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Abstroct

We exomine the possibility, ond its consequences, thot in o reluﬁv;istic local
field theory, consisting of color quarks o, y:ulgr gluen o, color gauge field ¥V
and color Higgs field ¢, the moss of the soliton solution may be mueh lower than
any mass of the plane wave solutions; i.e., mq the quark mass, m the gluor mass,
ete, There appears @ rather claan seporation betweean the physics of these low mass
solitons and fhat of the high energy excitations, in the range of mq and lﬁu , pro-
vided that the parometers £ = {w"mq}lz and 5 = |'.|,-*'mn|.:Ir are both << 1, where p is '
an ovetall low energy scale appropriate for the solitons (but the ratio 5 /§ is ossumed
to be Of1}, though otherwise arbitrary),

Under very general assumptions, we show that |'mie:|::~arrn:herr|.tI',n.a.r of the nymber of
parameters in the original Lagrangion, the mothematical problem of finding the quosi-
classical soliton solutions reduces, through scaling, to that of a simple set of two coup-
led First-order differentiol equations, neither of which contains any explicit free parom-
eters. The general properties and the numerical solutions of this reduced sef of diFfer-
enfial eciuuﬁuns are given. The resulting solitons exhibit physical chorocteristics very
similar to those of a "gos bubble® immersed in o "medivm" : there is o constant surface
tension and @ constant pressure exerted by tha medium on the gos; in oddition, there
ore the "themmodynamical® energy of the gas and the related gos pressul.ra, which are
determined by the solutions of the reduced equations, Both o SLAC-like bag and the
Creutz=50h version of the MIT bag may appear, but only as special limiting cases,

These soliton solutions are applied to the physical hadrons; their static proper-

ties ore calculated end, within @ 10-15 9o cccuracy, ogree with observations,
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L Introduction

In a previous ﬁup&rl (heracfter ealled [}, we have made o systematic com-
parison between the quasiclassical soliton results and the exoct answer in o quantum .
field theory, whenever tha exoct answer is available, In o fully relativistic renormal -
izoble theory of o Fermian field interacting with a scalar gluon field, the exact answer
i3 known only in the weak coupling regien, There, it is found that the quasiclassical
result becomes exact when the Femmion number N is lorge, Fven when N = 2, the
quasiclassical result remains o foir approximation, For example, the ratio between
the exact two-body binding energy and the corresponding quosiclassical seliton result
is & .77 in the weak coupling limit, When the Fermions are nonrelativistic (like
alactrans in a erystal), but the scalar field remains relativistic, exact answers are also
known in the strong coupling limit, We find that the quasiclassical soliton resuit be=-
comes axact for arbitrary N, provided that the coupling is suffi ciently strong; it is
olso exact in any coupling range, when N is sufficiently lerge. [f is not difficult
to trace the underlying reoson for the validity of the quasiclassical description. When
N is >>1, there is o large number of real particles in the system, Similarly, whan
the coupling is strong, the number of vidtual porticles becomes large. In either cose,
the system possesses some |arge coherent modes of field quante, which are occessible to
quasiclassical descriptions. It is quite remorkable that even in the worst cose, N =2
ond weak coupling, the quasiclossical binding energy derived from the soliton solution
remaing o fairly reasonable approximation 1o the exact quantum value, [ The some con-
¢lusion can be reached if the conserved quantum number, say N, is corried by o
Boson field, instead of a Fermion field, ]

From these comparisons, we infer that strong coupling is by no means detrimental

to & quasiclassical m:n':.n:vmim-n.cml‘ir.m.1‘r2 Rother, because of the large number of virtual




quanta invelved, and because of the strong potential energy which may develop ogainst
fluctuations, one expects the quasiclassical approximation to be more relioble in the
strong coupling region. With this assumption, wa shall in this paper extend our studies
of quasiclassical soliton solutions to quark models for hadrons, where strong coupling

is ¢leorly required. Qur starting point is identical to that of Bardeen, Chanowilz,
Drell, Weinstain and “1"|:|n;,:':.r it is also similor to the work of many oﬂ1en.4'6 On the
other hand, as we shall see, the details are different; our analysis of the quasiclassicol
soliton tolutions will be more systematic, Both a SLAC-like bu93 and the Creutz=S5ch
versinn5 of the MIT bug? will appear only as special limiting cases.

The specific system thot we with fo study contoins a quark field ¥ , which
heas nine components representing the (3,3} representation of the :nlarB SUQ) times
the u-.wn19 SUQ3) symmetry, [The generalization to SU{#) i sfmightforwand.]
Instead of o permonent confinemeant, we qassume a very large moss mq for the free
quark, which accounts for its escope from detection so far, A scolor gluon field o
is introduced to bind the quarks Tnte observed hadrans. By opplying the some mechan-
ism a5 that used in the discussions on abnomal nuclear states, 10 we con reduce the
effective moss of o hound quark to almaet zers intide the hodron, and thereby realize
some of the well-known fectures of a relativistic quark madel, such as SINé) sym-
mﬂry" and the reloted electromagnetic properties, In addition, we follow the sug-
gestion of l*hnbum to introduce a color-gouge vector field VP to unglue the color-
nonsinglet states; this necessitotas thot the vector forces be strong ond long rﬂﬂgela
ingide the hadron, Consequently, the vector field must also be of a very small effec-

tive moss inside the hadron, though its physical mass m,, in a free state hos 1o be

v
rather large since it has escaped detection so far. A color Higgs” field ¢ isthen



introduced to achieve this purpose.

The general Lagrongian density L of these four fields ¥, ¢, VP ond ¢
is given by Eq. (3.8) in Sec. III. In the Lograngion density, the potential function
U{o, ¢ between the scolor glueon field o and the color Higgs field ¢ is assumed

to have an absolute minimum at the vacoum value

o = © # 0 and » = ¢ #F 0 {1.1)

vac

with the convention

u( Tvae ‘P\ruc"' = 0. (.2)
The free quark mass rn‘=I ond the free vector mass m,, are
mq = 99 . and m, = f  J {1.3)

where g and f ore the appropriate coupling constants in the theory, These
two mosses are both heayy, >> 1 GeV . In addition, the potential function U{a, ¢

is assumed to have a local minimum of the origin

where the effective masses of the quark and the vector field ore both zero, We define
p = U0, 0 > 0 . {1.4)

For cofor=singlet siates, the overage value of tha color gauge fiald ‘h.fp i5 zaro; there=
fore, we can simply ignore Vp in a quasiclassical caleulotion for observed hadrons,
since these are all color-singlets,

As we shall see, in accordance with the aforementioned description inside the
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hodron, we expect the interior of our soliton solution to be in the neighborhood of
o = ¢=0. Consequently, the energy scale of the low-lying solitons is expected to be
at levst partly determined by p . Since, in this poper, we are interasted only in soliton

models for hedrons, which ore supposed to be much lighter than the quark and the gluvon,

we shall always assume

m_ > p* ond m_ > p* (1.3)

q v
where m_ s the moss of the gluon field o. [In the cose of o - ¢ coupling, m.
must be more curefully defined, See (3,29} in Sec, IlI, ]

MNear the surface of the soliton, as we thall also tee, there is a rapid transition

of the scalar fields, ¢ ond ¢, changing from values near (o, 9}= {0, D) to

(o

o q:w“] . The simplest way to colculate this transition is to solve the correspon-

ding mechanical analog problem of a point porticle, whose "coordinates* are {a, 9),

moving in a "potential® - U{e, ¢), starting from the origin {0, 0) ot o finite "time"

and reaching the point {¢ . ¢ )} at on "infinite time", Such o tronsition of ¢
vac* Tvae

and ¢ gives rise to a surface energy density s, which will be denated by

= = 13- 12 .2
s = surfoce energy /area = r 5™ %ac (1.8}

where p , thus defined, has the dimensionality of o mass. [t can be reodily verified
thot if there iz only the o-field, without the Higgs field ¢ , then I"l_"lq =m_ . the
free o-mass; thus, if one wishes, one may regard E-‘J , defined by (1.4}, to be an

"gffective® ¢-maoss, relevant for the description of the soliton surface, [See (2.44)

and (3.27) below. ] In parallel with (1.5), we assume

my > B and mo > p (1.7}




5. S
where, in accerdance with {1,4), _
Lo~ 208 |
H {mu %ae) (1.8)

Under the assumptions (1,.3) and (1.7), the low=lying solitons are characterized

%

by the energy scoles p® and p {os s* }. For convenience in order of magnitude esti=

4
mations, the dimensionless ratio between p and 4,

A= pr4 , (1.9}

though urbifmg, will be regarded o5 Of1) ; i.»., )t‘J‘ is considered to be much smaller
than sither {mq;’p} or l,'n'nIIJr /1), so that {1,7) i_mpliﬂ (1.5}, Hence, in o seliton model
of hadrons, wa expcct'

s

ho= O (my) 1.10)

where mag 1316 MeV is the average baryon mass of the ohserved lowest SU(&) 56—

- multiplet, [t is useful to define
e 2 (u/mf  ed  n = (u/im)) . (.11

Both dimensionless parameters are ussumm:l to be quite small,

Inthe limit § ond 5 both — 0, ot a fixed but arbitrary ratio /¢, o rether
remarkable simplification arises, As we shall see, the low=lying solitan solutions can
be analysed independently of the high energy excitations {which may involve free quarks, -
fres gluons, aete ). Furthermore, through scoling, fhv:i mathematical problem can-be re-
duced to a simple system of two coupled first order differentiol aquations neither of which

conkains any explicit free parameters;
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P

and {1.12)
— +t— v = {(l+uv -¥)u
d p

This reduction is estoblished Fi‘rs..t in Sec, II for a simple system of only color quarks

upd scalar glunn-s, ard then in Sec, IlI f_or a more gaﬁeml system including vector color
gouge fields end color Higgs fields. The genero] properties of lFe reduced equations
{1.12) together with the numerical solutions ore given in Sec, 114,

In See, [V, it is shown that the resulting low-lying stotes exhibit physical
characteristics very similar to those of a "gos bubble® (i.e., the soliton) immersed in o .
"medivm" (i.¢,, the vacyum): there is o constont pressure o exerted by the medium on
the gos and a constant surface tension 5. In oddition, there are the "thermodynamical®
energy of the gas and the related gos pressure; both are determined by the solutions of
tha reduced equations, Also in Sec, IV, we apply these soliton selutions to the known
hadrons. The static properties agree with observations to within 10-13% accuracy.

