)$ ond $R=R(n)$. Of course, we may equally well choose R to be the independent varioble, and regard $\varepsilon=\epsilon(R)$ and $n=n(R)$. Equation (2.23) then gives $E=E(R)$. As will be shown in Appendix A, $(2,24)$ con also be established by setring

$$
\begin{equation*}
\frac{d \mathbf{E}}{d R}=0 \tag{2.60}
\end{equation*}
$$

From the discussions given in Appendix A, one sees that (2.59) implies $d E / d R=0$; thereby, one gains a further insight into the interrelation between these equations.

We note that the discussion of the inside region shows that the "reduced" functions $\hat{\mathbf{u}}$ and $\hat{\mathrm{v}}$ are proportional to the actual quark wove function \mathbf{u}, v. Hence all physical averages with respect to the quark density can be calculated from $\hat{\mathbf{v}}, \hat{\mathbf{v}}$, the contribution from $r>R_{1}$ being negligible.

4. Solutions of the reduced equations

Our starting point in this section is the pair of differential equations (2.17). As exploined before, in the paragraph preceding (2,18)-(2,20), the solutions of these equations form a one-porometer family since the functions $\hat{v}(p), \hat{v}(p)$ are completely detemined when $\hat{u}(0)$ is given. Without loss of generality we assume $\hat{\mathbf{u}}(0)>0$.

There is a critical value $\hat{\mathrm{u}}_{\text {crit }}$ such that if $\hat{\mathrm{u}}(0)>\hat{\mathrm{u}}_{\text {erit }}$, the functions $\hat{\mathrm{v}}, \hat{v}$ become infinite of some value $\rho_{2}<1$, with $\hat{u}>\hat{v}$ for all $0<\rho<\rho_{2}$. Such solutions are of no interest to us, since they do not correspond to any solution of (2.14). Therefore we restrict ourselves to the range

$$
\begin{equation*}
\hat{u}(0)<\hat{u}_{\text {erit }} \cong 1.7419 \tag{2,61}
\end{equation*}
$$

The parameter n can take values from 0 to ∞. When $n \rightarrow 0, \hat{\mathrm{U}}(0) \rightarrow 0$; when $n \rightarrow \infty, \hat{u}(0) \rightarrow \hat{u}_{\text {crit }}$. In Figure $1, \hat{U}^{2}-\hat{v}^{2}$ is plotted vs. p for two initial values of $\hat{U}(0)$, one near 0 and the other near $\hat{U}_{\text {crit }}$. One sees that the solution is volume-dominated for small $n(\$(0) \sim 0)$ and surface-dominated for large n $\left(\hat{u}(0) \sim \hat{\mathrm{u}}_{\text {erit }}\right)$.

We shall first discuss the two limits $n \rightarrow 0$ (MIT-like) and $n \rightarrow \infty$ (SLAC-like).
(i) When $n \ll 4 \pi$, both \hat{u} and \hat{v} remain small for $0<\rho<\rho_{1}$. Thus we mary neglect the nonlinear terms in (2.17), obtaining

$$
\begin{align*}
& \frac{d \hat{u}}{d p}=-\hat{v} \\
& \frac{d \hat{v}}{d p}+\frac{2}{\rho} \hat{v}=\hat{u} \tag{2,62}
\end{align*}
$$

The solutions to (2.62) ore elementary and well-known:

$$
\begin{align*}
& \hat{u}=\hat{u}(0) j_{0}(\rho)=\hat{u}(0) p_{p}^{-1} \sin \rho \\
& \hat{v}=\hat{u}(0) j_{1}(\rho)=\hat{v}(0) p^{-2}(\sin \rho-p \cos \rho) . \tag{2.63}
\end{align*}
$$

We then have $\mathrm{j}_{0}\left(\mathrm{p}_{1}\right)=\mathrm{j}_{1}\left(\mathrm{p}_{1}\right)$ or

$$
\begin{align*}
& \rho_{1}=2.0428, \\
& (4 \pi)^{-1} n=\hat{v}(0)^{2} \rho_{1}\left|\sin \left(2 \rho_{1}\right)\right|=1.6545 \hat{u}(0)^{2}, \\
& \hat{u}_{1}^{2}=\left[\hat{v}(0) \rho_{1}^{-1} \sin \rho_{1}\right]^{2}=0.1149\left(\frac{n}{4 \pi}\right), \\
& 4 \pi \int_{0}^{\rho_{1}} \rho^{2}\left(\hat{u}^{2}-\frac{1}{3} \hat{v}^{2}\right) d \rho=\frac{\rho_{1} n}{3\left(\rho_{1}-1\right)}=0.6530 n, \tag{2.64}\\
& 4 \pi \int_{0}^{\rho_{1}} \rho^{3} \hat{u} \hat{v} d_{\rho}=\frac{\left(4 \rho_{1}-3\right) n}{8\left(\rho_{1}-1\right)}=0.6199 n, \\
& 4 \pi \int_{0}^{\rho} \rho_{1}^{4}\left(\hat{u}^{2}+\hat{v}^{2}\right) d_{\rho}=\frac{2 \rho_{1}^{3}-2 \rho_{1}^{2}+4 \rho_{1}-3}{\delta\left(\rho_{1}-1\right)} n=2.2175 n
\end{align*}
$$

and

$$
q=O\left(n^{2}\right)
$$

In Fig. 2 we plot $\hat{v}, \hat{v}, \hat{u}^{2}+\hat{v}^{2}$ and $\hat{u}^{2}-\hat{v}^{2}$ ogainst ρ for this cose.
(ii) The cose of large n can best be understood by considering first the limiting solution for $\hat{\mathrm{v}}(\mathrm{O})=\mathrm{u}_{\text {crit }}$. This initial value yields a definite pair of curves for $\hat{\mathrm{U}}, \hat{\mathrm{v}}$ which are graphed in Fig. 3. As $p \rightarrow \hat{t}-\hat{\mathbf{u}}, \hat{\mathrm{v}}$, and $\hat{\mathbf{v}}^{2}-\hat{\mathbf{v}}^{2}$ all become large. The manner in which this happens can be found by letting

$$
\begin{align*}
& x=\hat{u} \hat{v} \\
& y=\hat{u}^{2}-\hat{v}^{2}, \tag{2.65}\\
& r=2(\rho-1),
\end{align*}
$$

and neglecting terms of relative order $\tau, 1 / y$, or $y /(x+)$. One thus obtains from (2.17) the opproximate equations

$$
\frac{d x}{d r}=y x,
$$

$$
\begin{equation*}
\frac{d y}{d \tau}=-\tau \times \tag{2.66}
\end{equation*}
$$

The solution thot becomes infinite as $T \rightarrow 0-$ is

$$
\begin{align*}
& x=3|\tau|^{-3}, \\
& y=3|\tau|^{-1} \tag{2,67}
\end{align*}
$$

whith explains why we regard $T, 1 / y$ and $y /\left(x_{7}\right)$ to be the same order,
For finite $n \gg 4 \pi$, the functions $\hat{\theta}$ and \hat{v} lie very close to the "eriticol" curves except in a region $p=1 \pm O\left[n^{-\frac{1}{2}}\right]$. In this region the approximation (2.66) still holds, but insteod of obeying (2.67), x and y remain finite at $\tau=0$ and y decreases to zero at $r=\tau_{1}=2\left(p_{1}-1\right)$.

The finite solutions of (2.66) with which we must deal can be reduced to a single universal solution by the transformation

$$
\begin{equation*}
x \rightarrow \hat{x}=x \tau_{1}^{3}, y \rightarrow \hat{y}=y \tau_{1}, \tau \rightarrow \hat{\tau}=\tau / \tau_{1}, \tag{2.68}
\end{equation*}
$$

which leaves (2.66) invariant. The functions $\hat{x}(\hat{\gamma}), \hat{y}(\hat{\boldsymbol{q}})$ ore now completely determined by

$$
\begin{align*}
& \frac{d \dot{\hat{x}}}{d \hat{\tau}}=\hat{\gamma} \hat{x}, \\
& \frac{d \hat{y}}{d \hat{\tau}}=-\hat{\tau} \hat{x} \tag{2.69}
\end{align*}
$$

with the boundary conditions $\hat{y}=0$ at $\hat{\tau}=+1$, and $\hat{x}, \hat{y} \rightarrow 0$ at $\hat{\boldsymbol{\gamma}} \rightarrow-\infty$. The first condition sets the scole for \uparrow, which would otherwise be adjustoble through a transformation Iike (2,68). The second condition makes x, y obey $(2,67)$ in the region
$1 \gg 1-\rho \gg n^{-\frac{1}{2}}$. Thus $(2,67)$ provides the transition from the peak region deseribed by $(2,69)$ to the region $0<\rho<1-O\left[n^{-\frac{1}{2}}\right]$ where \hat{u} and \hat{v} are almost the some as their limiting values for $n \rightarrow \infty$. The results corresponding to (2,64) in the limit $n \rightarrow \infty$ is:
and

$$
\begin{align*}
& \rho_{1}=1+(3.531 \pi / n)^{\frac{1}{2}}, \\
& n=3.531 \pi\left(\rho_{1}-1\right)^{-2}, \\
& \hat{u}_{1}^{2}=\frac{3.531}{8}\left(\rho_{1}-1\right)^{-3}, \\
& 4 \pi \int_{0}^{\rho_{1}} \rho^{2}\left(\hat{v}^{2}-\frac{1}{3} \hat{v}^{2}\right) d_{\rho}=\frac{1}{3} n \tag{2.70}\\
& 4 \pi \int_{0}^{\rho_{1}} \rho^{3} \hat{u} \hat{v} d_{p}=\frac{1}{2} n, \\
& 4 \pi \int_{0}^{P_{1}} \rho_{\rho}^{4}\left(\hat{u}^{2}+\hat{v}^{2}\right) d_{\rho}=n
\end{align*}
$$

The solutions of (2.69) are plotted in Fig. 4, with the asymptotic forms (2.67) shown for comporison. The relation $n=8 \pi \dot{u}_{1}{ }^{2}\left(\rho_{1}-1\right)$ is exact in this limit, os seen from the equation $\int \hat{x} d \hat{\tau}=\hat{x} \hat{\tau}+\frac{1}{2} \bar{y}^{2}$ which follows from (2.69).

We note that it is possible to eliminate τ in (2.66), or \hat{T} in (2.69). Let us define $a=\tau^{3} \times=\hat{\tau}^{3} \hat{x}$ and $b=\tau y=\hat{\tau} \hat{y}$. From (Z.66), we see that

$$
\frac{d b}{d a}=\frac{b-a}{a(b+3)}
$$

(iii) For intermediate values of n, the equations (2.17) have been integrated numerically. The quantities $\hat{v}, \hat{v}, \hat{u}^{2}+\hat{v}^{2}$, and $\hat{u}^{2}-\hat{v}^{2}$ ore graphed against p for several values of n in Fig. 5.

From the arguments of the previous section, we see that $\hat{u}^{2}+\vec{v}^{2}$ is proportional to the quark density, while $\hat{\mathrm{u}}^{2}-\hat{\mathrm{v}}^{2}$ is proportional to the gluon field inside the hadron, $\sigma \cong-(\varepsilon / g)\left(\hat{u}^{2}-\hat{v}^{2}\right)$. The following results on $\hat{u}^{2}-\hat{v}^{2}, \hat{u}$ and $\hat{v}^{2}+\hat{v}^{2}$ are rigorously true:

Theorem 2 If $\hat{U}(0)<\sqrt{2}$ (i.e., $n<74.84$), the quantity $\hat{u}^{2}-\hat{v}^{2}$ decreases monotonically from $\rho=0$ to $\rho=\rho_{1}$. If $\hat{u}(0)>\sqrt{2}$ (i.e., $n>74.84$), the quantity $\hat{u}^{2}-\hat{v}^{2}$ increases manotonically from $\rho=0$ to a maximum at $\rho=\bar{\rho}<\rho_{1}$, and decreases monotanically from $p=\bar{\rho}$ to $\rho=\rho_{1}$.

