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Abstract 

We examine the possibility, and its consequences, that in a relat iv ist ic local 

f ie ld theory, consisting of color quarks q , scalar gIuon a , color gauge f ie ld V 

and color Higgs f ie ld <p , the mass of the soliton solution may be much lower than 

any mass of the plane wave solutions; i .e., m the quark mass, m the gluon mass, 

etc. There appears a rather clean separation between the physics of these low mass 

solitons and that of the high energy excitations, in the range of m and m , pro­

vided that the parameters £ = ( p /m ) and TJ ­ p/m are both « 1 , where p is 

an overall low energy scale appropriate for the solitons (but the ratio ■q /'i is assumed 

to be O ( l ) , though otherwise arbitrary). 

Under very general assumptions, we show that independently of the number of 

parameters in the original Lagrangian, the mathematical problem of f inding the quasi­

classical soliton solutions reduces, through scaling, to that of a simple set of two coup­

led first­order dif ferent ial equations, neither of which contains any expl ic i t free param­

eters. The general properties and the numerical solutions of this reduced set of di f fer ­

ential equations are given. The resulting solitons exhibit physical characteristics very 

similar to those of a "gas bubble" immersed in a "medium": there is a constant surface 

tension and a constant pressure exerted by the medium on the gas; in addit ion, there 

are the "thermodynamical" energy of the gas and the related gas pressure, which are 

determined by the solutions of the reduced equations. Both a SLAC­l ike bag and the 

Creutz­Soh version of the MIT bag may appear, but only as special l imi t ing cases. 

These soliton solutions are applied to the physical hadrons; their static proper­

ties are calculated and, with in a 10­15 °/o accuracy, agree with observations. 
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I. Introduction 

In a previous paper (hereafter called I), we have made a systematic com-

parison between the quasiclassical soliton results and the exact answer in a quantum . 

f ie ld theory, whenever the exact answer is avai lable. In a fu l ly relat iv ist ic renormal-

izable theory of a Fermion f ie ld interacting wi th a scalar gluon f ie ld , the exact answer 

is known only in the weak coupling region. There, i t is found that the quasiclassical 

result becomes exact when the Fermion number N is large. Even when N = 2 , the 

quasiclassical resujt remains a fair approximation. For example, the rat io between 

the exact two-body binding energy and the corresponding quasiclassical soliton result 

is = .77 in the weak coupling l imit . When the Fermions are nonrelat ivist ic ( l ike 

electrons in a crystal), but the scalar f ie ld remains relat iv ist ic , exact answers are also 

known in the strong coupling l imi t . We f ind that the quasiclassical soliton result be -

comes exact for arbitrary N , provided that the coupling is suff ic ient ly strong; i t is 

also exact in any coupling range, when N is suff ic ient ly large. It is not d i f f i cu l t 

to trace the underlying reason for the va l id i t y of the quasiclassical description. When 

N is » 1 , there is a large number of real particles in the system. Similarly, when 

the coupling is strong, the number of v i r tual particles becomes large. In either case, 

the system possesses some large coherent modes of f ie ld quanta, which are accessible to 

quasiclassical descriptions. It is quite remarkable that even in the worst case, N = 2 

and weak coupling, the quasiclassical binding energy derived from the soliton solution 

remains a fa i r ly reasonable approximation to the exact quantum value. [ The same con-

clusion can be reached i f the conserved quantum number, say N , is carried by a 

Boson f ie ld , instead of a Fermion f ie ld . J 

From these comparisons, we infer that strong coupling is by no means detrimental 

1 2 
to a quasiclassical approximation. ' Rather, because of the large number of v ir tual 
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quanta involved, and because of the strong potential energy which may develop against 

f luctuations, one expects the quasiclassical approximation to be more rel iable in the 

strong coupling region. With this assumption, we shall in this paper extend our studies 

of quasiclassical soliton solutions to quark models for hadrons, where strong coupling 

is clearly required. Our starting point is identical to that of Bardeen, Chanowitz, 

3 4 -6 
Drel l , Weinstein and Yan; i t is also similar to the work of many others. On the 

other hand, as we shall see, the details are di f ferent; our analysis of the quasiclassical 

3 
soliton solutions w i l l be more systematic. Both a SLAC-l ike bag and the Creutz-Soh 

5 7 
version of the MIT bag w i l l appear only as special l imit ing cases. 

The specific system that we wish to study contains a quark f ie ld 1? , which 

o 
has nine components representing the (3,3) representation of the color SU(3) times 

the usual SU(3) symmetry. [ T h e general izat ion to SU(4) is straightforward.] 

Instead of a permanent confinement, we assume a very large mass m for the free 
q 

quark, which accounts for its escape from detection so far. A scalar gluon f ie ld a 

is introduced to bind the quarks into observed hadrons. By applying the same mechan-

ism as that used in the discussions on abnormal nuclear states, we can reduce the 

effect ive mass of a bound quark to almost zero inside the hadron, and thereby real ize 

some of the we l l -known features of a re lat iv ist ic quark model, such as SU(6) sym-

metry and the related electromagnetic properties. In addi t ion, we fol low the sug-

12 
gestion of Nambu to introduce a color-gauge vector f ie ld V to unglue the color-

M 
13 

nonsinglet states; this necessitates that the vector forces be strong and long range 

inside the hadron. Consequently, the vector f ie ld must also be of a very small e f fec-

t i ve mass inside the hadron, though its physical mass m.. in a free state has to be 

14 
rather large since i t has escaped detection so far. A color Higgs f ie ld <|> is then 
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introduced to achieve this purpose. 

The general Lagrangian density £ of these four fields �P , a , V and cj> 

is given by Eq. (3.8) in Sec. I I I . In the Lagrangian density, the potential function 

U ( a , <f>) between the scalar gluon f ie ld a and the color Higgs f ie ld <p is assumed 

to have an absolute minimum at the vacuum value 

a = a 4 0 and <b = <b 4 0 (1.1) 
vac T Tvac 

wi th the convention 

U ( a , <J> ) = 0 . (1.2) 
vac Tvac 

The free quark mass m and the free vector mass m.. are 
q V 

m = go and m w = fd> , (1.3) 
q vac V Tvac 

where g and f are the appropriate coupling constants in the theory. These 

two masses are both heavy, » 1 GeV . In addi t ion, the potential function U(CT, <p) 

is assumed to have a local minimum at the origin 

a = <t> = 0 , 

where the effect ive masses of the quark and the vector f ie ld are both zero. We define 

p = U ( 0 , 0) > 0 . (1.4) 

For color-singlet states, the average value of the color gauge f ie ld V is zero; there-

fore, we can simply ignore V in a quasiclassical calculat ion for observed hadrons, 

since these are a l l color-singlets. 

As we shall see, in accordance wi th the aforementioned description inside the 
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hadron, we expect the interior of our soliton solution to be in the neighborhood of 

a = <J> = 0 . Consequently, the energy scale of the low- ly ing solitons is expected to be 

at least partly determined by p . Since, in this paper, we are interested only in soliton 

models for hadrons, which are supposed to be much l ighter than the quark and the gluon, 

we shall always assume 

1 I 

m » p * and m » p ? (1.5) 
q a 

m 
a 

where m is the mass of the gluon f ie ld a . [ i n the case of a - <|> coupling, 

must be more careful ly defined. See (3.29) in Sec. I I I . J 

Near the surface of the soliton, as we shall also see, there is a rapid transition 

of the scalar fields, a and ()> , changing from values near {a, (j>) = ( 0 , 0) to 

(a , <t> ) . The simplest way to calculate this transition is to solve the correspon-
vac Tvac r ' r 

ding mechanical analog problem of a point part ic le, whose "coordinates" are ( a , (J>), 

moving in a "potent ia l " - U ( a , <p), starting from the origin ( 0 , 0 ) at a f in i te " t ime" 

and reaching the point ( a , (t> ) at an " i n f i n i t e t ime" . Such a transition of a r vac Tvac 

and <(> gives rise to a surface energy density s , which w i l l be denoted by 

1 3 1 — 2 
s = surface energy/area - 7- u - -^ m a , (1.6) 

' ' 6 r 6 a vac 

where p , thus defined, has the dimensionality of a mass. It can be readily ver i f ied 

that i f there is only the a - f i e l d , without the Higgs f ie ld (j> , then m = m , the 

free a-mass; thus, i f one wishes, one may regard m , defined by (1.6), to be an 

"e f fec t ive" a-mass, relevant for the description of the soliton surface. [ See (2.44) 

.and (3.27) below. J In paral lel wi th (1.5), we assume 

m » u and m » u (1.7) 
q r

 a
 r 



where, in accordance wi th (1.6), 

- 2 i 
p = (m a

Z ) . (1.8) 
r
 a vac 

Under the assumptions (1.5) and (1.7), the low- ly ing solitons are characterized 

i £ 
by the energy scales p and p (or s ) . For convenience in order of magnitude est i -

4 
motions, the dimensionless rat io between p and p , 

X s p / u 4 , (1.9) 

though arbitrary, w i l l be regarded as O ( l ) ; i .e., X is considered to be much smaller 

than either (m / u ) or (m / u ) , so that (1.7) implies (1.5). Hence, in a soliton model 
q a 

of hadrons, we expect 

p = 0 ( m R ) (1.10) 

where m_ = 1316 MeV is the average baryon mass of the observed lowest SU(6) 56-
D 

mult iplet. It is useful to define 

Both dimensionless parameters are assumed to be quite small. 

In the l imit £ and r\ both — 0 , at a f ixed but arbitrary ratio ^/i , a rather 

remarkable simpl i f icat ion arises. As we shall see, the low- ly ing soliton solutions can 

be analysed independently of the high energy excitations (which may involve free quarks, 

free gluons, etc.) . Furthermore, through scaling, the mathematical problem can be re -

duced to a simple system of two coupled first order di f ferent ial equations neither of which 

contains any exp l ic i t free parameters: 
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- j — = ( - 1 + u - v ) v 
d p 

and ^ (1.12) 

dv 2 * . . ^ 2 * 2 . * 
_ — + — v = ( I + u - v ) u . 
dp p 

This reduction is established first in Sec. I I for a simple system of only color quarks 

and scalar gluons, and then in Sec. I l l for a more general system including vector color 

gauge fields and color Higgs fields. The general properties of the reduced equations 

(1.12) together wi th the numerical solutions are given in Sec. I I .4. 

In Sec. IV, i t is shown that the resulting low- ly ing states exhibit physical 

characteristics very similar to those of a "gas bubble" ( i .e., the soliton) immersed in a 

"medium" (i.e., the vacuum): there is a constant pressure p exerted by the medium on 

the gas and a constant surface tension s . In addit ion, there are the "thermodynamical" 

energy of the gas and the related gas pressure; both are determined by the solutions of 

the reduced equations. Also in Sec. IV, we apply these soliton solutions to the known 

hadrons. The static properties agree wi th observations to wi th in 10-15% accuracy. 

Because of the rather clean separation of physics of the low energy hadrons states 

from the physics at a much higher energy ( ~ quark mass), ident ical results can be de -

rived for these low- ly ing solutions, whether we assume the quarks are integer-charged 

or f ract ional ly charged, whether they are stable or unstable (provided that the inter-

act ion causing the instabi l i ty does not play a major role in the binding). What emerges 

is the possibility of a relat ively self-contained description of hadron physics in the GeV 

range that is based on the quasiclassical soliton solutions of a relat iv ist ic local f ie ld 

theory. The fact that these low- ly ing states form almost a closed system indicates that 

the theory can at least be regarded as a. phenomenological one, somewhat analogous to 

Fermi's theory of |3-decay. The famil iar "current X current" description of the weak 



V 

interact ion, though not fundamental, seems to be quite adequate up to the present 

energy range; i t can be formulated without any specif ic reference to the precise nature 

of the underlying structure of the weak interact ion. Likewise, the Lagrangian density 

used in our derivation of the soliton solutions may not be fundamental. Even some of 

the " l oca l " fields used in our description, such as gluon, quark, etc., may turn out to 

-13 -15 
be approximate concepts, va l id only at relat ively large distances, ~ 10 - 10 cm, 
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I I . Systems of Quarks and Scalar Gluons 

1. Hamiltonian 

From the discussions given in the previous section, we see that for color-

singlets, the system can be reduced to that of a spin 5 quark f ie ld and some scalar 

f ields. For clar i ty of presentation, in this section we examine a simpler system, con-

sisting of only the quark f ie ld and the scalar gluon f ie ld a , without the Higgs f ie ld . 