Because of the rother clean separation of physics of the low encrgy hedrons states
from the physics at a much higher energy (~ quark mass ), identicol results con be de~
rived for these low-lying selutions, whether we assume the quarks are ii'l_feger-dmrged1
or fractionally charged, 17 whether they are stoble n.r vnstable {provided that the inter-
achon causing the instability does not play a major role in the binding). What emerges
is the postibility :aFa relatively seff-contained description of hadron ph}lrsics in the Ge¥
range thot is based on the quosiclassical soliton solutions of a relativistic local field
theory. The fact that these low=lying stotes form almost a closed system indicates thot
the theory con at least be regoarded os 4 phenomenslogical one, somewhat anclogous to

Fermi's theory of- p=decay. The fomilier *eurrent X curreni;‘ description of the waak



interaction, though not fundamental, seems to be quite odequate u;': to the present
enargy ronge; it con be formulated without any specific reference to the precise noture
of the underlying structure of the weak interaction. Likewise, the Lograngian density
used in oyr derivation of the soliton solutions may not be fundomental, Even some of
the *locol* fields used in our description, such as gluon, quark, etc., may turn out to

be opproximate concepts, valid only at relatively lorge distances, ~ Iﬂ.l:3 - m-]S cm,



I!.: Systems of Quarks ond Scaler Gluans
1. Hamiltenian
From the discussions given in the previous section, we sae that for color=
singiets, the system can be reduced 1o that of a spin § quark field and some scolar ,
fields, For clority of presentation, in .fhis section we exemine a simpler system, con=
sisting of only the quork field and the scalar gluen field o, without the Higgs field.
[The complete Lagrangion, which contains the vector ond Higgs fialds as well, Ts given

in Sec, [II.] The Homiltonian density 3. of this simpler system may be written as

1. - =
Bo- 33Tl s Uo)e T 0 (10T + oBo)es’ + conterterms
ik

@.1)

where & and p cre the standord Dirac motrices, ¢ is the gluon field, TT its con-
jugote momentum, and !ij is the quark field, with the subseript | and the superseript
k varying independently from 1 to 3 representing, respectively, the “color* SUEG)
index and the usval "Flavor® SU@} index, In this section, for definiteness, we assume
U(o) to be o fourth order polynomial of ¢. Since, on account of (1.4), ¢=0

is ossumed to be a local minimum, we have

U{o) = ﬁuuz + ;'ubnra + i,¢a4 + p 2.2)
where >

B~ » 3a¢ _ (2.3}
so that the absolute minimum of U{g} isat o= cwc;#'ﬂ_ In accordance with (1.2)

and (1.4), the constant p is intreduced in order that

Ufuwc_'l = 0 and WO = p . | (2. 4)




Without any lass of generality, we may choose b < 0, ond therefore o, > 0:

a = % [- b+ (bz'- g- nc}ij . 2.5

vac

The free gluon mass m and the free quark mass me are given, respectively, by

m'f = «121J,r"'c:h:lr2 at ¢ = ¢ , _
and -{2.6)

q vac

The porameters o, b, ¢ and p in-\ U{o) ond 3 all refer to the appropeiate

renormuliz;lzu} constonts, and the counterterms in (2.1) aré for renovmalization purposes.’
By following exactly the same steps used in'Sec. [ of I, leading from Eq. {II.II}

to By, {1.18) in that paper, we can decompase our total Hamiltonian H = f M dar

into a sum of two terms; a quasiclassical part H and a quantum correction H
qel cofr

+ H . | {(2.7)

In the present poper, we are interested only in states with quark number NE3. For
these states, just as in Eq. (1,17} of I, the lowest sigenvolue E of qu:l is given by

the minimum of the functional
E(e), 2 Ne+ f[3(F0)2+000)] & 2.8)

where l;rfr) is @ ¢, number Function of r and ¢ is defined to be the lovrest pasitive

eigenvalue of the ¢. number Dirac equation

(cia.+gpo) & = b . | 9

1,18

It has been shown elsewhere that the sigenvolue « of (2.9} i3 never zero
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(in contrast to the topologicul :olii-onw:l . Furthermore, because of charge-conjugation
symmetry, ¢ always oppears in pairs: | € ] . & ' ¢y | ¢*"*. From (2.8} and

(2.9}, one sees that the minimum of E{o) occurs when o is the solution of
_—V2a+ Ufe) = -th’Tﬁil -, (2.10}

whers U'(¢)=dU/de and T8 d3r=1.

It is usafuyl to defina

i

A

maximum of U{c} between o¢=0 and ¢ ;
vac

and

2 = p/a
As already mentioned in the inkroduction [und as wa shal] elso show later in {2.44}] .
in the present simple cose, the mass Eu defined by {1.6} is the some o3 m_ thus,
{1.8) becomes simply

= 2 5 ' 11
LA {m'u:r':'r».un:n:"I . 2.11)

From (1.9) and (1,17}, we sea that p’ﬂ:mu u‘vuc'jz = An . Thus, when 5 —=0, so does
2 2

L , since in this limit A= m crvu:f-BZ » and therefore

A = 5/32
It is convenient to express the porometers o, b, ¢ ond p intemsof T, 0 e and
"o For £ << 1, we find

2 3 2
o= m [1- 52+ 0],
2 1 2
b = -6ms/o V[1- 37+ 0@}] ,
{2.12)
_ 2y 3 2 :
¢ = 12{m /g ) (1 T8+ 0 )]




and

P =y S (3 0@1]

Through (1.11) and (2.11), L . end m_ may in tum be expressed in terms

of p, n ond £, Thus the problem defined by {2.9) ond (2,10) contains a mass y and

four dimensionless porameters §, 5, A ond N (o £, 5 I and N).

2. FReduction of difi‘emnfiul aquotions
In this section, we discuss the simpliﬁmr_inn of the diﬂ.'erenﬂul equations (2.9}
ond (2.10), when the parameters £ = {,,,xmq}? and y = p/m ", defined by (1.11)
and (2.11), are bath small,
It s convenient to make the :.iundurd separation of angulor voriobles for I-.he
lowest positive enengy solution of (2.9), We write |
g = ( ’ \"' 5 ' {2,13)

- :
iflo.rfeyv /

where ¢ isthe Pauli matrix, u=uv{r), v =vir) and
o 0
5 - (n] or { 1 }

Equations (2,9) ond (2,10} toke oa the radial form

d

qri = {-e~go)yv ,

% + ?—v = {¢-gotu (2.14)
" Co , do 2 2

—g 2o - Ue) = Ng{v -v7) ,

dr Fodr
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with £ (62 v2) &= 1. From (2.14), we see thot ‘
o R S VARTRE 7 (2.15)

We define the dimensionless voriable

p = &r . (2.16)

As we sholl see, for N=2 or 3, inthe limit £ and y both -0 at afixed but
arbitrary ratio 5 /£ , through scaling the above rather complicated set of coupled
equations in r con be reduced to the following simple set of two coupled first order

differential equations in p :

-37’:— = (e it
and ) (2.17)
R L AT

The relution between these two sets of equations, (2.14) and (2,17), will be given below,
It is quite remarkable that (2,17} does not explicitly contain any free parometer, while
in the originol set of equations (2.14) there are five independent poromefers o, b,
c,gand N {or p, &, 5, % ond N},

To see how the solutions of (2.14) can be exprassed in terms of those of {2,17),
we first comment on some simple properties of the reduced equations (2,17), At p=0,
the initial value U(0} con be arbitrory, while ¥{0) =0 because of the term 2v/p
in the sacond equation of (2.17). By essigning on initial value u(0}, we can integrate

{217 fram p=0 to the peint when u(p) = ¥{p), say af e=pq- Let vs define

p
n = dn ﬂ] o2+ 9 dp (2.19)




1]

13.

ond

¥. |
1]

- p 2.2
4,,f T oZat- 8 dp (2.20)
0

Each initial vulué u(0) leads to a given sat of 31 » Py e D ond o, [kisjustas
convenient to choose n to bf; the independent parameter; and regard ui0), P
?11 and q a5 functions of n .- Tha following theorem {proved in the next section)
astablishes the relation between the solutions of 2,14y and 2.17):

Theorem | In the limit £ and 5 both ~0 at o fixed, theugh arbitrery, ratic o /£ ,
For N=2 or 3, the .Iowesr soliton energy E{o}, which is determined by {2.8) ond

(2,14}, is given'by

1, 3 IO |
E N.? ¢ N 2
== () ()Y (v En( 0 (e B it ey . @20
and
P, % N
¢ = fﬂv‘! (-—} {p]‘1}572+5‘f%)f§i}+ [-EJ-.} f‘?" 2y (2.22)

whera ¢ and )\ are d;ﬁned by 2.11) and (1,9} respectively,

Befora giving the proof of the theorem, it may ba useful first to discuss its con-
tent, For definiteness, let us consider in (2.14) a given set of parameters o, b, c, p,
g and N. The other parameters such as n, 5 /& and X are then all determined,
On the other hond, from the solution of (2,17}, one has q = q(n), py = py(n) and
ﬁ] = Gl{n]_. We moy then yse (2,22} to determine n, and (2.21) to Jeiemine E.

The physical meaning of the theorem becomes clearer if we express (2.21) and
(2,22} in the following alternotive {but. equivalent) form, {2,.28) and (2.24}, also proved

in the next tech on:

= Ne[l1+4(a/m] + §=R2 3 + 5oR%p @.23)
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and .9 1 3

~2Nu (e - R 44 {p/Ry+rp = 0, - (2.24)
whaere 2

n = (g e,-”mu]? N o= ETI:T" , (2,23}

m

R = py/e | - (2.20)
and -

vy = { e3/ n]i G' . (2.27)

In this new form, we moy first derive the functions g = q(n}, Pl = Py (n) and ':}'I = GI (n}
from the solution of (2,17), just os in the preceding paragraph. Next, we use (2.25)=(2,27)
to ohtain ¢ = ¢in}, R=Rin) and Uy =Yy {n) . We then choose R to be the indgpendant
paromater insteod of n; i.e, .'\H't regard n =n(R), = &R), u, = uI{R}, q=q(R),
etc. Equetion (2.23} can now be used to derive E = E(R}, and (2,24) ta determine R .
The porameter R will turn out to be essentiolly the rodial extension of the soliton solu-
tion, The physical origin of the various terms in (2.23) for E{R) con be traced rother
directly, As we shall see, the Fermions contribute an energy Ne . The Boson field

gives o swrfoce energy §er2. p3 ; in oddition, it has & volume energy

‘inR3p+ 2 Ne(q/n} , inwhich the first term is due to the integral of U0} = p over

the volume 'EnR'g » and the second term is due to the deviation o7 0, ﬂ-ll'ld therefore
U(a) #p, in the same volume, As will be shown in Appendix A, Eq. {2,24) is simply

the condition JE{R}/dR=10,

Since {2,21) and (2,22} depend on 5 and £ only through thair ratioc /¢,

one sees thot when the parameters £ ond ;5 are both << 1, the phytics of these low-
lying states becomes seporoted from that of high energy excitations which may consist

of free quarks and Free gluons,

-
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As we shall see in Sec, III, Theorem 1 is aquolly applicable to the generol
case, whith includes not only the quork and the scalar gluon fields but also the gauge
und the Higgs fields, The applicotions of Theorem 1 to the ohserved hadrons will ke
discussed in Sec, [V, Because of Theorem 1, the resulting saliton admits of o phenomen=-
clogical description very similor to that of a gos bubble immersed in o medium: there is
a constant surface tension s = 17 pg , ond & constant pressure p exerted by the madium
on the gas bubble; in additian, there is the "thermadynomical® energy Hel:l + % (q,f’n'l]

of the gos bubble itself, The detoils are given in Sec, V.1,

3. Froof of Theorem 1

In this proof, we shall assume £ and y both to be infinitesimal, but regard

their ratio 5 /€ tobe O(1). It is convenient to divide the space into three regions:

1A
-
13

the intide region ' R - D{m;I} '
R - Om ) @)

rSFl2

where R is defined by (2.26), and R, ond R, will be determined below,

the outside region T

I
Xt
1

A

and the transition region Rl

{i) inside region r$ RI

According to (.12), when Z=p /A is << 1, the local minimum o= 0 of
U{e} is almost degenercte with the absolute minimum o= LI Thus, we expect the
classical scolar field ¢ to baneor o= 0 over a large region of space, which is defined

to be the inside region rE RT . As we shall see, R, < R, clthough their difference

1

is small. Let ¢ be the average velue of a in the inside region, The volume energy

due to the integral of Ulo) is ~% ¢ Ea[p-r &{mu:ﬂzj , which should be < the
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totel energy E = Ofp). [The justification of E= O{yn), of course, comes from {2,21)
and (2,22), which are yet 1o be proved. To facilitote our order of magnitude estimations,
we shall first assume it to be true, ] As already mentioned in the intrﬂuntium p= D{Pd} ]

Since 5 = W"’ma_ and R will turn out 1o be D(p-l} , it follows then that

¢ = Olpg) . - {2.29)

' ' 2 3 2 .