Proof Let $y=\hat{v}^{2}-\hat{v}^{2}$, and $z=(\hat{v} / \hat{y})-\rho$. Then from (2.17) we obtain

$$
\begin{equation*}
\frac{d y}{d \rho}=4_{\rho}^{-1} \hat{\hat{s}} \hat{v z} \tag{2,71}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d z}{d \rho}=\hat{u}^{-2}(y-1) y-2_{p}^{-1} z-1 \tag{2,72}
\end{equation*}
$$

For $\rho \rightarrow 0, y \rightarrow \hat{u}(0)^{2}, \rho^{-1} z \rightarrow d z / d \rho$ and (2.72) becomes

$$
\begin{equation*}
3 \frac{d z}{d p}=\hat{u}(0)^{2}-2 \tag{2.73}
\end{equation*}
$$

Let $\hat{U}(0)<\sqrt{2}$, then z is initiolly negative.
Suppose thet $z(\rho)=0$ has a root between 0 and ρ_{1}. Let $\bar{\rho}$ be the smallest such root. Then z must be increasing at \bar{p}, and so from (2.72) we hove

$$
\begin{equation*}
0<\left.\frac{d z}{d_{p}}\right|_{\bar{\rho}}=\left[\hat{v}^{-2}(y-1) y\right]_{\bar{\rho}}-1 \tag{2.74}
\end{equation*}
$$

where the subscript $\vec{\rho}$ denotes $\rho=\bar{\rho}$. Now, by definition, ρ_{1} is the (smallest) root of $y(\rho)=0$. Hence,

$$
\begin{equation*}
0<y<\hat{u}^{2} \text { for } \rho<\rho_{1} \tag{2.75}
\end{equation*}
$$

Since $\bar{\rho}<\rho_{1},(2.74)$ and (2.75) imply

$$
1<\left[\hat{U}^{-2}(y-1) y\right]_{\bar{p}}<y(\bar{\rho})-1
$$

which, on account of (2.71), leads to

$$
\begin{equation*}
2<y(\bar{\rho})=y(0)+\int_{0}^{\bar{\rho}} 4 \rho^{-1} \hat{\omega} \overline{v z}<y(0)=\hat{\Delta}(0)^{2} \tag{2.76}
\end{equation*}
$$

contrary to hypothesis. [We know that $2<0$ for $0<\rho<\bar{p}$; in addition, from (2.75), $\hat{u}>0$ for $\rho<\rho_{1}$, and since from (2.17), $d\left(\rho^{2} v\right) / d \rho=\rho^{2}(1+y) \hat{u}>0, \hat{v}$ is also >0 for $\left.0<p<P_{1} \cdot\right]$

The contradiction shows that 2 has na root between 0 and ρ_{1}. Therefore it remains negative, and the first part of Theorem 2 follows from (2,7t).

Now let $\hat{u}(0)>\sqrt{2}$. Then z is initially positive, os seen from (2.73). By integrating (2,71) from 0 to p_{1}, we see that z cannot remain positive throughout; therefore it hos o root. Let $\bar{\rho}$ be the smallest positive root of $z(\rho)=0$.

If $\mathbf{z}(\rho)=0$ possesses a second root between $\bar{\rho}$ and ρ_{1}, let $\bar{\rho}$ ' be the sallest such root. Then $\frac{d z}{d p}$ must be negative at \bar{p} and positive at $\bar{\rho}$ ', so that from (2.72) we find

$$
\left[\hat{u}^{-2} y(y-1)\right]_{\bar{\rho}^{\prime}}>1>\left[\hat{u}^{-2} y(y-1)\right]_{\bar{\rho}}
$$

which, because of $\hat{\mathrm{u}}^{-2} \mathrm{y}=1-(\hat{\mathrm{v}} / \hat{\mathrm{u}})^{2}=1-(\rho+z)^{2}$, may be rewritten as

$$
\begin{equation*}
\left[y\left(\bar{\rho}^{\prime}\right)-1\right]\left(1-\bar{\rho}^{\prime 2}\right)>1>[y(\bar{\rho})-1]\left(1-\bar{\rho}^{2}\right) . \tag{2.77}
\end{equation*}
$$

Now, $y(\bar{\rho})>y(0)=\hat{\mathrm{u}}(0)^{2}>2$ since z is positive between 0 and \bar{p}. Therefore $y(\bar{p})-1>0$, so that

$$
\begin{equation*}
[y(\bar{\rho})-1]\left(1-\bar{\rho}^{2}\right)>[y(\bar{\rho})-1]\left(1-\bar{\rho}^{2}\right) . \tag{2,78}
\end{equation*}
$$

On the other hand, $1-\bar{\rho}^{2}=\left\langle y \hat{\varphi}^{-2}\right)_{\bar{\rho}},>0$ and $y(\bar{\rho})>y\left(\bar{\rho}^{\prime}\right)$ since z is negative (ond therefore $d y / d_{p}$ is negotive) between $\overline{\mathrm{p}}$ and $\overline{\mathrm{p}}^{\prime}$. Thus

$$
\begin{equation*}
[y(\bar{\rho})-1]\left(1-\bar{\rho}^{2}\right)>\left[y\left(\bar{\rho}^{\prime}\right)-1\right]\left(1-\bar{\rho}^{2}\right) . \tag{2.79}
\end{equation*}
$$

Combining (2.77), (2.78) and (2.79), we have a contradiction. Therefore there is no second root of $z(\rho)=0$. The second part of Theorem 2 now follows from (2.71). Theorem 3 if $\hat{\mathbf{U}}(0)<1$ (i.e., $\mathrm{n}<20.47$), the function $\hat{\mathbf{v}}$ (p) decreases monotonically from $p=0$ to $\rho=\rho_{1}$. If $\hat{U}(0)>1$ (f.e., $n>20.47$), then $\hat{\mathbf{U}}(\rho)$ increases monotonically from $\rho=0$ to a maximum at $\rho=\rho_{0}<\rho_{1}$, and decreases monotonically from $\rho=\rho_{0}$ to $\rho=P_{1}$.

Proof The first equation in (2.17) may be written as

$$
\begin{equation*}
\frac{d \hat{u}}{d p}=\hat{\mathbf{v}} \mathbf{w} \tag{2.80}
\end{equation*}
$$

where

$$
\begin{equation*}
w(\rho)=y(\rho)-1=\hat{u}^{2}-\hat{v}^{2}-1 \tag{2.81}
\end{equation*}
$$

As $\rho \rightarrow 0, w(\rho) \rightarrow \hat{\mathrm{u}}(0)^{2}-1$. Thus, when $\hat{\mathrm{v}}(0)<1, w(0)<0$. Furthermore, when $\hat{u}(0)<1<\sqrt{2}$, we know from Theorem 2, $d w / d_{\rho}=d y / d_{\rho}<0$ for $0<\rho \leqq \rho_{1}$; consequently $w(\rho)<0$, and therefore $\hat{u}(\rho)$ decreases monotonically.

Next, we consider the case $\hat{u}(0)>1$. Since $w(0)>1$ and $w\left(p_{1}\right)=-1$, in the interval from $\rho=0$ to $\rho=\rho_{1}$, there must be a root of $w(\rho)=y(\rho)-1=0$. From Theorem 2, one con show readily thot there is only one such root. By using (2.80) we establish Theorem 3.

Theorem 4 If $\hat{u}(0)<\frac{1}{\sqrt{2}}$ (i.e., $n<9.618$), the quantity $\hat{u}^{2}+\hat{v}^{2}$ decreases monotonically from $\rho=0$. to $\rho=P_{1}$.

Proof Let

$$
Y \equiv \hat{v}^{2}+\hat{v}^{2}
$$

and

$$
\begin{equation*}
z \equiv\left(\hat{\sigma}_{y} / \hat{v}\right)-\rho^{-1} \tag{2.82}
\end{equation*}
$$

where, as before, $y=\hat{u}^{2}-\hat{v}^{2}$. From (2.17), we find

$$
\begin{equation*}
\frac{d Y}{d \rho}=4 \hat{v}^{2} Z \tag{2.83}
\end{equation*}
$$

and

$$
\frac{d Z}{d \rho}=(\hat{u} / \hat{v}) \frac{d y}{d \rho}+\left(y / \hat{v}^{2}\right)\left[-Y-y^{2}+2(\hat{u} \hat{v} / \rho)\right]+\rho^{-2}
$$

As $\rho \rightarrow 0$, since $\hat{v} / \rho \rightarrow \frac{1}{3} \hat{u}(0)\left[1+\hat{u}(0)^{2}\right]$, we hove

$$
\begin{equation*}
\rho Z \rightarrow 2\left[1+\hat{u}(0)^{2}\right]^{-1}\left[\hat{v}(0)^{2}-\frac{1}{2}\right] \tag{2.84}
\end{equation*}
$$

Hence, for $\hat{v}(0)<1 / \sqrt{2}, p Z<0$ as $\rho \rightarrow 0$.
Suppose that, when $\hat{v}(0)<1 / \sqrt{2}, Z(p)=0$ has a root between $p=0$ and $p=\rho_{\boldsymbol{\gamma}}$. Let $\rho=\ell$ be the smallest such root. Thus, $Z(\rho)$ must increase at $\rho=\ell$; ie.,

$$
\left(\frac{d Z}{d \rho}\right)_{\ell}>0
$$

where the subscript ℓ denotes $\rho=Q$. Since $Z(\ell)=0$, by using (2.83) we find

$$
\begin{equation*}
\left(\frac{d Z}{d \rho}\right)_{Q}=(\hat{u} / \hat{v})_{Q}\left(\frac{d y}{d \rho}\right)_{Q}-\left(y / \hat{v}^{2}\right)_{Q}\left[\hat{v}^{2}\left(\hat{v}^{2}+\hat{v}^{2}+l\right)+\hat{u}^{2}\left(1-2 \hat{u}^{2}\right)\right]_{Q} \tag{2.85}
\end{equation*}
$$

For $\hat{u}(0)<1 / \sqrt{2}$, which is less than both 1 and $\sqrt{2}$, we have $\left(d y / d_{\rho}\right)_{Q}<0$ by Theorem 2, and $\left(1-2 \mathrm{u}^{2}\right)_{\mathrm{Q}}>0$ by Theorem 3. Hence, (2.85) leads to $(d Z / d \rho)_{Q}<0$, which controdicts the hypothesis that $Z(\rho)=0$ hos a raot between 0 and ρ_{1}. From (2.82) and (2.84), we also see that when $\hat{u}(0)<1 / \sqrt{2}, d Y / d \rho<0$ as $\rho \rightarrow 0$. Theorem 4 is then proved.

Remorks

1. From our numerical solutions, we find that for $\hat{\mathrm{v}}(0)>1 / \sqrt{2}$ (i.e., $n>9.61 \mathrm{~B}$), the quantity $\hat{u}^{2}+\vec{v}^{2}$ increases monotonically from $\rho=0$ to o moximum at $\rho=\ell<\rho_{1}$, and then decreases monotonically from $\rho=\ell$ to $\rho=\rho_{1}$.
2. From (2.17), one sees that as $\rho \rightarrow 0, \hat{v} / \rho \rightarrow \frac{1}{3} \hat{u}(0)\left[1+\hat{U}(0)^{2}\right]>0$, and when $\rho=\rho_{1}, d \hat{y} / d_{\rho}=\left[1-\left(2 / \rho_{1}\right)\right] \hat{\mathrm{u}}\left(\rho_{1}\right)$, which is positive if $\rho_{1}>2$ (i.e., $\hat{U}(0)<.3066, n<1.901$) and negative if $\rho_{1}<2$. From our numerical solutions, we find that $\hat{v}(\rho)$ hos al most one maximum between $\rho=0$ and $\rho=\rho_{1}$. Thus, if $\hat{u}(0)<.3066, \hat{v}(p)$ increases monotonicolly from $p=0$ to $\rho=\rho_{1}$. If $\hat{u}(0)>.3066$, $\vec{V}(\rho)$ increoses monotonically from $\rho=0$ to a maximum as, say, $\rho=P_{0}^{\prime}<\rho_{1}$, and then decreases monotonically from $\rho=\rho_{0}^{\prime}$ to $\rho=\rho_{1}$.
3. An exact relation among n, q, ρ_{1}, and \hat{u}_{1} may be derived by noting thot (2.17) has the consequence

$$
\begin{equation*}
\frac{d}{d \rho}\left[\rho^{3}\left(\hat{v}^{2}-\hat{v}^{2}\right)^{2}+2 \rho^{3}\left(\hat{v}^{2}+\hat{v}^{2}\right)-4 \rho^{2} \hat{v} \hat{v}\right]=2 \rho^{2}\left(\hat{v}^{2}+\hat{v}^{2}\right)-\rho^{2}\left(\hat{u}^{2}-\hat{v}^{2}\right)^{2} . \tag{2.86}
\end{equation*}
$$

Multiplying by 2π and integrating from 0 to ρ_{1}, we hove

$$
\begin{equation*}
8 \pi \hat{\mathrm{U}}_{1}^{2} \rho_{1}^{2}\left(\rho_{1}-1\right)=n-\frac{1}{2} q . \tag{2.87}
\end{equation*}
$$

III. Inclusion of Vector and Wigs Fields

In this section we consider the general case in which, in addition to the spin $\frac{1}{2}$ quark field ψ and the scalar gluon field a introduced before, there are also the color SU(3) gauge field V_{μ} and the color Wigs field Φ. Through the spontoonsous symmetry-breaking mechanism, ${ }^{14}$ the eight vector-field components of V_{μ} are all going to be massive; the number of scalar-field components of ϕ must, therefore, be more than eight. Since the color $\mathrm{SU}(3)$ is expected to remain o good (or, at least, approximately good) symmetry after the spontaneous symmetry-breaking mechanism, the Lagrangian density that one starts from should be invariant under a larger group which includes the color $S U(3)$ as a subgroup. There is a certain arbitrariness in choosing the group f and the representation of ϕ. For definiteness, we adopt the specific example discussed by Sirlin and ourselves in an earlier paper. ${ }^{20}$ We assume of to be SU() $\times \operatorname{SU}(3)$ and ϕ to form the $(3,3)$ representation of g. [In addition to g, there is the usual "flavor" SU(3), or SU(4).] Thus, ϕ consists of nine complex scalar fields Φ_{0} and Φ_{0} where, as wall as throughout the paper, the subscripts

$$
\begin{align*}
& a, b, c \text { vary from } 1 \text { to } 8, \\
& b, v, \lambda \text { vary from } 1 \text { to } 4 \tag{3,1}
\end{align*}
$$

and $\quad \mathbf{i}, \mathbf{j}, \mathbf{k}$ vary from 1 to 3.

