
(submitted to Annalen der Physik)

Fermion Interactions and Universal Behavior

in Strongly Interacting Theories

Jens Braun ∗

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena,

Max-Wien-Platz 1, D-07743 Jena, Germany

The theory of the strong interaction, Quantum Chromodynamics (QCD), describes the generation of hadronic
masses and the state of hadronic matter during the early stages of the evolution of the universe. As a com-
plement, experiments with ultracold fermionic atoms provide a clean environment to benchmark our under-
standing of dynamical formation of condensates and the generation of bound states in strongly interacting
many-body systems.

Renormalization group (RG) techniques offer great potential for theoretical advances in both hot and
dense QCD as well as many-body physics, but their connections have not yet been investigated in great
detail. We aim to take a further step to bridge this gap. A cross-fertilization is indeed promising since it may
eventually provide us with an ab-initio description of hadronization, condensation, and bound-state forma-
tion in strongly interacting theories. After giving a thorough introduction to the derivation and analysis of
fermionic RG flows, we give an introductory review of our present understanding of universal long-range be-
havior in various different theories, ranging from non-relativistic many-body problems to relativistic gauge
theories, with an emphasis on scaling behavior of physical observables close to quantum phase transitions
(i. e. phase transitions at zero temperature) as well as thermal phase transitions.
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1 Introduction

Strongly interacting fermions play a very prominent role in nature. The dynamics of a large variety of

theories close to the boundary between a phase of gapped and ungapped fermions is determined by strong

fermion interactions. For instance, the chiral finite-temperature phase boundary in quantum chromody-

namics (QCD), the theory of the strong interaction, is governed by strong fermionic self-interactions. In

the low-temperature phase the quark sector is driven to criticality due to strong quark-gluon interactions.

These strong gluon-induced quark self-interactions eventually lead to a breaking of the chiral symmetry

and the quarks acquire a dynamically generated mass. The chirally symmetric high-temperature phase, on

the other hand, is characterized by massless quarks. The investigation of the QCD phase boundary repre-

sents one of the major research fields in physics, both experimentally and theoretically. Since the dynamics

of the quarks close to the chiral phase boundary affect the equation of state of the theory, a comprehensive
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understanding of the quark dynamics is of great importance for the analysis of present and future heavy-ion

collision experiments at BNL, CERN and the FAIR facility [1].

While heavy-ion collision experiments provide us with information on hot and dense QCD, experiments

with ultracold trapped atoms provide an accessible and controllable system where strongly-interacting

quantum many-body phenomena can be investigated precisely. In contrast to the theory of strong inter-

actions, the interaction strength can be considered a free parameter in these systems which can be tuned

by hand. In fact, the interaction strength is directly proportional to the s-wave scattering length and can

therefore be modulated via an external magnetic field using Feshbach resonances [2]. It is therefore pos-

sible to study quantum phenomena such as superfluidity and Bose-Einstein condensation in these systems.

From a theorist’s point of view, this strong degree of experimental control opens up the possibility to test

non-perturbative methods for the description of strongly interacting systems.

Phases of ultracold Fermi gases at zero and finite temperature have been studied experimentally, see

e. g. Refs. [3–7] as well as theoretically, see e. g. Refs. [8–27], over the past few years. In particular,

studies with renormalization group (RG) methods exhibit many technical similarities to studies of QCD

at finite temperature and density, see e. g. Refs. [28–33]. Physically, in both cases the phase boundary

is determined by strong interactions of the fermions. While the asymptotic limits of the phase diagram

of ultracold atoms for small positive and small negative (s-wave) scattering length associated with Bose-

Einstein condensation and Bardeen-Cooper-Schrieffer (BCS) superfluidity [34], respectively, are under

control theoretically [35–39], our understanding of the finite-temperature phase diagram in the limit of

large scattering length (strong-coupling limit) is still incomplete [8, 10, 11, 14, 25, 27].

Aside from phase transitions at finite temperature, experiments with ultracold fermionic atoms provide a

very clean environment for studies of quantum phase transitions. Experiments with a dilute gas of atoms in

two different hyperfine spin states have been carried out in a harmonic trap at a finite spin-polarization [3,4].

Since there is effectively no spin relaxation in these experiments, in contrast to most other condensed

matter systems, the polarization remains constant for long times. Deforming the system by varying the

polarization allows us to gain a deep insight into BCS superfluidity and its underlying mechanisms [34].

Originally, BCS theory has been worked out for systems in which the Fermi surfaces of the two spin states

are identical, i. e. the polarization of the system is zero. As a function of the polarization, a quantum phase

transition occurs at which the (fully polarized) normal phase becomes energetically more favorable than

the superconducting phase [17, 20, 22]. After giving a thorough introduction on the level of (advanced)

graduate students to the derivation and analysis of fermionic RG flow equations1 in Sects. 2 and 3, we shall

discuss aspects of symmetry breaking and condensate-formation in non-relativistic theories from a RG

point of view in Sect. 4.1. For simplicity, we restrict ourselves to systems with a vanishing polarization.

The generalization of our RG approach to spin-polarized gases is straightforward and has been discussed

in Refs. [23, 40].

Phase separation between a superfluid core and a surrounding normal phase has been indeed observed

in experiments with an imbalanced population of trapped spin-polarized 6Li atoms at unitarity at MIT and

Rice University [3, 4]. The density profiles measured in these experiments prove the existence of a skin

of the majority atoms. A critical polarization Pc associated with a quantum phase transition has been

found in both the MIT and Rice experiment. Aside from studies at zero temperature, finite-temperature

studies of a spin-polarized gas have been performed at Rice University [4]. In these experiments the

critical polarization, above which the superfluid core disappears, has been measured as a function of the

temperature. In accordance with theoretical studies [15, 18, 23], the results from the Rice group suggest

that a tricritical point exists in the phase diagram spanned by temperature and polarization, at which the

1 Our introduction is kept on a basic level. In order to explain the derivation of fermionic RG flows, we employ a simple four-

fermion theory to explain the derivation of fermionic RG flows. Our toy model already shares many aspects with more complicated

theories, such as QCD. In addition to gaining first insights into symmetry breaking patterns encoded in the fixed-point structure of

strongly-interacting systems, a simple four-fermion theory allows us to develop a simple terminology for the discussion of various

other theories in the subsequent sections. In particular, the analysis of such a theory allows us to address many technically relevant

questions such as Fierz ambiguities, the role of momentum dependences of couplings, and Hubbard-Stratonovich transformations.

However, more advanced readers may readily skip Sects. 2 and 3.
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superfluid-normal phase transition changes from second to first order as the temperature is lowered. De-

pending on the physical observable, it is in principle possible that finite-size and particle-number effects

are visible in the experimental data. Concerning the critical polarization, such effects have been studied

in Ref. [41].

There is indeed direct evidence that finite-size effects can alter the phase structure of a given theory. For

example, Monte-Carlo studies of the 1 + 1d Gross-Neveu model show that the finite-temperature phase

diagram of the uniform system is modified significantly due to the non-commensurability of the spatial

lattice size with the intrinsic length scale of the inhomogeneous condensate [42, 43]. In particular, the

phase with an inhomogeneous ground state shrinks. Such commensurability effects may be present in

trapped ultracold Fermi gases as well. Since the Gross-Neveu model in 1 + 1d is reminiscent of QCD in

many ways, the existence of a stable ground state governed by an inhomogeneous condensate is subject of

an ongoing debate, see e. g. Refs. [44, 45]. In any case, it is well-known that the mass spectrum and the

thermodynamics of QCD has an intriguing dependence on the volume size and the boundary conditions of

the fields, see e. g. Refs. [46–57].

Our theoretical understanding of the phase structure of trapped fermions is currently mostly based on

Density Functional Theory (DFT) [58] in a local density approximation (LDA) in which, for example,

derivatives of densities are omitted in the ansatz for the action, see e. g. Refs. [16, 18, 19, 24, 26]. From a

field-theoretical point of view, DFT corresponds to a mapping of the (effective) action of a fermionic theory

onto an action which depends solely on the density. The latter then plays the role of a composite degree of

freedom of fermions. Thus, the underlying idea is reminiscent of the Hubbard-Stratonovich transforma-

tion [59, 60] widely used in low-energy QCD models and spin systems. In any case, the introduction of an

effective degree of freedom, such as the density, turns out to be advantageous for a description of theories

with an inhomogeneous ground-state. Again, experiments with ultracold atoms allow us to test different

approaches and approximation schemes. In Refs. [16, 24], the equation of states of the superfluid and the

normal phase of a uniform system have been employed to construct a density functional which allows to

study the ground-state properties of trapped Fermi gases. Such a procedure corresponds to an LDA. While

there is some evidence that Fermi gases in isotropic traps can be quantitatively understood within DFT in

LDA [24], the description of atoms in a highly-elongated trap in LDA seem to fail and derivatives of the

density need to be taken into account [61, 62]. In the spirit of these studies, we shall discuss a functional

RG approach to DFT in Sect. 4.2 which relies on an expansion of the energy density functional in terms of

correlation functions and allows to include effects beyond LDA in a systematic fashion.