From {(2.11), we see thot g =¥ ,f'mu=p n ; fe,

o = J‘f} {2.30)

vae pnr o .30,
By using {2.12], we obtain
_ -3 = 3

c = Oy} and  bafo = Op?) . {2.31)

Since g o, o mq of £ {-|.|,-*'r|ran1='}p2 . we also have

g = (5g)% = O . 2.32)

Clo/R} , We con opproximate

Thus, in the inside region, since. ¢ = C{a) and da/dr.

{2,33)

L

Ua) = p + %n'fuz[l + 0(yH)]
and neglect the derivatives of ¢ in the last equation in (2,14}, This leads to
o T - (Ng/mH PP 2.34)

As a result, (2,14} becomes

2= [ering/mA oo ATy
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and (2,35

2oy = [ervgi/mdy 2o ]

with [ {u2+ V2} d3r= T . By defining

v = {.-,3;“1%:. od v = (e (2.36)

where n is given by (2,25}, we see that {2,35) becomes simply (2.17} on account of

(2.16} and that n is expressed in terms of U and ¥ by (2.19).

(i1} outside region r2 RZ
In the outside region, we assume ¢ rises from neor zero to its asymptotic value
9 oe O T=®. As we shall see, although RZ < R, which is given by {2.26), R2 s

also =R - D(m;l}, like R, . From the definition (2.26) of R, we see thot the ex-

1
trapolation of the inside solution gives uz— vz =0 at r=R {which is in the outside
region, but quite near 1= R, ). Therefore, we expect - v2 to be small in the entire

outside region; i.e,
Vi« (2.37)

Thus, wa may neglect uz- vz in the equation for o in (2,14). Becouse r 2 R= O pﬁl},
we may olso neglect the curvature term  (2/r) do/dr. Since os shown in Sec. ILT,
LEp/Acc ], we may regard U(o) os uppmxim-:;ra degenerafe ot ¢=0 and

g=q - To the zerath order in the small parameter (2.37), we find in the outside

region
ey = %Uvnc (1 + tanh i-mafr - RD)] (2.38)
and

ule) T vl) T exp[-fgoir)dr] | (2.39)

where Ro is o constant, and r= Ilo lies within the oulside region. The indefinite
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integral in (2.39} carries an integration constant, which will be determined by the con-
nection 1o the inside solution, By using (2,38) we can simplify 2.39), and derive

mu(r— Rﬂ] ]-mq,frna

v X ;ﬂ[ln (2.40)

Ca
=

u

where Yy is o constant, Since both § = [,..,rf'mﬂl}:2r and = [P,-"mq'} ore << 1,
for £ = Ofpn) we have m_>> o Thus, while o changes rupi.dl}r from neur 0 to
8 e in the region r= R0+ D{m;I}, v and v chonge much more slowly, The ex-

pression (2,40 can be further approximated:

Uq ' For r S Ry _
{ug &xp [—mq{r-Ro:l:I for ¢ > RD - (2.41)

bl

u =T v

To first order in the small porameter {2,37), we may substitute (2.41) into the

righthond side of (2,15}, and aopproximate r_' = PI;I . Ye obtain, for r = Ro - D(m‘;l} ,
<
but = Ry - 2 2

and for rEP,o '

n

2ogle-Re"y [m '+ 2(Rp- 0] 2.42)

2 2 . 2 -1, -1
u - v = Zun{e-Ro ]mq exp [- qu(r - Ro}] . (2.43)
In passing, we note thot, by using (2.38), the energy [ [»}{Vﬂ]2+ U(cr}] dar

integrated over the outside region is given by

Foklm o = §nR2p3 = 4B {2.44)

o vac
where |3 is given by (2,11} and s is, a3 defined before in (1,8}, the surface energy
_ per unit area. By comparing {2.44) to (1.6), we see that Eq= L and (1.8) is the

same as {2.11),
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{ii1) transition region R, 2.8 R,

In this region o changes sign, so that neither Vzﬂ nor u2 - '«u'.2 con be
n;&gﬁﬂfe{l in the last line of (2,14), However, it i.s ensily sesn From the First two lines
of (‘2.14) thot 13 and v do not chonge appreciably in this region, so that (2.42) con~-
tinves to hald, We discuss first the connection between the Fermion wove function v
and v in the inside solution and that in the ourside solution. As before, let R be
given by (2,26), Although the boundary of the inside region §s within the surfoce r=R,
we moy extend the inside solution of (2,35}, which we shall denote by U, Vv, up to
r=R. At r=R, by definition, we have ui{R‘Il = vi{R'.i = vy Thus, by wsing (2.13), we

find d{uf “ uf}/dr == 4uI2{e =R &t r=R; ie., inthe region r=R- c:r{m:]

we have
2 .2 e 4ulz{s- R-1'I {R=11 . (2.45)

By matching (2.42) and (2,43} as well as their derivatives, at RI , one finds

R

Yo

1}

R - (2m, y! | (2.46)
ond .
= v, (2.47)
where Vs is given by (2,40} and Yy by {2.27). So far, the values of R1 and R‘Z are
orbiteary, provided both are R - O m';‘}, and
R' < RZ < % . (2.48)
MNext, we consider the joining of the scalar field o. Let us choose the boun-

dary r= R2 of the outside region such that

exp [mﬂ{%-ﬂz}] > 1 . (2.49)

The condition (2.49} is totally consistent with R2 = k- O{m;l'.l ; singe for 5 = O(&),

m_ is D> mil . From (2.38), one sees that
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ur{Rz'l = L uxp{mu[Rz-RO'l] K 0. - (2,50

From (2.29) and (2.30), it follows that | ¢ | « LA Thus, in both the transition and
the inside region
| o] << e 2.51)

In the tronsition region, uz-- vz is given by (2.42); in oddition, r-] << m . There-

fore, the third equation of {2,.14) tokes on the approximate form

2
(_"-'I.!... - moz)u = Hgfuz-vz) = A(R=r) (2.52)
dr

where

A = 4u12lfe -~ Ng . 2.53)
The desired salution is
s = =~(n/m B (R-0) + oyexp [m (r=R))] (2.54)

where % it a constant to be determined, By assuming & = O{x), and by using (2.27),
232 ond €= Ofy), we find A= O{p*/ ). In the transition region, since
r=R- D{m;1}, the fixst term {hfmuz) (R-r) in 2.54)is O(p ﬂa} . According

to (2,31}, 9 o is Olu n%]- We shall choose % and R1 such that

?
Oac > Fg > Clpg®)

ond 3 (2.55)
O EXP [-mu(Rz-R]):I <« Ofp ﬂf} .

As r—~ R2 , 2.5 becomes o T Gy OXP [mﬂ(r— Rz}] , which approaches the same
outside solution {2,38), provided

I = T, P [masz- Ro}] ; (2.55)

-

——

e g - =
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ot r=R, ., (2,34} becomes

g ¥ -{Ng;"‘mf'}{uz—vz} (2.57)

which is the same inside solution (2,34,

We note that (2,58} is consistent with L > from {2.55) because of (2.49),

0
Moreaver, the two parts of (2,55) are consistent provided that mﬂn‘:R2 - R]} >» 1, This

in turn can be satisfied with R.I =K- D(mq—l} tince m > mq . The gbove discustion
completes the joining of both the Dirac wove function, v and v, and the scalar field

o betwesn the imside solution and the sutside solution, The total energy E of the sys-

tem is given by (2.8). In the inside region (%)2 s~ (5/R) ~ p",.,z which it much
smaller than U{gz) ~p + %rrn.:r2 ¢2 o~ l-l4 . Therefors, the integral [ [{r{?u }2+ U{cr}] dar

ovar the inside region becomes, because of (2.34),
& 2 ,,2 223
inRp+ alr{l\lgfrnu:l Jv =¥} dr | (2.58)

The some integral over the transition region con be neglected, and that over the out-
side region is given by (2,44), By using (2,18), {2,20), {2.25), {2.26} ond (2.34), cne
sees that the second temm in (2.58) it 1M eq/n. Thus, the total energy E is given
by (2,23

To dariva (2.24), the simplest way Is to multiply the lost equation of (2.14) on

both sides by %:; , and then integrate from r to o . We find

2 " 2
do 2fde 2 2 de
HE) v - [ HE) et A ]

(2.59)

According to (2,54) and (2.57), ot r=R, , if&ﬂfdf:lz: %{ﬁzfm:} =0 (p4 nz},

o E—{h}m:}{ﬂ-ﬂl}=0fp ngj and therefore U{c)Tp + %m:ﬂi=p+ U(p4 n):
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where p= G[pﬂ . The righthand side of {2,59) is dominated by the integration
over the region when o changes rapidly from near zero to LA After naglecting
Ol g) as compated to 1, and by using (2.38), (2.42) ond (2.47), we find that, at

r=IL| , (2.59) becomes
1, 3 2 =1
-p = 3(p/R) - INu (e-R "},

which is {2.24). From {2.23) and (2,24), ond by using (1.11), {2.11} and (2.25), one
derives {2,21) ond (2,22}, This completes the proof of Theorem 1,

There is an olternctive way to derive (2.24), which will be given in Appendix A
We recall that from the solution of {2.17), we can obtain the functions PL= P {nl,
q=qin) and G] = G} {n}. Consequently, ot a given set of parometers N, g, p, m
and m‘Iq , (2.23) and (2,26) muy be used o define ¢ = ¢(n) ond R = Ri{n} . OF course,
w\.‘: may equally well choose R to be the independent varidile, ond regord ¢ = «(R)

and n=n{R). Equation (2.23) then gives E= E(R}. As will be shown in Appendix A,

(2.24) con also be established by setting

dF

=0 . {2.60)

From the discustions given in Appendix A, one seas that (2,59} implies dE/dR=0;
thereby, one gains o further insight into the interrelation between these equations.

We note that the discussion of the inside region shows that the "reduced” func-
tions U and ¥ are proportional to the actval quark wove function w, v, Hence all
physicol averages with respect to the quork density can be calculated from &, ¥, the

contribution from r > R, being negligible.
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4, Solutions of the reduced equations

Cur starting point in this section is the pair of differential equations (2.17),
As exploined before, in the paregraph preceding {2,18)=¢2, 20}, the solutions of these
equotions form a one-parometer fomily since the functions U(p), ¥{p) are completely
determined when U{0) is giveﬁ. Without loss of generality we assume 0(0) >0 .