It is convenient to represent the gauge field and the Figs field by 3×3 matrices:

$$
\begin{align*}
& V_{\mu} \equiv \frac{1}{2} \lambda_{o}\left(V_{\mu}^{\prime}\right) \tag{3.2}\\
& \phi \equiv \frac{1}{2} \lambda_{0} \phi_{0}+\frac{1}{2} \lambda_{0} \phi_{0}
\end{align*}
$$

33.

where $\lambda_{0}=(3)^{\frac{1}{2}}$ times the 3×3 unit matrix, and λ_{a} 's ore the 3×3 Gell-Mann matrices which satisfy the usual relations

$$
\begin{equation*}
\operatorname{tr}\left(\lambda_{\mathrm{a}} \lambda_{b}\right)=2 \delta_{o b},\left[\lambda_{\mathrm{o}}, \lambda_{b}\right]=2 i f_{\mathrm{abe}} \lambda_{c}, \tag{0.3}
\end{equation*}
$$

and

$$
\left\{\lambda_{a}, \lambda_{b}\right\}=2 D_{a b c} \lambda_{c}+\frac{4}{3} \delta_{a b} .
$$

All repeated indices are to be summed over. The gouge field forms a (8,1) represenration of ξ, the gluon field a is invariant under \mathcal{g}, and each of the "flavor" components of the quark field q^{k} forms a $(3,1)$ representation of ξ. In terms of the components ψ_{j}^{k} introduced in Eq. (2.1), we toy write

$$
\phi^{\dot{k}}=\left(\begin{array}{l}
\psi_{1}^{k} \tag{3.4}\\
\psi_{2}^{k} \\
\psi_{3}^{k}
\end{array}\right)
$$

The group $g=S U(3) \times$ SU(3) consists of the transformations

$$
\begin{align*}
& V_{\mu} \rightarrow u V_{\mu} u^{\dagger}, \quad \phi \rightarrow u \phi v^{\dagger}, \tag{3.5}\\
& \psi^{k} \rightarrow u \psi^{k} \quad \text { and } \quad \sigma \rightarrow \sigma
\end{align*}
$$

where u and v are two abitrory x-independent 3×3 unitary matrices with dit $=1$.
The Lagrangian density \mathcal{L} is assumed to be invariant under a local SU(3) gauge transformation

$$
\begin{align*}
& V_{\mu} \rightarrow u(x) V_{\mu} u(x)^{\dagger}-\frac{1}{f}\left(\frac{\partial u(x)}{\partial x_{\mu}}\right) u(x)^{\dagger}, \\
& \psi \rightarrow u(x) \phi, \psi^{k} \rightarrow u(x) \varphi^{k} \tag{3.6}
\end{align*}
$$

and

$$
\sigma \rightarrow \sigma
$$

where $u(x){ }^{\dagger} u(x)=1$ and det $u(x)=1$; in addition, \mathcal{L} is invariont under the global $\mathcal{F} \mathrm{SU}(3)$ tronsformarions, where \mathcal{G} is given by (3.5), and the extra $S U(3)$ group denotes the usual "flavor" transformations, under which V_{μ}, ϕ and σ are all invariant, but

$$
\begin{equation*}
\phi^{k} \rightarrow w_{j}^{k} \psi^{j} \tag{3.7}
\end{equation*}
$$

where $w \equiv\left(w_{j}^{k}\right)$ is another x-independent 3×3 uitary matrix with det $=1$. [The generalizotion of the "flavor" transformation group to SU(4) is stroightforward,] The general renormalizable form of $£$ can be readily found:

$$
\begin{equation*}
\mathcal{L}=-\operatorname{tr}\left[\frac{1}{2} \mathrm{~V}_{\mu}^{2}+\left(\bar{D}_{\mu} \phi^{\dagger}\right)\left(D_{\mu} \phi\right)\right]-\psi^{k} \gamma_{4}\left(\gamma_{\mu} D_{\mu}+\theta \sigma\right) \phi^{k}-\frac{1}{2}\left(\frac{\partial \sigma}{\partial x_{\mu}}\right)^{2}-U(\sigma, \phi) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{align*}
& V_{\mu} \equiv \frac{1}{2} \lambda_{0}\left(V_{\mu \nu}\right)=\frac{\partial}{\partial x_{\mu}} V_{v}-\frac{\partial}{\partial x_{v}} V_{\mu}-i f\left[V_{\mu}, V_{v}\right], \\
& D_{\mu} \phi=\frac{\partial}{\partial x_{\mu}} \phi-i f V_{\mu} \phi, \\
& \bar{D}_{\mu} \phi^{\dagger}=\frac{\partial}{\partial x_{\mu}} \phi^{\dagger}+i f \phi_{\mu}^{\dagger} V_{\mu}, \tag{3.9}\\
& D_{\mu} \psi^{k}=\frac{\partial}{\partial x_{\mu}} \phi^{k}-i f V_{\mu} \psi^{k}
\end{align*}
$$

ond $U(a, \phi)$ is a faurth order polynomial in σ and ϕ. Because of our convention $x_{\mu}=(\vec{r}, i t)$, we have

$$
\begin{equation*}
\bar{D}_{j} \phi^{\dagger}=\left(D_{j} \phi\right)^{\dagger} \quad \text { and } \quad \bar{D}_{4} \phi^{\dagger}=-\left(D_{4} \phi\right)^{\dagger} \tag{3.10}
\end{equation*}
$$

As already explained in the introduction, the function $\mathrm{U}(0, \phi)$ satisfies (1.2) and (1.4); i.e., it has on absolute minimum of $(\sigma, \phi)=\left(\sigma_{\text {vac }}, \phi_{\text {voc }}\right)$ and a local
minimum of the origin $(0, \phi)=(0,0)$, with

$$
\begin{equation*}
U\left(\sigma_{\text {vac }}, \Phi_{\text {vac }}\right)=0 \tag{3.11}
\end{equation*}
$$

and

$$
U(0,0) \equiv p>0
$$

Both $\sigma_{\text {vac }}, \Phi_{\text {vac }}$ are essumed to be $\neq 0$. The general form of $U(\sigma, \phi)$ that sotisfies these properties still contains orather large number of constants a, b, \ldots, $a^{\prime}, b^{\prime}, \cdots, a^{\prime \prime}, b^{\prime \prime}, \cdots$, defined as follows:

$$
\begin{align*}
U(\sigma, \phi)= & \frac{1}{2} \sigma \sigma^{2}+\frac{1}{3!b} \sigma^{3}+\frac{1}{d!} \operatorname{co}^{4}+P \\
& +a^{\prime} \operatorname{tr}\left(\phi^{\dagger} \phi\right)+\frac{1}{2}\left[b^{\prime} \operatorname{det} \phi+\left(b^{\prime} \operatorname{dot} \phi\right)^{\dagger+}\right] \\
& +c^{1} \operatorname{tr}\left[\left(\phi^{\dagger} \phi\right)^{2}\right]+d^{1}\left[\operatorname{tr}\left(\phi^{\dagger} \phi\right)\right]^{2}+\left(\sigma^{n} \sigma+c^{n} \sigma^{2}\right) \operatorname{tr}\left(\phi^{\dagger} \phi\right) \\
& +\frac{1}{2} \sigma\left[b^{\prime \prime} \operatorname{det} \phi+\left(b^{n} \operatorname{det} \phi\right)^{\dagger}\right] . \tag{3.12}
\end{align*}
$$

At first sight, it seems almost unmanageable to discuss such a general case with so many independent constants. As we shall see, the problem is actually quite simple, provided that the parameters ξ and η, introduced in (1.11), are both small, <<1. Of course, in the present general cose because σ is coupled to ϕ, there are many scolor masses. The definition of m_{g} used in (1.11) has to be made precise. [See (3.30) below.]

To begin with, we may odopt the unitary gauge by choosing the transformation $u(x)$ in (3.6) so that for $a=1,2, \ldots B$,

$$
\begin{equation*}
\operatorname{tr}\left[\lambda_{0}\left(\phi-\phi^{\dagger}\right)\right]=0 \tag{3.13}
\end{equation*}
$$

everywhere. ${ }^{20}$ We may then write

$$
\sigma=\sigma_{\text {vac }}+R^{\prime}
$$

$$
\begin{equation*}
\phi=\phi_{\mathrm{vac}}+\frac{1}{2} \lambda_{0}(R+i l)+H \tag{3.14}
\end{equation*}
$$

where

$$
H=\frac{1}{2} \lambda_{a} H_{a},
$$

and R, R^{*}, I and H_{a} are all Hermitian fields. For simplicity, we assume the constants b^{\prime} and $b^{\prime \prime}$ in (3.12) to be real, and therefore $\phi_{v a c}$ is real. Because $(\sigma, \phi)=\left(\sigma_{\text {vac }}, \phi_{\text {vac }}\right)$ is the absolute minimum of $U, \frac{\partial U}{\partial \sigma}=\frac{\partial U}{\partial R}=\frac{\partial U}{\partial I}=\frac{\partial U}{\partial H_{a}}=0$ ot $(0, \phi)=\left(\sigma_{\text {vac }}, \phi_{\text {vac }}\right)$. Near $(\theta, \phi)=\left(\theta_{\text {vac }}, \phi_{\text {vac }}\right)$, we may expand

$$
\begin{equation*}
U(\sigma, \phi)=\frac{1}{2}\left[M_{R R} R^{2}+2 M_{R R} R^{\prime}+M_{R^{\prime} R^{\prime}} R^{\prime 2}\right]+\frac{1}{2} m_{1}^{2} I^{2}+\frac{1}{2} m_{H}^{2} H_{0}^{2}+\cdots \tag{3.15}
\end{equation*}
$$

where . . denotes cubic and higher order terms in the fields R, R, I and H_{a}. The mass-squares m_{I}^{2}, m_{H}^{2} and the eigenvalues m_{1}^{2} and m_{2}^{2} of the matrix

$$
M \equiv\left(\begin{array}{ll}
M_{R R} & M_{R R^{\prime}} \tag{3.16}\\
M_{R R^{\prime}} & M_{R^{\prime} R^{\prime}}
\end{array}\right)
$$

are all positive; these parameters are related to the constants $a, b, c, a^{\prime}, b^{\prime}, \ldots$ by

$$
\begin{align*}
& m_{l}^{2}=a^{\prime}-b^{\prime} \Phi_{v a c}+2\left(c^{\prime}+3 d^{\prime}\right) \phi_{v a c}^{2}+\left(a^{\prime \prime}-b^{\prime \prime} \phi_{v a c}+c^{\prime \prime} \sigma_{v a c}\right) \sigma_{v a c}, \\
& m_{H}^{2} \therefore=a^{\prime}-\frac{1}{2} b^{\prime} \phi_{v a c}+b\left(c^{\prime}+d^{\prime}\right) \phi_{v a c}^{2}+\left(a^{\prime \prime}-\frac{1}{2} b^{n} \varphi_{v a c}+c^{\prime \prime} \sigma_{v a c}\right) \sigma_{v a c} \text {; } \\
& M_{R R}=a^{\prime}+b^{t} \phi_{v a c}+\delta\left(c^{\prime}+3 d^{\prime}\right) \phi_{v a c}^{2}+\left(a^{n}+b^{n} \phi_{v o c}+c^{n} \sigma_{v a c}\right) \sigma_{v a c} \text {, } \\
& M_{R^{\prime} R^{\prime}}=a+b \sigma_{V a c}+\frac{1}{2} c g_{v o c}^{2}+6 c^{n} \phi_{V a c}^{2} \tag{3.17}\\
& M_{R R^{\prime}}=\sqrt{b}\left(a^{\prime \prime}+\frac{1}{2} b^{n} \Phi_{\text {vac }}+2 c^{\prime \prime} \sigma_{\text {vac }}\right) \Phi_{\text {vac }} .
\end{align*}
$$

and

It can be readily verified that after the spontaneous symmetry-breaking, the system
remains symmetric under a global (i,e., x-independent) * color" SU(3) transformation \{u\} :

$$
\begin{gather*}
V_{\mu} \rightarrow u V_{\mu} v^{\dagger}, H \rightarrow u H u^{\dagger} \\
\psi^{k} \rightarrow u \psi^{k} \tag{3.18}
\end{gather*}
$$

and R, R^{*} and I are all invariant; of course, the "flavor" $S U(3)$ symmetry (3.7) also remains valid.