Heavy nuclei combine aspects of dense and hot QCD and systems of ultracold atoms. We again need to

describe strong interactions between fermions, the nucleons, which form a stable bound state depending on,

e. g., the number of protons and neutrons. These interactions are repulsive at short range and attractive at

long range as in the case of ultracold atomic gases. Loosely speaking, heavy nuclei can be viewed as spin-

polarized systems of two fermion species comparable to those systems studied in experiments with trapped

spin-polarized atoms at MIT and Rice University [3, 4]. In fact, almost all nuclei have more neutrons

than protons.2 Therefore density profiles of protons and neutrons in heavy nuclei are evocative of the

profiles associated with the two fermion states in experiments with ultracold atoms. For heavy nuclei, DFT

remains currently to be the only feasible approach for a calculation of ground-state properties associated

with inhomogeneous densities. State-of-the-art density functional approaches are essentially based on

fitting the parameters of a given density functional such that one reproduces the experimentally determined

values of the ground-state properties of various heavy nuclei [63–65]. These density functionals are then

employed to describe ground-state properties of other heavy nuclei. As mentioned above, we shall briefly

discuss an RG approach to DFT in Sect. 4.2, which opens up the possibility to study ground-state properties

of heavy nuclei from the underlying nucleon-nucleon interactions. Such an ab-initio DFT approach might

prove to be useful for future studies of ground-state properties of (heavy) self-bound systems.

2 Protons and neutrons correspond to two different isospin states of the nucleon.
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Hot and dense QCD, ultracold atoms and nuclear physics represent just three examples for systems in

which the dynamics are governed by strong fermion interactions. Of course, the list can be extended al-

most arbitrarily. In the context of condensed-matter theory, we encounter systems such as so-called high-Tc
superconductors. In this case the challenge is to describe reliably the dynamics of electrons at finite tem-

perature in an ambient solid-state system. The so-called Hubbard model provides a theory to describe these

superconductors [66,67] and has been extensively studied with renormalization-group techniques, see e. g.

Refs. [68–71]. It is worth noting that both the mechanisms as well as the techniques are remarkably similar

to the ones in renormalization-group studies of gauged fermionic systems interacting strongly via compet-

ing channels [30–32], such as QCD, and of imbalanced Fermi gases in free space-time [23]. In Sect. 5, we

discuss more general aspects of (non-gauged) Gross-Neveu- and Nambu-Jona-Lasinio-type models which

also exhibit technical similarities to studies of condensed-matter systems. Nambu-Jona-Lasinio-type mod-

els are widely used as effective QCD low-energy models. On the other hand, Gross-Neveu-type models

have been employed as toy models to study certain aspects of the QCD phase diagram but they are also

related to models in condensed-matter theory, e. g. to models of ferromagnetic (relativistic) superconduc-

tors [72, 73]. In this review, we shall use Gross-Neveu- and Nambu-Jona-Lasinio-type models to discuss

dynamical chiral symmetry breaking (via competing channels) and the role of momentum dependences of

fermionic interactions.

In addition to fermion dynamics at finite temperature, quantum phase transitions play a prominent role

in condensed-matter theory, e. g., in the context of graphene. Effective theories of graphene, such as QED3

and the Thirring model, are expected to approach a quantum critical point when the number of fermion

species, namely the number of electron species, is varied [74, 75]. RG studies of these effective theories,

see e. g. Refs. [74–76], are closely related to studies of quantum phase transitions in QCD [29–31,77–79].

Similar to the situation in QED3, a quantum phase transition from a chirally broken to a conformal phase

is expected in QCD when the number of (massless) quark flavors is increased. Studies of the dependence

on the number of fermion species seem to be a purely academic question. Depending on the theory under

consideration, however, such a deformation of the theory may allow us to gain insights into the dynamics

of fermions close to a phase boundary in a controlled fashion. For example, the gauge coupling in QCD

becomes small when the number of quark flavors is increased and therefore perturbative approaches in

the gauge sector become meaningful. Moreover, an understanding of strongly-flavored QCD-like gauge

theories is crucial for applications beyond the standard-model, namely for so-called walking technicolor

scenarios for the Higgs sector [80–88]. In Sect. 6, we shall discuss chiral symmetry breaking in gauge

theories withNf fermion flavors. In particular, we shall present a detailed discussion of the scaling behavior

of physical observables close to the quantum phase transition which occurs for large Nf.

Our discussion shows that systems of strongly interacting fermions play indeed are very prominent role

in nature and that their dynamics determine the behavior of a wide class of physical systems with seemingly

substantial differences. However, our discussion also shows that the underlying mechanisms of symmetry

breaking and the applied techniques are very similar in these different fields. Therefore a phenomenolog-

ical and technical cross-fertilization offers great potential to gain a better understanding of the associated

physical processes. As outlined, examples include an understanding of the dynamical generation of hadron

masses as well as of the dynamical formation of condensates and bound-states in ultracold gases from

first principles. The main intent of the present review is to give a general introduction to the underlying

mechanisms of symmetry breaking and bound-state formation in strongly-interacting fermionic theories.

In particular, we aim to give a thorough introduction into the scaling behavior of physical observables close

to critical points, ranging from power-law scaling behavior to essential scaling. As a universal tool for stud-

ies of quantum field theories we employ mainly Wilsonian-type renormalization-group techniques [89–95].

For concrete calculations we shall use the so-called Wetterich equation [95] which we briefly introduce in

the next section. Reviews focussing on various different aspects of renormalization-group approaches can

be found in Refs. [96–110].
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2 Renormalization Group - Basic Ideas

We begin with a brief introduction of the basic ideas of RG approaches including a discussion of the Wet-

terich equation. The latter describes the scale dependence of the quantum effective action which underlies

our studies in this and the following sections.

In perturbation theory, the correlation functions of a given quantum field theory contain divergences

which can be removed by a renormalization prescription. The choice of such a prescription defines a

renormalization scheme and renders all (coupling) constants of a given theory scheme-dependent. Since

the renormalized (coupling) constants are nothing but mathematical parameters, their values can be arbi-

trarily changed by changing the renormalization prescription. We stress that these renormalized constants

should not be confused with physical observables such as, for example, the phase transition temperature or

the physical mass of a particle. Physical observables are, of course, invariant under a variation of the renor-

malization prescription, provided we have not truncated the perturbation series. If we consider a truncated

perturbation series, we find that there is a residual dependence on the renormalization scheme which can be

controlled to some extent by the so-called ”Principle of Minimum Sensitivity” [111], see also discussion

below.

At this point we are then still free to perform additional finite renormalizations. This results in differ-

ent effective renormalization prescriptions. A given renormalization prescription can then be considered

as a particular reordering of the perturbative expansion which expresses it in terms of new renormal-

ized constants [112]. Let us assume that the transformations between the finite renormalizations can be

parametrized by introducing an auxiliary single mass scale µ. This scale corresponds to a UV (cutoff) scale

at which the parameters of the theory are fixed. A set of RG equations for a given theory then describes the

changes of the renormalized parameters of this theory (e. g. the coupling constant) induced by a variation

of the auxiliary mass scale µ. The set of renormalization transformations is called the renormalization

group.

Let us now consider a (renormalized) microscopic theory at some large momentum scale Λ defined by a

(classical) action S. Wilson’s basic idea of the renormalization group is to start with such a classical action

S and then to integrate out successively all fluctuations from high to low momentum scales [89–91]. This

procedure results in an action which depends on an IR regulator scale, say k, which plays the role of a

reference scale. The values of the (scale-dependent) couplings defining this action on the different scales

are related by continuous RG transformations. We shall refer to the change of a coupling under a variation

of the scale k as the RG flow of the coupling. In this picture, universality means that the RG flow of the

couplings is governed by a fixed point. The possibility of identifying fixed points of a theory makes the RG

such a powerful tool for studying statistical field theories as well as quantum field theories. As we shall

discuss below, critical behavior near phase transitions is intimately linked to the fixed-point structure of the

theory under consideration.

In this review we employ a non-perturbative RG flow equation, the Wetterich equation [95], for the

so-called effective average action in order to analyze critical behavior in physical systems. The effective

average action Γk depends on an intrinsic momentum scale k which parameterizes the Wilsonian RG

transformations. We note that such an approach is based on the fact that an infinitesimal RG transformation

(i. e. an RG step), performed by an integration over a single momentum shell of width ∆k, is finite. For

this reason we are able to integrate out all quantum fluctuations through an infinite sequence of such RG

steps. The flow equation for Γk then describes the continuous trajectory from the microscopic theory S
at large momentum scales to the full quantum effective action (macroscopic theory) at small momentum

scales. Thus, it allows us to cover physics over a wide range of scales.

Here, we only discuss briefly the derivation and the properties of the RG flow equation for the effective

average action Γk; for details we refer to the original work by Wetterich [95]. The scale-dependent effective

action Γk is a generalization of the (quantum) effective action Γ but only includes the effects of fluctuations

with momenta p2 & k2. Therefore Γk is sometimes called a coarse-grained effective action since quantum

fluctuations on length scales smaller than 1/k are integrated out. The underlying idea is to calculate

the generating functional Γ of one-particle irreducible (1PI) graphs of a given theory by starting at an
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ultraviolet (UV) scale Λ with the microscopic (classical) action S and then successively integrating out

quantum fluctuations by lowering the scale k. The quantum effective action Γ is then obtained in the

limit k → 0. In other words, the coarse-grained effective action Γk interpolates between the classical action

S at the UV scale Λ and the 1PI generating functional Γ in the infrared limit (IR) k → 0. The starting

point for the derivation of the flow equation of Γ is a UV- and IR-regularized generating functional Zk for

the Greens functions:3

Zk[J ] =

∫

Λ

Dφ({pi})e−S[φ]−∆Sk[φ]+J
T·φ ≡ eWk[J] , (1)

where {pi} ≡ {p0, . . . , pd} and Wk is the scale-dependent generating functional for the connected Greens

functions. The field variable φ as well as the source J are considered as generalized vectors in field space

and are defined as

φ =








ψ
ψ̄T

ϕ
...








and JT =
(
η̄, ηT, j, . . .