There is o critical value ﬁcﬂt such that if (0} >acril , the funetions o, ¥
become infinite at some value Py < 1, with U>% forall O¢ P< Py - Such solutions
are of no interest ko us, since they do not correspond to any :nlulim-nf (2.14). There-

fore we restrict ourselves to the range

00y < b = 17419 . (2.61)

The parameter n can toke values from O to o . When n~0, v({O)—~0;

when n —+o, L{0) =0 In Figure 1, Gz- *32 is plotted vs, p for two initial

crit °
values of (0}, one near 0 and the other near :'crif . Ome sees that the solution is

valuma-dominated far small n. {u{0) ~0) and syrface—dsmincted for lorge n
(000 ~0_. ).
We shall first discuss the two limits n —= 0 (MIT-like) and n — o (SLAC-like),

ol

(i) When n<< 4w, both U ond ¥ remain small for 0< p<p) . Thus we may

neglact the nonlinear terms in {2.17), obtaining

r
& 2. _ . 2.62)
—_— + =y = U
do- p
The solutions to (2,62) ore elementary and wall-known:
- - - -ﬁ '1 -
b o= 0] julp) = UOlp sinp
(2.63)

v o= ﬁ(ﬂ] jI (g) L (D) p-z{sfn g = p €os p)
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We then have jG{F1} = ]prl} ar

Pj ~ 2.0428 ,

"'1 F 2 . Y 2
(n) ‘n = S0 ) [sin(2p)) | = 1.654550) ,
ad - -1 , 2 N
Uy = [u(D}pl 5Irlp1] = D_IM‘?(F} ‘

Pl 2.2 ,.2., _ 1" '
4 fﬂ . (U -3V )dp = EIF']—"_‘! = 0,6530n , (2.64)
L B PO oy -3} n
41‘?[ [u] U\de = W = 0.6199n '

0 1
te [ XCRIAL 2p$-2p$+4p1-3 2.2175
" p(U+v)idp = — n = 2, n

o ﬁ{p1 1)

and
2

q = O{n")

In Fig, 2 we plot &, ¥, 024 o2

and 62- 1}2 ogainst p For this case,
(it} The cose of large n can best be understood by considering first the limiting

solution for w(0) = Yo This initial velue yielde o definite pair of curves for 6, ¥

nt’
which ara grophed in Fig. 3, As p—+T1-, U, v, and 32 - ﬁ'z afl become large.
The manner in which this happens can be faund by letting

x = uv ,
a.3* (2.65)

o= 2p-1)

and neglecting terms of relative order 7, 1/, or y/xr). One thys obtains from

{2.17) the approximote squations

dx
CaRR A
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{2,66)
The solution thot becomes infinite as 1 =0 = s
x = 3|,
_-I {21:6?]
y = 3|1

which exploins why we regard v, 1/ ond y/{x7)} 1o be the same order,

For finite n >> 4n, the functions & ond v lie very close to the “eriticol”

_1
. curves except inaregion p=14¢ O [n 1‘] . In this region the approximation (2,46) .

etill holds, but instend of obeying (2.67), x ond y remain finite st v =0 and y

decreases to zera at T =7, =2(p, - 1).

The finite soluﬁoﬁs of (2.46) with which we must deﬁi can be reduced to a

single universal solution by the transfoemation

:t:----i'=:ac-rl3 . }r'*';r=y-rl . 'fr-F='r;’-r1 . {(2.68)

which leaves (2.66) invariant, The functions &{¥) , ¥(¥) ore now completely detar-

mined by -
ﬁl - AE
a5 " TR
(2.69)
- 55
ax

with the boundary conditions y=0 at ¥ =+1 , ond X, ¥ =0 ot T ==, The
first condition sets the scole for T, which would otherwise be adjustable through a

tramsformation ke (2,68). The second condition makes x, y obey (2,67) in the region
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T2>»01=p> n'-% . Thus (2,67} provides the tronsition from the peok region described
by 2,69} to the region 0<p< 1 - D[n-*] where U ond ¥ are almost the some-

" as their fimiting values for n — oo, The results corresponding to (2.64) in the limit

n—=oo I5:
= 1+(3.531n,f.-.}'1’ ;
n = 35311(,,1-1}'2 ,
-2 3.5
U.I = {FI"T] ¥
p . o
AN ST LTS P  @.70)
0 _ .
Py 3. .
4x P uvdp = i‘“ )
/s
I 4 2 2
45 p (07 + v )dp = n
3 Jo
d +
q = O{n%)

The solutions of (2.69) are plotted in Fig. 4, with the asymptotic forms (2,67) shown
for comporison, The relation n = wanlz{p‘ -1} is exact in this limit, as seen from
the equotion [ %d3 = %3 + 352 which follows from (2,691,

We note that it is possible to eliminate ¢ in {2.865), or 7 in (2,69). Let us

define a=rox=3°% and b= ty =7y . From (2.66), we see that

dbe = b-a

da  alb+3)

{iii} For intermediate values of n, the equations (2.17) have been integrated
ad

numerically. The quantities 0, v, U 205 , ond a2 52 ore graphed ogainst p .

for several values of n in Fig. 5.
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From the arguments of the previous section, we see that frz+ ;2 is proportional

to the quark dEHsiﬁ.r, while ﬁz - \72 is proportional to the gluen field inside the hadron,

o =-{¢/g) [Gz- 32) . The following results on 1'32- 32 , U ond E-z+ ?rz are rigor-

ously true:

2 .2

Fy
= ¥ decreases mono-

Theorem 2 [f DI0)< +2 (i.e, n < 74.84), the quantity 0

tonically from =0 ta p=p, . If 5(0)>vZ (e, o >74.84), the quantity 0?- 32

increases monatonically from =0 to o maximum at p = B <py - ond decreoses mono-
tonically from p=p to p= Py -

Proof Let y=52-$2,nnd z={(v/0)~p. Then from {2.1?}wenbfﬁin

d “1an

EE = 41} Uv £ {2'?1}
and

d . 4-2 -I )

EE = y (y—]]}(—zp :'1 . {2l?2]

For p—~0 , y*ﬁ{ﬁ}z-, p-Iz-rdz/dp and {2.72) becomes

d n ' '
aﬁ = s0%-2 . 2.73)

Let 6(0 < +/Z , then z isinitially negative,

Suppose thot z{p) =0 has a root between O and Py - Let ,; be the smallest

such root. Then z must be increasing ot g, and so from (2.72) we have

0 < & = [67%y-ny] -1 (2.74)
- P

where the subscript ; denotes p=p. Now, by definition, py is the smallest) root

of y(p)=0. Hence,

0 <y <o® for p<op . {2.75)
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Since E<.P1 . (2.74) ond (2.75) imply

1 < [ﬁ'zfy—nyja < ylp)= 1,
which, on accoont of {2.73), Iﬁs to
o 5o N
2 < y(p) = y0) +f0 dp7 Gvz < ylO = SO (278

" contrary to hypothesis, [ We know that 2 <0 for 0< p < g ; in addition, from {2.75),
0> 0 for p< Py and since from (2,17), d{pzv];'dp = PE(H:(] u>0, ¥ isalse >0
for 0<p<py :l

The contradiction shows thet 2 has no root between O and py - Therefore it
remains negative, ond the first part of Theorem 2 follows from (2.71),

Now tet (0} > /2 , Then z isinitially positive, as sesn from (2.73). By
integrating (2.71) from ¢ to py r We sec that z cannot remain positive rhrwghm.;t;
therefore it hos o rost, Let p be the smollest positive root of z{p)=0.

If 2{p}=0 possastes a Md root between p ond Py ¢ let o' be the smal-
lest such root. Then :—: must be negative at p and positive at ', so that from (2.72)

we Find

'[ﬂf'zv{v-ﬂ]ﬁ. > 1> [ﬁ'zr{r-l}]s
which, becouse of U -Z-Y =1~ {#;"G)z =1-(pt z)2 . muy. be rewritten os
GEY-170-5% > 1 > Dp=1]0-58 . em

Now, y(5) »y{0) = 3{0}2 >2 since z Is positive between 0 ond .,
Therefore y(5) =~ 1> 0, so that |

e -11 055 > [vp-1]1 01-5D . 2.7
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On the other hand, 1 - E'2= {yﬁnz}ﬁ. >0 ond y{p) > y{p') since z is negative

(ond therefore dy/dp is negotive) betwean p and p' ., Thus

[vp-1] -4 > [yeH-1]70-3D . em
Combining (2.77), (2.78) and (2.7}, we have o contradiction, Therefore there
is no second root of z{p)=0. Tha second part of Theorem 2 now follows from (2.71).
Theorem 3 I U0} <1 {i.e.,, n<20.47), the function U{p} decreases monotonically
from p=0 to p= Py - K o{0Y>1 (e, n>2047), then O(p} increases mono-
tonically from p=0 to a maximum at p= g <p, , ond decreases mongtonicelly from
p=pg ¥ PP

Proof The first equation in (2.17) may be wtitten os

_3% - Sw (2.80)
where
wip) = ylpy =1 = U™ - v 1 . {2.81)

As =0, wip) = 0(0)° ~ 1. Thus, when ${0)<1 , wi0)< 0. Furthermore, when
§0< 1 < v2, we know from Theorem 2, dw/dp=dy/dp< 0 for 0<pSp, ; con-
sequently w(p) < 0, ond therefore G(p) decreases monotonically.

Next, we consider the case {0} > 1. Since w0} >1 and w(pI] ==1,in
the interval from p=0 1o p= Py - there must be a root of w{p)=y{p)-1=0,
From Theorem 2, one can show readily thot thare is only one such root. By wsing (2.80}

we estoblish Theorem 3,
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Theorem 4 If u(0) < — (i.e., n <9618}, the quontity 62+ ;2 decreases mono—

V2

tonically from o=90-te p= Py *

Proof Let

-
L]
=
+
L

and -1 (2.82)
{Gy/¥) - p '

4
1]

where, a5 before, y = Gi- 52' . From (2,17), we find

3 7z
and : (2.83) .
%p; = {E»”hgﬁ e /E [ Y-y 208/ ] e

As o= 0, since v/p~ 5001+ G[’D}z] ; we have
| | -1
oz ~ 2[1+607%]) [e@%-3] . @84

Hence, for 5(0)< 1/VZ |, pZ <0 as p=0.

Suppose that, when (0 < 1/vZ , Z(p)= 0 has a root between p=0 ond
P=pp- Let o= 0 be the smallest such root, Thus, ' Z{p} must increase at o= ¢ ;
i.e., |

dZ
Y > 0
{19_ 2 !
whera the subscript £ denctes p= 0, Since Z{%)=0, by using (2.83) we find

{_}E}E . {G/G]E{SE}E—_{y}$2}1[32[$2+{]2+I}+ ﬁr-za%]n . {2.85)
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For U(0Y< 1//2 , which is less thanboth 1 and +/2 , we have (dy /dp), < O

by Theorem 2, and (T - Zﬁzlg »0 by Theorem 3, Hence, (2.85) jeods to

[dZ;"dp‘,lE < @, which contradicts the hypothesis that Z(p) = 0 hos a root between

0 ard Py - From (2.82) and (2.84), we Inlso see that when O(0)< V1 /2 , dY/dp< 0

as p = 0. Theorem 4 is then proved,

Remorks

1. From our numericol solutions, we find that for G0} > 1/v2 (i.e., n >9.518),
the quantity 42+ increases monotonically from p =0 to @ moximumat p= £< p, ,
ond then dacreases monotonically from p=2 to p= Py -

2. From (2.17) one seesthatas p =0, ¥/p ~ 13(0) [l + ﬁ{{}}z] >0, ond
when p=o,, & /dp=[1-(2/p, 1] G{p)) , which is pesitive if o, >2 (i.e,,
Ul < 3066, n< 1.901) ond negative if m < 2 . From our numerical solutions, we
find that ¥{p) has ot most one maximum between p=0 and p= py - Thus, if
u(0) < 3088 , 3{p} incraases monotonicolly from p=0 te p= Py - If u(0)>.3088 ,
v{p} increases monotonically from p =10 to a maximum at, say, p= p‘; < Py » and
then decrease: monotonically from o= Flsl to p=p,-

3. An exact relationamong n, q, p, , and GI moy be derived by noting

that (2,17) has the consequence

2 z
T[F {GE*GE] +2P|[ -Irv ]-4pzaﬁ] = EPEIGE :I p{‘i-\‘ii] .