When $(\sigma, \varphi)=\left(\sigma_{\text {voc }}, \Phi_{\mathrm{voc}}\right)$, the masses of the vector field V_{μ} and the quark field $\psi^{\mathbf{k}}$ are given respectively by

$$
\begin{equation*}
m_{V}=f \Phi_{\text {vac }} \quad \text { and } \quad m_{q}=g g_{\text {voc }} ; \tag{3,19}
\end{equation*}
$$

they are both also assumed to be large, $\gg 1 \mathrm{GeV}$. When $(0, \varphi)=(0,0)$, both fields V_{μ} and ψ^{k} are of zero mass.

Neor the origin $(\sigma, \phi)=(0,0)$, we have

$$
\begin{equation*}
U(\sigma, \phi)=p+\frac{1}{2} \sigma \sigma^{2}+a^{4} \operatorname{tr}\left(\phi^{\dagger} \phi\right)+\cdots \tag{3.20}
\end{equation*}
$$

where . . denotes cubic and higher order terms in g and . Clearly, both constants a and a^{\prime} are >0, in order that the origin be a local minimum of U. In the present case, there are many scalar masses. For simplicity, we assume all scalar masses in the theory $m_{1}, m_{H}, m_{1}, m_{2}, a^{\frac{1}{2}}$ and $a^{\frac{1}{2}}$ to be large $\left[\right.$ where m_{1}^{2} and m_{2}^{2} are the eigenvalues of the metrix (3.16)], > the lowest soliton mass $\sim 1 \mathrm{GeV}$. Furthermore, for simplicity we assume them to be all of the same order of magnitude. It is appropriate to coll

$$
\begin{equation*}
a^{\frac{1}{2}}=a-\text { mass } n \text { near the origin. } \tag{3.21}
\end{equation*}
$$

As we shall see, $a^{\frac{1}{2}}$ is relevant for the description of the interior of the soliton. For the surfoce of the soliton a different definition of " p - moss" will be introduced. In onder to do that, let us consider the following (hypothetical) problem of a topological soliton solution in one space-dimension.

In this thypothetical) problem, $x_{\mu}=(x, i t)$ and the Lagrangian density is

$$
\begin{equation*}
\delta_{0} \equiv-\frac{1}{2}\left(\frac{\partial \sigma}{\partial x_{\mu}}\right)^{2}-\operatorname{tr}\left(\frac{\partial \phi_{0}^{\dagger}}{\partial x_{\mu}} \frac{\partial \phi_{0}}{\partial x_{\mu}}\right)-U_{0}\left(\sigma, \Phi_{0}\right) \tag{3,22}
\end{equation*}
$$

where

$$
\phi_{0} \equiv \phi_{\mathrm{Vac}}+\frac{1}{2} \lambda_{0}(R+i I)
$$

and U_{0} is related to the same U in (3.8) by

$$
\begin{equation*}
U_{0}\left(\sigma, \varphi_{0}\right) \equiv \operatorname{Lim}_{p \rightarrow 0} U\left(\sigma_{,} \phi_{0}\right) \tag{3.23}
\end{equation*}
$$

such that the limiting function $\mathrm{U}_{0}\left(\sigma_{i} \phi_{0}\right)$ hes two absolute minima, at

$$
\begin{align*}
& \left(\sigma, \phi_{0}\right)=\left(\sigma_{\text {vae }}, \phi_{\text {vac }}\right) \text { and }\left(0, \phi_{0}\right)=(0,0), \text { with } \\
& \qquad U_{0}(0,0)=U_{0}\left(\sigma_{\text {vac }}, \phi_{\text {vac }}\right)=0 . \tag{3.24}
\end{align*}
$$

It is straightforward to see that there is a t-independent topological soliton solution, whieh satisfies

$$
\begin{equation*}
\frac{1}{2}\left(\frac{d \sigma}{d x}\right)^{2}+\frac{1}{2}\left(\frac{d R}{d x}\right)^{2}+\frac{1}{2}\left(\frac{d I}{d x}\right)^{2}-U_{0}=0 . \tag{3.25}
\end{equation*}
$$

A convenient way to visualize the solution is to consider the mechanical analog problem of a point particle of unit mass, whose "position" coordinote is ($0, \phi_{0}$) [i.e., ($a, R, 1$)] and whose "time" coordinote is x, moving in a "potential" $-U_{0}$. Equation (3.25), then, denotes simply the low of conservation of "energy" of the particle.

According to (3.24), the "porential" $-U_{0}$ has two peaks at $\left(\sigma, \phi_{0}\right)=(0,0)$ and $\left(\sigma, \Phi_{0}\right)=\left(\sigma_{\text {vac }}, \Phi_{\mathrm{vac}}\right)$. There is clearly a solution, described by a path P, in which of "time ${ }^{\text {p }} x=-\infty$, the particle is on one of the two peaks, but when $x \rightarrow+\infty$, it moves onto the other peak. The corresponding 1 space-dimensional soliton solution is

$$
\sigma_{p}(x) \equiv \sigma(x)
$$

ond

$$
\begin{equation*}
\Phi_{p}(x) \equiv \varphi_{0}(x) \quad \text { along } P \tag{3.26}
\end{equation*}
$$

Its energy is given by the path integral along P :

$$
\begin{equation*}
2 \int_{-\infty}^{\infty} U_{0} d x=\frac{1}{6} a^{\frac{1}{2}} \sigma_{v p c}^{2} \gamma \equiv \frac{1}{6} \stackrel{\rightharpoonup}{m}_{\theta} \sigma_{v a c}^{2} \tag{3.27}
\end{equation*}
$$

where $a^{\frac{1}{2}}$ is as introduced in (3.21) and y is a dimensionless number. In accordance with (1.6) and (1.8),

$$
\bar{m}_{\theta}=a^{\frac{1}{2}} \gamma
$$

and

$$
\begin{equation*}
\mu=\left(\bar{m}_{\sigma} \sigma_{v a c}^{2}\right)^{\frac{3}{3}} \tag{3.28}
\end{equation*}
$$

We now define

$$
\begin{equation*}
m_{\sigma} \equiv \bar{m}_{\sigma} / \gamma^{2}=\sigma^{\frac{1}{2}} / \gamma \tag{3.29}
\end{equation*}
$$

ond, as before in (1.11),

$$
\begin{equation*}
\xi=\left(\mu / m_{q}\right)^{2} \quad \text { and } \quad \eta=\left(\mu / m_{0}\right) \tag{3.30}
\end{equation*}
$$

The purpose of these definitions is to make the quantity $\mu^{2} \xi / \eta$ independent of y, so os to justify the second line of (3.35) below. Then γ will not appear in the final equations (3.41) and (3.42).

We recall again that if the system consists of only the quark field and o single scolor field σ, without the Higgs field $中$, then as in Sec. II, by solving the corresponding one-dimensional problem for $U_{0}=\frac{1}{2} \sigma\left(\sigma-\sigma_{\text {vac }}\right)^{2}\left(\sigma / \sigma_{\text {voc }}\right)^{2}$, we would obtain

$$
\gamma=1 \quad \text { and } \quad m_{\sigma}=\bar{m}_{\sigma}=a^{\frac{1}{2}} .
$$

The definition of μ given above by (3.28) then becomes identical to that of (2.11) in Sec. II ; the same applies to the definitions of ξ and π. In the following, for convenience of order of magnitude estimetions, we regard

$$
\begin{equation*}
y=O(1) \tag{3.31}
\end{equation*}
$$

We now return to the original Lagrangian (3.8). For color singlet states, we may set in the quasi-classical solution

$$
V_{\mu}=H=0,
$$

and $0, R$, I to be all c.number functions. Just as in (2.8), for color singlet states with a quark number $N=2$ or 3 , the soliton energy is given by

$$
\begin{equation*}
E=N_{\varepsilon}+f\left[\frac{1}{2}\left(\vec{\nabla}_{\sigma}\right)^{2}+\frac{1}{2}(\vec{\nabla} R)^{2}+\frac{1}{2}(\vec{\nabla} I)^{2}+U(\sigma, \phi)\right] d_{r}^{3} \tag{3.32}
\end{equation*}
$$

where $\phi=\phi_{\mathrm{vac}}+\frac{1}{2} \lambda_{0}(R+i I), \epsilon$ is the lowest positive eigenvalue of the c.number Dirac equation

$$
\begin{equation*}
(-i \vec{a} \cdot \vec{\nabla}+g \beta \sigma)=e \psi . \tag{3.33}
\end{equation*}
$$

and σ, R and I satisfy

$$
-\nabla^{2} \sigma+\frac{\partial}{\partial \sigma} U=-g N \phi^{\dagger} \beta^{\phi}
$$

$$
\begin{equation*}
-\nabla^{2} R+\frac{\partial}{\partial R} U=0 \tag{3.34}
\end{equation*}
$$

and

$$
-\nabla^{2} I+\frac{\partial}{\partial l} u=0 .
$$

Assuming that the two parometers 5 and π, defined above, are both small, < 1 , we may now ge through exactly the same argument used in Sec. II, 3. We first divide the space into three regions: inside, outside and transition, in accordance with (2,28). In the inside region $\mathrm{r} \leqq \mathrm{R}_{1}$, we hove

$$
\phi=0 .
$$

So far os the solution σ and ψ is concemed, the entire discussion given in Sec. IL.3, from (2.33)-(2.36) can be carried over to the present case, without any change except that m_{g} is replaced by $a^{\frac{1}{2}}$; therefore, just as in (2.16), (2.25), (2.26), (2.34) and (2.36), we have, for the present case, also

$$
\begin{align*}
& \rho=\epsilon r, \quad \rho_{1}=\epsilon R, \\
& n=(g \epsilon)^{2} N / a=\epsilon^{2} N \eta /\left(\mu^{2} \xi\right), \\
& u=\left(\epsilon^{3} / n\right)^{\frac{1}{2}} \hat{u}, \quad v=\left(\epsilon^{3} / n\right)^{\frac{1}{2}} \hat{v} \tag{3.35}
\end{align*}
$$

and

$$
0 \cong-(N g / \alpha)\left(u^{2}-v^{2}\right)
$$

where μ, ξ and η are defined by (3.28) and (3.30). Equations (3.33) and (3.34) can now be again reduced to (2.17), with \hat{v} and \hat{v} related to $\$$ through (2.13) and (3.35).