)
. (2)

Moreover, we have introduced a generalized scalar product in field space: JT · φ ≡
∫
ddx{η̄ψ + . . . }.

Here, the field ψ represents a Dirac spinor, and ϕ denotes a real-valued scalar field. The dots indicate that

other types of fields, e. g. gauge-fields, are allowed as well. For non-relativistic theories of fermions,

the generating functional can be defined accordingly. We assume that the theory is well-defined by a UV-

regularized generating functional: The index Λ indicates that we only integrate over fields φ({pi}) with

momenta |p| . Λ, i. e. we implicitly take φ({pi}) = 0 for |p| > Λ. To regularize the infrared modes a

cutoff term has been inserted into the path integral. It is defined as

∆Sk[φ] =
1

2

∑

a,b

∫
ddp

(2π)d
φa({−pi})Rabk ({pi})φb({pi}) ≡

1

2
φT ·Rk · φ , (3)

where Rk is a matrix-valued regulator function. Through the insertion of the cutoff term, we have defined

a generating functional which now depends on the scale k.

The cutoff function Rk has to fulfill three conditions. Since Rk has been introduced to regularize the

IR, it must fulfill

lim
p2

k2
→0

Rk({pi}) > 0 , (4)

where p2 = p20 + · · ·+ p2d−1. Second, the function Rk must vanish in the IR-limit, i. e. for k → 0:

lim
k2

p2
→0

Rk({pi}) = 0 . (5)

This condition ensures that we obtain the 1PI generating functional for k → 0. Third, the cutoff function

should obey

lim
k→Λ

Rk({pi})→∞ (6)

for fixed p2. This property guarantees that Γk→Λ → S for k → Λ.

In this review, we shall always use cutoff functions which can be written in terms of a dimensionless

regulator shape function r(p2/k2). For simple relativistic scalar theories, we may choose

Rk(p
2) ∝ p2r

(
p2

k2

)

. (7)

3 Throughout this review we work in Euclidean space-time. We refer the reader to App. A for details on our conventions.
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For studies of theories with chiral fermions, it is convenient to employ a cutoff function which preserves

chiral symmetry. An appropriate choice is [113]

Rψk ({pi}) ∝ /p rψ

(
p2

k2

)

. (8)

On the other hand, for non-relativistic fermionic many-body problems the choice of the cutoff function

should respect the presence of a Fermi surface. An appropriate choice for such a cutoff function is given

by [27]

Rψk (~p
2) = k2 rψ(Z) with Z = (~p 2 − µ)/k2 , (9)

where, for instance,

rψ(Z) = (sign(Z)−Z)θ(1− |Z|) . (10)

The chemical potential of the fermions is given by µ and defines the associated Fermi surface. This choice

for the regulator function arranges the momentum-shell integrations around the Fermi surface, i. e. modes

with momenta (~p 2−µ) ≥ k2 remain unchanged while the momenta of modes with (~p 2−µ) < k2 are cut

off.

For scalar field theories, the presence of a cutoff function of the form ∼ Rk(p
2) is in general not

problematic. For gauge theories, however, it causes difficulties due to condition (4) which essentially

requires that the cutoff function acts like a mass term for small momenta. Therefore the cutoff function

necessarily breaks gauge symmetry. We stress that this observation does by no means imply that such

an approach cannot be applied to gauge theories. In fact, it is always necessary to fix the gauge in order

to treat gauge theories perturbatively within a path-integral approach. This gauge-fixing procedure also

breaks gauge invariance. Gauge-invariant results are then obtained by resolving Ward-Takahashi identities.

Consequently, we can think of the cutoff function as an additional source of gauge-symmetry breaking. In

analogy to perturbation theory, one then needs to deal with modified Ward-Takahashi identities in order

to recover gauge invariance [114–119]. In addition, there are essentially two alternatives: first, one can

construct manifestly gauge-invariant flows as proposed in [108, 120, 121]. Second, we can apply special

(useful) gauges, such as the background-field gauge [122, 123]. We refer the reader to Ref. [105] for a

detailed introduction to RG flows in gauge theories.

The coarse-grained effective action Γk can in principle be obtained from the IR-regularized func-

tional Wk[J ] in a standard fashion, see, e. g., the standard textbook derivation of the quantum effective

action Γ in Refs. [112, 123]. However, we employ here a modified Legendre transformation to calculate

the coarse-grained effective action:4

Γk[Φ] = sup
J

{
−Wk[J ] + JT · Φ

}
−∆Sk[Φ] . (11)

The so-called classical field Φ is implicitly defined by the supremum prescription. The modification of

the Legendre transformation is necessary for the connection of Γk with the classical action S in the limit

k → Λ. From this definition of Γk we find the RG flow equation of the coarse-grained effective action, the

so-called Wetterich equation [95], by taking the derivative with respect to the scale k:

∂t Γk[Φ] =
1

2
STr

[

Γ
(2)
k [Φ] +Rk

]−1

· (∂tRk) =
1

2
, (12)

4 Note that a functional obtained by an ordinary Legendre transformation, e. g. Γ[Φ] = supJ{−W [J ] + JT · Φ}, is convex.

However, the coarse-grained effective action Γk is not necessarily convex for finite k due to the insertion of the cutoff term. Since

Rk → 0 for k → 0, convexity is recovered in the limit k → 0.
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with t = ln(k/Λ) being the RG “time” and Γ(2) ≡ Γ(1,1). The (n + m)-point functions are defined as

follows:

Γ
(n,m)
k [Φ] =

n−times
︷ ︸︸ ︷−→
δ

δΦT
· · ·
−→
δ

δΦT
Γk[Φ]

m−times
︷ ︸︸ ︷←−
δ

δΦ
· · ·
←−
δ

δΦ
. (13)

Thus, Γ
(1,1)
k is matrix-valued in field space. The super-trace arises since Φ contains both fermionic as

well as bosonic degrees of freedom and it provides a minus sign in the fermionic subspace of the matrix.

The double-line in Eq. (12) represents the full propagator of the theory which includes the complete field

dependence. The solid black dot in the loop stands for the insertion of ∂tRk. The structure of the flow

equation reveals that the regulator function Rk specifies the Wilsonian momentum-shell integrations, such

that the RG flow of Γk is dominated by fluctuations with momenta |p| ≃ k.

The flow equation (12) has been obtained by taking the derivative of Γk with respect to the scale k.

However, we have not taken into account a possible scale dependence of the classical field Φ yielding a

term ∼ ∂tΦk on the right-hand side of Eq. (12). We stress that the inclusion of this term is a powerful

extension of the flow equation discussed here, since it allows to bridge the gap between microscopic and

macroscopic degrees of freedom in the RG flow, e. g. between quarks and gluons and hadronic degrees

of freedom, without any fine-tuning [28, 124, 125]. More technically speaking, this extension makes it

possible to perform continuous Hubbard-Stratonovich transformations in the RG flow. We shall not employ

these techniques here since they do not provide us with additional insights into the fermionic fixed-point

structure to which the scope of the present review is limited. For details concerning such an extension of

the flow equation (12), we refer the reader to Refs. [28, 104, 105, 124–127]. In Ref. [32] these so-called

re-bosonization techniques5 have been employed for a first-principles study of the QCD phase boundary.

As should be the case for an exact one loop flow [128], the Wetterich equation (12) is linear in the

inverse of the full propagator. Moreover, it is a nonlinear functional differential equation, since it involves

the inverse of the second functional derivative of the effective action. We stress, however, that the loop in

Eq. (12) is not a simple perturbative loop since it depends on the full propagator. In fact, it can be shown

that arbitrarily high loop-orders are summed up by integrating this flow equation [128]. Nonetheless it is

possible and sometimes even technically convenient to rewrite (12) in a form which is reminiscent of the

textbook form of the one-loop contribution to the effective action:

∂t Γk[Φ] =
1

2
STr ∂̃t ln

(

Γ
(1,1)
k [Φ] +Rk

)

. (14)

Here, ∂̃t denotes a formal derivative acting only on the k-dependence of the regulator function Rk. Re-

placing Γ
(1,1)
k by the (scale-independent) second functional derivative of the classical action, S(1,1), we

can perform the integration over the RG scale k analytically and obtain the standard one-loop expression

for the effective action:

Γ1−loop[Φ] = SUV[Φ] +
1

2
STr lnS(1,1)[Φ] , (15)

where

SUV[Φ] = S[Φ]− 1

2
STr ln

(

S(1,1)[Φ] +RΛ

)

. (16)

Here, the second term on the right-hand side corresponds to the boundary condition for the RG flow at the

UV scale Λ, which renders Γ1−loop finite.