(2.86)

Multiplying by 2n ond integrating from 0 to p, , we have

.-.2
LIS {p‘ = n - ta . {2.87)
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ill. Inclusion of Vector and Higgs Fields
In this section we consider the general case in which, inrudditim to the
| spin  quark field ¥ ond the scalor gluon field o introduced hefore, there are also
the color SU{Y) gauge Feld “v"p ond the color Higgs field ¢, Through the spontan~
aous symmetry~bredking mechanism, 14 the sight vector-field components of ‘U’P are
all going to be massive; the number of scalor-field components of ¢ must, therefore,
ba more than eight, Since the colar SU3) is expected to remain ¢ good {or, ot least,
approximotely good) symmetry after the spnﬁrunews symmetry-breaking mechanism, the
Lograngian density that one starts from should be invariant under a larger group ﬁ. -
which includes the color SU@) as o subgroup. There is a certain arbitrariness in
choating the group " and the representution of ¢ . For definiteness, we adopt the
specific example discussed by Sirlin ond ourselves in an eorlier |:\~a|:||:u=r.2"':j We assume ﬁ.
tqb& SUAY X SUR) ond ¢ to Form the (3, 3) representation of -5 . [In addition

to ﬁ , there is the ysyal "flavor® SU@), or SUM), ] Thus, ¢ consists of nine com=-

plex scalar fields % ond S where, as wall as throughout the puper, the subscripts

a, b, ¢ varyfrom 1 to 8 ,
‘P, v, A voryfrom | fo 4 , 3.1}

and i, j, k voryfrom 1 to 3
It is convenient to represent the gauge field and the Higgs field by 3 X3 motrices;

V. OF A (VY o,
H 9 Mg
3.2
¢ = dxyt * IN, 0,




3

where J\or {i}% fimusli'he 3 X3 unit matrix, and ?\ﬂ‘s agre the 3 X3 Gell-Mann

matrices which satisfy the usuol relations

i) = 26y . [and = Ak
" .3)

{lu'%} = ?Duh:hc+ lﬁﬁn:lh

All repeated indices ore to be summed over, The gouge field forms o (8, 1} represen~
tation of .g, ; tha gluon fleld & is Invariant under »g , and each of the *flavor® -
components of the quark field ‘Fk forms a (3, 1) represantation of g . In terms of

the components ¢jk intraduced in £q, {2.1), we moy write
| "
vk - v ) (3.4

Tha group ﬁ = SUE) X SU3)Y conmsists of the transfamations

1 ot
V = uV u . ~ ugv |,
r r ¢ »

'Pk-u'l'k and o - g

@.5)

where u and v are two arbitrory x-independent 3 X 3 unitory matrices with det =1,

The Lograngian density L is ossumed to be invariant under o local SU{3) gouge

transformation
T 1, 9ul) 1
VI'-' - u{x}VPU{x} _-?{"‘aﬁi—} ulx}
¢~ ukle , ¥ - et 3.6)
and g - 0 |
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where u{x}Tu(x} =1 ond det uix}=1; in addition, £ is invariont under the global
ﬁ X 5U@3) tronsformations, where -g is given by {3.5), and the extra SU{3) group
denotes the usual "flavor® transformatians, under which VF , ® and o areall in-

variant, but

ok - w]k ¢ (3.7)

where w = ﬁﬁjk} is onother x=independent 3 X 3 unitary matrix with det =1,
[ The generalization of the "flavor® transformation group fo SU{4) is straightforward, |

The general renormalizable form of L can be readily found:

-~

i, 2,5 o Kkt k3,802
&= ~te[IV+ (R oD o] - ¥ y(y D sgo) ¥ - 2(7) - Ule, @)

(3.8)
where
Vo= BV ) = 2=V -2 v -if[v,v]
w a Ix v & p TR YE
a P Y]
a
D¢ = -ifV 9,
I-I‘P 5‘:1’ P*P
%)
=t _ 8 f...1 &
DP¢ = F¢+IF¢V|J ‘
|..|.
p #* = 2 gkoipv ok
M ox b

ond Ufa, ¢) is a fourth order polynomial in o ond ¢ . Because of our convention

X" {r, it), we have

t o t —_— f
Do’ = (D;g}) end Dye’ = -(Dy0 £3.10)

As olready axplained in the introduction, the function U{o, ¢) satisfies (1,2}

and {1.4); i.e.,, it has on absolute minimum of {o, ¢) = {uvuc , 'Pvuc] ord a loenl
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minimum af the origin (o, ¢} = (0, 0), with

U(avuc ! *vuc] =0
and {3.11}
uio,® = p > 0

Both Toac ¢ Pyac O essumed fo ke #0. The general form of U(w, ¢) that satis-
fies these properties still contvins o rather lorge number of constonts o, b, - .,

u'., k',--, a*,b*, ., defined as follows:

U{e, ¢} = %uaz + &,ha3+ },,cur4+ p
v tr(el @)+ 4 [bt der ot (b dot 9) ] |
ro e ﬂz] vd (ol 0]+ ("ot " o?) (el ) |
+ 3o b dat ¢+ [b"de; ol . | (3.12)

At ﬁr;t sight, it seems almost unmanageable to discuss such a general case with o many
independent constants, As we sholl see, the problem is uciuu"y quite simple, provided
that the parameters & and 5 |, introduced in {1.11), ore both small, << 1. OFf course,
in the pre;'r&rlf general case becavse o is coupled to ¢, there are many scalor masses.
The definition of m_ used in (1.11) hes to be made precize, [ See {3.30) balow. ]

To begl‘r; with, we may odopt the unitary gauge by choosing the transformation

ufx) in 3.6)sothat for a=1,2,..8,
v (e-eN)] = 0 3.13)

werywhere.zn We may then write
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P T gt INRHID+ H 3.14)

where

ond R, R, 1 and Hn are all Hemitian fields, For simplicity, we assume the

constants b’ ond &" in (3.12) to be real, and therefore Poae real, Because

83U _3u_au_ au _,
* Ba oR al EHu

(o, 9= O o ¢w¢} is the dasolt:rfe minimum of U

at {o, ¢)= {0;‘“, ®,

ﬂ'l:} ' NE\'-'.IT {o,9)= {"’w:: ’ t\fﬂﬂj , We may expand

2 2 2,2
RR® + Mp, o0 R T+ &ml P+ %mHHu_‘F

. (3.15)
where . . - denotes cubic and higher order terms in the fields R, k', [ ond Hn' .

2 2 . 2 2
L and the eigenvaluss my and ",

Ulo, 9) = 4 [Meo R+ 2Mpp,

The mass-squores m of the mairix

MRR M

RR ) 6.16)
R Mg -

are ol positive; these parameters are reloted fo the constants a, b, e, a' , b, *

<
Wi

M

by, 2
i R o - b L 2(c" + 3 Pvac* S Peae e vuc) Tvac !
2 '.._ Y. 1 1 " 2 no_ H - :
my = © _%b e +&(c+d ).t (0 +b gt © uwc} O oe
- o 2 a4 b .
MRR = a + b et Gt + 3d.}¢vuc + {a" + .b et c* Fvuc] LA
T 2 8.17)
. o "
MR‘R‘ u+b°~mc+7"¢uvqc+ ﬁcq’vuc
and .
MRR' = V& {_ﬁ" i q’vuc +2¢f avuc] ‘Pva:: -

it can be readily verified that after the spontaneous symmetry-braaking, the system

——— —_—— .
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remains symmetric under a global (i.e,, x-independent} * color® SUE) trensformation

fu}

V-*UVUT, H-u’HuT,
p B

{3.18}
?k - u 1"‘

and R, R* and [ are all inveriont; of course, the *flaver® SU3) symmetry (3.7)
also remains valid.
When (o, ¢)=( LI *vuc} . the masses of the vector field V  and the

- v
quark field ¥ are given respectively by

m, = fe__ and SR SR @3.19)

they ure.bnfh also assumed 1o be large, >> 1 GeVY ., When (o, ¢)= (0, 0}, both
fields VF and ‘Fk are of zero maoss.

MNear the origin {o, ¢)=-(0,0), we have
Ulo @) = p+dac?+ ate(elg) + +-- (3.20)

where + +« denotes cubic and higher order terms in o and ¢ . Clearly, both constants
a and o' are >0, in order that the origin be a local minimum of L), In the present

case, there are many scalar masses, For simplicity, we assume all scalor masses in the

theary me, My, oM m,, . u% and n'i to |:.-g !?rge [whm‘e m1|2 and m; are

the sigenvalues of the metrix ﬁ.]é}] . »> the lowest soliton mass ~ 1 GeV . Further-
more, for simplicity we assume them to be all of the some order of magnitude. H is
approprigte to coll

LI

a " g —mass" near the origin, ‘ 3.21)



38,

3

As we tholl see, a* is relavant for the description of the in_teri;::f of the soliton,
For the surface of the soliton o different definition of " - mass* will be introduced, -
In order to do that, let us contider the follawing (hypothetical) problem of o topo-

logical soliton solution in one space=-dimension.

In this {hypothetical) problem, xp = {x, it) and tha Lagrangian density is

1
2 dp ae. )
= _sf2ey (0 05 -
Ly = *(ax) "(ﬂ'x 5%/ = Yolor %) 8.22
n M M
where
% = ¢va¢+ %),O{RHI)
and UD is related to the some U in 3.8) by
Uu{ﬂr *ﬂ] = LanU{ﬁ, ?u] ) {3-23}

such that the limiting function Uu[.-:r, Qﬂ} hes twe absolute minima, at

(0,99} = (0,0 s 8,00 o (0, o) = (0,0) , with

UU(U, 0} = 'Uﬂ{u Yy = 0 . (3.24}

vac ' 4Wc

It is straightforword to see thot there is a t-independent topological sqlitnn solution,
which satisfies .

%{ }+'lr[ }+'lr{ }2- U, = ¢ . 3.25)
A convenient woy to visualize the solution is to consider the mechanical analog prob=
lem of @ point particle of unit mass, whose " position coordinate is (o, ¢0} [i;:.,
o, R, I}]' and whose *time" coordinote is x, moving in a “Poienﬁul' - Uﬂ . Equa-

Hion 53.25},. then, denotes simply the low of conservation of "energy” of the particle.
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According to {3.24), the "pokential® - Uﬂ hes two peaks at (o, q»ﬂ} = (0, 0) and

(o, qin) = (“uuc . -.'pmc] . There is clearly a solution, described by a path P, in

which of *time” x = - oo, the particle is on one of the two peaks, but when x =+ @,

it moves onta the other paak. The corresponding 1 space—dimensional soliton solution is

o PM = olx)
ond {3.28)
@F(x} = ¢ﬂ{x} along P .