[ T h e complete Lagrangian, which contains the vector and Higgs fields as we l l , is given 

in Sec. I I I . ] The Hamiltonian density H- of this simpler system may be wr i t ten as 

l £ = iTT + i ( V a ) + U ( a ) + £ <P. ( - i a * - V + g ^ c r ) * . + counterterms 

j , k J J 

(2.1) 

where a and B are the standard Dirac matrices, a is the gluon f ie ld , TT its con-

k 
jugate momentum, and 1>. is the quark f ie ld , wi th the subscript j and the superscript 

k varying independently from 1 to 3 representing, respectively, the "color" SU(3) 

index and the usual " f lavor" SU(3) index. In this section, for definiteness, we assume 

U ( a ) to be a fourth order polynomial of a . Since, on account of (1.4), 0= 0 

is assumed to be a local minimum, we have 

2 3 4 
U ( a ) = ?ao + i - b a + | , c a + p (2.2) 

where 

b2 > 3 a c (2.3) 

so that the absolute minimum of U ( a ) is at 0= a 40. In accordance wi th (1.2) 
vac ' 

and (1.4), the constant p is introduced in order that 

U ( a v Q c ) = 0 and U(0) = p . (2.4) 



Without any loss of general i ty, we may choose b < 0 , and therefore orvnr > 0 : 

3 r . /. 2 8 *� 

vac 

I 

a 
vac 

= ^ - [ - b + ( b - | a c ) ] . (2.5) 

The free gluon mass m and the free quark mass m are given, respectively, by 

m = d U / d a at a = a , 
a vac 

and (2.6) 
m = g a 

q vac 

The parameters a , b , c and p in U (a ) and }-£ a l l refer to the appropriate 

renormalized constants, and the counterterms in (2.1) are for renormalization purposes. 

By fol lowing exact ly the same steps used in Sec. I of I , leading from Eq. (1.1) 

3 
to Eq. (1.16) in that paper, we can decompose our total Hamiltonian H = f Irt d r 

into a sum of two terms: a quasiclassical part H , and a quantum correction H 
^ qcl n corr 

H = H . + H . (2.7) 
qcl corr 

In the present paper, we are interested only in states wi th quark number N = 3. For 

these states, just as in Eq. (1.19) of I , the lowest eigenvalue E of H . i s given by 

the minimum of the functional 

E ( a ) = N e + / [ i ( V o r ) 2 + U ( a ) ] d 3 r (2.8) 

where a ( r ) is a c. number function of r and e is defined to be the lowest positive 

eigenvalue of the c. number Dirac equation 

( - i a * . V + g p a ) <|« = e * . (2.9) 

1 1 8 
It has been shown elsewhere ' that the eigenvalue e of (2.9) is never zero 
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19 
(in contrast to the topological soliton ). Furthermore, because of charge-conjugation 

symmetry, e always appears in pairs: ± | e. | , ± | e~ | , � � � . From (2.8) and 

(2.9), one sees that the minimum of E(CT) occurs when a is the solution of 

- V 2 a + U ' ( a ) = - g N ^ p Y , (2.10) 

where U ' ( a ) = d U / d a and /«|»T <l> d3 r = 1 . 

It is useful to define 

A - maximum of U (a ) between a = 0 and a , 
vac 

and 

? = p/A . 

As already mentioned in the introduction [ a n d as we shall also show later in (2.44) J , 

in the present simple case, the mass m defined by (1.6) is the same as m ; thus, 

(1.8) becomes simply 

i 

p = ( m a 2 ) * . (2.11) 
n a vac 

2 
From (1.9) and (1.11), we see that p / ( m a ) = XTJ � Thus, when 77 -► 0 , so does 

2 2 
7 , since in this l imi t A= m a / 3 2 , and therefore 
^ a vac 

XTJ = S/32 . 

It is convenient to express the parameters a , b , c and p in terms of Z, , o and 

m . For L « 1 , we f ind a ^ ' 

2 r , 3 , . ^ , , 2 , a = m [ > £ ? + 0(0] , a ■- 8 

b = ­ 6 (m a
2 / a v a c ) [ l ­ 1? + OU2 ) ] , 

c = , 2 W ^ ­ i l ^ + o (^] 
(2.12) 
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and 

1 2 2 
-IJTJ m cr oz a vac 

Through (1.11) and (2.11), m , a and m may in turn be expressed in terms 57 • • a vac q 

of p , TJ and | . Thus the problem defined by (2.9) and (2.10) contains a mass p and 

four dimensionless parameters | , ^ , X and N (or £ , TJ £ and N ) . 

2. Reduction of dif ferent ial equations 

In this section, we discuss the simpl i f icat ion of the dif ferent ial equations (2.9) 

2 
and (2.10), when the parameters I = ( p / m ) and y) = p / m / defined by (1.11) 

and (2.11), are both small. 

It is convenient to make the standard separation of angular variables for the 

lowest positive energy solution of (2.9). We wri te 

/ " \ 
# ■ = ( I S (2.13) 

\ i ( a . r / r ) v / 

where a is the Paul) matrix, u = u ( r ) , v = v(r) and 

S = (J) or ( ° ) . 

Equations (2.9) and (2.10) take on the radial form 

_ - ( - e - g a ) v , 

d v + 1 v = (e - g a ) u (2.14) 
dr r 

a n d
 J 2 J 

a a . d o 9 9 

+ £ U ' ( a ) = N g ( u ^ - / ) , 
dr r d r 
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2 2 3 
wi th / (u + v ) d r = 1 . From (2.14), we see that ' 

^ ( ^ - v 2 ) = - 4 v [ e u - ( v / r ) ] . (2.15) 

We define the dimensionless variable 

p -= er . (2.16) 

As we shall see, for N = 2 or 3 , in the l imi t 4 and -q both -* 0 at a f ixed but 

arbitrary ratio ^ / £ , through scaling the above rather complicated set of coupled 

equations in r can be reduced to the fo l lowing simple set of two coupled first order 

dif ferent ial equations in p : 

du , , , ^2 *2> *■ 
—— = ( - 1 + u - V ) V 
dp 

and (2.17) 
dv 1A. , , A2 ^2. -. 
- j — + — V = ( I + u - V ) u dp p 

The relat ion between these two sets of equations, (2.14) and (2.17), wi l l be given below. 

It is quite remarkable that (2.17) does not exp l i c i t l y contain any free parameter, whi le 

in the original set of equations (2.14) there are f ive independent parameters a , b , 

c , g and N (or p , i , rj , X and N ) . 

To see how the solutions of (2.14) can be expressed in terms of those of (2.17), 

we first comment on some simple properties of the reduced equations (2.17). At p = 0 , 

the i n i t ia l value u(0) can be arbitrary, whi le 0(0) = 0 because of the term 2 v / p 

in the second equation of (2.17). By assigning an i n i t ia l value u (0 ) , we can integrate 

(2.17) from p = 0 to the point when u(p) = v ( p ) , say at p = p, . Let us define 

u, = u ( P l ) = v ( P ] ) , (2.18) 

p. 
n
 ~ 4 l T

 f P 2 ( " 2 + v 2 ) d p (2.19) 
J 0 
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q S 4, TP' P V - 02)2 dp . (2.20, 
Jo 

Each in i t ia l value u(0) leads to a given set of u ] , P l , n and q . It is just as 

convenient to choose n to be the independent parameter, and regard u (0 ) , P l , 

0 and q as functions of n . The fo l lowing theorem (proved in the next section) 

establishes the relation between the solutions of (2.14) and (2.17): 

Theorem 1 In the l imit £ and -q both ­► 0 at a f ixed, though arbitrary, rat io r j / £ / 

for N = 2 or 3 , the lowest soliton energy E(a ) , which is determined by (2.8) and 

(2.14), is given by 

l . {^(L^n + iqUi^)(i)p2+^^(f)\p3 ( 2 2 ) ) 

a n d 1 1 3 3 

0 . -2 (i_) ( i . ) ( p ] . , ) C l ' + J ( ^ ) ( ^ + (ii) (-!>) x (2.22) 

where p and X are defined by (2.11) and (1.9) respectively. 

Before giving the proof of the theorem, i t may be useful first to discuss its con­

tent. For definiteness, let us consider in (2.14) a given set of parameters a , b , c , p , 

g and N . The other parameters such as p , -q / i and X are then al l determined. 

On the other hand, from the solution of (2.17), one has q = q (n ) , p, = p. (n) and 

u. = u. (n) . We may then use (2.22) to determine n , and (2.21) to determine E . 

The physical meaning of the theorem becomes clearer i f we express (2.21) and 

(2.22) in the fo l lowing alternative (but equivalent) form, (2.23) and (2.24), also proved 

in the next section: 

E = Ne [ l + * ( q / n ) ] + §TTR 2 p3 + $TTR3 p , £.23) 
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and 

­ 2 N u ]
2 ( e ­ R ~ V i ( p 3 / R ) + P = 0 , (2.24) 

where 2 2 M 

n = ( g . / m / N = LpL , (2.25) 

R ■= P l / e (2.26) 

and i 
u, = ( e J / n ) u1 . (2.27) 

In this new form, we may first derive the functions q = q (n ) , p, = p. (n) and u. = u. (n) 

from the solution of (2.17), just as in the preceding paragraph. Next, we use (2.25)­(2.27) 

to obtain e = e(n) , R= R(n) and u. = u. (n) . We then choose R to be the independent 

parameter instead of n ; i .e., we regard n = n(R), e = e(R), u. = u. (R), q = q(R) , 

etc. Equation (2.23) can now be used to derive E = E(R), and (2.24) to determine R . 

The parameter R w i l l turn out to be essentially the radial extension of the soliton solu­

t ion. The physical origin of the various terms in (2.23) for E(R) can be traced rather 

di rect ly . As we shall see, the Fermions contribute an energy Ne . The Boson f ie ld 

2 3 
gives a surface energy §TTR p ; in addit ion, i t has a volume energy 

3 
I TTR p+ ? N e ( q / n ) , in which the first term is due to the integral of U(0) = p over 

3 
the volume JTTR , and the second term is due to the deviat ion a 4 0 , and therefore 

U(a ) 4 p , in the same volume. As wi l l be shown in Appendix A , Eq. (2.24) is simply 

the condit ion dE(R)/dR = 0 . 

Since (2.21) and (2.22) depend on ■q and £ only through their rat io ■q/i , 

one sees that when the parameters i and v are both « 1 , the physics of these l ow­

lying states becomes separated from that of high energy excitations which may consist 

of free quarks and free gluons. 
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As we shall see in Sec. I l l , Theorem 1 is equally applicable to the general 

case, which includes not only the quark and the scalar gluon fields but also the gauge 

and the Higgs fields. The applications of Theorem 1 to the observed hadrons w i l l be 

discussed in Sec. IV. Because of Theorem 1, the resulting soliton admits of a phenomen-

ological description very similar to that of a gas bubble immersed in a medium: there is 

1 3 
a constant surface tension s = 7- p , and a constant pressure p exerted by the medium 

on the gas bubble; in addit ion, there is the "thermodynamical" energy N e [ l + 5 ( q / n ) J 

of the gas bubble itself. The details are given in Sec. IV. 1. 

3. Proof of Theorem 1 

In this proof, we shall assume £ and -q both to be inf ini tesimal, but regard 

their ratio r\/t> to be O ( l ) . It is convenient to div ide the space into three regions: 

the inside region r = R = R - 0 ( m ) , 

the outside region r ^ R̂  = R - 0 ( m _ 1 ) (2.28) 

and the transition region R. = r ^ R~ 

where R is defined by (2.26), and R, and R~ w i l l be determined below. 

(i) inside region r ^ R. 