In the outside region $r \geq R_{2}$, the present case is slightly more complicuted thon the simple system discussed in Sec. II. Both Φ and a rise from zero, or neor zero, to their respective vacuum values $0_{\text {vac }}$ ond $\phi_{\text {voc }}$. This results in the
replacement of $(2,38)$ by

$$
\theta(R) \cong \sigma_{p}\left(r-R_{0}\right)
$$

and

$$
\begin{equation*}
\phi(R) \cong \phi_{p}\left(r-R_{0}\right) \tag{3.36}
\end{equation*}
$$

where σ_{p} and ϕ_{p} are the appropriate I space-dimensional solutions given by (3.26). Equations (2.39) and (2.41)-(2.43) remain valid. Just as in (2.44), in the present general case, the energy integrated over the outside region is, because of (3.27),

$$
\frac{2}{3} \pi R^{2} \pi_{\sigma} \sigma_{v a c}^{2}=2 \pi R^{2} \mu^{3}=4 \pi R^{2}
$$

in accordonce with (1.6).
In the transition region $\mathrm{R}_{1} \leqq r=\mathrm{R}_{2}$, the entire argument in Sec. H. 3 , leading from (2.45) to (2.58), is applicable, except that m_{σ} is replaced by $a^{\frac{1}{2}}$. Thus, the soliton energy E, defined by (3.32), is given by

$$
\begin{equation*}
E=N e\left[1+\frac{1}{2}(q / n)\right]+\frac{2}{3} \pi R^{2} \mu^{3}+\frac{4}{3} \pi R^{3} P \tag{3,37}
\end{equation*}
$$

which is identical to (2.23). Next, we multiply the three equations in (3.34) by dg/dr, $d R / d r$ and $d I / d r$ respectively; after integrating from r to Φ, we obtain the generm alization of (2.59):

$$
\begin{align*}
& \frac{1}{2}\left(\frac{d \sigma}{d r}\right)^{2}+\frac{1}{2}\left(\frac{d R}{d r}\right)^{2}+\frac{1}{2}\left(\frac{d I}{d r}\right)^{2}-U \\
& \quad=\int_{r}^{\infty} d r\left\{\frac{2}{r}\left[\left(\frac{d \sigma}{d r}\right)^{2}+\left(\frac{d R}{d r}\right)^{2}+\left(\frac{d I}{d r}\right)^{2}-N g\left(u^{2}-v^{2}\right) \frac{d q}{d r}\right]\right\} . \tag{3,38}
\end{align*}
$$

By going through the same orgument, which is given immediately ofter (2,59) in Sec. 11,3,
but with (2.38) replaced by (3.36) and m_{σ} by $a^{\frac{1}{2}}$, we find that, at $r=R_{1}$, after neglecting $O(\eta)$ os compored to $1,(3,38)$ becomes

$$
\begin{equation*}
-p=\frac{1}{3}\left(\mu^{3} / R\right)-2 N v_{1}^{2}\left(\varepsilon-R^{-1}\right) \tag{3.39}
\end{equation*}
$$

which is ogoin identical to (2.24). By using the third equation in (3.35), one sees thot

$$
\begin{equation*}
\epsilon=\mu(n / N)^{\frac{1}{2}}(\xi / \eta)^{\frac{1}{2}} . \tag{3.40}
\end{equation*}
$$

Consequently, (3.37) and (3.39) can also be written in a form identical to (2.21) and (2.22) :

$$
\begin{equation*}
\frac{E}{\mu}=\left(\frac{N}{n}\right)^{\frac{1}{2}}\left(\frac{\xi}{\eta}\right)^{\frac{1}{2}}\left(n+\frac{1}{2} q\right)+\frac{2}{3} \pi\left(\frac{N}{n}\right)\left(\frac{\eta}{\xi}\right)_{\rho_{1}}^{2}+\frac{4}{3} \pi\left(\frac{N}{n}\right)^{\frac{3}{2}}\left(\frac{\eta}{\xi}\right)^{\frac{3}{2}} \lambda_{\rho}{ }_{1}^{3} \tag{3.41}
\end{equation*}
$$

and

$$
\begin{equation*}
0=-2\left(\frac{n}{N}\right)^{\frac{1}{2}}\left(\frac{\xi}{\eta}\right)^{\frac{1}{2}}\left(\rho_{1}-1\right) \hat{\omega}_{1}^{2}+\frac{1}{1}\left(\frac{\pi}{\xi}\right)+\left(\frac{N}{n}\right)^{\frac{1}{2}}\left(\frac{\pi}{\xi}\right)^{\frac{3}{2}} \lambda \rho_{1} \tag{3.42}
\end{equation*}
$$

where $\lambda=p / \mu^{4}$ is defined by (1.9). Thus, the theorem stated in Sec. Il. 2 is applitable to the general case as well, provided that μ, ξ and η are defined by (3.28)-(3.30).

Through (3.35) we may also use (3.37) to determine the function $E=E(R)$. By following the some argument given in Appendix A, but replacing m_{g} by $a^{\frac{1}{2}}$, wo can show that (3.39) is equivalent to the condition $d E(R) / d R=0$, just as in the simple case, discussed in Sec. II.

N. Static Properties of Hadrons

We start from the general system considered in Sec. III, and assume, as before, that the parameters $\xi \equiv\left(\mu / m_{q}\right)^{2}$ and $\eta \equiv\left(\mu / m_{\sigma}\right)$ are both small, <<1. As we have seen, independently of the number of parameters in the original Lagrangian (3.8), in the limit when ξ and $n \rightarrow 0$, of a fixed though abitrary rotio n / ξ, the low-lying soliton states, at a given $N=2$ or 3 , depend anly on on overall energy scale μ and two dimensionless parameters $\lambda=p / \mu^{4}$ and η / ξ. The applicotion of these soliton solutions to the observed hadrons will be discussed in this section.

1. Phenomenologicol description

For the moment, let us leave aside the soliton problem, and diseuss instead a hypothetical analog system, consisting of a "gos bubble" of radius R immersed in a "medium". We define
$E_{g} \equiv$ "thermodynamical" energy of the gas,

$$
\begin{equation*}
s \equiv \text { surface tension, } \tag{4.1}
\end{equation*}
$$

and

$$
\mathbf{P} \equiv \text { pressure exerted on the gas by the medium. }
$$

Each of these terms contributes a part to the (totai) energy of the sysfem, which may be written as a sum

$$
\begin{equation*}
E=E_{9}+E_{s}+E_{p} \tag{4,2}
\end{equation*}
$$

where, under the assumption that s and p are both constants,

$$
\begin{equation*}
E_{s}=4 \pi R_{s}^{2} \quad \text { ond } \quad E_{p}=\frac{4 \pi}{3} R_{p}^{3} . \tag{4.3}
\end{equation*}
$$

The radius R is detemined by

$$
\begin{equation*}
d E / d R=0 \tag{4.4}
\end{equation*}
$$

The appropriate themadynumical energy Eg_{g} to be used depends on, omang other things, the heat tronsfer condition (e.g., isothermal or adiobatic); its dependence on R can be rather complicated. However, so far as the equilibrium configuration and its immediate neighborhood are concerned, we may ossume a simple power low

$$
\begin{equation*}
E_{g}=K / R^{k} \tag{4.5}
\end{equation*}
$$

where k ond K are both positive constants. Equation (4.4) gives

$$
\begin{equation*}
k E_{g}=2 E_{s}+3 E_{p} . \tag{4.6}
\end{equation*}
$$

It is convenient to introduce

$$
\begin{equation*}
\mathrm{e} \equiv \frac{E_{p}}{E_{p}+E_{s}} \tag{4.7}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{E_{\mathrm{g}}}{E}=\frac{2+\ell}{2+\ell+k} \tag{4,8}
\end{equation*}
$$

This simple system carries four constants: s, \mathbf{P}, \mathbf{k} and K, or, the equivalent set

$$
\begin{equation*}
E, R, k \text { and } \& \text {. } \tag{4.9}
\end{equation*}
$$

Returning now to the field-theoretic problom we see that, by comparing (4.2) with (3.37), the phenomenological deseription used above con be directly tronsferred to the soliton solution. The "thermodynamical energy of the gas" is

$$
\begin{equation*}
E_{g}=\operatorname{Ne}\left[1+\frac{1}{2}(q / n)\right] . \tag{4,10}
\end{equation*}
$$

In oddition, there is a surface energy $E_{s}=4 \pi R^{2} s=\frac{3}{3} \pi R^{2}{ }^{3}$ due to the "surforee tension" $s=\frac{1}{6} \mu^{3}$ and a valume energy $E_{p}=\frac{4 \pi}{3} R_{p}^{3}$ due to the "pressure" p of the surrounding "medium", which is really the vocuum, since aecording to (1.2) and (1.4),
$p=U(0,0)-U\left(\sigma_{v a c}, \Phi_{\mathrm{vac}}\right)$. The resulting sum of these three energies is exactly (3.37). A more general definition of the exponent k introduced in $\langle 4.5\rangle$ is

$$
\begin{equation*}
k=-\frac{d \ln E_{g}}{d \ln R} \tag{4.11}
\end{equation*}
$$

By comparing (3.39) with (4.6) [or by directly differentiating (4.10), as done explicitly in Appendix A], ond by using (2,87), we find that for the soliton problem, k is a function only of n, given by

$$
\begin{equation*}
k(n)=8 \pi \hat{U}_{1}^{2} \rho_{1}^{2}\left(\rho_{1}-1\right) /\left(n+\frac{1}{2} q\right)=\frac{n-\frac{1}{2} q}{n+\frac{1}{2} q} \tag{4,12}
\end{equation*}
$$

where $\hat{U}_{1}(n), \rho_{1}(n)$ and $q(n)$ are all defined in Sec. II; these functions are determined by the solutions of the reduced equation (2.17). In Figure $60, n$ is plotted vs. the initial value $\hat{U}(0)$ of the solution $\hat{U}(\rho)$ of (2.17); likewise, in Figure $6 \mathrm{~b}, p_{1}, k$ and q / n are also plotted vs. $\hat{v}(0)$. The functions $p_{1}(n), k(n)$ and $q(n)$ con then be deduced from these two figures by eliminating $\hat{\mathbf{v}}(\mathbf{0})$.

As noted in (4.9), the "gas bubble" problem is characterized by four phenomenological constants. On the other hand, the soliton solution (at a given $N=2$ or 3) depends only in three porameters: $\mu, \lambda=p / \mu^{4}$ and η / ξ. By using (2.26), (4.8) and (4.10), we find

$$
\begin{equation*}
R E=\frac{2+l+k}{n(2+\bar{l})}\left(n+\frac{1}{2} q\right) N_{P_{1}}, \tag{4,13}
\end{equation*}
$$

which together with (4.12) introduces a constraint on the four parameters in (4.9).

If the complete Lagrangian is known, then $\eta / \xi, \mu=(6 s)^{\frac{1}{3}}$ and p are all determined; among these, μ and p can be directly used in a phenomenological description, while the physical interpretation of η / ξ is a less direct one. For phenomenological descriptions, a different choice of the three independent parameters can be either k, s and p, or, since $k=k(n)$,

$$
\begin{equation*}
n, s \text { and } p \tag{4.14}
\end{equation*}
$$

Of course, since $\eta / \xi, \lambda=p / \mu^{4}$ and n satisfy (3.42), all these sels of parameters are equivalent. We note that from figures b_{a} and $6 b$, the function $k(n)$ is singlevalued, while its inverse $n(k)$ is double-valued. Hence, the set (4.14) may well be the most convenient one to use.

From Figure 6 b , one sees thot $\mathrm{k}=1$ and $\mathrm{q} / \mathrm{n}=0$ at both limits $\mathrm{n} \rightarrow 0$ and $n \rightarrow \infty$. At $n=79$ ($\hat{(})(0)=1.42$), k has a minimum and $9 / n$ o maximum; the bounds thus set are

$$
\begin{equation*}
\mathrm{k} \geqq .7895 \quad \text { and } \quad \mathrm{a} / \mathrm{n} \leqq .2352 . \tag{4.15}
\end{equation*}
$$

As the ratio $\lambda=p / \mu^{4}$ yories from 0 to ∞, one sees that by using (4.3) and (4.7) ℓ also varies from 0 to 1 . Thus, from (4.8), it follows that at any given $k=k(n)$

$$
\begin{equation*}
\frac{2}{2+k} \leqq \frac{E_{g}}{E} \leqq \frac{3}{3+k} \tag{4.16}
\end{equation*}
$$

which rogether with (4.15) leads to

$$
\begin{equation*}
\frac{2}{3} \leqq \frac{\mathrm{E}_{\mathrm{g}}}{\mathrm{E}} \leqq 0.7902 \tag{4.17}
\end{equation*}
$$

Also, from (4.10) and (4,15) we abtain

$$
\begin{equation*}
0.8905 \leqq \frac{N_{\epsilon}}{E_{g}} \leqq 1 . \tag{4.19}
\end{equation*}
$$

Similerly, we can set bounds on $N \in / E$ and $R E / N$. At a given n, we have

$$
\begin{equation*}
\frac{2 n}{\left(n+\frac{1}{2} q\right)(2+k)} \leqq \frac{N_{\epsilon}}{E} \leqq \frac{3 n}{\left(n+\frac{1}{2} q\right)(3+k)} \tag{4;19}
\end{equation*}
$$

ond, since $R_{f}=\rho_{\mathfrak{l}}$,

$$
\begin{equation*}
\left[1+\frac{1}{2}(q / n)\right]\left(1+\frac{1}{3} k\right)_{\rho_{1}} \leqq \frac{R E}{N} \leqq\left[1+\frac{1}{2}(q / n)\right]\left(1+\frac{1}{2} k\right)_{\rho_{1}} \tag{4.20}
\end{equation*}
$$

By using (4, 12) and (4.15), we find

$$
.641 \leqq \frac{\mathrm{Ne}_{e}}{\mathrm{E}} \leqq \frac{3}{4}
$$

and

$$
\begin{equation*}
\frac{4}{3} \leqq \frac{R E}{N} \leqq 3.0642 \tag{4,21}
\end{equation*}
$$

The upper bound on $R E / N$ is recched as $n \rightarrow 0$.