From a technical point of view, the representation (14) turns out to be a convenient starting point for

our studies of the fixed-point structure of four-fermion interactions. In order to calculate flow equations

5 In the context of QCD these techniques are sometimes referred to as ”dynamical hadronization”.
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of four-fermion interactions, we decompose the inverse regularized propagator Γ
(1,1)
k [Φ] on the right-hand

side of the flow equation into a field-independent (Pk) and a field-dependent (Fk) part,

Γ
(1,1)
k [Φ] +Rk = Pk + Fk . (17)

We can then expand the flow equation in powers of the fields according to

∂tΓk =
1

2
STr

{

∂̃t ln(Pk + Fk)
}

(18)

=
1

2
STr

{

∂̃t

(
1

P kFk
)}

− 1

4
STr

{

∂̃t

(
1

P kFk
)2}

+
1

6
STr

{

∂̃t

(
1

P kFk
)3}

+ . . . .

The powers of 1
P kFk can be calculated by simple matrix multiplications. The flow equations for the

various couplings can now be obtained by comparing the coefficients of the four-fermion operators on the

right-hand side of Eq. (18) with the couplings specified in the definition of the effective action. In other

words, the flow equation of higher n-point functions are obtained straightforwardly from the flow equation

(12) (or, equivalently, from Eq. (18)) by taking the appropriate number of functional derivatives. From this,

we observe that the RG flow of the n-point function depends in general on the flow of the (n + 1)- and

(n + 2)-point function. This means that we obtain an infinite tower of coupled flow equations by taking

functional derivatives of the flow equation (12). In most cases we are not able to solve this infinite tower

of flow equations. Thus, we need to truncate the effective action and restrict it to include only correlation

functions with Nmax external fields. However, such a truncation poses severe problems: first, the system

of flow equations is no longer closed and, second, neglecting higher n-point functions may render the flow

unstable in the IR region of strongly coupled theories. For example in QCD, one would naively expect that

contributions from higher n-point functions are important.

Finding reliable truncations of the effective action is the most difficult step and requires a lot of physical

insight. We stress that an expansion in terms of n-point functions must not be confused with an expansion

in some small parameter as in perturbation theory. The assumption here is that the influence of neglected

operators on the already included operators is small. Once we have chosen a truncation for studying a

given theory, we need to check its reliability. One possibility for such a check is to extend the truncation

by including additional operators and then check if the results obtained from this new truncation are in

agreement with the earlier results. If this is not the case, one must rethink the chosen truncation. However,

even if the results are not sensitive to the specific set of additional operators added to the truncation,

this does not necessarily mean that one has included all relevant operators in the calculation. A second

possibility to assess the reliability of a given truncation is to exploit the fact that physical observables

should not depend on the regularization scheme. Since the scheme is specified by the cutoff function, the

physical observables should be independent of this choice. In the present approach the scheme is defined

by our choice for the regulator function Rk. Thus, we can vary Rk and then check if the results depend

on the choice of the cutoff function. If this is the case, an extension of the truncation might be required.

In addition to a simple variation of regulator functions, we may actually exploit the dependence on Rk
to optimize the truncated RG flow of a given theory. For example, an optimization criterion can be based

on the size of the gap induced in the effective propagator (Γ
(1,1)
k [Φ] + Rk)

−1, see Refs. [129–131]. We

then denote those regulators to be optimized for which the gap is maximized with respect to the cutoff

scheme. In addition to such an optimization of RG flows within a given regulator class, a more general

criterion has been put forward in Ref. [104]. The latter defines the optimized regulator to be the one for

which the regularized theory is already closest to the full theory at k = 0, for a given gap induced in the

effective propagator (Γ
(1,1)
k [Φ]+Rk)

−1. This optimization criterion yields an RG trajectory which defines

the shortest path in theory space between the UV theory at k = Λ and the full theory at k = 0. Both

optimization criteria naturally encompass the so-called “Principle of Minimum Sensitivity”. However, in

contradistinction to the “Principle of Minimum Sensitivity”, the optimization of (truncated) RG flows does

not rely on the existence of extremal values of physical observables which may arise from a variation of
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the regularization scheme. For a detailed discussion of optimization criteria and properties of optimized

RG flows, we refer the reader to Refs. [104, 129–131].

Nonetheless, even an approximate solution of the flow equation (12) can describe non-perturbative

physics reliably, provided the relevant degrees of freedom in the form of RG relevant operators are kept in

the ansatz for the effective action.

3 RG Flow of Four-Fermion Interactions - A Simple Example

In this section we discuss a simple four-fermion theory which already allows us to gain some important

insight into the mechanisms of symmetry breaking in strongly-interacting theories. A study of a simple

four-fermion theory is useful for many reasons. First, it allows us to highlight various methods and tech-

nical aspects such as Fierz ambiguities, (partial) bosonization and the role of explicit symmetry breaking.

Second, a confrontation of this model study with our analysis of symmetry breaking in gauge theories is

instructive: To be specific, we will consider the mechanisms of chiral symmetry breaking to point out the

substantial differences between these theories.

3.1 A Simple Example and the Fierz Ambiguity

In this section we discuss the basic concepts and problems in describing strongly-interacting fermionic

theories, with a particular emphasis on the application of RG approaches. To this end, we employ a

Nambu–Jona-Lasinio-type model. Such models play a very prominent role in theoretical physics. Origi-

nally, the Nambu–Jona-Lasinio (NJL) model has been used as an effective theory to describe spontaneous

symmetry breaking in particle physics based on an analogy with superconducting materials [132, 133],

see Ref. [134] for a review. RG methods have been extensively employed to study critical behavior in

QCD with the aid of NJL-type models, see e. g. Refs. [33, 53,55, 100, 113, 135–139]. Usually these model

studies rely on a (partially) bosonized version of the action. We shall discuss aspects of bosonization in

Sect. 3.2. For the sake of simplicity we start with a purely fermionic formulation of the NJL model with

only one fermion species. This model has been extensively studied at zero temperature with the functional

RG in Refs. [77,140]. In particular, the ambiguities arising from Fierz transformations have been explicitly

worked out and discussed. We shall follow the discussion in Refs. [77,140] but extend it with respect to is-

sues arising at finite temperature and for a finite (explicit) fermion mass. In addition, we exploit this model

to discuss general aspects of theories with many fermion flavors as well as quantum critical behavior.

In the following we consider a simple ansatz for the effective action in d = 4 Euclidean space-time

dimensions:

ΓNJL

[
ψ̄, ψ

]
=

∫

d4x

{

Zψψ̄i /∂ψ +
1

2
λ̄σ[(ψ̄ψ)

2 − (ψ̄γ5ψ)
2]

}

, (19)

where λ̄σ is the bare four-fermion coupling and Zψ is the so-called fermionic wave-function renormaliza-

tion. The coupling λ̄σ is considered to be RG-scale dependent. Here, we consider four-fermion couplings

as fundamental parameters. However, in other theories fermionic self-interactions might be fluctuation-

induced. In QCD, for example, they are induced by two-gluon exchange and are therefore not fundamental

as we shall discuss in Sect. 6, see also Refs. [28–32,78]. We would like to add that the NJL model in d = 4
is perturbatively non-renormalizable. In the following we define it with a fixed UV cutoff Λ. Also the

regularization scheme therefore belongs to the definition of the model. We shall come back to this issue in

Sects. 3.2 and 5.1.

Our ansatz (19) for the effective action can be considered as the leading order approximation in a

systematic expansion in derivatives. The associated small parameter of such an expansion is the so-called

anomalous dimension ηψ = −∂t lnZψ of the fermion fields. If this parameter is small, then such a

derivative expansion is indeed justified. We shall come back to this issue below. In any case, we will drop

terms in our studies which are of higher order in derivatives, such as terms ∼ (ψ̄i /∂ψ)2.
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The action (19) is clearly invariant under simple phase transformations,

ψ(x) 7−→ eiαψ(x) , (20)

but also under chiral U(1) transformations (axial phase transformations),

ψ(x) 7−→ eiγ5αψ(x) , ψ̄(x) 7−→ ψ̄(x) eiγ5α , (21)

where α is an arbitrary “rotation” angle. A necessary condition for the chiral symmetry of the NJL model is

the absence of explicit mass terms for the fermion fields in the action, such as∼ ψ̄m̄ψ. As we shall discuss

in more detail below, the chiral symmetry can be still broken spontaneously, if a finite vacuum expectation

value 〈ψ̄ψ〉 is generated by loop corrections associated with (strong) fermionic self-interactions. Breaking

of chiral symmetry in the ground state of the theory is then indicated by a dynamically generated mass

term for the fermions. This mass term is associated, e. g., with a constituent quark mass in low-energy

models of QCD and similar to the gap in condensed-matter theory. The relation between the strength of

the four-fermion interactions and the symmetry properties of the ground-state are discussed in detail in

Sects. 3.2 and 3.3.