According to (2,12), when Z, - p / A is « 1 , the local minimum a = 0 of 

U (a ) is almost degenerate wi th the absolute minimum 0=0 . Thus, we expect the 
vac r 

classical scalar f ie ld a to be near 0= 0 over a large regior^of space, which is defined 

to be the inside region r = R. . As we shall see, R. < R, although their difference 

is small. Let a be the average value of a in the inside region. The volume energy 

due to the integral of U(a) is ~ S TTR [ p + 5 (m a) J , which should be ~ the 
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total energy E = 0 ( p ) . [ The just i f icat ion of E = O ( p ) , of course, comes from (2.21) 

and (2.22), which are yet to be proved. To fac i l i ta te our order of magnitude estimations, 

­i ■ ' 4 
we shall first assume i t to be true. J As already mentioned in the introduction, p = 0 ( p ) 

Since -q = p /m and R wi l l turn out to be 0 ( p ) , i t follows then that 

o = Oiv-q) . (2.29) 

2 3 2 . 
From (2.11), we see that a = u / m = u n ; i .e., vac r a r 

"vac = (H­»>*> • (2­3°) 

By using (2.12), we obtain 

c = 0 ( T , " 3 ) and b a / a = 0 ( T , * ) . (2.31) 

_ 2 
Since a a = m and | = ( u / m ) , we also have 

vac q r q ' 

i -1 , 
g = (M 2 = 0 ( T , ' ) . (2.32) 

Thus, in the inside region, since a = C ( < J ) and d a / d r = 0 ( a / R ) , we can approximate 

U(a ) = p + i m 2 a 2 [ l + 0 ( r 7 i ) ] , (2.33) 

and neglect the derivatives of a in the last equation in (2.14). This leads to 

a = ­ ( N g / m C T
2 ) ( u 2 ­ v 2 ) . (2.34) 

As a result, (2.14) becomes 

du _ r 2 / 2 , 2 2. ­ , 
. ^ = [ ­ e+ ( N g / m ) (u ­ v ) J v 
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and (2.35) 

dv 2 r a. / K I 2 / 2 \ / 2 2 \ 1 
_ + _ v = | _ e + ( N g / m f f ) (u ­ v ) J u 

2 2 3 
with / (u + v ) d r = l , By defining 

1 1 

3 2
 *. 3 2 A 

u = (e / n ) u and v = (e / n ) v , (2.36) 

where n is given by (2.25), we see that (2.35) becomes simply (2.17) on account of 

(2.16), and that n is expressed in terms of u and v by (2.19). 

( i i ) outside region r = R~ 

In the outside region, we assume a rises from near zero to its asymptotic value 

a at r = co . As we shall see, although R_ < R , which is given by (2.26), R_ is 
vac £ *■ 

also = R ­ 0 ( m " ) , l ike R. . From the def in i t ion (2.26) of R , we see that the ex­
q ' 

2 2 
trapolation of the inside solution gives u ­ v = 0 at r = R (which is in the outside 

2 2 
region, but quite near r = R« ) . Therefore, we expect u ­ v to be small in the entire 

outside region; i .e. 

p " 3 ( u 2 ­ v 2 ) « 1 . (2.37) 

9 9 —1 

Thus, we may neglect u ­ v in the equation for a in (2.14). Because r ~ R= 0 ( p ) , 

we may also neglect the curvature term (2 / r ) d a / d r . Since as shown in Sec. I I . 1, 

Z, = p / A « 1 , we may regard U(a ) as approximate degenerate at a = 0 and 

vac 

region 

a = a # / ^ . To the zeroth order in the small parameter (2.37), we f ind in the outside 

a ( r ) = ^ a VaC t 1 + t a n h i m f f ( r ­ R o ^ (2'38) 
and 

u(r) ~ v(r) ~ e x p [ ­ / g a ( r ) d r ] (2.39) 

where R­ is a constant, and r = R­. lies wi th in the outside region. The indef in i te 
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integral in (2.39) carries an integration constant, which w i l l be determined by the con-

nection to the inside solution. By using (2.38), we can simplify (2.39), and derive 

u = v = u 0 

m a ( r - R 0 ) 

1 + e 

- i -m /m A 
q ° 

(2-40) 

2 

where u-. is a constant. Since both £ = ( p / m ) and -q = ( p / m ^ ) are « 1 , 

for £ = O(-q) we have m » m . Thus, whi le a changes rapidly from near 0 to 

a in the reqion r = Rn + 0 (m ) , u and v change much more slowly. The ex-

vac a O f f ' 
pression (2.40) can be further approximated: 

uQ for r i RQ 

u = v = 
l u~ exo l - n 

q 

u 0 e x p [ - m ( r - R Q ) ] for r > RQ ' ( 2 ' 4 1 > 

To first order in the small parameter (2.37), we may substitute (2.41) into the 

i 

q 
righthand side of (2.15), and approximate r = R-. . We obtain, for r = R-. - 0 ( m ) , 

b u t = R 0 ' 2 2 2 1 1 
u - / ~ 2 u Q ( e - R 0 " ' ) [ m ' + 2 ( R Q - r ) ] , (2.42) 

and for r ^ R-. 

u 2 - v 2 = 2 u 2 ( e - R 0 " 1 ) m " 1 e x p [ - 2 m ( r - R Q ) ] . (2.43) 

2 -i 3 
In passing, we note that, by using (2.38), the energy / [ i ( V a ) + U ( f f ) J d r 

integrated over the outside region is given by 

§TrR2m a 2 = §TrR2p3
 = 4TTR2S (2.44) 

ff vac r 

where p is given by (2.11) and s is, as defined before in (1.6), the surface energy 

per unit area. By comparing (2.44) to (1.6), we see that m = m , and (1.8) is the 

same as (2.11). 
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( i i i ) transition region R. = r = R_ 

2 2 2 

In this region a changes sign, so that neither V a nor u - v can be 

neglected in the last l ine of (2.14). However, i t is easily seen from the first two lines 

of (2.14) that 0 and v do not change appreciably in this region, so that (2.42) con-

tinues to hold. We discuss first the connection between the Fermion wave function u 

and v in the inside solution and that in the outside solution. As before, let R be 

given by (2.26). Although the boundary of the inside region is wi th in the surface r = R, 

we may extend the inside solution of (2.35), which we shall denote by u. , v. , up to 

r = R . At r = R , b y def in i t ion, we have u. (R) = v. (R) = u. . Thus, by using (2.15), we 
2 2 2 - 1 -1 

f ind d (u . - v. ) / d r = - 4 u . (e - R ) at r = R ; i.e., in the region r = R - 0 ( m ) 
i l l q 

we have 

u 2 - v.2 = 4 u ]
2 ( e - R"1) ( R - r) . (2.45) 

By matching (2.42) and (2.45) as wel l as their derivatives, at R. , one finds 

and 

RQ = R - (2m f 1 (2.46) 

u 0 = u 1 (2.47) 

where u~ is given by (2.40) and u. by (2.27). So far, the values of R. and R„ are 

arbitrary, provided both are R - 0 ( m ) , and 

R1 < R2 < RQ . (2.48) 

Next, we consider the jo in ing of the scalar f ie ld a . Let us choose the boun-

dary r = R~ of the outside region such that 

exp [ m C T ( R 0 - i y ] » 1 . (2.49) 

The condit ion (2.49) is tota l ly consistent wi th R0 = R - 0 ( m ) , since for « = 0 ( £ ) , 

i q 

m is » m . From (2.38), one sees that 
a q 
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* < ¥ = - v a c e X P [ m f f ( R 2 - R 0 r J « "vac ' ( 2 ' 5 0 ) 

From (2.29) and (2.30), it follows that | a | « a . Thus, in both the transition and 

the inside region 

ff « a . (2.51) 
1 vac 

2 2 . . . -1 

In the transition region, u - v is given by (2.42); in addition, r « m . There-

fore, the third equation of (2.14) takes on the approximate form 

( - ^ - - m a
2Ja = N g ( u 2 - v 2 ) = A ( R - r ) (2.52) 

\ d r 

where 

A = 4 u 2 ( e - R _ 1 ) N g . (2.53) 

The desired solution is 

ff = - ( A / m a
2 ) ( R - r ) + ffQ exp [ m ^ r - y ] (2.54) 

where ff. is a constant to be determined. By assuming I = O(TJ ) , and by using (2.27), 

4 
(2.32) and e = O(p ) , we find A = 0 ( p /-q) . In the transition region, since 

i 2 3 
r = R - 0 ( m ) , the first term (A /m ) ( R - r ) in (2.54) is 0 ( M r ?

2 ) . According 

1 

to (2.31), a is 0 ( U T 7 2 ) . We shall choose a_ and R. such that 
' vac r U I 

ff » an » 0 ( p r , 2 ) 
vac 0 r ' ' 

and 3 (2.55) 

ffQexp [ - m a ( R 2 - R^] « 0 ( M r ?
2 ) 

As r — R_ , (2.54) becomes a ~ a-. exp [ m (r - R~)j , which approaches the same 

outside solution (2.38), provided 

a0 = a v a c e x P £ m f f ( R 2 - R 0 ^ ; ( 2 ' 5 6 ) 
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at r = R. , (2.54) becomes 

a = - ( N g / m 2 ) ( u 2 - v 2 ) (2.57) 

which is the same inside solution (2.34). 

We note that (2.56) is consistent with a » an from (2.55) because of (2.49\ 
vac 0 

Moreover, the two parts of (2.55) are consistent provided that m (R^ - R.) » 1 . This 

in turn can be satisfied wi th R. = R - 0 ( m ) since m » m . The above discussion 
1 q a q 

completes the jo in ing of both the Dirac wave function, u and v , and the scalar f ie ld 

a between the inside solution and the outside solution. The total energy E of the sys-

2 . 2 4 2 

tern is given by (2,8). In the inside region ( V o ) is ~ ( f f /R ) ~ p -q which is much 

smaller than \J(o) ~ p+ ^m a ~ p . Therefore, the integral / [ i ( V a ) + U ( f f ) ] d r 

over the inside region becomes, because of (2.34), 

9 

3 i r R ? p + 2 ( N g / m ) 2 / ( u 2 - v 2 ) d 3 r . (2.58) 
CT 

The same integral over the transition region can be neglected, and that over the out -

side region is given by (2.44). By using (2.16), (2.20), (2.25), (2.26) and (2.36), one 

sees that the second term in (2.58) is 5 N e q / n . Thus, the total energy E is given 

by (2.23). 

To derive (2.24), the simplest way is to mul t ip ly the last equation of (2.14) on 

drr 
both sides by — j — , and then integrate from r to 00 . We f ind 

(2.59) 

According to (2.54) and (2.57), at r = R. , ± (da / d r ) 2 ~ ± ( A 2 / m 4 ) = O ( p 4 TJ2 ) , %1 ' 2 V " ' ' - * v " ' a ' 

2 w n „ v „ , | x , . , t , „ ^ , 2 2 . ^ , 4 
a = - ( A / m ) ( R - R . ) = 0 ( p v ) and therefore U ( a ) = p + i m a = p + 0 ( p T;) 

/ 
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4 
where p = 0 ( p ) . The righthand side of (2.59) is dominated by the integration 

over the region when a changes rapidly from near zero to a . After neglecting 

O ( T J ) as compared to 1 , and by using (2.38), (2.42) and (2.47), we f ind that, at 

r = R. , (2.59) becomes 

- P = 3 ( u 3 / R ) - 2 N u ]
2 ( e - R " 1 ) , 

which is (2.24). From (2.23) and (2.24), and by using (1.11), (2.11) and (2.25), one 

derives (2.21) and (2.22). This completes the proof of Theorem 1. 

There is an alternative way to derive (2.24), which w i l l be given in Appendix A . 

We recall that from the solution of (2.17), we can obtain the functions p. = p,(n) , 

q = q(n) and u-, = u. (n). Consequently, at a given set of parameters N , g , p , m 

and m , (2.25) and (2.26) may be used to define e = e(n) and R = R(n) . Of course, 

we may equally wel l choose R to be the independent variable, and regard e = e(R) 

and n = n(R) . Equation (2.23) then gives E = E(R) . As w i l l be shown in Appendix A , 

(2.24) can also be established by setting 

w � ° � <2-60> 

From the discussions given in Appendix A , one sees that (2.59) implies dE /dR = 0 ; 

thereby, one gains a further insight in to the interrelat ion between these equations. 

We note that the discussion of the inside region shows that the "reduced" func-

tions u and v are proportional to the actual quark wave function u , v . Hence a l l 

physical averages wi th respect to the quark density can be calculated from u , v , the 

contribution from r > R. being negl igible. 

/ 
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4. Solutions of the reduced equations 

Our starting point in this section is the pair of di f ferent ial equations (2.17). 

As explained before, in the paragraph preceding (2.18)-(2.20), the solutions of these 

equations form a one-parameter family since the functions 0 ( p ) , v (p ) are completely 

determined when 0(0) is given. Without loss of general i ty we assume 0(0) > 0 . 