2. Boryon and meson masses

In our: model, the low-lying solitons are color singlets; the color nonsinglets have all been unglued by the strongly interacting vector gauge field. These low-lying solitons will be identified as the observed hadrons. Within our approximation, the energy levels exhibit a typical $\mathrm{SU}(6)$ degenarocy, ${ }^{11}$ (For the present discussion, wa assume the quarks have only three "flavors". .) The baryons are the color singlets of the three-quark system; the lowest energy state belongs to the 56 representation of SU(6), which consists of the usual spin $\frac{3}{2}$ SU(3)-decuplet and the usual spin $\frac{1}{2} \operatorname{SU}(3)-$ octet. The mesons are the color singlets of the quark-antiquark system. The lowest energy meson states have a 36 -fold degenerocy, consisting of two SU(6) representetions, 35 and 1 ; altematively, these states can also be resolved into the usual vector and pseudoscolar nonets. The mass: of theste. soliton solutions is given by (3.37) and (3.39). We hove
and

$$
\begin{array}{ll}
E=m_{B} & \text { for } N=3 \tag{4.22}\\
E=m_{M} & \text { for } N=2
\end{array}
$$

where m_{B} denotes the lowest baryon mass averaged over the 56 representation, and m_{M} the corresponding lowest meson mass averaged over the vector and pseudoscalar nonets.

Of course, we may also adopt the phenomenological description developed in the previous section. For definiteness, we may choose, as in (4.14), $n, s=\frac{1}{6} \mu^{3}$ and p to be the independent phenomenological constants in the theory. It is instructive to first examine some limiting cases:
(i) $n \rightarrow 0$

From (2.64), (4.10) and Figure bb, we see that in this limit,

$$
\begin{array}{ll}
\rho_{\mathrm{I}}=2.0428, & k=1 \tag{4.23}\\
q / n=0 & \text { and } \quad E_{g}=N_{P_{1}} / R
\end{array}
$$

Hence, (4.2) and (4.6) become

$$
E=N_{P_{1}} R^{-1}+4 \pi R^{2}+\frac{4}{3} \pi R_{\rho}^{3}
$$

and

$$
\begin{equation*}
N_{p_{1}}=B \pi R_{s}^{3}+4 \pi R_{p}^{4} \tag{4.24}
\end{equation*}
$$

The problem is then completely determined by the two remaining constants $s=\frac{1}{6} \mu^{3}$ and P. By using (2.13), (2.63) and $\$ 3.35$), we know that in this limit the charge density ${ }_{\phi}{ }^{\dagger}{ }_{\phi}$ and the scalar density $\dagger^{\dagger} \phi$ of the quark wave functions are distributed entirely within the soliton volume. [See especially Theorems 2 and 4 in Sec. II,4.] Furthermore,
in this limit, since $E_{g}=N_{\varepsilon}$, the scalar fields (gluon a and Higgs ϕ) only contribute directly to the volume energy $E_{P}=\frac{4}{5} \pi R_{p}^{3}$ and the surface energy $E_{s}=4 \pi R_{s}^{2}=\frac{2}{3} \pi R_{\mu}^{2}$. The following are two extreme coses:

Case (ia). In addition to $n \rightarrow 0$, we may rake the limit,-0 . Thus, $E_{s}=0$, and we find

$$
\begin{align*}
& N=4 \pi(p / 2.0428) R^{4}, \\
& E=\frac{4}{3} \mathrm{Ne}=\frac{4}{3} \sqrt{2}(\pi p)^{\frac{3}{4}}(2.0428)^{\frac{3}{4}} \mathrm{~N}^{\frac{3}{4}} \tag{4.25}
\end{align*}
$$

and

$$
\frac{m_{M}}{m_{B}}=(3)^{\frac{3}{4}}
$$

This double limit $n=0$ and $s \rightarrow 0$ gives the Creutz-5oh version ${ }^{5}$ of the MIT bag. ${ }^{7}$ [We note that the description of the vector gauge field in our model is quite different from thot in the MIT bag. Also, our model does not give permanent quark confinement, except in the limit when $\mathrm{m}_{\mathbf{q}}=\infty$. .]

Cose (b). In the double limit $n \rightarrow 0$ and $p \rightarrow 0$, then $E_{p}=0$, and becouse $s=\frac{1}{6} \mu^{3}$, we have in place of (4.26)

$$
\begin{align*}
& N=\frac{3}{3}(\mu R)^{3} / 2.0428 \\
& E=\frac{3}{2} \mathrm{Ne}=(9 \pi / 2)^{\frac{1}{3}}(2.0428)^{\frac{2}{3}} \mu N^{\frac{2}{3}} \tag{4,26}
\end{align*}
$$

and

$$
\frac{m_{M}}{m_{B}}=\left(\frac{2}{3}\right)^{\frac{2}{3}}
$$

(ii) $n \rightarrow \infty$

From (2,70), (4.10) and Figure Ib, we see that in this limit

$$
P_{1}=1, \quad k=1
$$

and

$$
\begin{equation*}
q / n=0 \quad \text { and } \quad E_{g}=N / R \tag{4.27}
\end{equation*}
$$

Hence, (4.2) and (4.6) become

$$
E=N R^{-1}+4 \pi R_{s}^{2}+3 \pi R^{3} p
$$

and

$$
\begin{equation*}
N=B \pi R_{s}^{3}+4 \pi R^{4} p \tag{4.28}
\end{equation*}
$$

By using (2.67)-(2.69), we find that the charge density of the quark wave function $\phi^{\dagger} \Psi \sigma \hat{u}^{2}+\hat{v}^{2} \cong 2 x$ of (2.65) now cancentrates entirely on the surface $r=R$ of the soliton solution. The corresponding scalar density $\phi^{\dagger}{ }_{\beta} \psi \propto \hat{u}^{2}-\hat{v}^{2}=y$ of (2.65) also peaks near the surfoce at $r=R\left[1-O\left(n^{-\frac{1}{2}}\right)\right]$, but then drops quickly to zero of $r=R$. While the quark wave function in these two limiting cases, $n \rightarrow 0$ and ∞, behaves totally differently, the gluon and the Higgs fields exhibit the same choracteristics. Since $\mathrm{E}_{\mathrm{g}}=\mathrm{Ne}$ in both limits, the scolar fields contribute only directly to E_{s} and E_{p}. Agoin, we examine two extreme cases:
Case (iia). In the double limit $n \rightarrow \infty$ and $s \rightarrow 0$, we hove $E_{s}=0$,

$$
\begin{align*}
& N=4 \pi R_{p}^{4}, \\
& E=\frac{4}{3} N_{\epsilon}=\frac{4}{3} \sqrt{2}(\pi p)^{\frac{1}{4}} N^{\frac{3}{4}} \tag{4.29}
\end{align*}
$$

and

$$
\frac{m_{M}}{m_{B}}=\left(\frac{2}{3}\right)^{\frac{3}{4}}
$$

Cose (iib). In the double limit $n \rightarrow \infty$ and $p \rightarrow 0$, we hove $E_{p}=0$, and since $s=\frac{1}{6} \mu^{3}$.

$$
N=\frac{4}{3} \pi(\mu R)^{3}
$$

$$
\begin{equation*}
E=\frac{3}{2} N E=(9 \pi / 2)^{\frac{1}{3}} \mu N^{\frac{2}{3}} \tag{4,30}
\end{equation*}
$$

and

$$
\frac{m_{M}}{m_{B}}=\left(\frac{2}{3}\right)^{\frac{2}{3}}
$$

In case ((itb), both the quark wove function and the energy density of the gluon and the Higgs fiold concentrate on the surface of the soliton, similar to the SLAC bog. ${ }^{3}$ [Note, however, in our field-theoretic model the symmetric point $(\alpha, \phi)=(0,0)$ is a local minimum of $U(\sigma, \phi)$, while in the SLAC version, it corresponds to a locel maximum. In onder to have the vector gluan be effective in ungluing the color nonsinglers, we must have $\mathrm{m}_{\mathrm{V}}=0$ inside the soliton solution, ${ }^{13}$ which mokes it desirable to have the symmetric point $(\sigma, \phi)=(0,0)$ be a local minimum of U.]

Remarks. A. At any finite $n \neq 0$, inside the soliton the gluon field a moy deviate appreciably from being a constant $\sigma=0$. Hence, in accordance with (4.10), E_{g} contains an additional part $\frac{1}{2} \mathrm{Ne}(\mathrm{q} / \mathrm{n})$, besides the total quark energy Ne. In addition, $k \equiv-d \ln E_{g} / d \ln R$ becomes different from 1. Only in the limit $n \rightarrow 0$, or ∞, is $k=1$ and $N_{f}=E_{g}$.
B. We may choose, instead of $n, s=\frac{1}{6} \mu^{3}$ and p,

$$
\begin{equation*}
\mu, \lambda=P / \mu^{4} \text { and } \eta / \xi \tag{4,31}
\end{equation*}
$$

as the set of independent parameters, where η and ξ are defined by (1.11), as before. Then,

$$
n=n(\lambda, \eta / \xi)
$$

is given by $(3,42)$. Both λ and π / ξ vary from 0 to ∞. At any finite fixed value of λ,

$$
\begin{equation*}
n=O(\eta / \xi) \text { os } \eta / \xi \rightarrow \text { either } 0 \text { or } \omega \text {. } \tag{4,32}
\end{equation*}
$$

At any finite fixed $\eta / \xi \neq 0$, as $\lambda \rightarrow 0(3,42)$ reduces to

$$
\begin{equation*}
\frac{n}{\xi}=F(n) \equiv\left(\frac{n}{N}\right)^{\frac{1}{3}}\left[6\left(p_{1}-1\right) \hat{u}_{1}^{2}\right]^{\frac{2}{3}} \tag{4.33}
\end{equation*}
$$

which gives a finite nonzero n; as $\lambda \rightarrow \infty$ (3.42) leads to, because of (2.70),

$$
\begin{equation*}
n=(4 \pi N \lambda)^{\frac{1}{2}} \eta / \xi \rightarrow \infty . \tag{4,34}
\end{equation*}
$$

Thus, $n \rightarrow 0$ only when $\eta / \xi \rightarrow 0$, while $n \rightarrow \infty$ when either $\eta / \xi \rightarrow \infty$, or $\lambda \rightarrow \infty$, or both.