We may now ask whether the action (19) is complete or whether other four-fermion couplings, such as a

vector interaction ∼ (ψ̄γµψ)
2, can be generated dynamically due to quantum fluctuations. We first realize

that the four-fermion interaction in our ansatz (19) can be expressed in terms of a vector and axial-vector

interaction term with the aid of so-called Fierz transformations, see App. B for details:

[
(ψ̄ψ)2 − (ψ̄γ5ψ)

2
]
=

1

2

[
(ψ̄γµγ5ψ)

2 − (ψ̄γµψ)
2
]
. (22)

This ambiguity in the representation of a four-fermion interaction term arises due to the fact that an arbitrary

d×d-matrixM can be expanded in terms of a complete and orthonormalized set {O(1), . . . , O(n)} of d×d-

matrices as follows:

Mab =

n∑

j=1

O
(j)
ab tr(OjM) ≡

n∑

j=1

O
(j)
ab

∑

c,d

(

O
(j)
cd Mdc

)

with tr(O(j)O(k)) = ✶dδjk . (23)

The expansion of a combination of two matrices M (1) and M (2) then reads (say for fixed b and c)

(Mbc)ad ≡Mad :=M
(1)
ab M

(2)
cd =

n∑

j=1

O
(j)
ad

∑

e,f

(M (2)
ce O

(j)
ef M

(1)
fb ) . (24)

In the case of four-fermion interactions we may classify the basis elementsOi according to the transforma-

tion properties of the corresponding interaction terms (ψ̄Oiψ)
2, i. e. scalar channel, vector channel, tensor

channel, axial-vector channel and pseudo-scalar channel. To be specific, we choose OS = ✶d, OV = γµ,

OT = 1√
2
σµν = i

2
√
2
[γµ, γν ], OA = γµγ5 and OP = γ5 as basis elements of the Clifford algebra defined

by the γ matrices, see App. B for details. To obtain Eq. (22) we then simply apply Eq. (24) to the ma-

trix products (✶)ab(✶)cd and (γ5)ab(γ5)cd, respectively. Thus, a Fierz transformation can be considered

as a reordering of the fermion fields. We stress that this is by no means related to quantum effects but a

simple algebraic operation. Nonetheless it suggests that other four-fermion couplings compatible with the

underlying symmetries of our model exist and are potentially generated by quantum effects.

With our choice for the set of basis elements {OS, . . . , OP} it is straightforward to write down the most

general ansatz for the effective action ΓNJL which is compatible with the underlying symmetries of the

model, i. e. the symmetries with respect to U(1) phase transformations, U(1) chiral transformations and

Lorentz transformations:6

ΓNJL

[
ψ̄, ψ

]
=

∫

d4x

{

Zψψ̄i /∂ψ +
1

2
λ̄σ[(ψ̄ψ)

2 − (ψ̄γ5ψ)
2]

−1

2
λ̄V[(ψ̄γµψ)

2]− 1

2
λ̄A[(ψ̄γµγ5ψ)

2]

}

. (25)

6 Note that (ψ̄OTψ)
2 is not invariant under chiral U(1) transformations.
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Because of Eq. (22) only two of the three couplings λ̄σ , λ̄V and λ̄A are independent. Thus, it suffices to

consider the following action with implicitly redefined four-fermion couplings:

ΓNJL

[
ψ̄, ψ

]
=

∫

d4x

{

Zψψ̄i /∂ψ +
1

2
λ̄σ[(ψ̄ψ)

2−(ψ̄γ5ψ)2]−
1

2
λ̄V[(ψ̄γµψ)

2]

}

. (26)

Note that we could have also chosen to remove, e. g., the vector-channel interaction term with the aid of

Eq. (22) at the expense of getting the axial-vector interaction. From a phenomenological point of view

it is tempting to attach a physical meaning to, e. g., the vector-channel interaction and interpret it as an

effective mass term for vector bosons Vµ as done in mean-field studies of Walecka-type models [141]:

λ̄V(ψ̄γµψ)
2 ∼ m̄2

VVµVµ + . . . . However, the present analysis shows that one has to be careful to attach

such a phenomenological interpretation to this term since the Fierz transformations allow us to remove this

term completely from the action, see also Sect. 3.2.

In this section we drop a possible momentum dependence of the four-fermion couplings. Thus, we

only take into account the leading term of an expansion of the four-fermion couplings in powers of the

dimensionless external momenta |pi|/k, e. g.

Γ(2,2)[ψ̄, ψ](p1, p2, p3) ≡ λ̄V(p1, p2, p3) = λ̄V(0, 0, 0) +O
( |pi|
k

)

. (27)

In momentum space, the corresponding interaction term in the expansion of the effective action (26) in

terms of fermionic self-interactions then assumes the following form, see App. A for our conventions of

the Fourier transformation:

ΓNJL

[
ψ̄, ψ

]
= . . .− 1

2
λ̄V

3∏

i=1

∫
d4pi
(2π)4

ψ̄(p1)γµψ(p2)ψ̄(p3)γµψ(p1−p2+p3)− . . . , (28)

where λ̄V ≡ λ̄V(0, 0, 0) and correspondingly for the other four-fermion interaction terms in Eq. (26).

Note that only three of the four four-momenta p1, . . . , p4 are independent due to momentum conservation.

We stress that we also apply this expansion at finite temperature T , see Sect. 3.5.3. In this case, it then

corresponds to an expansion in powers of the dimensionless Matsubara modes νn/k = (2n+1)πT/k and

|~p|/k. Thus, we assume that T/k ≪ 1.

The approximation (27) does not permit a study of properties of bound states of fermions, such as

meson masses in QCD, in the chirally broken regime; such bound states manifest themselves as momentum

singularities in the four-fermion couplings in Minkowski space. Nonetheless, the point-like limit can still

be a reasonable approximation for T/k ≪ 1. In the chirally symmetric regime above the chiral phase

transition it allows us to gain some insight into the question how the theory approaches the regime with

broken chiral symmetry in the ground state [30–32]. In Sect. 3.2 we shall discuss how the momentum

dependence of the fermionic interactions can be conveniently resolved in order to gain access to the mass

spectrum in the regime with broken chiral symmetry.

Let us now compute the RG flow equations, i. e. the so-called β functions, for the four-fermion cou-

plings in the point-like limit. To this end, we compute the second functional derivative of the effective

action with respect to the fields

Φ ≡ Φ(q) :=

(
ψ(q)

ψ̄T(−q)

)

and ΦT ≡ ΦT(−q) :=
(
ψT(−q), ψ̄(q)

)
, (29)

see also Eq. (13), and evaluate it for homogeneous (constant) background fields Ψ̄ and Ψ. In momentum

space this means that we evaluate Γ
(1,1)
NJL at

ψ(p) = Ψ (2π)4δ(4)(p) and ψ̄(p) = Ψ̄ (2π)4δ(4)(p) , (30)

where Ψ and Ψ̄ on the right-hand side denote the homogeneous background fields. Following Eq. (17), we

then split the resulting matrix into a field-independent part and a part which depends on Ψ and Ψ̄. To detail
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λσ λσ

λσ

Fig. 1 Left diagram: 1PI Feynman diagram associated with the λ2
σ-term on the right-hand side of the RG flow equa-

tion (33). Note that our (functional) RG study includes resummations of this diagram to arbitrary order in λσ . Right

diagram: 1PI Feynman diagram associated with the RG running of the fermionic wave-function renormalization Zψ .

the derivation of flow equations of four-fermion interactions in a simple manner, we first restrict ourselves

to the simplified ansatz (19) of the effective action. In this case, the so-called (regularized) propagator

matrix Pk and the fluctuation matrix Fk read

Pk =

(
0 −Zψp/T(1 + rψ)

−Zψp/(1 + rψ) 0

)

(2π)4δ(4)(p− p′) (31)

and

Fk =

(
F11 F12

F21 F22

)

(2π)4δ(4)(p− p′) , (32)

respectively, where

F11 = −λ̄σ
[
Ψ̄TΨ̄− γ5Ψ̄TΨ̄γ5

]
, F22 = −λ̄σ

[
ΨΨT − γ5ΨΨTγ5

]
,

F12 = −λ̄σ
[
(Ψ̄Ψ)− γ5(Ψ̄γ5Ψ) + ΨΨ̄− γ5ΨΨ̄γ5

]T
= −FT

21 .

Since we evaluated Γ
(1,1)
NJL for constant fields, both Pk and Fk are diagonal in momentum space. At this

point it is not yet necessary to specify the regulator function exactly.

The RG flow equation for λ̄σ can now be computed straightforwardly by comparing the coefficients

of the four-fermion interaction terms on the right-hand side of Eq. (18) with the couplings included in

our ansatz (19). From the fluctuation matrix Fk it is clear that only the term tr(P−1
k Fk)2 ∼ (ψ̄Oiψ)

2

in Eq. (18) contributes to the RG flow of the four-fermion coupling λ̄σ . For this initial study, we simply

take the four-fermion terms on the right-hand side of the flow equation “as they appear” and ignore Fierz

transformations of these terms. We then find

βλσ ≡ ∂tλσ = (2 + 2ηψ)λσ − 16v4 l
(F),(4)
1 (0; ηψ)λ

2
σ , (33)

where v−1
d = 2d+1πd/2Γ(d/2), i. e. v4 = 1/(32π2). Here, we have defined the dimensionless renormal-

ized coupling

λσ = (Zψ)
−2k2λ̄σ . (34)

The so-called threshold function l
(F),(d)
1 corresponds to a one-particle irreducible (1PI) Feynman diagram,

see left diagram in Fig. 1, and describes the decoupling of massive and also thermal modes in case of

finite-temperature studies. Moreover, the regularization-scheme dependence is encoded in these threshold

functions, see App. D for their definitions.