There is a cr i t ica l value 0 . t such that i f 0(0) > 0 .. , the functions 0 , v 

cn t cr i t ' 

become inf in i te at some value p~ < 1 , with u > v for a l l 0 < p < p~ . Such solutions 

are of no interest to us, since they do not correspond to any solution of (2.14). There-

fore we restrict ourselves to the range 

0(0) < 0 .¥ ~ 1.7419 . (2.61) 
cn t ' 

The parameter n can take values from 0 to oo . When n -* 0 , 0(0).-* 0 ; 

*. *2 ^2 
when n -* co , 0(0) -* u . . In Figure 1, 0 - v is plotted vs. p for two in i t ia l 

values of 0 (0 ) , one near 0 and the other near 0 ., . One sees that the solution is 
cn t 

volume-dominated for small n (0(0) ~ 0 ) and surface-dominated for large n 

(=(0)~ocrit). 

We shall first discuss the two limits n - 0 (MIT- l ike) and n -* co (SLAC-l ike). 

(i) When n « 4 i r , both 0 and v remain small for 0 < p < p. . Thus we may 

neglect the nonlinear terms in (2.17), obtaining 

dO 

dp 

dO _,_ 2 . 
——- + — v = u 

(2.62) 

j p p 

The solutions to (2.62) are elementary and we l l - known: 

u = "(P) j ()(p) = " ( ° ) P s i n P ' 

- 2 
v = O ( 0 ) j 1 ( p ) = 0(0) p ( s i n p - p c o s p ) 

(2-63) 
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W e then have J 0 ( p ] ) = J ] ( p ] ) o r 

P ] = 2.0428 , 

(4jt)"}n = 0(O)2P ] | sin (2P l) | = 1.6545 0(0)2 , 

" l 2 = [0(D) p" 1 sin p , ] 2 = 0.1149 (■£-) , 

4TT T P l
 p

2 ( 0 2 - 3 v 2 ) d p = 3 (
P l = 0.6530n , (2.64) 

r P l 3 ( 4 p , " 3 ) n 
4 i r / 1 p

3 0 v d p = ^ — ^ = 0.6199n , 

2 o ? - 2 o 2 + 4 D , - 3 

and 

Pl 4 f 2 . . 2 , , zPl ■ zPl * H*>\ 

2 

4 i r / 0 P ^ + 0 ' ) d P = ' 6 ( P l ' - l ) ' n = 2 ' 2 1 7 5 n 

q = O(rT) . 

Jl A.2 *.2 A.2 

In Fig. 2 we plot 0 , 0 , 0 + v and 0 - v against p for this case. 

(ii) The case of large n can best be understood by considering first the limiting 

solution for 0(0) = u . . This init ial value yields a definite pair of curves for 0 , v 
cnt 

*2 *,2 
which are graphed in Fig. 3 . As p - * l - , 0 , v , and 0 - v all become large. 

The manner in which this happens can be found by letting 

y = 0 2 - 0 2 , (2.65) 

T = 2 ( p - l ) , 

and neglecting terms'of relative order T , 1/y , or y / ( x r ) . One thus obtains from 

(2.17) the approximate equations 

dx 
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(2-66) 

A. -

The solution that becomes in f in i te as T -* 0 - is 

x = 3 | T | , 

, (2-67) 

y = 3 | T | " ' 

which explains why we regard T , 1/y and y / ( x - r ) to be the same order. 

For f in i te n >> 4 i r , the functions 0 and v l ie very close to the " c r i t i c a l " 

_ l 
curves except in a region p = 1 ± O [ n 2 J . In this region the approximation (2.66) 

st i l l holds, but instead of obeying (2.67), x and y remain f in i te at T = 0 and y 

decreases to zero at T = T = 2 ( p . - 1) . 

The f in i te solutions of (2.66) wi th which we must deal can be reduced to a 

single universal solution by the transformation 

X - * X = X T 1 , y - * y = y T 1 , ' T — T = T / T ^ , (2.68) 

which leaves (2.66) invariant. The functions X ( T ) , y ( r ) are now completely deter-

mined by 

dx *. +. 

(2.69) 

dy 
-r*~ = - T X 
dT 

with the boundary conditions y = 0 at T = + 1 , and x , y - * 0 at T - * - O O . The 

first condition sets the scale for T , which would otherwise be adjustable through a 

transformation l ike (2.68). The second condit ion makes x , y obey (2.67) in the region 
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1 » 1 - p » n 2 . Thus (2.67) provides the transition from the peak region described 

_ i 
by (2.69) to the region 0 < p < l - O [ n 2 ] where 0 and v are almost the same 

as:their l imit ing values for n — co . The results corresponding to (2.64) in the l imi t 

n -* co is: 

P ] = 1 + (3.531 Tr/n)2 , 

n = 3.531 i r ( P l - l ) * 2 , 

- 2 _ 3.531 , , r 3 
(p ] " n u, = '1 8 

p l 2 , „ 2 , . 2 

and 

4 * f p ( u - K 2 ) d p = i n , (2.70) 

Jo 

4 , / P l 3 -

^ 0 

4 i r / P ( u + v ) d p = n 

u v d p = 5 n , 

0 

p l 4 , * 2 . . 2 

0 

q = O d i * ) 

The solutions of (2.69) are P lo t ted in Fig. 4, wi th the asymptotic forms (2.67) shown 

2 
for comparison. The relation n = 8 i r0 . ( p . - 1) is exact in this l imit , as seen from 

*2 
the equation fxdr = X T + i y which follows from (2.69). 

We note that i t is possible to el iminate T in (2.66), or T in (2.69). Let us 

3 ^3 A 

define a = T x = T X and b = Ty = T y . From (2.66), we see that 

db b - a 

da a(b + 3) 

( i i i ) For intermediate values of n , the equations (2.17) have been integrated 

A 2 A2 A.2 * 2 
numerical ly. The quantities 0 , v , 0 + v , and 0 - v are graphed against p 

for several values of n in Fig. 5. 
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„ 2 *2 . 
From the arguments of the previous section, we see that 0 + v is proportional 

*2 *2 
to the quark density, whi le 0 - 0 is proportional to the gluon f ie ld inside the hadron, 

2 2 ^2 *2 ^ *2 A2 

a = - ( e / g ) ( 0 - 0 ) . The fol lowing results on 0 - 0 , 0 and 0 + v are r igor-

ously true: 
A.2 *.2 

Theorem 2 If 0(0) < \Z2~~ (i.e., n < 74.84) , the quantity 0 - 0 decreases mono-
A.2 +.2 

ton ical ly from p = 0 to p = p . . If 0(0) > y/T ( i .e., n > 74.84) , the quantity 0 - 0 

increases monotonically from p = 0 to a maximum at p = p < p. , and decreases mono-

tonica l ly from p = p to p = p. . 

* 2 »2 
Proof Let y = 0 - 0 , and z = ( 0 / 0 ) - p . Then from (2.17) we obtain 

and 

3 * = 4 p
_ 1 0 v z (2.71) 

P- = 0 " 2 (y - l ) y -2 p " 1 z - 1 . (2.72) 
dP 

2 -1 
For p — 0 , y — 0 ( 0 ) , p z - * d z / d p and (2.72) becomes 

dz A , _2 
3 f- = 0 ( 0 r - 2 . (2.73) 

Let 0(0) < %/2 , then z is i n i t i a l l y negative. 

Suppose that z (p) = 0 has a root between 0 and p. . Let p be the smallest 

such root. Then z must be increasing at p , and so from (2.72) we have 

0 < r 
d p 

= [ 0 " 2 ( y - l ) y ] - 1 (2.74) 

P 
P 

where the subscript p denotes p = p . Now, by def in i t ion, p, is the (smallest) root 

° f y (p) = 0 . Hence, 

2 
0 < y < 0 for p < P ] . (2.75) 

file:///Z2~~
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Since p < P l , (2.74) and (2.75) imply 

1 < [ 0 " 2 ( y - l ) y ] _ < y ( p ) - 1 , 

which, on account of (2.71), leads to 

2 < y(p) = y(0) + f 4 p
_ 1 00 z < y(0) = O(0)2 (2.76) 

J
0 

contrary to hypothesis. [We know that z < 0 for 0 < p < p ; in addition, from (2.75), 

2 2 

0 > 0 for p < p. , and since from (2.17), d(p v ) / d p = p ( l + y ) 0 > O , 0 is also > 0 

for 0 < p < P ] . ] 

The contradiction shows that z has no root between 0 and p. . Therefore it 

remains negative, and the first part of Theorem 2 follows from (2.71). 

Now let 0(O)>\ /2" . Then z is init ial ly positive, as seen from (2.73). By 

integrating (2.71) from 0 to p. , we see that z cannot remain positive throughout; 

therefore it has a root. Let p be the smallest positive root of z(p) = 0 . 
If z(p) = 0 possesses a second root between p and p. , let p' be the smal-

Jz 
lest such root. Then -j— must be negative at p and positive at p' , so that from (2.72) 

we find 

[ u " 2 y ( y - i ) ] _ , > i > [ u " 2 y ( y - D ] r 

A. -2 A. A. 2 2 

which, because of 0 y = 1 - ( 0 / 0 ) = 1 - (p + z) , may be rewritten as 

[ y (p ' ) -U ( W 2 ) > i > L>(p)- i ] (i - P 2 ) . (2.77) 

2 
Now, y(p) > y(0) = 0(0) >2 since z is positive between 0 and p . 

Therefore y(p) - 1 > 0 , so that 

[ y ( p ) - l ] ( 1 - P 2 ) > [ y ( P ) - l ] d - p ' 2 ) . (2.78) 
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2 A.-2 

On the other hand, 1 - p ' = (yO ) _ , > 0 and y ( p ) > y ( p ' ) since z is negative 

(and therefore dy /dp is negative) between p and p' , Thus 

[ y ( p ) - i ] ( 1 - P ' 2 ) > [ y ( p ' ) - 1 ] 0 - p ' 2 ) . (2.79) 

Combining (2.77), (2.78) and (2.79), we have a contradict ion. Therefore there 

is no second root of z (p) = 0 . The second part of Theorem 2 now follows from (2.71). 

Theorem 3 If 0(0) < 1 (i .e., n < 2 0 . 4 7 ) , the function 0(p) decreases monotonically 

from p = 0 to p = p. . If u(0) > 1 (i .e., n > 2 0 . 4 7 ) , then 0(p) increases mono-

tonical ly from p = 0 to a maximum at p = p n < p, , and decreases monotonically from 

p = pQ to p = P ] . 

Proof The first equation in (2.17) may be wri t ten as 

w here 

i lH - = v w (2.80) 
d p 

w ( p ) = y (p ) - 1 = 0 2 - 0 2 - 1 . (2.81) 

2 

As p — 0 , w (p ) -* 0(0) - 1 . Thus, when 0(0) < 1 , w ( 0 ) < 0 . Furthermore, when 

0(0) < 1 < y/2 , we know from Theorem 2, d w / d p = d y / d p < 0 for 0 < p = p. ; con-

sequently w(p) < 0 , and therefore 0(p) decreases monotonically. 

Next, we consider the case 0(0) > 1 . Since w(0) > 1 and w ( p . ) = - 1 , in 

the interval from p = 0 to p = p. , there must be a root of w ( p ) = y (p ) - 1 = 0 . 

From Theorem 2, one can show readily that there is only one such root. By using (2.80) 

we establish Theorem 3. 
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1 /i ^2 
Theorem 4 If u(0)<—=: (i.e., n < 9.618 ) , the quantity u + v decreases mono-

•; y/2 

tonically from p = 0 to p = p, . 

Proof Let 
v - A2 \2 Y = u + v 

and (2.82) 
Z = (Oy /0 ) - p 

A 2 A 2 
where, as before, y = 0 - 0 . From (2.17), we find 

dY A - 2 _ 
- j — = 4 v Z dp 

and (2.83) 

P IT = ( " A ) ^ + ( y / 0 2 ) [ - Y - y 2
+ 2 ( 0 0 / p ) ] + " 2 

2 

As p -* 0 , since 0 / p — g 0(0) [ 1 + 0(0) J , we have 

P Z -* 2 [ 1 + 0(0) 2 ] [ O ( 0 ) 2 - i ] . . (2.84) 

Hence, for 0(0) < 1 /\/2 , p Z < 0 as p - 0 . 