3. Charge radius, magnetic moment and $\mathrm{g}_{\mathrm{A}} / \mathrm{g}_{\mathrm{V}}$ of the nucleon

Let ${ }^{5} N, \mu_{N}$ and g_{A} / g_{V} be, respectively, the root meon-squared charge
radius, the magnetic moment and the ratio between the axial vector and the vector β-decay coupling constants of the nucleon, where the subscript N denotes either the neutron n or the proton ρ. In our model, we hove

$$
r_{p}^{2}=\left\langle p^{2}\right\rangle / \epsilon^{2}, \quad r_{n}^{2}=0
$$

where

$$
\begin{align*}
& \left\langle p^{2}\right\rangle=n^{-1} \int_{0}^{p_{1}} 4 \pi p^{4}\left(\hat{v}^{2}+\hat{v}^{2}\right) d p, \\
& \mu_{p}=\hat{\mu}_{p} / \varepsilon, \quad \mu_{n}=-\frac{2}{3} \mu_{p} \tag{4.35}
\end{align*}
$$

where
and

$$
\hat{\mu}_{p}=\frac{2}{3} n^{-1} \int 4 \pi p^{3} \hat{u} \hat{v} d p
$$

$$
g_{A} / g V=\frac{5}{3 n} \int_{0}^{\rho} \rho_{1} 4 \pi \rho^{2}\left(\dot{U}^{2}-\frac{1}{3} \hat{v}^{2}\right) d \rho
$$

where, os before, $n=4 \pi \int_{0}^{\rho 1} \rho^{2}\left(\hat{u}^{2}+\hat{v}^{2}\right) d \rho$. Thus, $\left\langle\rho^{2}\right\rangle, \hat{\mu}_{p}$ and g_{A} / g_{V} are
functions only of n; their values ore plotted in Fig. 7. Because of (2.26) and (2.25), each quark carries an energy

$$
\begin{equation*}
\varepsilon=\rho_{1} / R=\mu(n / N)^{\frac{1}{2}}(\eta / \xi)^{-\frac{1}{2}} . \tag{4,36}
\end{equation*}
$$

The derivation of (4.35) follows the standard route: ${ }^{3,7}$ Let 4 denote the quark wave function whose total z-component angular moment is $\frac{1}{2}$; 1.e., $\$$ is given by (2.13) with

$$
s=\binom{1}{0}
$$

In either the Gell-Mann-Zweig quark model, or the Han-Nambu model, one can readily show that

$$
\begin{align*}
& r_{p}^{2}=\int \psi^{\dagger} \psi r^{2} d^{3} r / f \psi^{\dagger} \psi d^{3} r, \\
& \mu_{p}=\frac{1}{2}\left[f \vec{r} \times \phi^{\dagger} \vec{a} \phi d^{3} r\right]_{z} / f \phi^{\dagger} \psi d^{3} r \tag{4,37}
\end{align*}
$$

and

$$
g_{A} / g_{V}=\frac{5}{3} f \psi^{\dagger} \sigma_{z} \psi d^{3} r / f \phi^{\dagger} \psi d^{3} r \text {. }
$$

Hence, the expressions for r_{P}, μ_{P} and $9_{A} / g_{V}$ given in (4.35) follow. The torrespending expression for r_{n} is obvious, and that for μ_{n} is due to the relevant SU(6) Clebsch-Gordon coefficients. We list below the values of these quantities for the limiting cases that have been examined in the previous section.
(i) $n \rightarrow 0$
ln this limit, $\rho_{1}=2.0428, \hat{u}$ and $\hat{\mathbf{v}}$ are given by (2.63). By using (2.64), we find (4.35) becomes

$$
\begin{aligned}
r_{p} & =e^{-1}\left[\frac{2 \rho_{1}^{3}-2 \rho_{1}^{2}+4 \rho_{1}-3}{6(\rho-1)}\right]^{\frac{1}{2}}=1.4891 / \epsilon, \\
r_{n} & =0,
\end{aligned}
$$

$$
\begin{align*}
& \ddot{\mu_{p}}=\frac{\left(4 \rho_{1}-3\right)}{12 \epsilon\left(\rho_{1}-1\right)}=0.4133 / t ; \tag{4.38}\\
& \mu_{n}=-\frac{2}{3} \mu_{p} .
\end{align*}
$$

and

$$
g_{A} / g_{V}=\frac{5 p_{1}}{9\left(p_{1}-1\right)}=1.088
$$

(ia) If in addition to $n \rightarrow 0$, we assume $s \rightarrow 0$, then by using (4.25), since $N=3$ we hove

$$
\begin{equation*}
c=\frac{1}{4} m_{B} \tag{4,39}
\end{equation*}
$$

and therefore, from (4.38)

$$
\begin{equation*}
r_{p}=5.956 / \mathrm{m}_{\mathrm{B}} \quad \text { and } \quad \mu_{p}=1.653 / \mathrm{m}_{B} \text {. } \tag{4.40}
\end{equation*}
$$

(ib) If in addition to $n=0$, we assume $P \rightarrow 0$, then by using (4.26), we have

$$
\begin{equation*}
\epsilon=\frac{2}{9} m_{B} \tag{4.41}
\end{equation*}
$$

and therefore, from (4.38),

$$
\begin{equation*}
r_{p}=6.701 / m_{B} \quad \text { and } \quad \mu_{p}=1.860 / \mathrm{m}_{\mathrm{B}} \text {. } \tag{4,42}
\end{equation*}
$$

(ii) $n \rightarrow \infty$

In this limit, $\rho_{1}=1$ and the Fermion wave functions \hat{v} and \hat{v} both concerntrove on the surface $r=R$. Hence,

$$
\begin{array}{ll}
r_{p}=\epsilon^{-1}, & r_{n}=0 \\
\mu_{p}=\{3 \epsilon)^{-1}, & \mu_{n}=-\frac{2}{3} \mu_{p} \tag{4,43}
\end{array}
$$

and

$$
g_{A} / g_{V}=\frac{5}{9}
$$

, (iio) If in addition to $n \rightarrow \infty$, we assume $s \rightarrow 0$, then we have, just os in (4,39),

$$
\varepsilon=\frac{1}{4} m_{8}
$$

and therefore, from (4.43),

$$
\begin{equation*}
r_{p}=4 / m_{B} \quad \text { and } \quad \mu_{p}=4 /\left(3 m_{B}\right) \tag{4.44}
\end{equation*}
$$

(iib) If in addition to $n \rightarrow \infty$, we assume $p \rightarrow 0$, then, just as in (4.41),

$$
\varepsilon=\frac{2}{9} m_{B}
$$

and therefore, from (4.43),

$$
\begin{equation*}
r_{P}=9 /\left(2 m_{B}\right) \quad \text { and } \quad \mu_{P}=3 /\left(2 m_{8}\right) \text {. } \tag{4.45}
\end{equation*}
$$

These limiting values are also summarized in Table 1. For comparison with experimental results, it is more convenient to use the average nucieon moss $\mathrm{m}_{\mathrm{N}} \cong 939 \mathrm{MeV}$ as the basic energy scale, rather than $m_{B} \cong 1316 \mathrm{MeV}$, the baryon mass averaged over the 56 representation of $\mathrm{SU}(6)$. From Table 1, we conclude that for applications to hodrons, the parameter n could be either $O(1)$ or smaller. In any case, it should be oway from the $n \rightarrow \infty$ limit. Otherwise, $9_{A} / g_{V}$ would be $5 / 9$ and the charge density would be distributed only on the surface of the soliton; both feotures seem to be quite different from those of the physical nueleon.

Table 1. Root mean-squared charge radius ${ }^{\prime} N$, magnetic moment μ_{N} and g_{A} / g_{V} of the nucleon N. The parameters $\lambda=p / \mu^{4}=p /(6 s)^{\frac{4}{3}}$ and n are defined by (1.9) and (2.19). In the last two rows, "volume" and "surface" mean respectively "within the volume" and "on the surface". See Sec. IV. 3 for further details.

V. Remarks

In this paper, we have presented a new formulation of the relativistic quark mode! of hadrons, based on the quasiclassical saliton solutions of local field theories. We have shown that, once the low-lying soliton mass is assumed to be much smaller than the masses of the plone wave solutions (i.e., quarks, gluons, etc.), then under very general conditions, independently of the number of constants in the original Lagrangion, the description of the solitons depends only on three phenomenological parameters; n, s and p, as given by (4,14). There is a direct physical interpretation of these parameters. The soliton (i.e., the hadron) resembles a "gos bubble" immersed in a medium (i.e., the vacuum); p is the pressure exerted by the medium on the gas bubble, s is the surface tension and n determines the thermodynamic funcfions of the gas. In the double limit $n \rightarrow 0$ and $s \rightarrow 0$, one obtains an MIT-like bag, while in the opposite extreme $n \rightarrow \infty$ and $p \rightarrow 0$, a SLAC-like bag.

Such reductions occur frequently in physics, whenever the system under considerotion contains two or more very different scales of length (or energy). As examples, one may mention Fermi's β-decay theory of weak interactions, the usual scattering length end effective range approximation of nuclear forces, etc. In all these coses, if one starts from the underlying Lagrangian, it may be difficult to give a rigorous proof of the yolidity of the approximations used. Quite often, this difficulty is compounded by lack of knowledge of the correct basic theory. The same is true here. In our case, one of the important questions is the validity of quasiclassical soliton solutions in the strong coupling region. For a fully relativistic local quantum field theory, this question is not resolved. However, in the case of nonrelativistic Fermions inferacting with Bosons
(which can be relotivistic), the answer is known: the quasiclassical solution does give on occurate description when the coupling is suffieiently strong.

Because the solitons are solutions of a local field theory, it should be possible to calculate matrix elements of operotors between different soliton states, e.g., nuclear charge form factors with large momentum transfer, π-decay rate, etc. Same of these calculations are under investigation.

Appendix A

In this appendix, we give an alternative proof of (2.24). In accordance with $(2,60)$ and the discussion preceding it, in this altemative proof one should first start from the expression $E=E(R)$, given by (2.23), and then derive (2.24) by setting

$$
\begin{equation*}
\frac{d E}{d R}=0 \tag{A.1}
\end{equation*}
$$

By using (2.58), we may rewrite (2.23) as

$$
\begin{align*}
E(R)= & N_{\epsilon}+2 \pi\left(N g / m_{0}\right)^{2} \int_{0}^{R} r^{2} d r\left(u^{2}-v^{2}\right)^{2} \\
& +3 \pi R^{2}{ }_{j}^{3}+\frac{4}{5} \pi R_{p}^{3} \tag{A.2}
\end{align*}
$$

where u and v are solutions of (2.35), and $u=v$ of $r=R$. Thus, the variotion of E is

$$
\begin{align*}
6 E= & N 6 \varepsilon+4 \pi\left(N g / m_{\sigma}\right)^{2} \int_{0}^{R} r^{2} d r\left(u^{2}-v^{2}\right) \delta\left(u^{2}-v^{2}\right) \\
& +4 \pi R^{2} \delta R\left[\frac{1}{3}\left(\mu^{3} / R\right)+\rho\right] . \tag{A,3}
\end{align*}
$$

Throughoul this appendix, we keep the parameters N, g, p, m_{σ} and μ fixed. Since in (2.17), each solution determines a definite value of n, defined by (2.19), we may regard the solution of (2.17) as a function of p and n; i.e.,

$$
\begin{equation*}
\hat{v}=\hat{v}(p, n) \quad \text { and } \quad \hat{v}=\hat{v}(p, n) \tag{A.4}
\end{equation*}
$$

where p varies from 0 to $\rho_{T}(n)$. We may then $u s e(2,25)$ and (2.26) to define $e=e(n)$ and $R=R(n)$, or its inverse function $n=n(R)$. Through (2,16), (2.36) and (A.4), we moy regard the solution of (2.35) as a function of r and n; i.e.,
61.

$$
\begin{equation*}
u=u(r, n) \quad \text { and } \quad v=v(r, n) \tag{A,5}
\end{equation*}
$$

with

$$
\begin{equation*}
4 \pi \int_{0}^{R}\left(w^{2}+v^{2}\right) r^{2} d r=1 \tag{A,6}
\end{equation*}
$$

where of $r=R(n)$,

$$
\begin{equation*}
u(R, n)=v(R, n) \equiv u_{1}(n) \tag{A,7}
\end{equation*}
$$

Equation (2,35) can be written in its original form (2.9);

$$
\begin{equation*}
H_{F} \Psi=e \psi \tag{A.8}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{F}=-i \vec{a} \cdot \vec{\nabla}+g \beta \sigma \tag{A.9}\\
& \sigma=\sigma(\vec{r}, n)=-\left(N_{g} / m_{\sigma}^{2}\right)\left(u^{2}-v^{2}\right) \tag{A.10}
\end{align*}
$$

and $\phi=\varphi(\vec{r}, n)$ is related to $v(r, n)$ and $v(r \cdot n)$ by (2,13). From (A,8), one has

$$
\begin{equation*}
\left(\delta H_{F}\right) \psi+H_{F} \delta \psi=(6 \varepsilon) \Psi+\varepsilon(\sigma \psi) \tag{A,11}
\end{equation*}
$$

where

$$
\begin{equation*}
6 H_{F}=9 \beta 60=-\left(\mathrm{Ng} / \mathrm{m}_{\sigma}^{2}\right) \mathrm{S}\left(u^{2}-v^{2}\right) \tag{A,12}
\end{equation*}
$$

In this variation, \vec{r} is kept fixed, but $n \rightarrow n+g_{n}$. Since $4 \pi \int_{0}^{R} \psi^{\frac{1}{t}} \psi r^{2} d r=1$, on account of (A.6), we find, upon multiplying (A, 11) by ${ }^{\dagger} \dagger$ and integrating from $r=0$ to R,

$$
6 \epsilon=4 \pi \int_{0}^{R} 2 d r\left[\psi^{\dagger}\left(H_{F}-\varepsilon\right) \delta \psi+g \psi^{\dagger} \beta \psi \delta \sigma\right]
$$

which, through partial integration and because of (A.8)-(A.10), may be written as

$$
\begin{equation*}
\delta \varepsilon=4 \pi R^{2}(u 6 v-v \delta u)_{R}=4 \pi \int_{0}^{R}\left(m_{0}^{2} / N\right) \sigma 60 r^{2} d r \tag{A,13}
\end{equation*}
$$

where the subscript R denotes $r=R$,

$$
\delta u=\left[\frac{\partial}{\partial n} u(r, n)\right] \delta n \text { and } \delta v=\left[\frac{\partial}{\partial n} v(r, n)\right] \delta n \text {. }
$$