In Fig. 2 we show a sketch of the βλσ -function for vanishing temperature. Apart from a Gaußian fixed

point, λGauß
σ = 0, we find a second non-trivial fixed point λ∗σ:

λ∗σ =
1

8v4 l
(F),(4)
1 (0; 0)

+O(η∗ψ) . (35)
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In the present leading-order approximation of the derivative expansion we have ηψ ≡ 0, see below. We

then find

λ∗σ = 8π2 (36)

for an optimized (linear) regulator function (for which l
(F),(d)
1 (0; 0) = 2/d) and

λ∗σ = 4π2 (37)

for the sharp cutoff (for which l
(F),(d)
1 (0; 0) = 1). It is instructive to have a closer look at Eq. (33). This

flow equation represents an ordinary differential equation which can be solved analytically for ηψ = 0. Its

solution reads

λσ(k) = λUV
σ

[(
Λ

k

)Θ(

1− λUV
σ

λ∗σ

)

+
λUV
σ

λ∗σ

]−1

, (38)

where

Θ := −∂(∂tλσ)
∂λσ

∣
∣
∣
λ∗
σ

(ηψ≡0)
= 2 . (39)

In order to derive Eq. (38), it is convenient to expand the right-hand side of Eq. (33) about the fixed-

point λ∗σ . The physical meaning of the so-called critical exponent Θ will be discussed in more detail below.

In Sect. 3.4.1 we will then see that this exponent governs the scaling behavior of physical observables close

to a quantum critical point.

For λUV
σ = λ∗σ , we find that λσ(k) does not dependent on the RG scale k as it should be: λσ(k) = λ∗σ .

Choosing an initial value λUV
σ < λ∗σ at the initial UV scale Λ, the solution (38) of the flow equation predicts

that the theory becomes non-interacting in the infrared regime (λσ → 0 for k → 0), i. e. chiral symmetry

remains unbroken in this case, see Fig. 2. For λUV
ψ > λ∗σ , we find that the four-fermion coupling λσ

increases rapidly and diverges eventually at a finite scale kSB: 1/λσ(kSB) → 0. This behavior of the

coupling and the associated fixed-point structure are tightly linked to the question whether chiral symmetry

is broken in the ground state or not: The value of the non-trivial fixed-point can be considered as a critical

value of the coupling which separates the chirally symmetric regime and the regime with a broken chiral

symmetry in the ground state. We shall discuss this in more detail in Sects. 3.2, 3.3 and 3.4.

In the derivation of the flow equation (33) we have dropped contributions arising from four-fermion

interactions with different transformation properties, e. g. a vector-channel interaction. From the expan-

sion (18) of the flow equation, we can indeed read off that contributions to the flow of four-fermion cou-

plings other than λ̄σ might be generated, even though they have not been included in the truncation (19):

the matrix multiplications on the right-hand side of Eq. (18) mix the contributions from the propagator Pk,

which is proportional to γµ, with the contributions from the field-dependent part Fk:

λ̄2σ tr
{
γµψψ̄γµψψ̄

}
= −λ̄2σ(ψ̄γµψ)(ψ̄γµψ) . (40)

This term obviously contributes to the flow of the λ̄V -coupling.7 Moreover, contributions of this type cou-

ple the flow equations of the various four-fermion interactions to one another. Thus, quantum fluctuations

induce a vector-channel interaction, even though we have not included such an interaction term initially.

This observation explains why we need to include a basis which is complete with respect to Fierz transfor-

mations, such as in the effective action (25). We stress that the effective action (25) is closed in the sense

that no contributions to four-fermion interactions, which are not covered by the truncation, are generated

in the RG flow: any other pointlike four-fermion interaction compatible with the underlying symmetries of

the theory can be written in terms of the interactions included in these effective actions by means of Fierz

transformations.

7 At first glance, it seems possible that a term could arise in the calculation with opposite sign to the term in Eq. (40), so that

both would cancel each other. We are aware of this and stress that Eq. (40) should serve only as a motivation. As the full calculation

of the NJL model shows (see below), not all terms which couple the RG flows of the different couplings drop out in the end.
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∂tλσ

λσλ∗

σ

Fig. 2 Sketch of the βλσ function of the four-fermion interaction for zero temperature (black/solid line). The arrows

indicate the direction of the RG flow towards the infrared.

In the point-like limit the RG flow of the four-fermion coupling is completely decoupled from the RG

flow of fermionic n-point functions of higher order. For example, 8-fermion interactions do not contribute

to the RG flow of the coupling λ̄σ in this limit. Using the one-loop structure of the Wetterich equation, this

statement can be proven diagrammatically: it is not possible to construct a one-loop diagram with only for

external legs out of fermionic n-point functions (n > 4) which are compatible with the underlying chiral

symmetry.

Up to now we have only discussed the running of a four-fermion coupling. We have not yet discussed

how to compute the running of the wave-function renormalization Zψ . In general, the flow equation for Zψ

can be obtained from Γ
(1,1)
NJL evaluated for a spatially varying background field,

ψ(p) = Ψ (2π)4δ(4)(p+Q) and ψ̄(p) = Ψ̄ (2π)4δ(4)(p−Q) ,

where Q denotes the external momentum.8 The Q-dependent second functional derivative Γ
(1,1)
NJL can still

be split into a field-independent and a field-dependent part. However, the latter is no longer diagonal in

momentum space. The flow equations for the wave-function renormalizations can then be computed by

comparing the coefficients of the terms bilinear in fermionic fields which appear on the right-hand side of

Eq. (18) with the kinetic terms in the ansatz for the effective action. In our present approximation, we find

that the RG running of Zψ is trivial, i. e.

∂tZψ = 0 . (41)

Thus, the associated anomalous dimensions ηψ = −∂t lnZψ is zero. In fact, this follows immediately

from the associated 1PI Feynman diagram, see diagram on the right in Fig. 1, which has only one internal

fermion line.9 In the following we therefore set the wave-function renormalization to one, Zψ ≡ 1, which

implies ηψ ≡ 0.

Let us now turn to the effective action (26). The flow equations of the various couplings can be derived

along the same lines as the RG equation for the λσ-coupling detailed above. We find

∂tλσ = 2λσ − 8v4 l
(F),(4)
1 (0; 0)

[
λ2σ + 4λσλV + 3λ2V

]
, (42)

∂tλV = 2λV − 4v4 l
(F),(4)
1 (0; 0)

[
λ2σ + 2λσλV + λ2V

]
, (43)

8 These choices correspond to plane waves in position space.
9 The momentum of the ingoing and outgoing fermion (line) is identical, namely Q in our conventions. Due to momentum

conservation, the loop momentum integration is then independent of Q. Recall that we consider the four-fermion coupling in the

point-like limit.
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where the dimensionless (renormalized) couplings are defined as

λσ = k2λ̄σ , and λV = k2λ̄V . (44)

In the derivation of the flow equations for λσ and λV also terms of the type ∼ (ψ̄γµγ5ψ)
2 and

[
(ψ̄σµνψ)

2 − (ψ̄σµνγ5ψ)
2
]

(45)

appear. While the latter vanishes identically, see also App. B, the former can be completely transformed

into a scalar-pseudoscalar and vector-interaction channel with the aid of the Fierz transformation (22). In

fact, any four-fermion interaction term appearing in the derivation of the flow equations for the present

system can be unambiguously rewritten in terms of these two interaction channels. Thus, the above RG

flows are closed with respect to Fierz transformations. Due to Eq. (22) we could have also used, e. g.,

a scalar-pseudoscalar and an axial-vector interaction to describe the properties of our simplified theory

without loss of physical information. The present choice for a complete basis of four-fermion interactions

is one of several possibilities.

Our flow equations for λσ and λV agree with the results found in Refs. [140, 142]. The RG flow of the

couplings λσ and λV is governed by three fixed points Fi = (λ∗σ, λ
∗
V) which are given by10

F1 ≡ FGauß = (0, 0) , F2 = (3ζ , ζ) , F3 = (−32ζ , 16ζ) , (46)

where

ζ =
1

32v4l
(F),(4)
1 (0; 0)

. (47)

These fixed-points are of phenomenological importance. First of all, they might be related to (quantum)

phase transitions. Second, we can define sets of initial values for the RG flows of the couplings λσ and λV
for which we find condensate formation associated with (chiral) symmetry breaking in the IR, as we shall

discuss in detail in the two subsequent sections. The existence of such sets of initial conditions is not a

generic feature of fermionic models but also appears in (chiral) gauge theories. In QCD and QED3, four-

fermion interactions are generated dynamically due to strong quark-gluon interactions, see our discussion

in Sect. 6.