Suppose that, when 0(0) < 1 /y/2 , Z(p) = 0 has a root between p = 0 and 

p = p, . Let p = £ be the smallest such root. Thus, Z(p) must increase at p'= £ ; 

i.e., 

{-¥-) > 0 , 
dp ft 

where the subscript £ denotes p = £ . Since Z(£) = 0 , by using (2.83) we find 

( £ ) = ( G / 0 ) . ( ^ - ) - ( y / 0 2 ) [ 0 2 ( 0 2
+ 0 2

+ 1 ) + 0 2 ( 1 - 2 0 2 ) ] 0 . (2.85) 
P g " P n *■ *• 
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For 0(0) < 1 /V5" , which is less than both 1 and \/2 , we have ( d y / d p ) < 0 

*2 
by Theorem 2 , and (1 - 2 0 ) > 0 by Theorem 3 . Hence, (2.85) leads to 

( d Z / d p ) . < 0 , which contradicts the hypothesis that Z(p) = 0 has a root between 

0 and p. . From (2.82) and (2.84), we also see that when 0(0) < 1 / y/T , d Y / d p < 0 

as p -* 0 . Theorem 4 is then proved. 

Remarks 

1. From our numerical solutions, we f ind that for 0(0) > 1 / v ^ ( i . e . , n > 9 .618) , 

the quantity 0 + 0 increases monotonically from p = 0 to a maximum at p = £ < p1 

and then decreases monotonically from p = £ to p = p. . 

2 

2. From (2.17), one sees that as p -* 0 , 0 / p - g 0(0) [ 1 + 0(0) ] > 0 , and 

when p = p, , d O / d p = [ 1 - ( 2 / p . ) j 0 ( p . ) , which is positive i f p. > 2 ( i . e . , 

0(0) < .3066 , n < 1.901) and negative i f p. < 2 . From our numerical solutions, we 

f ind that 0(p) has at most one maximum between p = 0 and p = p. . Thus, i f 

0(0) < .3066 , 0(p) increases monotonically from p = 0 to p = p. . If 0(0) > . 3 0 6 6 , 

0(p) increases monotonically from p = 0 to a maximum at, say, p = p n < p. , and 

then decreases monotonically from p = p n to p = p, . 

3. An exact relation among n , q , p. , and u. may be derived by noting 

that (2.17) has the consequence 

d r 3,A.2 ^2. _ 3 , *2 ^2 . . 2 » A - I _ 2 , *2 A2. 2 ,^2 *2 . 

-t— [ p ( u - v ) + 2 p ( u + v ) - 4 p u v j = 2 p ( u + v ) - p ( u - v ) 

(2.86) 

Mul t ip ly ing by 2ir and integrating from 0 to p. , we have 

8 i r u 1
2 p 1

2 ( p 1 - 1 ) = n - i q . (2.87) 
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I I I . Inclusion of Vector and Higgs Fields 

In this section we consider the general case in which, in addit ion to the 

spin 5 quark f ie ld <J> and the scalar gluon f ie ld a introduced before, there are also 

the color SU(3) gauge f ie ld V and the color Higgs f ie ld q> . Through the spontan­

14 eous symmetry­breaking mechanism, the eight vector­ f ie ld components of V are 

al l going to be massive; the number of scalar­f ield components of (j> must, therefore, 

be more than eight. Since the color SU(3) is expected to remain a good (or, at least, 

approximately good) symmetry after the spontaneous symmetry­breaking mechanism, the 

Lagrangian density that one starts from should be invariant under a larger group *%. 

which includes the color SU(3) as a subgroup. There is a certain arbitrariness in 

choosing the group ■&. and the representation of <p . For definiteness, we adopt the 

specif ic example discussed by Sirlin and ourselves in an earl ier paper. We assume •** 

to be SU(3) X SU(3) and q> to form the (3, 3) representation of A, . \_In addit ion 

to A. , there is the usual " f lavor" SU(3), or SU(4). J Thus, <j> consists of nine com­

plex scalar fields (jy. and <p where, as wel l as throughout the paper, the subscripts 

a , b , c vary from 1 to 8 , 

p , v , X vary from 1 to 4 (3.1) 

and i , j , k vary from 1 to 3 . 

It is convenient to represent the gauge f ie ld and the Higgs f ie ld by 3 X 3 matrices: 

v = n (v ) , 
V a V a 

(3.2) 

* " * X0 ^O + * Xa ^a 



33. 

i 
where X „ = ( § ) 2 times the 3 X 3 unit matrix, and X 's are the 3 X 3 Gel l ­Mann 

0 a 

matrices which satisfy the usual relations 

, r< XA> " 2Sab • CXa . H.D = 2iFabcXc , 
and (3.3) 

l V » 0 " 2DabcVKb • 

Al l repeated indices are to be summed over. The gauge f ie ld forms a (8, 1) represen­

tation of ­ £ , the gluon f ie ld a is invariant under ­ £ , and each of the " f l avo r " ­

k 
components of the quark f ie ld <J> forms a ( 3 , 1 ) representation of -Q . In terms of 

k 
the components •P. introduced in Eq. (2. V), we may wri te 

*k = [ K I • 0.4) 

The group ­£ = SU(3) X SU(3) consists of the transformations 

t t V ­ * u V u , d > ­ * u < t > v , p p 

q»k ­ u1»k and a -* a 

(3.5) 

where u and v are two arbitrary x­independent 3 X 3 unitary matrices with det = 1 . 

The Lagrangian density £ is assumed to be invariant under a local SU(3) gauge 

transformation 

V ­ U(X)V U(x) ­ ­y ( g x ) " (x ) 

<j> ­* u(x)(|> , <pk ­ u(x)<|>k (3.6) 

and o —■ a 



34. 

+ 
where u(x) u(x) = 1 and det u(x) = 1 ; in addition, £ is invariant under the global 

■€ X SU(3) transformations, where ■& is given by (3.5), and the extra SU(3) group 

denotes the usual "flavor" transformations, under which V , <(> and a are all i n ­

variant, but 

4»k - w.k 4>j (3.7) 

where w = (w. ) is another x­independent 3 X 3 unitary matrix with det = 1 . 

[The generalization of the "flavor" transformation group to SU(4) is straightforward. J 

The general renormalizable form of £ can be readily found: 

£ = ­ ' r [ i V 2 + ( D ^ ) ( D • ) ] ­ » k t
y ( y D + g a ) » k ­ i ( ^ ­ ) ­ U(a, f ) 

(3.8) 
where 

V = i X ( V ) = 7 £ ­ V ­ 5
9 ­ V ­ i f [ V , V 1 , uv a pv ax v ox p u p v­1 

D <|> = £- $ ­ i f V $ , 

t a t t <3­9> 
u Y 3x Y p ' 

M 

D <|» = -$— ^ - i f V 4* 
u 3x p 

M 

and U(a, <(>) is a fourth order polynomial in a and <|>. Because of our convention 

x = (r , i t ) , we have 

D. <t>f = (D. 4>)f and D4 * * = ­ (D4<j>) t . (3.10) 

As already explained in the introduction, the function U(a , <f>) satisfies (1.2) 

and (1.4); i.e., it has an absolute minimum at ( a , <b) = (a , A ) and a local 
' T vac Tvac 



35. 

minimum at the origin ( a , <|>) = (0 , 0 ) , with 

U(a , <j> ) = 0 
vac Tvac 

and (3.11) 
U ( 0 , 0) = p > 0 . 

Both a , d> are assumed to be 4 0. The general form of U(a, <|>) that satis­
vac Tvac ' ° T 

fies these properties still contains a rather large number of constants a , b , • • , 

a' , b' , • • , a" , b" , • • , defined as follows: 

2 i 3 4 

U(a , <|>) = 5 a a + g;b a + J.ca + p 

+ a' tr(«}> <J>) + 5 [b1 det <p + (b' det <}>)'] 

+ c' tr [(4> (|>) ] + d' [ t r ^ c j O j 2 + (a" a+ c" a2) tr (^ <p) 

+ i a [ b n det<j>+ (bn det <|>)t] . (3.12) 

At first sight, i t seems almost unmanageable to discuss such a general case with so many 

independent constants. As we shall see, the problem is actually quite simple, provided 

that the parameters £ and ■q , introduced in (1.11), are both small, « 1 . Of course, 

in the present general case because a is coupled to <|>, there are many scalar masses. 

The definition of m used in (1.11) has to be made precise. [ See (3.30) below. ~~\ 

To begin with, we may adopt the unitary gauge by choosing the transformation 

u(x) in (3.6) so that for a = 1, 2, • • 8 , 

tr [XQ((l)­<t> t)] = 0 (3.13) 

20 everywhere. We may then write 

a = a + R' , 
vac 
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4> = t + i \ X R + ' 0 + H (3.14) 
T Tvac 0 

where 

H = 2 X H , 
a a 

and R, R' , I and H are all Heirmitian fields. For simplicity, we assume the 

constants b' and b" in (3.12) to be real, and therefore d> is real. Because 
' ' Tvac 

/ v / x � .u u i . � � r . . 9 U 3U 3U 3U n 

(a ,< |> )= (a v a c ,< | , v a c ) is the absolute m.n.mum of U , -^- = - ^ - = - y j - - - ^ q - - 0 

a 

at ( a , <|>) = ( a y a c , c ^ ) . Near ( a , cj>) = ( a ^ , 4>vac), we may expand 

U ( a , <(,) = i [ M R R R 2 + 2 M R R 1 RR' + M R I R I R ' 2 ] + i m 2 I2 + \ m 2 HQ
2 + � � � 

(3.15) 

where � � � denotes cubic and higher order terms in the fields R, R1 , I and H . 
a 

2 2 2 2 
The mass-squares m. , m u and the eigenvalues m. and m of the matrix 

I n 1 2 

M = \
 RR RR' \ (3.16) 

VMRR' MR'R-/ 

are all positive; these parameters are related to the constants a , b , c , a ' , b ' , ' ' ' 

by 

m 
2
 = a'-b'd> + 2(c' +3d

,
)<b

2
 + (a" - b" <b + c" a )a , 

I
 T

vac
 T

vac
 T

vac vac vac 

m
2
. = a'-^b' d> + 6(c'+ d')d>

2
 + (a" - ib" <b + c" a )a 

H
 T

vac
 T

vac
 T

vac vac vac 

M n D = a'+b'd> + 6(c'+3d')<t>
2
 + (a" + b" <b + c" a )a 

RR vac
 T

vac
 T

vac vac vac 

2 2 (3.17) 
MD1D1 = a + b a + j c u + 6 c" $ 

R R' vac vac Yvac 
and 

M O D . = v^6" (a" + i b " 4> + 2 c" a ) <|> RR' T vac vac T vac 

It can be readi ly ve r i f i ed that af ter the spontaneous symmetry-breaking, the system 
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remains symmetric under a global ( i .e., x-independent) "color" SU(3) transformation 

{u } : 

V - u V U* , H - u H u t , 
p p 

|J) - u <|> 

and R, R' and I are a l l invariant; of course, the " f lavor" SU(3) symmetry (3.7) 

also remains va l id . 

When ( a , d>) = (a , d> ) , the masses of the vector f ie ld V and the T / vac Tvac p 
k 

quark f ie ld V are given respectively by 

m w = f <t> and m = g a ; (3.19) 
V Tvac q vac 

they are both also assumed to be large, » 1 GeV . When ( a , <|>) = ( 0 , 0 ) , both 

k 
fields V and <P are of zero mass. 

M 

Near the origin ( a , <(>) = ( 0 , 0 ) , we have 

9 t 
U(a,<|>) = p + ^ a a z + a'tr(<j> (j>) + � � � (3.20) 

where � � � denotes cubic and higher order terms in a and <p . Clearly, both constants 

a and a' are > 0 , in order that the origin be a local minimum of U . In the present 

case, there are many scalar masses. For simpl ici ty, we assume a l l scalar masses in the 

l JL 2 2 

theory m , m , m. , m , a 2 and a ' 2 to be large [where m. and m are 

the eigenvalues of the matrix (3.16) J , » the lowest soliton mass ~ 1 GeV . Further-

more, for simplici ty we assume them to be a l l of the same order of magnitude. It is 

appropriate to cal l 

l 
a 2 = " a -mass" near the or ig in. (3.21) 
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i 
As we shall see, a2 is relevant for the description of the interior of the soliton. 

For the surface of the soliton a different definition of "a -mass" wi l l be introduced. 

In order to do that, let us consider the following (hypothetical) problem of a topo-

logical soliton solution in one space-dimension. 