Its energy is given by the path integral along P

I I _ T - 2
Ej:m Updx = z @ vee V' T B Mo Yae G.27)
where u!} is as introduced in 3.21) and v is a dimensionlass numbar, In accordonce

with (1,8} and (1.8},

m, = oty
and _ g % (3.28)
o= {mur l."r».wrl:u::ll )
We now define
w, = /P = oy 8.29)
ond, a5 before in {1,11),
¢ = {p,zmq}z od g o= (u/m) . 3.30)

The purpose of these definitions is to muke the quantity ng /n independent of vy,
50 05 to justify the second line of [3.33) below, Then y will rot appear in the final

equations (3,41) ond (3,42),
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We recall again that if the system consists of only the guark field and o singla
scalor field o, without the Higgs field ¢ , then as in Sac. II, by solving the corres-
. . _ 2 2
ponding one-dimensional problem for Uﬂ =+a(e qvuc} [ar_.furwc} , we would

abtain

T=1 and mq‘ =;|'|¢r = &

The definition of p given obove by {3.28) then bacomes identical to that of 2,11} in
Sec. H; the some applies to the definitions of £ and 7 . [n the following, for con-

venience of order of magnitude estimotions, we regard

y = O . (3.31)

We now retura to the original Lagrangian {3,8). For color singlet states, we

may set in the guasi-classicol solytion

V = H =0,
|.I

and o, R, I tobe sll c.nomber functions, Just a5 in (2.8), for color singlet states

with a quork number N =2 oar 3, the soliton energy is given by

E = Ne+ f[$(Fa)?+ 3(FRZ+ (TP + Ula, )] r (3.32)

where ¢ = i}.D{R +il), ¢ isthe lowest positive eigenvalue of the c.number
Ciroc equation

(-ia . V+gBa)# = e , 3.33)

and o, R ond [ satisfy




4]-

2 .a_ — 1-34
-VR+ 5p U o (3.34)
ard
2 a _
-+ WU = 0 |,

Assuming that the two parometers £ ond 5 , defined obove, are both small, << 1,
we may now go through exactly the some argument used in Sec, IL3, We First divide
the space into thraa regions: inside, outside ond transition, in accordance with (2.28),
In the inside region  $ RI , we have
$ = 0
So far os the solution ¢ and ¥ is concerned, the entire discussion given in Sec, 113,
Feom {2.33)-(2.36) con be corried over to the present case, without any change except

that m_ is replaced by u’} : therefors, just as in (2.18), (2.29), (2.28), (2.34) ond

(2.36), we have, for the present cose, also

p = T, py = R,

no= (ge¥N/e = Ny

o = (mis v = (Smts (3.35)
™ o ¥ - (Ng/a)(u®-v)

where |, , { and y are defined by (3,28} ond (3,30). Equetions {3.33) and (3,34}

can now be again reduced ta (2,17), with 1 and v related to % through ¢2.13) and

(3.35). :

It the outside region r 2R, , the present case is slightly more complicated

2 r

then the simple system discussed in Sec, Il, Both ¢ end o rise from zero, or near

zero, to their respective vocuum values o ord & . This resulls in the
oL Vo
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replocement of (2,38) by

o(R} = r:F{r-Ro}
and (3.36)
#R) T gp{r-Ry) !
where oy and $p are the appropriate 1 space—dimensional solutions given by G.’r.?é].l

Equotions (2.39) and {2.41)-{2.43) remain valid. Just as in {2.44), in the present general

case, the energy integroted over the outside ragion is, becouse of {3.27),

g‘tﬂzﬁﬂ :r?ic = 31132 pa = 4:&21 R

in accardance with {1.8).

£ <€

In the fronsition region Rl =¢ =R, , the entire argument in Sec, IL3, leading

2 r
from {2.45) to (2.58), is opplicoble, axcept that m_ is replaced by r.-% . Thus, the soli=

ton energy E , defined by (3.32), is given by
E = Ne[T+3{g/n)]+ §:R2 p3+%rk3p (.37)

which is identical to (2. 23). Next, we multiply the three asquations in (3.34) by da/dr,
dR/dr and dI/dr respectively; after integrating from ¢ to o, we obtoin the gener-

alization of (2.59):

2 2 2
F(F) 3G + 3G - U

@ 2 2 2
- [ {-f— [[‘3',5) ¥(E) + (3 - Ng(u?-vh) j—f]} %)
r

By going through the same argument, which is given immediately ofter (2,59} in Sec. 11:3,
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but with {2.38) reploced by (3,36) and m_ by c& , we find that, at r= RI , ofter
neglecting O(yn) os compared to 1 , {3.38) becomes
-p = 3G/R) - 2Nule-RThy 3.39)

which is ogoin identical to (2.24}. By using the third equotion in (3.35), one sees thot
_ 3 i 40
€ pln/ N7 £/ 9% . (3.40)

Consequently, (3.37) and (3.39) can also be written in o form identical to 2,21} ond

{2.22):
y o, 4 ) 3 2,
5 - (nrda) ¢ du(m) (Lol + SulD) (1) xpy  B.4N)
ard 1 2
0 = ~202) () o - 12 b2y s Ny my 3.42)
= AR G ey m Do 3l G ey *

where X = p;’p4 is defined by {1.9). Thus, the thearem stated in Sec. I1.2 is opplicoble

to the general cose os well, provided that |, £ and 5 are defined by (3.28)-(3.30).

Through {3.35) we may also use (3.37) to determine the function E= E(R). By
1

following the some argument given in Appendix A, bul replacing m by a*, we
can show that (3,39} is equivalent to the condition dE(R}/dR= 0, just as in the

simple cass, discusted in See, 1L
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IV, Stotic Properties of Hodrons

Wa stort From the general system considered in See, I, and assume, as before,
that the parameters & = {pfmqyz and = (u/m ) ore both small, << 1. Aswe
have seen, independently of the number of parameters in the original Lagrengian (3.8),
in the limit when £ ond 5 = 0, ot a fixed though arbitrary ratio 5 /¢, the low=lying
soliton states, at ¢ given N=2 or 3, depend enly on on overoll energy scale y ond
two dimensioniets porameters ) = pf|.|4 and /& . The applicotion of these soliton

salutions to the chserved hoadrons will be dj:w:sed in this section,

I. Phenomenclogicol daseription

For the moment, let us leave aside the soliton problem, and discuss instead o
hypothetical anolog system, consisting of a "gos bubble® of radius R immersed in o

“medium®, Wa define

E_ = *thermodynamicel" energy of the gos,

i
n

surface tension, 4.1
and
pressure exerted on the gos by the medium,

-
it

Each of these terms contributes a part to the (totol) energy of the sysfem, which may be
written as o sum

E = E + E + Ep (4,2)
where, under the atsumption thet s and p are both constants,

E = 41rR2= ond Ep = 4-3-“ Rsp . {4.3)
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The radius R is determined by
dEJAR = O . 44

The appeopriate themady nomical energy Eg to be ysed depends on, among
other things, the heat tronsfer condition {e.g., isothermal or adicbotic); its dependence
on R can be rather complicated, However, so far os the equilikrium configuration

ond its immedicte naighborhood ore concernad, we may ossume o simple power low

E, - Y (4.5)

where k and K ore both positive constants. Equation (4.4) gives
kE = ZE + 3E . ) 4.5
9 s b (4.5)
It is convanient to introduce

—F : (4.7}

Hence,

E .
9 2+ 1
EE -~ T+e+k ' (4.8)

This simple syst&m carvies four constants: 3, p , k and K, or, the equivalent set
E, R, k apd 2 . 4.9
Returning now te the field=theorstic problem we see thot, by comparing {4,2)

with (3.37), the phenomenclogical description used above con be directly ronsferred

to the soliton solution. The "thermodynomicol energy of the gas” is
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E. = Ne [1+3(a/m)] . | (4,10)

In oddition, there is a surfaca energy Es = -lhrRz: =3 1'I'R2 |.|3 due ro the Yturface tension®
5= %pa and @ volume enargy EF = ? Rap due to the "pressure* p of the surrounding
"medium", which is really the vacuuim, since according to {1,2)-and (1,4),

p=U{0, 0 - U( L $,qc) - The resutting sum of these three energies is exactly

{3.37%. A more generol definition of the exponent k introduced in {4.5} s

din€

k = "Jﬁﬁi . _ 4.1}

By comparing (3.39) with (4.6) [ or by directly differentiating (4.10), as done explicitly
in Appendix A ], ond by using (2,87), we find that for the soliton problem, k- is o func-
tion only of n, given by

e(n) = 8x3) pylpy = N/ (n+da) = 2243 12)

where ﬁl{n}l , PI.(n} and qin) are all defined jn See, 1]; these functisns ore deter-
minac! by the solutions of the reduced equation (2.17), In Figure b0, n is plotted va,

the initiol value U{0} of the solu.i-inn ulp) of (2,17); likewise, in Figure &b, Py ¢ k
and q/n are also plotted vs. U(0) . The functions P {»), ki{n) and q{n) con then

be deduced f;'nm. these two figures by eliminating 5{0) .

As noted in (4.9), the "gos bubble" problem is characterized by four pheno-
menologicol constants, On the other hand, the soliton ':nl_uﬁun (ot a given N=2 or 3)
depends only on three porameters: p , A=p ,#"|.|‘4 and 5 /£, By using (2.26), (4.B}I
and {4.10), we find

RE = %k} {(n+3q)Np, , @.13)

which together with {4.12} intreduces a constraint on the four parameters in (4,9),
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4

If the complere Lagrangian is known, then 5 /4 , p= (65) and p are ol

determined; emong these, p and p can be directly vsed in o phenomenological des-
eription, while the physical interpretation of 5 /¢ is a less direct one. For phenom-
enclogical descriptions, a different choice of the three independent parometers con be

gither k, s ond p, or, since k=kin),
n,s od p . 4.14}

Of course, since 5 /¢ , A= prd- ond n satisfy {3.42) all these sets of parameters
are equivalent, Wa note that from Figures a and &b, the function kin} is single-

valued, while its inverse nik} is double~valued. Hence, the set (4.14} may well be

the most convenient one to use,
From Figure &b, one sees that k=1 and gq/n =0 at both limits n ~ 0 and
" n=wm, At n=79 (4{0)=1.42), k haos a minimum and q/n o maximum; the

boynds thus sat ora

k.2 7895 and a/n & 2352 . (4.15)

Ag the ratioc 2= P,‘"pd vories from 0 to @, one sees that by wing (4,3) and (4.7)

¢ alsa varies from O to 1, Thus, from {4.8), it fellows that ot any given k = k{n)

|#%

2 & < 3
Tk C E O Tek .19

which together with (4.15) leads to

31 g _?_ S o702 . (4.17)

Also, from (4 .10) and {4,15) we obtain

ppops £ Ne £, (4.18)

g
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Similarly, we can set bounds on Ne/E and RE/N., At ggiven n, we have

2n £ Me < 3n
{n+3q}{2+k) K3 {n+3q)}(3+%)

[Pt

4.19)

and, since R¢ = Pl

[1+dta/m]a+slop § B S [1agia/m] 0+ 3y, .
: {4.20)
By using {4.12) and (4.13}, we find
€ Ne -3
S 3
and {4.21}
4 ¢ RE <« .
TSN C 3.0642

The upper bound on RE/N isreqched as n -0,

2, Baryon and meson masses

In our: modiel, the low-lying solitons are color singlets; the color nonsinglets
have all been unglued by the strongly interacting vector gouge field. These low=lying
solitons will be identified a3 the _abserved hadrons, Within our approximation, the
energy levels axhibit o typicol SU(S) degenarncy," {For the present discussion, wa
ossume the quorks have only three "flavors®.} The baryons ore the color singlets of
the i-hna-u-quuric system; the lowest snergy state belang; to the 56 reprasentation of
U6, whild:h consists of the usual spin 3 SU@)-dacuplet and the ysual spin 3 SU(3)-
actet, The mesons are the color singlets of the quark-antiquark system, The lowest
ennréy r_rwsnn'siures have a 36-fold degeneracy, consisting of two SU(5) uprnnﬁ-
tations, 35 and 1; nlterﬁuﬁvely, these states can alto be. resolved into the usual
vector and pseudoscolar nonets, The mass. of fha;g.sul.itun solutions is given by (3.37)

and {3.39). We have
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E = mB for N=3
ond (4.22)
E = m for MN=2

where mp denotes the lowest baryon mass averaged over the 5& representation, and

LW the corresponding |owest meson moss averaged over the vectar end psevdoscalar
nonats,
OF course, we may alse adopt the phenomenclogical description developed in

the previous section, For definiteness, we may choose, as in {4.14), n, &= 13 FS and

p to be the independent phenomenclogical constants in the theory, It is instructive to
first examine some limiting cases:
it n—0