Because

$$
\begin{align*}
u(r, n)=\left(\epsilon^{3} / n\right)^{\frac{1}{2}} \hat{u}(p, n), v(r, n) & =\left(\varepsilon^{3} / n\right)^{\frac{1}{2}} \hat{v}(\rho, n) \tag{A.14}\\
\rho=r \epsilon & \text { and } \tag{A,15}
\end{align*}
$$

we have

$$
u \delta v-v \delta u=\frac{e^{3}}{n}\left[r \delta \epsilon\left(\hat{u} \frac{\partial}{\partial_{\rho}} \hat{v}-\hat{v} \frac{\partial}{\partial_{\rho}} \hat{u}\right)+\delta n\left(\hat{u} \frac{\partial}{\partial n} \hat{v}-\hat{v} \frac{\partial}{\partial n} \hat{v}\right)\right] .
$$

(A.16)

By using (2,17), and noting that the derivative d / d_{ρ} there is the partial derivative $a / \partial \rho$ above, we obtain

$$
\begin{equation*}
\hat{v} \frac{\partial}{\partial \rho} \hat{v}-\hat{v} \frac{\partial}{\partial \rho} \hat{u}=-\frac{2}{p} \hat{v} \hat{v}+\hat{v}^{2}+\hat{v}^{2}+\left(\hat{u}^{2}-\hat{v}^{2}\right)^{2} \tag{A.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial_{p}}\left(\hat{u}^{2}-\hat{v}^{2}\right)=-4 \hat{v}[\hat{v}-(\hat{v} / \rho)] \tag{A.1B}
\end{equation*}
$$

At $r=R, \dot{p}=\rho_{1}, \hat{u}=\hat{v} \equiv \hat{U}_{1}$, and therefore

$$
\begin{equation*}
\left(\hat{u} \cdot \frac{\partial}{\partial n} \hat{v}-\hat{v} \frac{\partial}{\partial n} \hat{u}\right)=-\frac{1}{2}\left[\frac{\partial}{\partial n}\left(\hat{u}^{2}-\hat{v}^{2}\right)\right] \tag{A,19}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
X(\rho, n) \equiv \hat{u}^{2}(\rho, n)-\hat{v}^{2}(\rho, n) \tag{A.20}
\end{equation*}
$$

Since $X(p, n)=0$ at $p=\rho_{1}(n)$, it follows then that $X(\rho, n+8 n)=0$ at
$\rho=\rho_{1}(n)+\delta_{\rho_{1}}$ where $\delta_{\rho_{1}}=\left(d \rho_{1} / d n\right) \delta_{n}$. In the (X, ρ) plane, we may consider on infinitesimal right angle friangle $A B C$, whose vertices are $A=\left(0, \rho_{1}\right)$, $B=\left(0, \rho_{1}+\delta \rho_{1}\right)$ and $C=\left(\delta X, \rho_{1}\right)$ where $\delta X \equiv[\partial X(\rho, n) / \partial n] \delta n$. Hence, the point A lies on the curve $X(\rho, n) v s . p$, and the points B and C on the curve $X(\rho, n+\delta n) v s, p ; C A$ is $\perp A B$, and their lengths ore, respectivaly, $\overline{C A}=6 \times$ and $\overline{A B}=6 \rho_{1}$. The ratio $-\overline{C A} / \overline{A B}$ is the slope of $C B$. By using (A.18) and setting $\rho=\rho_{1}$, we find that this slope is

$$
-4 \hat{u}_{1}^{2}\left(1-\rho_{1}^{-1}\right)
$$

Thus,

$$
\begin{equation*}
\frac{\partial x}{\partial n} \delta_{n}=\delta x=4 \hat{u}_{1}^{2}\left(1-\rho_{1}^{-1}\right) \delta \rho_{1} \tag{A,21}
\end{equation*}
$$

Because of (A.17)-(A.21), at $r=R$ (i.e., of $\rho=\rho_{\rho}$), (A.16) becomes

$$
(u \delta v-v \delta u)_{R}=2 \frac{\epsilon^{3}}{n} \hat{u}_{1}^{2}\left(1-\rho_{1}^{-1}\right)\left(R \delta t-\delta_{\rho_{1}}\right) ;
$$

therefore, ($A, 13$) reduces to

$$
\begin{equation*}
6 \epsilon+4 \pi \int_{0}^{R}\left(m_{\sigma}^{2} / N\right) \sigma \delta \sigma r^{2} d r=-8 \pi R^{2} u_{1}^{2}\left(\epsilon-R^{-1}\right) \delta R \tag{A,22}
\end{equation*}
$$

By using (A.3), (A.10) and (A.22), we obtain

$$
\begin{equation*}
\delta E=4 \pi R^{2} S R\left[-2 N u_{1}^{2}\left(\varepsilon-R^{-1}\right)+p+\frac{1}{3}\left(\mu^{3} / R\right)\right] \tag{A,2}
\end{equation*}
$$

Thes, $d E / d R=0$ gives (2.24).

References

1. R. Friedberg and T. D. Lee, Phys. Rev. D15, 1694 (1977).
2. For references on strong coupling theiry with fixed sources, see W. Pauli, Meson Theory (Interscience Publishers, 1946).
3. W. A. Bardeen, M. S. Chanowitz, S. D. Drell, M. Weinstein and T. M. Yan, Phys.Rev. 011,1094 (1975).
4. P. Vinciorelli, Lett. Nuovo Cimento 4, 905 (1972).
5. M. Creutz, Phys.Rev. DIO, 1749 (1974); M. Creutz and K. S. Soh, Phys.Rev. D12, 443 (1975).
6. See also Y. Yomaguchi, University of Tokyo report no. 232, 1974 (umpublished). K. Huang and D. R. Stump, Thys.Rev. D14, 223 (1976); J. Rafelski (Argonne National Laboratory preprints); R. Giles, Hhys.Rev. DI3, 1670 (1976).
7. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thom and V. F. Weisskopf, Phys,Rev. D9, 3471 (1974).
8. O. W. Greenberg, Phys.Rev. Lett. 13, 598 (1964); M. Y. Han and Y. Nambu, Phys.Rev. 139, 81006 (1965); O. W. Greenberg and D. Zwanziger, Phys.Rev. 150, 1177 (1966); W. Bardeen, M. Gell-Monn and H. Fritzsch, Scole and Conformal Symmetry in Hadron Physics, edited by R. Gatto (John Wiley and Sons, New York, 1973).
9. M. Gell-Monn, Phys.Rev. 125, 1057 (1962); Y. Ne'eman, Nucl.Phys. 26 , 222 (1961).
10. T. D. Lee and G. C. Wick, Phys.Rev. D9, 2291 (1974).
11. F. Gursey and L Rodicati, Phys. Rev.Lett. 13, 173 (1964); A. Pois, Phys.Rev.Lett. 13 , 175 (1964); B. Sokita, Phys.Rev. 136, 81765 (1964).
12. Y. Nambu, in Preludes in Theoretical Physics, edited by A. de-Sholit, H. Feshboch and L. Van Hove (North-Holland, Armsterdom, 1966).
13. Since the scatrering length of a hard sphere potential is praportional to its diometer, a strong but short-range repulsion is quite ineffective in unbinding the colornonsinglets. Sometimes in the literature, mean field calculations are used to obtain the energy shift coused by such repulsive vector forces. These estimates can be quite misleading if the vector fields are too massive.
14. P. W. Higgs, Phys.Lett. 12, 132 (1964); Phys. Rev.Lett. 13 , 508 (1964) and Phys. Rev. 145, 1156 (1966). See also F. Englert and R. Brout, Phys.Rev.Lett. 13, 321 (1964); G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys.Rev.Lett. 13 , 585 (1964); and T. W. B. Kibble, Phys. Rev. 155, 1554 (1967).
15. If one wishes, insteod of μ, one may choose $\mathrm{p}^{\frac{1}{4}}$ to be the overall energy scoile for the low-lying soliton states. These two choices, μ or $p^{\frac{1}{4}}$, are clearly the same if $\lambda=p / \mu^{4}$ is $O(1)$. Therefore, either choice is odequate. It is not difficult to see that either choice remains adequate even if λ is $\gg 1$, provided that $\lambda^{\frac{1}{4}}$ is much smaller than either m_{q} / μ or m_{σ} / μ. Likewise, either chaice is odequate if λ is <1, provided that $\lambda^{-\frac{1}{4}}$ is much snoller than either m_{q} / μ or m_{σ} / μ.
16. M. Y. Han ond Y. Nambu, thys.Rev. 139 , B1006 (1965).
17. G. Zweig, CERN report (unpublished); M. Gell-Mann, Phys.Lett. 8, 214 (1964).
18. A. Nishimura, University of Tokyo preprint UT-275, 1976; G. C. Wick (private communication).
19. R. Jackiw and C. Rebbi, Phys.Rev, D13, 3398 (1976); C. K. Lee (unpublished).
20. R. Friedberg, T. D. Lee and A. Sirlin, Nucl. Phys. B115, 1, 32 (1976).

Figure Coptions

Figure 1. $\quad \hat{u}^{2}-\hat{v}^{2}$ vs. ρ for $(4 \pi)^{-1} n \ll 1$ (with an arbitrary scale for $\hat{\mathrm{v}}^{2}-\hat{v}^{2}$) and for $(4 \pi)^{-1} n=3.53 \times 10^{6}$ (with the exact scale for $\hat{\mathrm{i}}^{2}-\hat{\mathrm{v}}^{2}$).

Figure 2. $\hat{u}(\rho) / \hat{u}(0), \hat{v}(\rho) / \hat{v}(0)$ and $\left[\hat{u}^{2}(\rho) \pm \hat{v}^{2}(\rho)\right] / \hat{u}^{2}(0)$ vs. ρ from $\rho=0$ to $\rho=\rho_{1}=2.0428$ when $n \sim 0+$.

Figure 3. \hat{u}, \hat{v} (solid curves) and $\hat{\mathrm{v}}^{2} \pm \hat{v}^{2}$ (dashed curves) vs. ρ from $\rho=0$ to $\rho=\rho_{1}=1$ when $n \rightarrow \infty$. For small ρ, one uses the left-hand scale for the ordinate; for large p, the right-hand scale.

Figure 4. Solutions $\hat{x}(\hat{\tau})$ and $\hat{y}(\hat{\gamma})$ of (2,69).

Figure 5. $\quad \hat{u}(\rho), \hat{\mathrm{v}}(\rho)$ (solid curves) and $\hat{\mathrm{v}}^{2}(\rho) \pm \hat{\mathrm{v}}^{2}(\rho)$ (dashed curves) vs. ρ from $\rho=0$ to $p=\rho$ for $n=9.43$ (in a), 20.5 (in b), 47.8 (in c), 117 (in d), 259 (in e) and 1631 (in f). The right-hand scale for the ordinate refers in c and d to $\hat{u}^{2}+\hat{v}^{2}$ and $\hat{u}^{2}-\hat{v}^{2}$, in e to $\hat{\psi}^{2}+\hat{v}^{2}$ alone, and in f to $\hat{\psi}^{2}+\hat{v}^{2}$ only for $\rho>0.75$. The left-hand scale refers to everything else.

Figure 6.
(a) n (solid curve) and $\log _{10} n$ (dotted curve) vs. $\hat{u}(0)$. As $\hat{U}(0) \rightarrow \hat{U}_{c} \cong 1.7419, n \rightarrow \infty, \quad$ (b) P_{1} (dotted curve), k (solid curve) and q / n (doshed curve) vs. $\hat{U}(0)$. See (2.18)-(2.20) and (4,12) for their definitions.

Figure 7. The integrals $\left\langle\rho^{2}\right\rangle^{\frac{1}{2}}, \hat{\mu}_{\mathrm{P}}=\varepsilon \mu_{\mathrm{P}}$ and g_{A} / g_{V} vs. $\hat{\mathrm{O}}(0)$ which ranges from 0 to $\hat{U}_{c} \cong 1.7419$. See (4.35) for their definitions.

A.PHS. $5 J D^{\circ}$.

FIGURE 7