In this (hypothetical) problem, x = (x, i t ) and the Lagrangian density is 

f 

£o 3 -i(lf)-*'Ur -d) -<V°'V ^ 
M M M 

where 

*0 = *vac + 2 V R + H ) 

and Un is related to the same U in (3.8) by 

UQ(a, ^ ) = Lim U ( a , <|>0) , (3.23) 

p-*0 

such that the limiting function LL(a, $_) has two absolute minima, at 

(a , <|>0) = ( a y a c , <t>vQc) and (a , <t>0) = (0 , 0) , with 

U n (0 , 0) = Un(a ,+ ) = 0 . (3.24) 
0 0 vac vac 

It is straightforward to see that there is a t-independent topological soliton solution, 

which satisfies 

A convenient way to visualize the solution is to consider the mechanical analog prob-

lem of a point particle of unit mass, whose "position" coordinate is (a , <)>n) |_i.e., 

(a, R, I) J and whose "time" coordinate is x , moving in a "potential" - U-. . Equa-

tion (3.25), then, denotes simply the law of conservation of "energy" of the particle. 
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According to (3.24), the "potent ia l " - UQ has two peaks at ( a , O = ( 0 , 0) and 

( a , d>.) = ( a , (J> ) . There is clearly a solution, described by a path P, in Y0 vac Tvac ' ' ' 

which at " t ime" x = - co , the part icle is on one of the two peaks, but when x - * + co , 

i t moves onto the other peak. The corresponding 1 space-dimensional soliton solution is 

tfp(x) = °(x) 

and (3.26) 

Tp(x) - <J>0(
X) a , o n a P � 

Its energy is given by the path integral along P : 

9 r00 ,, A - i * 2 _ i - 2 
2 / U~ dx = r - a a y = T m a 

1 0 6 vac 6 a vac 
*f - CO 

(3.27) 

where a 2 is as introduced in (3.21) and y is a dimensionless number. In accordance 

wi th (1.6) and (1.8), 

_ i 
m = a 2 y 

a ' 
and _ 2 3 ( 3 ' 2 8 ) 

p = (m a ) r a vac 

We now define 

- 2 x 

m = m / r = a 2 / y (3.29) 
a a 

and, as before in (1.11), 

2 
* = ( M / m

q ) a n d TJ = ( p / m f f ) . (3.30) 

2 
The purpose of these definit ions is to make the quantity p i/-q independent of y , 

so as to just i fy the second l ine of (3.35) below. Then y w i l l not appear in the f inal 

equations (3.41) and (3.42). 
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We recall again that i f the system consists of only the quark f ie ld and a single 

scalar f ie ld a , without the Higgs f ie ld <p , then as in Sec. I I , by solving the corres-

2 2 
ponding one-dimensional problem for U f t = 5 a ( a - o ) (a/a ) , we would r r 0 vac vac 

obtain 
_ i 

= 1 and m = m = a 2 

a a 

The def in i t ion of p given above by (3.28) then becomes identical to that of (2.11) in 

Sec. I I ; the same applies to the definit ions of £ and -q . In the fo l lowing, for con-

venience of order of magnitude estimations, we regard 

y = O ( l ) . (3.31) 

We now return to the original Lagrangian (3.8). For color singlet states, we 

may set in the quasi-classical solution 

V = H = 0 , 
M 

and a , R, I to be a l l c.number functions. Just as in (2.8), for color singlet states 

wi th a quark number N = 2 or 3 , the soliton energy is given by 

E = N e + / [ i ( V a ) 2 + i ( V R ) 2 + i ( V I ) 2 + U(a ,c )>) ] d3 r (3.32) 

where cj> = <|> + i X n ( R + i I ) , e is the lowest positive eigenvalue of the c.number 
vac u 

Dirac equation 

{-\a. V + g p a ) T = e<|» , (3.33) 

and a , R and I satisfy 

- V 2 a + ^ - U = - g N f1" B * , 
Off r 
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and 
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_V 2R + ± . U = 0 0.34) 

_ v
2
I + i n _ u = ° ' 

Assuming that the two parameters £ and -q , defined above, are both small, « 1 , 

we may now go through exact ly the same argument used in Sec. I I . 3 . We first divide 

the space into three regions: inside, outside and transit ion, in accordance with (2.28). 

In the inside region r = R1 , we have 

Y = 0 . 

So far as the solution a and r is concerned, the entire discussion given in Sec. I I . 3 , 

from (2.33)­(2.36) can be carried over to the present case, without any change except 
1 

that m is replaced by a 2 ; therefore, just as in (2.16), (2.25), (2.26), (2.34) and 

(2.36), we have, for the present case, also 

= er Pl ­ e R / 

and 

n = (ge)2N/a = e2N77 / (p^) , 

3 K 3 K (3-35) 
u = (e /n) 0 , v = (e /n) 0 

a = ­ (Ng/a) (u ­ v ) 

where p , | and v are defined by (3.28) and (3.30). Equations (3.33) and (3.34) 

can now be again reduced to (2.17), wi th 0 and 0 related to ♦ through (2.13) and 

(3.35). 

In the outside region r = R„ , the present case is sl ightly more complicated 

than the simple system discussed in Sec. I I . Both q> and a rise from zero, or near 

zero, to their respective vacuum values a and d> . This results in the 

vac vac 
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replacement of (2.38) by 

a(R) = ap(r-R0) 

and (3.36) 

*(R) = t p ( r -R 0 ) ! 

where ap and <|> are the appropriate 1 space-dimensional solutions given by (3.26). 

Equations (2.39) and (2.41)-(2.43) remain valid. Just as in (2.44), in the present general 

case, the energy integrated over the outside region is, because of (3.27), 

o o 9 3 2 
f i r R m a = § irR u = 4irR s , 

a vac r ' 

in accordance with (1.6). 

In the transition region R. = r = R_ , the entire argument in Sec. II.3, leading 

I 

from (2.45) to (2.58), is applicable, except that m is replaced by a . Thus, the soli-

ton energy E , defined by (3.32), is given by 

E = Ne [ 1 + i ( q / n ) ] + !TTR2P3 + ^TTR3P (3.37) 

which is identical to (2.23). Next, we multiply the three equations in (3.34) by da /d r , 

dR/dr and d l /dr respectively; after integrating from r to co, we obtain the gener-

alization of (2.59): 

i<£>2+i<£>2+i<3T>2-U 

" / > { ? [ < £ > 2 < > 2 + < & > 2 - N 9 ( U
2 - v 2 > £ ] } . 0.38, 

By going through the same argument, which is given immediately after (2.59) in Sec. II.-3, 
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i 
but with (2.38) replaced by (3.36) and m by a2 , we find that, at r = R. , after 

neglecting O(TJ) as compared to 1 , (3.38) becomes 

- P = i ( p 3 / R ) - 2 N u 2 ( e - R - 1 ) , (3.39) 

which is again identical to (2.24). By using the third equation in (3.35), one sees that 

e = p ( n / N ) i ( | / r ? ) i . (3.40) 

Consequently, (3.37) and (3.39) can also be written in a form identical to (2.21) and 

(2.22): 

E _ , N * « * , , x , 2 _ , N W T M 2 . _ , N ; L ^ 3 

M 
(-£) (-M (n + iq) + 3 w(^)( f - )pf+ **(-£) (f) Xpf (3.41) 

and i i 1 3 

« W , X ^ 2 1 / T , , , , N 2 2 

0 = - 2 ( £ ) ( i - f ( p 1 - i ) 0 j 2 + i ( - | . ) + ( - £ ) ~ ( f - ) ~ Xp, (3.42) 

4 
where X = p / p is defined by (1.9), Thus, the theorem stated in Sec. II.2 is applicable 

to the general case as well, provided that p , 4 and -q are defined by p.28)-(3.30). 

Through (3.35) we may also use (3.37) to determine the function E = E(R) . By 

i 
following the same argument given in Appendix A, but replacing m by a2 , we 

can show that (3.39) is equivalent to the condition dE(R)/dR = 0 , just as in the 

simple case, discussed in Sec. I I . 
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IV. Static Properties of Hadrons 

We start from the general system considered in Sec. I l l , and assume, as before, 

2 
that the parameters I = ( p / m ) and ■q = ( p / m ) are both small, « 1 . As we 

have seen, independently of the number of parameters in the original Lagrangian (3.8), 

in the l imit when £ and v ­* 0 , at a f ixed though arbitrary ratio ■q /k , the low­ ly ing 

soliton states, at a given N = 2 or 3 , depend only on an overall energy scale p and 

4 
two dimensionless parameters X = p / p and -q /k . The appl icat ion of these soliton 

solutions to the observed hadrons wi l l be discussed in this section. 

1. Phenomenological description 

For the moment, let us leave aside the soliton problem, and discuss instead a 

hypothetical analog system, consisting of a "gas bubble" of radius R immersed in a 

"medium". We define 

E = "thermodynamical" energy of the gas, 

s = surface tension, (4.1) 
and 

p = pressure exerted on the gas by the medium. 

Each of these terms contributes a part to the (total) energy of the system, which may be 

wri t ten as a sum 

E = Eg + E j + Ep (4.2) 

where, under the assumption that s and p are both constants, 

E = 4TTR2S and E = ^ R3 p . (4.3) 
s p 3 r 
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The radius R is determined by 

dE /dR = 0 . (4.4) 

The appropriate thermodynamical energy E to be used depends on, among 

other things, the heat transfer condition (e.g., isothermal or adiabatic); its dependence 

on R can be rather complicated. However, so far as the equil ibrium configuration 

and its immediate neighborhood are concerned, we may assume a simple power law 

Eg = K / R k (4.5) 

where k and K are both positive constants. Equation (4.4) gives 

k E = 2 E + 3 E . (4.6) 
9 s p 

It is convenient to introduce 

E 

Hence, 

E + E 
p s 

E g _ 2+ £ 
(4.8) 

E 2 + £ + k 

This simple system carries four constants: s , p , k and K , or, the equivalent set 

E , R , k and £ . (4.9) 

Returning now to the f ie ld- theoret ic problem we see that, by comparing (4.2) 

w i th (3.37), the phenomenological description used above can be di rect ly transferred 

to the soliton solution. The "thermodynamical energy of the gas" is 
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E = N e [ l + i ( q / n ) ] . (4.10) 

2 2 3 

In addition, there is a surface energy E =47rRs = f i rR p due to the "surface tension" 

s = ­r p and a volume energy E = ­=­ R p due to the "pressure" p of the surrounding 

"medium", which is really the vacuum, since according to (1.2) and (1.4), 

p = U(0, 0) ­ U(a , <p ) . The resulting sum of these three energies is exactly 

(3.37). A more general definition of the exponent k introduced in (4.5) is 
dlnE 

k - " d h F • ■■ ( 4 - "> 

By comparing (3.39) with (4.6) [ o r by directly differentiating (4.10), as done explicitly 

in Appendix A ] , and by using (2.87), we find that for the soliton problem, k is a func­

tion only of n , given by 

k ( n ) = 8 1 r u 1
2
p
2 ( p 1 ­ l ) / ( n + i q ) = 11*3- (4.12) 

where 0.(n) , p . (n) and q(n) are all defined fn Sec. IJ; these functions.are deter­

mined by the solutions of the reduced equation (2.17). In Figure 6a, n is plotted vs. 

the initial value 0(0) of the solution 0(p ) of (2.17); likewise, in Figure 6b, p . , k 

and q / n are also plotted vs. 0(0) . The functions p, (n), k(n) and q(n) can then 

be deduced from these two figures by eliminating 0(0) . 

As noted in (4.9), the "gas bubble" problem is characterized by four pheno­

menological constants. On the other hand, the soliton solution (at a given N = 2 or 3) 
4 

depends only on three parameters: p , X = p / p and y\ /i . By using (2.26), (4.8) 

and (4.10), we find 

R E =
 I^TTT) (n + i q>NPi f (4­13)" 

­which together with (4.12) introduces a constraint on the four parameters in (4.9). 
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i 
If the complete Lagrangian is known, then T J / £ , p = (6s) and p are al l 

determined; among these, p and p can be direct ly used in a phenomenological des­

cr ipt ion, whi le the physical interpretation of -q / i ' s a less direct one. For phenom­

enological descriptions, a different choice of the three independent parameters can be 

either k , s and p , or, since k = k ( n ) , 

n , s and p . (4.14) 

4 
Of course, since rj / ! , X= p / p and n satisfy (3.42), al l these sets of parameters 

are equivalent. We note that from Figures 6a and 6b, the function k(n) is single­

valued, whi le its inverse n(k) is double­valued. Hence, the set (4.14) may wel l be 

the most convenient one to use. 