From {2,864}, {4.10) and Figure b, we ses thet in this limit,

p1='2.0428, k =1 ,
(4.23)
q/n = 0 and Eqg - Np1;"ﬂ
Hence, {4,2) and {4.5) become
E = Np R+ 4as + §xB'p
ond 4.24)
3 !
Npl = BuRks + 47Kk p

The problem is then completely determined by the two remaining constants s = -;-pa ond p.
By using (2,13}, {2.63) and {333}, we know that in this limit the chorge density 'PI'I. P
ard the scolar density '!'f[-! ¥ of the quark wave functions are distributed entirely

within the soliton volume, [5== especially Theorems 2 ond 4 in Sec. IL4.:| Furthermore,
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in this limit, sfnce Eg = Ne, the scalar fields {gluon ¢ and Higgs ¢} only contribuyte
directly to the volume energy EP = ;-:Rsp ond the surface energy E! =4 st =% nR2 |.|3 .
The following ars two extreme coses:

Case (ja). In addition to n =0, we may foke the limit 3 =0, Thus, E =0,

and we find

N = 4¢(p/2,0428) R4 ’

E = §Ne = Nz_(:p}* (2.0423}* Na (4.25)
and

mM _ _3

Dol (%

This double limit n =Q and & =0 gives the Creutz=5oh versiﬂrts of the MIT bag.?
[W& nate that the description of the vector gauge field in our model is quite different
from that in the MIT bag, Alse, our model does not give permanent quark confinement,
except in the limit when mq =@ .]

Case Gb). In the double limit n~0 and p ~0, then E =0, ond becouse 21w,
we have in ploce of {4,26)

N = 3“{,,&}3,!2,0425 ’

E = INe = (9n2) (2008)f , N {4,26)

§

and "
M
m

= (%)

i) n - @

From (2,70), 4.10} and Figure b, we see that in this limit
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ad {4.27)
q/n = @ and Eg = N/R .

Hence, (4.2} and {4,4) become

E = NR' + 42R% + JoRp

and {4.28)
N = 81K + 4xR0p .

By wsing {2.67)={2.69), we find thot tha charge density of the quark wave funetion

1 ¢ oc Gz+ ?rz 2 2x of {(2.45) now cancentrates entively on the surfoce r=R of

the soliton solution, The corresponding scalar density ‘F?B ¥ « 0 2. ¥ 2 . y of

P

(2.65) also peaks near the surfoce at =R [ 1 - o(n'l"}] , but then drops quickly to
zero ot r=R., While the quark wore function in these two limiting cases, n — 0
and o, bahaves totally differently, the gluon and the Higgs fizlds exhibit the same
characteristics. Since Eg = Ne in both limits, the scolar fields contribute only
directly to Es and EF' . Agoin, we examine two extreme coses:

Case (ita). In the dovble limit n - @ and s =0, we have Es =0,

N = 4xR%p |

E = ¥Ne = $vZ (mp)f N7 (4.29)
and

™ 3

Mo

My

Case {iib), In the dovble limit o« = aond p =0, we have EF' =0, and since

13
S=ZH

N o= Sw(uR)’
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E = %HE = {?ﬂ;’?}ép]\"a (4,30}
ond

™M §

-'n';;—* = (%)

In case (iib), both the quark wave funciion and the energy density of the gluon
and the Higgs field concentrate on the surface of the soliton, similar to the SLAC I:u::-g.3
[Nma, hawever, in our field-theoretic model the symmetric point (o, ¢) = (0, 0} is
o local minimum of U({e, ¢}, while in the $LAC version, it corresponds to o locad
maximum. In oander to have the veetor gluan be effective in ungluing the color non-
singlets, we must have m,, = 0 inside tha soliton au:aln..nli-::mu,,.l3 which mokes it desirable

to have the symmetric point (o, )= (0, 0) be o lacal minimum of U .]

Remarks. A, At any fipite n # 0, inside the soliton the gluon field o may deviate

appreciably from being a constent ¢ =0, Hence, in accordance with (4.10), Eg
conteins an additional part £ Me (q/n), besides the total quarck erergy e . In
addition, k= -d In EQ /dIn R becomes different from 1. Only in the limit n 0,

or w,is k=1 and NE=EE

B, We may choose, insfead of n, 5= %— ps and o,
4
TR A= p/p ond 5 /é {4.31)

as the set of independent parameters, where , and ¢ ore defined by (1.11), os before,

Then,
n = ﬂ”k, ﬂfﬂ

is given by (3,42), Both )\ and 5 /& vary from O to o, At any finite fixed value

of A,




n = Q(p/8) o g5/t — sither 0 or @ {4.32)

At any finite fixed y /£ 0, a8 X =0 (3.42) reduces to

S = Fin)

4 3
A2
; (&) [8¢p -1 5] (4.33)

which gives a finite nonzero n ; as k ~ o 3.42} leads o, because of (2.70),

n o= (4aNAE R/ - @ . (4.34)

Thus, n =0 only when y /& -0, while n — @ when either /& ~®, or A ~w,

or both,

3. Charge radius, mognetic moment and gA/gv of the nucleon

Let Ty ¢ My and g A / gy be, respectively, the root meon=squared charge
radius, the mogneti ¢ moment and the ratio between the axial vector and the vector
p-decay coupling constants of the nucleon, where the subscript N denotes either the

neutron n or the proton p. In our model, we have

2 2 2 2
o " <p »/¢ o= 0
where "
cof> = o7 [Tan gt he
0
AN Bn = _§FF
where {4.35)
ﬁp = & n-lf 41'lp3 0¥ dp
and

p £
gﬁ.”’g\i’ = %fu1 4wp2f52'%v2}dp

p A? 2 A
where, o5 before, n=-1-11‘/|::I p (W +¥ idp. Thus, <p >, Hy and QAJ’QV are
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functions only of n ; their values ore plotted in Fig. 7. Because of (2,26) and (2.23),

ench quark carries an energy
¢ = p/R = Prn;N}%(m’ﬂ"l’ : (4.36)

The derivation of {4,.35) follows the standard ruuie:a'? Let ¥ dencte the quork wave
function whose totol z-component engular moment is ¥ : i.e., ¢ Is given by (2.13)
with |
s = (g) .

In either the Gell-Mann-Zweig quark madel, or the Han-MNombu model, one con readily

show that

r: - st dd rete

b = 27X taged’) s reted (4,37)
and :

gﬁfﬂv = ; fq’?ﬂledar,ff"TleJr

Hence, the exprassions for rP ' W and g A / - given in (4,35) follow, The corres-
ponding expression for r is obvious, and that for Hq is due to the relevant SU{6)
Clebsch-Gordon coefficients, We list below the values of these quantities for the

limiting cases that have been examined in the previsus section,

(i} n—0
In shis bimit, P1 = 2,0428, O ond ¥ are given by (2.53). By using (2.54),

we find {4.35) becomes :
3 :
= 14891 /¢ ,

3 2
,_"I I:Zp] - Ep.t + 4F"] - 3]
6{p- 1}

r =0 ,
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{dpy = 3}
|.-1' = +-—4—H— = 04133 /¢ ; - {4.38)
e 12e(p) - 1)
Wy T 'g"P.
ond 50
' i
9&-’{9” = ?':F"l—'” = I.II:GEI_

(ia) Ifin addifionto n ~0, we assume 5 =0, then by using (4.25), since N=3

we have

e = my : 4.3

and therefore, from {4,308}

r, = 595 /mg and wy = LER/mg L @40)

- {ik) Ifth addition to n ~0, we ussu.me P 0, then by using (4.26), we have

_ 2
€ = Fmy o, | i4.41)

and therefore, from {4.38),

oo 4,701 /my and by = I;memﬁ. (4.42)

(i) n - o

In this fimit, g, =1 and the Fermion wave functions U 'and ¥ both concen~

trote on the surfuce r=R. Hence,

r = ¢ . r =0
P ; n
T 4.43)

ard
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_ (ita) ¥ in addition to n + @, we assume s = 0, then we have, just os in (4.39),
£ = ;1¢ mB ‘

and therefore, from {4.43),

r = 4;":115 and

4 = 4/6mp . {4.44)

Po

{iib) If in addition to n =, we assuma p — 0, then, just asin {4.41),

< 2
E T g™y
and therefore, from (4.43),
rP = ‘?,"[Emﬂ} and My = 3/{21:1!3} . (4.45)

These limiting valyes are olss summarized in Table 1. For comparison with ex-
perimental results, it is more convenient to use the average nucleocn moss L ¥ 9319 MeV
as the basic energy scale, rather than mB"=" 13156 MeV , the baryon mass averoged over
the 36 representation of S5U(A), From Tabla 1, we conclude that for applicotions
to hodrons, the parameter n could be either O{1) ar smaller, In any case, it shoyld
be oway from the n — o limit, Ctherwise, EA""’QU would be 5/9 and the charge
density would be distributed only on the surface of the soliton; hoth fectures seem to

be quite different from those of the physical nucleon,
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[

Thearstical value in same limiting coses
Phytical Experimental ! n—~0 n-m
observable | wolue I T S —— -
R I R e N
Yo | Rem | 234/Bmyg| nésln 130/ Em ) 2 14/Em |
- 0,485 -~ | . - | -
| (I AL TN T T L S S
9./9, | 128 .00 | L0 s 15
I . T ] TR [ SRR
tcalor-field l i |
anergy volume | surfoce volume surfoce
density i
;l:::ig; volume syrface
Table 1. Root mean-squored chorge radius r magnati ¢ moment EN and

N r

gA,ng of the nucleon N . The parometers A= P.a”l-l‘- = Pf{frs}‘;

and n ore defined by (1.9) and (2.19). In the lost two rows, "volume®

and *surfoce” meon respectively "within the volume®" and "on the sur-

face™.

See Sec. IV.3 for further details,




V, Remarks

In this paper, we have presenteﬂ a new formulation of the relativistic quark
mode! of hadrons, based on the guasiclassical soliton solutions of local field theories,
We have shown that, once the low=lying soliton mass is ossumed to be much smaller
than the masses of the plone wove solutions {i.e., quarks, gluons, ete,), then under
very general conditians, indapendel{fly of the number of constants in the eriginal
Lagrangian, the description of the solitons depends only on three ghenomenological
p;urnmelers: n, s ond p, os given by [4,14). . There is a direct physical interpreta- |
tion of these parameters. The soliton {i.e., the hadron) resembles a "gos bubble" im-
mersed in a medium (i.e., the vacuum); p is the pressure exerted by the medium Inn
the gas bubble, s is the swrfoce tension and n determines the thermodyromic fune=
tions of the gos. In the double limit n -0 and s -0, one nbﬁim an MIT-like bag,
while in the opposite extreme n ~o aond p ~0, o SLAC-like bag,

Such reductions occur frequently in physics, whenever the sysrem under consider=
ation confains kwo or more yery different scales of length (or energy), As exomples, one
may mention Femi's p-decay theory of weok interactions, the usual scattering length
ond effective ronge approximation of nuclear forces, etc, In all these coses, if one
starts from the unde-rl}ring Lagrangian, it may be difficult to give a rigarous proof of the |
volidity of the approximations used. Cluite often, this difficulty is compounded by lock
of knowledge of the correct basic theory, The same is true here, In our case, one of
the important questions is the validity of quusiclﬂssicﬁl soliton solutions in the strong
coupling region, For a fully relativistic local quantum field theary, this quesiion is

not resolved. However, in the case of nonrelativistic Fermions interacting with Bosons

I
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twhich can be relativistic), the answer is known: the quasiclassical solution does give

an accurate description when the coupling is sufficiently strong.