We can classify the various fixed points according to their directions in the space spanned by the cou-

plings. To this end, we first linearize the RG flow equations of the couplings near a fixed point:

∂tλi =
∑

j

Bij(λj − λ∗j ) + . . . , where Bij =
∂tλi
∂λj

∣
∣
∣
∣
∣
λi=λ∗

i

(48)

and i, j ∈ {σ,V}. We refer to B as the stability matrix. The two eigenvectors ~vi and eigenvalues Θ(i)

(critical exponents) of this matrix essentially determine the RG evolution near a fixed point:11

∂t~vi = B · ~vi =: −Θ(i)~vi . (49)

The solution of the RG flow in the fixed-point regime is then given by

λi = λ∗i +
∑

j

cj (~vj)i

(
k0
k

)Θ(j)

. (50)

Here, the cj’s define the initial conditions at the scale k0. From the solution of the linearized flow it

becomes apparent that positive critical exponents, Θ(j) > 0, correspond to RG relevant, i. e. infrared

repulsive, directions. On the other hand, negative critical exponents Θ(j) < 0 correspond to RG irrelevant,
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∂tλσ

λσλ∗

σ

λV > 0

λV = 0

Fig. 3 Sketch of the βλσ -function of the four-fermion interaction for λV = 0 (black line) and λV > 0 (blue/dashed

line). The arrows indicate the direction of the RG flow towards the infrared.

i. e. infrared attractive, directions. The classification of marginal directions associated with vanishing

critical exponents requires to consider higher orders in the expansion about the fixed point.

Using the flow equations (42) and (43), we find that the Gaußian fixed point has two IR attractive

directions; the eigenvalues are ΘF1 ≡ ΘGauß = {−2,−2}. The fixed points F2 with ΘF2 = {2,−5/2}
andF3 with ΘF3

= {2,−10)} have both one IR attractive and one IR repulsive direction. We would like to

add that the fixed-point values of the four-fermion couplings are not universal quantities as the dependence

of their RG flows on the threshold function indicates. However, the statement about the mere existence of

these fixed points is universal, because the regulator-dependent factor l
(F),(d)
1 (0; 0) is a positive number

for any regulator. Moreover, the critical exponents Θi themselves are universal. The latter can be indeed

related to the exponents associated with (quantum) phase transitions, as we shall discuss in Sect. 3.4.

Therefore the accuracy of the critical exponents can be used to measure the quality of a given truncation

as has been done in the context of scalar field theories, see e. g. Refs. [106, 143–146]. In a pragmatic

sense, the computation of critical exponents allows us to estimate how well the dynamics close to a phase

transition are captured within our ansatz for the effective action.

Let us conclude our discussion with a comparison of the RG flows (42) and (43) obtained from a com-

plete basis of four-fermion interactions with the RG flow equation (33) from our single-channel approxi-

mation. We immediately observe that setting λV → 0 in Eq. (42) does not yield the flow equation (33).

Thus, the values of the non-trivial fixed point of this coupling are not identical but differ by a factor of

two.12 For a finite λσ , we find that the vector-channel interaction is dynamically generated due to quantum

fluctuations even if we have initially set the vector-channel interaction to zero. In fact, a finite λσ-coupling

shifts the parabola associated with the β-function of the coupling λV, and vice versa, see Fig. 3. Thus, the

λσ-coupling can potentially induce critical behavior in the vector-channel, i. e. a diverging four-fermion

coupling. We shall discuss this in more detail in Sect. 3.3 after we have clarified the physical meaning of

diverging four-fermion couplings in the subsequent section.

10 One might naively expect four fixed points. In order to show that our system of flow equations has only three fixed points, we

redefine the λσ-coupling according to λσ → (λσ − λV). The flow equation for the vector coupling then has only one fixed point

which depends on the value of the (new) λσ-coupling. However, the β-function of the latter is now cubic in λσ when we evaluate it

at the fixed-point value of the λV-coupling. Thus, the system indeed has only three fixed points.
11 In other words, the critical exponents are simply the zeroes of the (characteristic) polynomial det(B +Θ✶).
12 The RG flow also generates axial-vector channel interactions which, in the present (Fierz) basis of four-fermion interactions,

reduce the prefactor of the term ∝ λ2σ in Eq. (42) by a factor of two.
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3.2 Bosonization and the Momentum Dependence of Fermion Interactions

In this section we study the NJL model with one fermion species in a partially bosonized form. Partial

bosonization of fermionic theories is a well-established concept which makes use of the so-called Hubbard-

Stratonovich transformation [59, 60]. The advantage of a partially bosonized formulation of NJL-type

models over their purely fermionic formulation is that it allows us to include the momentum dependence of

four-fermion interactions in a simple manner. Therefore it opens up the possibility to study conveniently the

mass spectrum of a theory which emerges from the spontaneous breakdown of its underlying symmetries,

e. g. the chiral symmetry. As a bonus, it relates the Ginzburg-Landau picture of spontaneous symmetry

breaking, as known from statistical physics, with dynamical bound-state formation in strongly-interacting

fermionic theories.

In the following we derive the RG flow equations for the partially bosonized version of this theory

and discuss dynamical chiral symmetry breaking. In particular, we explain the mapping of the (partially)

bosonized equations onto the RG equations of the four-fermion couplings in the purely fermionic de-

scription of our model. This finally allows us to relate the fixed-point structure of the purely fermionic

formulation to spontaneous (chiral) symmetry breaking.

The generating functional Z reads13

Z ∝
∫

DψDψ̄ e−S[ψ̄,ψ] (51)

with the action

S[ψ̄, ψ] =

∫

d4x

{

Zψψ̄i /∂ψ +
1

2
λ̄σ[(ψ̄ψ)

2 − (ψ̄γ5ψ)
2]

−1

2
λ̄V[(ψ̄γµψ)

2]− 1

2
λ̄A[(ψ̄γµγ5ψ)

2]

}

. (52)

see also Eq. (25). As discussed in the previous section, this action is over-complete in the sense that only

two of the three couplings λ̄σ , λ̄V and λ̄A are independent. We shall come back to this issue in the partially

bosonized formulation below.

Our NJL model possesses a chiral symmetry, see Eq. (21), which can be broken dynamically, if a finite

vacuum expectation value 〈ψ̄ψ〉 is generated. This is associated with the Nambu-Goldstone theorem [132,

133,147,148] which relates a spontaneously broken continuous symmetry of a given theory to the existence

of massless states in the spectrum. To apply this theorem to the present model, we need to compute the

vacuum expectation value of the commutator of the so-called chiral charge Q5, which is the generator of

the chiral symmetry transformations, and the composite field ψ̄iγ5ψ:

〈
[
iQ5, ψ̄iγ5ψ

]
〉 ∝ 〈ψ̄ψ〉 with Q5 =

1

2

∫

d3x ψ̄γ0γ5ψ . (53)

We observe that the generator Q5 does not commute with the field ψ̄iγ5ψ, if the vacuum expectation value

of ψ̄ψ is finite. Thus, the chiral symmetry of our model can be indeed broken spontaneously. Following

the Nambu-Goldstone theorem this implies the existence of a massless pseudo-scalar Nambu-Goldstone

boson in the channel of the composite field ψ̄iγ5ψ. Since the action S does not contain such a state, the

massless state must be a bound state. We refer to this type of boson as a pion in the context of QCD, see

Sect. 5. At this point we have traced the question of chiral symmetry breaking back to the existence of a

finite expectation value of the composite field ψ̄ψ.

Formally, we may introduce auxiliary fields in the path integral by introducing an exponential factor

into the integrand of the generating functional. This is known as a Hubbard-Stratonovich transformation.

To bosonize the scalar-pseudoscalar interaction channel we use

N
∫

Dφ1Dφ2DVµDAµ e−
∫
d4x{ 1

2 m̄
2
σ
~φ 2+ 1

2 m̄
2
VVµVµ+

1
2 m̄

2
AAµAµ} = 1 , (54)

13 For convenience, we do not display the source terms for the fields here and in the following.
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where we have combined the scalar fields into the O(2) vector ~φT = (φ1, φ2), where φ1 and φ2 are real-

valued scalar fields.14 The fields φ1, φ2, Vµ andAµ are auxiliary fields (which have no dynamics so far),N
is a normalization factor, and the constants m̄σ , m̄2

V and m̄2
A remain arbitrary for the moment. Multiplying

the integrand of the generating functional with such a factor leaves the Greens functions of the theory

unchanged. We now shift the integration variables in the so-modified generating functional according to15

φ1 → φ1 +
ih̄σ√
2m̄2

σ

(
ψ̄ψ
)
, φ2 → φ2 −

ih̄σ√
2m̄2

σ

(
ψ̄iγ5ψ

)
,

Vµ → Vµ −
h̄V
m̄2

V

(ψ̄γµψ) , Aµ → Aµ −
h̄A
m̄2

A

(ψ̄γµγ5ψ) . (55)

where we have introduced the auxiliary constants h̄σ , h̄V and h̄A. The new generating functional then

reads

Z ∝
∫

Dφ1Dφ2DVµDAµDψDψ̄ e−S[ψ̄,ψ,φ1,φ2,Vµ,Aµ] (56)

with the so-called partially bosonized action

S[ψ̄, ψ, φ1, φ2, Vµ, Aµ] =

∫

d4x

{

Zψψ̄i /∂ψ +
1

2
m̄2
σ
~φ 2 +

h̄σ√
2
ψ̄(~τ · ~φ)ψ

+
1

2
m̄2

VVµVµ − h̄Vψ̄ /V ψ +
1

2
m̄2

AAµAµ − h̄Aψ̄γµγ5Aµψ
}

. (57)

Here, we have introduced ~τ = (i · 1, γ5) in order to define a chirally invariant Yukawa interaction. To

obtain the (partially) bosonized action in this convenient form, we have exploited the fact that m̄σ , m̄2
V and

m̄2
A as well as h̄σ , h̄V and h̄A are arbitrary parameters. To be specific, we have chosen

λ̄σ
!
=

h̄2σ
2m̄2

σ

, λ̄V
!
=

h̄2V
m̄2

V

and λ̄A
!
=

h̄2A
m̄2

A

. (58)

Instead of a four-fermion interactions, there are now Yukawa-type interactions and mass terms for the

auxiliary fields. The interaction between the fermions is mediated by the bosonic fields ~φ, Vµ and Aµ, see

Fig. 4. It is clear that the point-like approximation of the four-fermion interactions is only meaningful in

the limit of large boson mass terms, m2
i ≫ Λ2 ≥ p2 with i ∈ {σ,V,A}, where p is a typical momentum

of the composite boson. We would like to emphasize that the Yukawa couplings and their associated mass

terms are not independent in the pointlike limit: Only their ratio has a physical meaning which is due to

our choice (58).