From Figure 6b, one sees that k = 1 and q / n = 0 at both l imits n ­* 0 and 

n ­► co . At n = 79 (0(0) = 1 . 4 2 ) , k has a minimum and q / n a maximum; the 

bounds thus set are 

k = .7895 and q / n = .2352 . (4.15) 

4 
As the ratio X = p / p varies from 0 to co , one sees that by using (4.3) and (4.7) 

£ also varies from 0 to 1 . Thus, from (4.8), i t follows that at any given k = k(n) 

(4.16) < Eg < 
2 + k E 3 + k 

which together with (4.15) leads to 

1 ­ * ­ J L i 0.7902 . (4.17) 
3 E 

Also, from (4 .10) and (4.15) we obtain 

< Ne ^ 
E9 

0.8905 = ­ p = 1 . (4.18) 
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Similarly, we can set bounds on N e / E and R E / N . At a given n , we have 

2n < Ne < 3n 
( n + i q ) ( 2 + k) E (n + *q)(3+-k) 

and, since Re = p. , 

(4.19) 

[ l + i(q/n)] ( l+ ik ) P l = Jjjj- = [ l+ i (q /n) ] (l + ik)P l 

(4.20) 
By using (4.12) and (4.15), we f ind 

641 = Nl i ' I 
.641 E . 4 

a n d 4 ^ RE ^ ( 4 ' 2 1 ) 

± i JiE. i 3 0642 
3 N * ^ ' 

The upper bound on R E / N is reached as n -* 0 . 

2. Baryon and meson masses 

In our; model, the low- ly ing solitons are.color singlets; the color nonsinglets 

have a l l been unglued by the strongly interacting vector gauge f ie ld . These low- ly ing 

solitons w i l l be ident i f ied as the observed hadrons. Wi th in our approximation, the 

energy levels exhibit a typical SU(6) degeneracy. (For the present discussion, we 

assume the quarks have only three " f lavors" . ) The baryons are the color singlets of 

the three-quark system;, the lowest energy state belongs to the 56 representation of 

SU(6), which consists of the usual spin f SU(3)-decuplet and.the usual spin \ SU(3)-

octet. The mesons are the color singlets of the quark-antiquark system. The lowest 

energy meson states have a 36- fo ld degeneracy, consisting of two. SU(6) represen-

tations, 35 and 1 ; al ternat ively, these states cap also be resolved into the usual 

vector and pseudoscalar nonets. The massof the§e soliton solutions is given by (3.37) 

and (3.39). We have 
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E = m for N = 3 

and b (4.22) 

E = m. . for N = 2 
M 

where mD denotes the lowest baryon mass averaged over the 56 representation, and 
D 

m. , the corresponding lowest meson mass averaged over the vector and pseudoscalar 

nonets. 

Of course, we may also adopt the phenomenological description developed in 

1 3 
the previous section. For definiteness, we may choose, as in (4.14), n , s = -r p and 

p to be the independent phenomenological constants in the theory. It is instructive to 

first examine some l imi t ing cases: 

(i) n ^ O 

From (2.64), (4.10) and Figure 6b, we see that in this l imi t , 

(4.23) 
P] = 2.0428 , k = 1 , 

q / n = 0 and E g = N P ] / R . 

Hence, (4.2) and (4.6) become 

E = N P l R
_ 1 + 4TTR2S + gTrR3p 

and (4.24) 
3 4 

N p . = 8TTR S + 4TTR p . 

1 3 
The problem is then completely determined by the two remaining constants s = 7 f i and p 

+ 
By using (2.13), (2.63) and (3.35), we know that in this l imit the charge density «|» «|> 

and the scalar density <|» 3 ^ ° f r n e quark wave functions are distributed ent irely 

w i th in the soliton volume. [_See especially Theorems 2 and 4 in Sec. I I .4. ]] Furthermore, 
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in this limit, since E = Ne , the scalar fields (gluon a and Higgs <}>) only contribute 

3 2 2 3 
directly to the volume energy E =$TTR p and the surface energy E = 4TTR S = girR p 

The following are two extreme cases: 

Case (ia). In addition to n ­* 0 , we may take the limit s ­* 0 . Thus, E = 0 , 

and we find 

N = 4ir(p/2.0428) R4 , 

E = gNe = g" VT" ( irp)* (2.0428)* N * (4.25) 

and 
m 
" = (§) 
M _ tZA 

mB 

5 7 

This double limit n ­* 0 and s ­* 0 gives the Creutz­Soh version of the MIT bag. 

[We note that the description of the vector gauge field in our model is quite different 

from that in the MIT bag. Also, our model does not give permanent quark confinement, 

except in the limit when m = co . 1 

q J 

1 3 Case (ib). In the double limit n­ * 0 and p­► 0 , then E = 0 , and because s = ­ r | j 
we have in place of (4.26) 

N = 51r(pR)3/2.0428 , 

/ 

and 

E = f Ne = (9TT/2 ) 3 (2.0428)3 p N 3 (4.26) 

M ,2 x3 
™ = ( 3 ) 
mB 

( i i ) n ­► co 

From (2.70), (4.10) and Figure l b , we see that in this limit 

Pj = 1 , k = 1 , 



51. 

and (4.27) 
q / n = 0 and E N / R . 

9 

Hence, (4.2) and (4.6) become 

E = NR " 1 + 4TTR2S + 3TtR3p 

and (4.28) 

N = 8TTR3S + 4irR4p 

By using (2.67)­(2.69), we f ind that the charge density of the quark wave function 

t *. 2 A. 2 ~ 
i|) « | » c c O + 0 = 2x of (2.65) now concentrates entirely on the surface r = R of 

t ^ 2 * 2 

the soliton solution. The corresponding scalar density f p ♦ x u ­ v = y of 

(2.65) also peaks near the surface at r = R [ l ­ 0 ( n 2 ) J , but then drops quickly to 

zero at r = R . While the quark wave function in these two l imi t ing cases, n ­* 0 

and co , behaves to ta l ly dif ferently, the gluon and the Higgs fields exhibit the same 

characteristics. Since E = Ne in both l imits, the scalar f ields contribute only 
direct ly to E and E . Again, we examine two extreme cases: ' s p ^ ' 

Case ( i ia). In the double l imi t n ­* co and s ­* 0 , we have E = 0 , 

N = 4irR4p , 

and 

E = $ N e = 1 7 2 " U p ) * N ^ (4.29) 

M / 2 a 
­ ( 3 ) 

mB 

Case ( i ib). In the double l imit n ­* co and p ­* 0 , we have E = 0 , and since 

1 3 
s ­ 6 ­M / 

N = g ­ i r ( pR) 3 , 
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E = | N e = ( 9 T T / 2 ) 3 M N 3 (4-30) 

and 

m 

" = (i) M / 2 \3 

mB 

In case ( i ib), both the quark wave function and the energy density of the gluon 

3 
and the Higgs f ie ld concentrate on the surface of the soliton, similar to the SLAC bag. 

LNo te , however, in our f ie ld- theoret ic model the symmetric point ( a , <|>) = ( 0 , 0) is 

a local minimum of U ( a , <p), whi le in the SLAC version, i t corresponds to a local 

maximum. In order to have the vector gluon be effect ive in ungluing the color non-
13 

singlets, we must have m.. = 0 inside the soliton solution, which makes i t desirable 

to have the symmetric point ( a , <|>) = ( 0 , 0) be a local minimum of U . ] ] 

Remarks. A. At any f in i te n 40 , inside the soliton the gluon f ie ld a may deviate 

appreciably from being a constant a = 0 . Hence, in accordance with (4.10), E 

contains an addit ional part \ Ne ( q / n ) , besides the total quark energy Ne . In 

addit ion, k = - d In E / d In R becomes different from 1 . Only in the l imi t n -* 0 , 

or co , is k = 1 and Ne = E 

9 
1 3 

B. We may choose, instead of n , s = r p and p , 

4 
p , X = p / p and -q/i (4.31) 

as the set of independent parameters, where ■q and £ are defined by (1.11), as before. 

Then, 
n = n ( X , T ? / £ ) 

is given by (3.42). Both X and -q /'£ vary from 0 to co . At any f in i te f ixed value 

of X , 
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n = 0(v/i) as T J / S ­ either 0 or co . (4.32) 

At any f in i te f ixed -q / £ 4 0 , as X ­* 0 (3.42) reduces to 

* 2 

f ­ = F(n) = ( ~ ) [ 6 ( P ] ­ D 0 2 ] 3 (4.33) 

which gives a f in i te nonzero n ; as X ­* co (3.42) leads to, because of (2.70), 

n = ( 4 T T N X ) 2 T ? A ­ oo . (4.34) 

Thus, n ­* 0 only when -q / £ ­* 0 , whi le n ­* oo when either ■q / £ — co , or X ­* oo , 

or both. 

3. Charge radius, magnetic moment and g . / g v of the nucleon 

Let r^j , p^. and 9 A / 9 \ / be, respectively, the root mean­squared charge 

radius, the magnetic moment and the ratio between the axial vector and the vector 

p­decay coupling constants of the nucleon, where the subscript N denotes either the 

neutron n or the proton p . In our model, we have 

where 

2
 , 2 / 2 2 

r = <p >/e , r = 0 
p r n 

. 2^ ­1 rp] 4 , . 2 . 2 . , 
< p > = n / 4TT P (u + v ) d p , 

^P " HpA . pn = ­ § H p 

where (4.35) 

and 

p = g ­ n / 4u p uv df 

/ 5 p . 2..2 ,.2. 
9A / 9V = 3n"70 4*P (U " 5 V ) dP 

nP] 2 *2 A2 2 
where, as before, n = 4ir / p ( 0 + v ) d p . Thus, < p > , p and g . / g are 

«/ 0 p A V 
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functions only of n ; their values are plotted in Fig. 7. Because of (2.26) and (2.25), 

each quark carries an energy 

4/ / , r i e = P ] / R = p ( n / N ) 2
 (v/£) (4.36) 

3,7 
The derivation of (4.35) follows the standard route: ' Let V denote the quark wave 

function whose total z-component angular moment is ^ ; i.e., «|» is given by (2.13) 

with . 

S = ( 0 ) . 

In either the Gell-Mann-Zweig quark model, or the Han-Nambu model, one can readily 

show that 

r
2
 = f * t < P r 2 d 3 r / / «|»t «P d3r , 

P 

r*v,„. t^., . ,3 .t... ,3 

and 

p = i [ / r x V a ^ r ] / / YT <P dJr 
r p i_ _j z 

9 A / 9 V = | / � P t a z 1 ' d 3 r / / t t«|<d3r 

(4.37) 

Hence, the expressions for r , p and g . / g v given in (4.35) follow. The corres-

ponding expression for r is obvious, and that for p is due to the relevant SU(6) 

CIebsch-Gordon coefficients. We list below the values of these quantities for the 

limiting cases that have been examined in the previous section. 