Because the solitons are salutions of a local Field theory, it should be possible
to colewlote matrix elements of operotors between different soliton states, e.g,, nuclear
charge form factors with large momentum transfer, t=decay rate, etc. Some of these

calevlations are under investigation,
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Appendix A

In this appendix, we give an alternative proof of (2.24), In accordance
with (2,60) and the discustion preceding it, in this oltemotive proof one should firsk

start from the expression E = E(R}, given by (2,23}, and then derive (2,24) by setting

df  _
=0 . (A1)

By wsing (2,58}, we may rewrite {(2.23) as
3 fRa 2 22
ER) = Ne+ 20(Ng/m ) f 2 dr (2= v2)
¢y
+§n|z2;..3 + 'a‘mR3p {A.2)

where v and v are solutions of (2.35), and u=v ot r=R, Thus, the variation
of E is

R
§E = NEE.+41r{Ng,fmu}2f 2 ar (22 802 - VD)
0
ranRfeR[3 (/R4 p] . (A3)

Throughout this appendix, we keep the parameters N, g, p, m and p
fixed., Since in (2.17), each solution determines a definite value of n, defined by

(2.19), we may regard the solution of (2.17) as o Function of p and n;iLe,
U = u(p,n) and ¥ = v{p,n (A4)

where » vories from 0 to pT(n} . We may then use (2,25} ond (2.24) to define
e = efn) and R=R{p), orits inverse function n=nlR). Through (2.18), (2.34) ond

{A.4), we may ragord the solution of (2,35} as a function of r and n;ie,



a1,
u = uir,n) and v = v(r,n) (A.5)
with R
411f {u2+ vz} rzdr =1, (A.6)
0

where ot r= R{n},

G(Rym) = vk S uE) A7)

Equation (2,35} can be written in its sriginal form (2,9):

Hed = e9 (A.8)
where - -

HF = ~jia.V + gpo (A9

o = om = -(Ng/m2)(FavP) (A.10)

and & = w{r, n} is reloted to u{r, n) and v{r., n} by (2.13)., From (A.8), onhe hns

['EHFH' + Ho 6% = (§e}¥ + &(6Y) (A1)

F

whare

SH. = gpbe = - ({Ng/mIs?-\P) | (A12)

R
In this variotion, r is kept fixed, but n ~n+ 8n . Since 411f lFf y r2 dr=1,
0

on account of (A.6), we find, upon multiplying (A 11) by "I‘t and integrating from
r=0 1t R,
R o rot t
e = 41rf “dr (9T (H - 6% + g¥'B¥ 60 ] ,
G

which, thraugh pottial integration and because of {A,8)-{A, 10}, may be written as

R
e = 4nR2{uEv-v£u]R-4rf [m:fl\l}c bo rzdr {A.13)
0



where the subscript R denotes r=R,

[%u{r,n]]ﬁn ond Gv = [ainv{r,n]] &n

(A.14)
Becouse 1
u(r, n] = (ES/ﬂ]Iﬁ(p.ﬂ) . vir,n) = (Eafﬁ]*;{p,n}
(A.15}
p = fe - and e = efn) ,
we have 3
ubv - vy = —i—[rﬁe{ﬁ%i-ﬁ%ﬁ}+5n(ﬂ%-$-“-£—“}] .

(A 18}
By using (2.17), and noting that the derivative d/dp there is the partial derivative

8/ 8p above, we obtain

2

3%3-;%.‘4 - -%.aa+a?+;2+[a"‘-'-ﬁ (A7)

and
. A2 42 - - -

-Ea? V-V = -4V [o-/p] . (A.18)
At =R, p=p, U=%=0, , ond thetefore

N

(0 g-V-¥2-0) = %[ {u -7 . (A, 19)
Let us define

_ a2 .2
X{Pr“} = U{Pr“}"“{p; "} . {Aﬁiu]

‘Since X([p,n}=0 at p=p1[n},if follows then that X (p, n+ 6n)=0 af
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p=p (n)+ &p, where 65 = (dp, Jdn) 6n. Inthe (X, p) plane, we may consider
on infinitesimal right angle friongle ABC , whose verticesare A= {0, p1) ,

8=(0, p,+6p)) and C=(8X, p)) where 5X= [8X{p, n)/3n] &n . Hence,
the point A lies on the curve X {p, n}vs. p , and the points B and C on the
curve X{p, n+8n)ve, p ; CA is L AB, and their lengths ore, respectively,
CR=8X ond AB=6p, . The ratio - CA/AB isthe slope of CB. By using (A.18)

and setting p = py ¢ we find that this slops is

.-2 -]
- 4ul (1 =P )

Thus,

ax B _ a2 _ -1
So B0 = BX = 4l (t-p;)Epy . (A.21)

Because of {(A.17)=(A.21), at r=R (e, ot p= Py }, (A.16) becomes
32
1

(ubv-vbu), = 2 & {I-pl-1}{R5E"5p.|:| ;

therefore, (A.13) reduces to

R
e + hf {m:fN]:r 6o 2dr = -annzuf{e- Rsr
0
(A.22)

By using {A.3), (A.10) and (A.22), we ohtain

SE = 41R°SR[-2Nui(e-RNepad (/0] . a2

Thus, dE/dR =0 gives (2.24),




References

1. R Friedberg and T. D. Lee, ‘Fhys.Rev. D15, 1674 (1977),

2. Far references on strong i::qupling theory with fixed scurces, see W, Pouli,
Meson Theory (Interscience Publishers, 1946),

3, W. A Bardeen, M, 5, Chonowitz, S, D, Drell, M. Weinstein ond T. M, Yan,
Phys.Rev, D11, 1094 (1975),

4, P. Vinciorelli, Lett. Nuovo Cimento 4, 905 (1972),

5. M. Creutz, Phys.Rav. D10, 1749 (1974); M. Crevtz and K, 5, Soh, Phys.Rev. D12,

443 {(1975),

6, See also Y, Yemaguchi, University of Tokyo report no, 232, 1974 {unpublished),

K. Huang and D, R, Stump, Fhys.Rev, D14, 223 (1976); J, Rafelski (Argonne
MNational Leboratory preprints}; R Gﬂe:, Phys.Rev, D13, 1670 (1976),

7. A, Chodos, R L. Joffe, K. Johnson, C, B. Thom and V. F. Weisskopf, Phys,Rev,
DY, 3471 (1974),

8. O. W, Greenberg, Phys,Rev. Lett, 13, 5‘?3. L '5;64]; M, ¥, Hon and Y. Nambuy,
Phys.Rev. 139, B1006 (1965); Q. W. Greenberg ond D. Zwanziger, Fhys.Rev,

150, 1177 (1966); W. Bardeen, M. Gell-Mann and H. Fritzsch, Scole and

Conformol Symmetry in Hadron Physics, edited by R. Gotto (John Wiley and Sens,
New York, 1973). |
9. M, Gell-Mann, Phys.Rev. 125, 1057 (1962); Y. Ne'eman, Nucl.Phys. 26, 222 (1961).
10. T. D. Lee and G, C, Wick, Phys.Rev. D9, 2271 (1974),
11, F. GUrsey and L Rodicati, Phys,Rev.Lett. 13, 173 (1964); A, Pois, Phys,Rev, Lett. 13,

175 (1964); B. Sukita, Phys.Rev. 136, B17465 (1964),



12,

13,

14,

13,

15,

17,

b3,

Y. Nambu, in Preludes in Theoretical Physics, edited by A. de-5helit, H, Feshboch

and L, ¥Yon Hove (North=Holland, Amsterdam, 1948),

Since the scattering length of a hurt? sphere potential is proportional to its dicmeter,
a strong but sharf-range repulsion is quite ineffective in unbinding the celor-
nonsinglets. Sometimes in the literature, meon field coleularions are used to
obtain the energy shift caused by such repulsive vector forces. These estimates
cem be quite mislaading if the vector fialds are oo maossive.

P. W, Higgs, Phys.Letr. 12, 132 (1964); Phys.Rev.Lett. 13, 508 (1954) and Phys.

Rev. 145, 1156 (1984), See olto F, Englett and R, Brout, Phys.Rev,Lett, 13, 321
{1964); G. S. Guralnik, C, R, Hogen and T, W. B, Kibble, Phys.Rev, Lett, 13, 33
(1964); and T. W, B, Kibkle, Phys.Rev, 155, 1354 (1967),

3

if one wishes, insteod of p, one may chaose p° to be the overall energy scole

far the low-lying soliton states, These fwo choices, p or p;} , are clearly the
same if A= |:|,af’|1|4 is O(1). Therefore, either choice is odequate, It is not dif-
ficult to see that efther choice remains adequate even if X is >> 1, provided
that 1* is much smaller thon either mq [p or ma_;"' p. Likewise, either choice

is odequate if A is << 1, provided that h-‘J‘

is much smoller than either mqu
or mq;"’p .
M. Y. Hon and Y, Nambu, Phys.Rev, 139, B100S (1965),

G. Zweig, CERN report (unpublished); M. Gell-Mann, Phys.Lett, 8, 214 (1964),

18, A. Nishimura, University of Tokyo preprint UT-275, 1976; G, C. Wick (private

19,

20,

communication),

R Jackiw and C, Rebbi, Phys.Rev. D13, 3398 (1976); C. K. Lee (unpublished),

R. Friedberg, 7. D. Lee and A, Sirlin, Nucl, Phys, B115, 1, 32 (1975).




Figure 1.

Figure 2,

Figure 3,

Figure 4,
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Figure &,

Figure 7.

Figure Coptions

ﬁz - $2 vs, p for {41“{!-I n << 1 (with an arbitrary scale for ﬁ? - Gz}

and for (4:}"1 n=35x 10° fwith the exact scale for o2 - "52} .

3(0)/500), #(p)/¥(0) ond [ (p)+(p}]/520) vs. p from
p=0 to P =9 =2.0428 when n ~ 0+,

Ei 32 (dashed curves) vs, o from p=0

U, v (solid curves) and ¢
to p= Py = 1 when n—~o. Forsmall p, one uses the left=hand

scale for the ordinate; for large p, the right-hand scale,
Solutions %{7} and ¥{r)} of (2.69).

U(p), V{p) Golid curves) and GE{P]¢$2(P] {dashed curves) vs,
p from p=0 %o p=p; for n=94 (in a), 205 (in b),
47.8 (in ¢}, M7 {in d), 250 (in ) and 1831 (in ).
The right-hand scale for the ordinate refers in c and d to Gz+ ;2
and Gz—w‘rzr in e to G2+ 2 alene, and in f to GE+ GE only

for p >0.75. The left=-hand scale refers to everything else,

{o) n (solid curve) and Ingmn ([dotted curve) vs. LID) . As
uid) -ﬁc'; 1.741%, n~w, (b} Py (dotted curve), k (solid curve)
and q/n ([dashed curve) vs, U0} . See (2.18)-(2.20) and (4,12} for

their definitions.

The integrals <'p2> ; ﬁp= €ny and gA/QV vs. uf0) which ranges
from O to ﬁcgl.?ﬂ? . See (4,33) for their definitions.
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