(i) n - 0 

In this limit, p . = 2.0428 , 0 and 0 are given by (2.63). By using (2.64), 

we find (4.35) becomes 

r = e 
P 

O 3 O 2 x A Q * 

r 2 P l - 2 P ] + 4 P ] - 3 -i 

6 ( p - l ) 
= 1.4891/e , 

rn = ° ' 
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( 4 P ] - 3 ) 

M, 
P 1 2 e ( P l - l ) 

= 0 .4133/e , (4.38) 

2 
P - ~ 3 p 

n P. 
and c 

5 P l 
9 A / 9 V =

 vn^i) =
 ]

-
m 

(ia) If in addit ion to n — 0 , we.assume s -* 0 , then by using (4.25), since N = 3 

we have , , . _Q> 
e = i mB (4.39) 

and therefore, from (4.38) 

r = 5.956 / m D and p = 1.653/mD . (4.40) 
p B r p ' B 

(ib) If in addit ion to n -* 0 , we assume p — 0 , then by using (4.26), we have 

2 
e = 9 f"B / (4.41) 

and therefore, from (4.38), 

r = 6.701 / m B and p = U 6 0 / m B . (4.42) 

(i i) n - co 

In this l imi t , p . = 1 and the Fermion wave functions 0 and 0 both concen-

trate on the surface r = R . Hence, 

rp = e . ' rn = ° ' 

Mp = ( 3 e ) _ 1 , pn = - § p p (4.43) 

and f. 

g A / g v = 9 . 
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( i ia) If in addit ion to n ­► co , we assume s ­* 0 , then we have, just as in (4.39), 

and therefore, from (4.43), 

rp = 4 / m B and p p = 4 / ( 3m B ) . (4.44) 

(iib) If in addition to n ­► co , we assume p ­* 0 , then, just as in (4.41), 

2 
e ­ 9 mB 

and therefore, from (4.43), 

rp = 9 / ( 2m B ) and p p = 3 / ( 2m B ) . (4.45) 

These l imit ing values are also summarized in Table 1. For comparison with ex­

perimental results, i t is more convenient to use the average nucleon mass m. . ="939 MeV 

as the basic energy scale, rather than mR ­ 1316 MeV , the baryon mass averaged over 

the 56 representation of SU(6) . From Table 1, we conclude that for applications 

to hadrons, the parameter n could be either O( l ) or smaller. In any case, i t should 

be away from the n ­* co l imi t . Otherwise, g . / g « , would be 5/9 and the charge 

density would be distributed only on the surface of the soliton; both features seem to 

be quite different from those .of the physical nucleon. 
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Physical 
observable 

r 
P 

MP 

^n 

g A / g v 

scalar­ f ie ld 

energy 
density 

charge 

density 

Experimental 
value 

3 . 8 6 /m N 

2.79 / (2mN ) 

­ 0.685 M VP 

1.25 

Theoretical value in 

n 

X — co 

4 . 2 5 /m N 

2.36 / (2mN ) 

­ 2 

1.09 

­ 0 

x ­ *o 

4 . 7 8 /m N 

2.66 / (2mN ) 

_ 

1.09 

! 
volume i surface 

I 
! 
I 

volume 

some l imi t ing cases 

n ­► co 

X ­* co 

2 . 8 6 /m N 

1.90/(2mN ) 

2 

5/9 

volume 

X ­ 0 

3 . 2 1 /m N 

2 . 1 4 / ( 2m N ) 

2 

­ 3 H p 

5 /9 

surface 

surface 

Table 1. Root mean­squared charge radius r. , magnetic moment p and 

4 ­

g . / g v of the nucleon N . The parameters X = p / p = p / ( 6 s ) 

and n are defined by (1.9) and (2.19). In the last two rows, "volume" 

and "surface" mean respectively "w i th in the volume" and "on the sur­

face" . See Sec. IV.3 for further details. 
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V. Remarks 

In this paper, we have presented a new formulation of the relat iv ist ic quark 

model of hadrons, based on the quasiclassical soliton solutions of local f ie ld theories. 

We have shown that, once the low­ ly ing soliton mass is assumed to be much smaller 

than the masses of the plane wave solutions (i.e., quarks, gluons, etc.), then under 

very general conditions, independently of the number of constants in the original 

Lagrangian, the description of the solitons depends only on three phenomenological 

parameters: n , s and p , as given by (4.14). There is a direct physical interpreta­

t ion of these parameters. The soliton ( i .e., the hadron) resembles a "gas bubble" im ­

mersed in a medium ( i .e., the vacuum); p is the pressure exerted by the medium on 

the gas bubble, s is the surface tension and n determines the thermodynamic func­

tions of the gas. In the double l imi t n ­► 0 and s ­* 0 , one obtains an MIT­ l i ke bag, 

whi le in the opposite extreme n ­* co and p ­* 0 , a SLAC­l ike bag. 

Such reductions occur frequently in physics, whenever the system under consider­

ation contains two or more very different scales of length (or energy). As examples, one 

may mention Fermi's p­decay theory of weak interactions, the usual scattering length 

and effect ive range approximation of nuclear forces, etc. In al l these cases, i f one 

starts from the underlying Lagrangian, i t may be di f f icu l t to give a rigorous proof of the 

va l id i ty of the approximations used. Qui te often, this d i f f i cu l ty is compounded by lack 

of knowledge of the correct basic theory. The same is true here. In our case, one of 

the important questions is the va l id i ty of quasiclassical soliton solutions in the strong 

coupling region. For a fu l l y relat iv ist ic local quantum f ie ld theory, this question is 

not resolved. However, in the case of nonrelat ivist ic Fermions interacting with Bosons 
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(which can be relat iv ist ic), the answer is known: the quasiclassical solution does give 

an accurate description when the coupling is suff ic ient ly strong. 

Because the solitons are solutions of a local f ie ld theory, i t should be possible 

to calculate matrix elements of operators between different soliton states, e.g., nuclear 

charge form factors wi th large momentum transfer, i t -decay rate, etc. Some of these 

calculations are under investigation. 
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Appendix A 

In this appendix, we give an alternative proof of (2.24). In accordance 

with (2.60) and the discussion preceding i t , in this alternative proof one should first 

start from the expression E = E(R), given by (2.23), and then derive (2.24) by setting 

1 ­ » ■ <A­'> 

By using (2.58), we may rewrite (2.23) as 

R 2 

E(R) = Ne + 27 r (Ng /m )2 f r 2 d r ( u 2 ­ v 2 ) 
o JQ 

+ §TtR2p3 + gTrR3p (A.2) 

where u and v are solutions of (2.35), and u = v at r = R . Thus, the variat ion 

of E is 
D 

6E = N 6 e + 4 T r ( N g / m )2 f r 2d r ( u 2 ­ v 2 ) 6 ( u 2 ­ v 2 ) 

+ 4 T r R 2 S R [ g ( p 3 / R ) + p ] . (A.3) 

Throughout this appendix, we keep the parameters N , g , p , m and u 
a r 

f ixed. Since in (2.17), each solution determines a def in i te value of n , defined by 

(2.19), we may regard the solution of (2.17) as a function of p and n ; i .e., 

0 = 0 ( p , n) and 0 = 0 ( p , n) (A.4) 

where p varies from 0 to p . ( n ) . We may then use (2.25) and (2.26) to define 

e = e(n) and R= R(n), or its inverse function n = n(R) . Through (2.16), (2.36) and 

(A.4), we may regard the solution of (2.35) as a function of r and n ; i .e., 
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u = u ( r , n ) and v = v ( r , n ) (A.5) 

with rR 9 o o 
4TT [ ( u S v l r dr = 1 , (A.6) k (u ' 

^ 0 

where at r = R(n) , 

u (R , n) = v (R , n) = u}(n) . (A.7) 

Equation (2.35) can be written in its original form (2.9): 

Hp * = e <P , (A.8) 

where _̂  
HF = ­ i a . V + g p a , (A.9) 

a = a (r*, n) = ­ ( N g / m 2 ) ( u 2 ­ v2 ) (A.10) 
a 

and ip = <|»(r, n) is related to u ( r , n) and v(r> n) by (2.13). From (A.8), one has 

( 6H F ) * + HpS* = (6e)<P + e(6<M (A . l l ) 

where « 2 2 
6H p = gp6a = ­ ( N g / r r / ) 6 (u ­ v ) . (A. 12) 

rK t 2 
In this variation, r is kept fixed, but n ­► n + 6n . Since 4IT J 'P *P r dr = 1 , 

t ° on account of (A.6), we find, upon multiplying (A. 11) by •P and integrating from 

r = 0 to R , 

.R 
6e = 4 u f r 2dr [ * t ( H _ ­ e ) 6 * + g ^ B * 6a ] 

which, through partial integration and because of (A.8)­(A. 10), may be written as 

,R 

0 

6e = 4 uR 2 ( u 6 v ­ V 6U ) D ­ 4 T T / * ( m 2 / N ) a 6 a r2 dr (A.13) 
K J n a 
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where the subscript R denotes r = R , 

5u = [­^— u ( r , n ) ] 6n and 6v = [ ­=— v ( r , n )J 6n . 

(A. 14) 

Because l « 1 
u ( r , n ) = ( e / n ) " 0 ( p , n ) , v ( r , n ) = ( e / n ) 2 0 ( p , n ) 

(A.15) 
p = re and e = e(n) , 

we have « 

_ € F c .A. 0 A. A . 0 A . . . A . 0 A . A . 0 
uov ­ vou = — roe (u ■%■— v ­ v -=— u) + 6n (u -=—v ­ v -=— 

n L 3 p «P 3n 9n 

(A.16) 

By using (2.17), and noting that the derivat ive d / d p there is the partial derivat ive 

d/dp above, we obtain 

A. O A. A (J A. Z A A. AZ AZ /AZ AZ. , . , _ . 
u ­5— v ­ v ­r— u = u v + u + v + ( u ­ v ) (A. 17) 

dp op p 

and 

^ _ ( 0 2 ­ 0 2 ) = ­ 4 0 [ 0 ­ ( 0 / p ) ] . (A.18) 

At r = R , P ­ P l , 0 = 0 ­ 0 . , and therefore 

< 0 ^ r 0 - 0 ^ c ) - - i [ ^ r ( = 2 - 2 ) ] • (A.i9) 

Let us define 

X ( p , n ) = 0 2 ( p , n ) ­ 0 2 ( p , n) . (A.20) 

Since X ( p , n ) = 0 at p = p . ( n ) , i t follows then that X ( p , n + 6n) = 0 at 
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P - P l ( n ) + 6 P . where 6 p . = ( d p . / d n ) 5n . In the ( X , p ) plane, we may consider 

an infinitesimal right angle triangle ABC , whose vertices are A = (0 , p . ) , 

B= ( 0 , P , + 6 p . ) and C = ( 6 X , p . ) where 6X = [ a X ( P / n ) / 9 n ] 5n . Hence, 

the point A lies on the curve X ( p , n) vs. p , and the points B and C on the 

curve X (p , n + 6n) vs. p ; CA is j _ AB , and their lengths are, respectively, 

CA = 6X and AB = 6 p . . The ratio - C A / A B is the slope of CB . By using (A.18) 

and setting p = p. , we find that this slope is 

- 40 1 (1 - p1 ) . 

Thus, 

| £ 6n = 6X = 4 0 2 ( l - p j " 1 ) 6 p 1 . (A.21) 

Because of (A.17)-(A.21), at r = R (i.e., at p = p . ) , (A. 16) becomes 

e3 . 2 -1 
( u 6 v - v 6 u ) R = 2 — G j ( l - p j ) ( R 6 e - 6 P l ) ; 

therefore, (A. 13) reduces to 

D 

6e + 4TT f (m 2 / N ) a 6a r 2 dr = - 8TrR2u.2(e - R_1) 6 R . 
J0 ° ! 

(A.22) 

By using (A.3), (A. 10) and (A.22), we obtain 

6E = 4 T T R 2 6 R [ - 2 N u 2 ( e - R _ 1 ) + p + g ( p 3 / R ) ] . (A.23) 

Thus, d E / d R = 0 gives (2.24). 
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Figure Captions 

2 2 -1 A9 »2 
Figure 1. 0 - 0 vs. p for (4-rr) n « 1 (with an arbitrary scale for 0 - 0 ) 

and for (4TT) n = 3 .53 'X 10 (with the exact scale for 0 - 0 ) . 

F igure2. O ( p ) / 0 ( 0 ) , O ( p ) / v ( 0 ) and [ 0 2 ( p ) ± 0 2 ( P ) ] / O2(0) vs. p from 

p = 0 to p = p . = 2.0428 when n -* 0+ . 

A2 ^2 
Figure 3. 0 , 0 (solid curves) and 0 ± 0 (dashed curves) vs. p from p = 0 

to p = p. = 1 when n -* co . For small p , one uses the left-hand 

scale for the ordinate; for large p , the r ight-hand scale. 

Figure 4. Solutions X ( T ) and 9 ( T ) of (2.69). 

A2 A.2 

Figure 5. 0 ( p ) , 0(p) (solid curves) and 0 ( p ) ± v ( p ) (dashed curves) vs. 

p from p = 0 to p = p. for n = 9.43 ( in a ) , 20.5 ( in b ) , 

47.8 ( in c ) , 117 ( in d ) , 259 ( in e ) and 1631 ( in f ) . 

A2 A2 
The r ight-hand scale for the ordinate refers in c and d to 0 + 0 

I *Z A.Z . AZ AZ I , . r * / AZ I 

and u - v , i n e t o u + v a l o n e , and in r to u + v only 

for p >0 .75 . The left-hand scale refers to everything else. 

Figure 6. (a) n (solid curve) and l o g . - n (dotted curve) vs. 0 ( 0 ) . As 

0 ( 0 ) - * 0 c = 1.7419, n - * c o . (b) P ] (dotted curve), k (solid curve) 

and q / n (dashed curve) vs. 0(0) . See (2.18)-(2.20) and (4.12) for 

their definit ions. 

Figure 7. The integrals <" p > , p = e p and g » / g v vs. 0(0) which ranges 

from 0 to 0 = 1 . 7 4 1 9 . See (4.35) for their defini t ions. 
c 
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