The new action (57) is symmetric under a simultaneous chiral transformation of the fermions and the

composite fields. While the transformation of the fermionic fields is given by Eq. (21), the scalar fields,

which are of our particular interest, transform according to

~φ 7→
(

cos(2α) sin(2α)
− sin(2α) cos(2α)

)

~φ , (59)

where α is an arbitrary rotation angle. The group of transformations defined by this matrix is simply the

O(2) rotation group. Note that the chiral transformation of the scalar fields follows immediately from the

transformation properties of ψ̄ψ and ψ̄γ5ψ.

14 Alternatively, we could have introduced a complex field ϕ = (φ1 + iφ2)/
√
2: m̄2

σϕ
∗ϕ = m̄2

σ
~φ 2/2.

15 For historical reasons we include a factor of
√
2 in the shift of the scalar fields; such a factor is usually present in studies

of theories with only one fermion species, such as QED, where one rather deals with a complex (charged) scalar field ϕ = (φ1 +

iφ2)/
√
2.
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λ̄i

h̄i h̄i

Fig. 4 Left diagram: Representation of a four-fermion interaction (i ∈ {σ,V,A}) in the purely fermionic formulation

of our NJL model. In general, the vertex function has a non-trivial momentum dependence. Right diagram: The

Feynman diagram has the same external lines as the one on the left. However, the vertex function has been replaced by

a boson propagator (dashed line) which mediates the interaction. This illustrates the situation in the partially bosonized

version of the NJL model.

From the equations of motion of the bosonic field it follows that

δS

δφ1(x)
=m̄2

σφ1(x)+i
h̄σ√
2
ψ̄ψ=0 ,

δS

δφ2(x)
=m̄2

σφ2(x)+
h̄σ√
2
ψ̄γ5ψ=0 , (60)

δS

δVµ(x)
=m̄2

VVµ(x)−h̄Vψ̄γµψ=0 ,
δS

δAµ(x)
=m̄2

AAµ(x)−h̄Aψ̄γµγ5ψ=0 . (61)

Inserting the solutions of these equations of motion into the action (57) and using Eq. (58), we immediately

recover the original action (57). From a phenomenological point of view, the solutions of the equations of

motion allow us to consider the bosonic fields as bound-states of the fermion fields. In particular, they relate

the vacuum expectation value of ψ̄ψ to that of the scalar field φ1, 〈ψ̄ψ〉 ∼ 〈φ1〉. From our consideration of

the Nambu-Goldstone theorem, see Eq. (53), we then conclude that chiral symmetry breaking is indicated

by a finite expectation value of the field φ1. Strictly speaking, chiral symmetry breaking is signaled by a

finite expectation value of the field ~φ, where |〈~φ〉| defines a circle in the two-dimensional space spanned by

the fields φ1 and φ2. The points on this circle are related to each other by chiral transformations, i. e. O(2)

rotations in the space of the chiral components, see Eq. (59). In any case, the fermions acquire a finite mass

once the expectation value of φ1 is finite, as can be seen from an evaluation of their equation of motion at

a finite value of 〈φ1〉:

δS

δψ̄(x)

∣
∣
∣
∣
∣
φ1 = 〈φ1〉
φ2 = 0

= (i /∂ + imψ)ψ(x) = 0 with mψ =
h̄σ√
2Zψ
〈φ1〉 . (62)

Thus, the fermions condense for 〈φ1〉 > 0 and their finite mass term mψ signals the spontaneous break-

down of chiral symmetry in the physical ground state of the theory. Note that the chiral symmetry is still

present on the level of the microscopic theory.

The discussed (chiral) symmetry breaking pattern plays an important role in various fields of research.

In condensed-matter physics, such a mass term is associated with a fermion gap. In low-energy QCD,

it plays the role of a constituent quark mass. By contrast, in the electroweak theory it is considered as

the (current) quark mass. The ground-state value 〈φ1〉 does not necessarily have to be homogeneous,

i. e. spatially constant. In fact, inhomogeneous condensates have been identified in some parts of the phase

diagram of the Gross-Neveu model in d = 2 at finite temperature and large values of the chemical potential

in the large-Nf limit [42]; the status for higher-dimensional fermionic models is a subject of ongoing work,

see e. g. Refs. [44, 45]. In the following, however, we shall assume that the ground state of the theory is

homogeneous.

Let us now critically discuss the partially bosonized form of our NJL model. From its action we may

already conclude that a non-trivial ground state of the theory, i. e. a finite expectation value 〈~φ〉, is tightly
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linked to the sign of the term bilinear in the scalar fields:16 m̄2
σ < 0 seems to necessarily imply that

|〈~φ〉| > 0. To establish this relation and to discuss issues related to Fierz transformations, we briefly

analyze the model in a mean-field approximation. In fermionic models with more than one fermion species,

this approximation is often referred to as the large-Nf approximation, see e. g. Ref. [150].

In the action (57) the fermions appear only as bilinears. Thus, they can be integrated out straightfor-

wardly and we obtain a purely bosonic effective action:

ΓMF[φ1, φ2, Vµ, Aµ] =

∫

d4x

{
1

2
m̄2
σ
~φ 2 +

1

2
m̄2

VVµVµ +
1

2
m̄2

AAµAµ

}

−Tr ln
[

Zψi /∂ +
h̄σ√
2
(~τ · ~φ)− h̄VγµVµ − h̄Aγµγ5Aµ

]

, (63)

where

TrO = trD

∫

d4x〈x|O|x〉 . (64)

Here, trD sums over Dirac indices. In general, this purely bosonic action is highly nonlocal since the

bosonic fields depend on the space-time coordinates. In the following we neglect such a dependence and

evaluate the bosonic action (57) for constant background fields φ̄1, φ̄2, V̄µ and Āµ. We also set the wave-

function renormalization of the fermion fields to one, Zψ = 1. This yields the effective potential U :

ΓMF[φ̄1, φ̄2, V̄µ, Āµ] =

∫

d4xU(φ̄1, φ̄2, V̄µ, Āµ) . (65)

The (homogeneous) ground state can be obtained from a variation of the effective potential with respect

to the fields evaluated at the physical ground state. Assuming for simplicity that the vacuum expectation

values of the vector bosons and the axial-vector boson are zero, we find17

〈φ1〉 = 4
h̄2σ
2m̄2

σ

∫
d4p

(2π)4
〈φ1〉

p2 + 1
2 h̄

2
σ〈φ1〉2

. (66)

We immediately realize that the prefactor on the right-hand side is directly related to the four-fermion

coupling λ̄σ , see Eq. (58). Depending on the value of the four-fermion coupling λ̄σ = h̄2σ/(2m̄
2
σ), Eq. (66)

has apart from a trivial solution, 〈φ1〉 = 0, a non-trivial solution for 〈φ1〉. Since the integral on the right-

hand side of Eq. (58) is divergent, we have to regularize it. We employ a sharp UV cutoff Λ ≫ mψ for

the four-momenta which permits a comparison of our results with the ones from the previous section. The

fermion mass mψ is then determined by the following implicit equation:

(

4π2

(
2m̄2

σ

h̄2σΛ
2

)

− 1

)

=

(

m2
ψ

Λ2

)

ln

(

m2
ψ

Λ2

)

, (67)

16 Let us add a word of caution on the meaning of 〈~φ〉 in the present work. For this discussion we put our theory in a finite

volume V . We then have 〈~φ 〉 = 0, independent of our choice for the parameters h̄σ and m̄σ . Depending on our choice for h̄σ
and m̄σ , however, we may have 〈|~φ|〉 = 0. In order to obtain a finite expectation value 〈~φ 〉 in a finite volume, we may allow for a

finite external source for, e. g., the scalar field φ1, such that 〈~φT〉 = (〈φ1〉, 0). In a field-theoretical model of ferromagnetism, such

an external source plays the role of an external magnetic field. Considering now the limit of a vanishing source term before taking the

limit V → ∞, we encounter 〈~φ〉 = 0 also for V → ∞. Considering first the limit V → ∞ and then the limit of a vanishing source

term, however, the expectation value 〈~φT〉 = (〈φ1〉, 0) remains finite in the infinite-volume limit, see e. g. Ref. [149] for a detailed

discussion. In our effective-action approach we implicitly take these two limits in the “correct” order to obtain a finite expectation

value 〈~φ〉. In infinite volume, this is ensured by expanding the effective action about, e. g., a finite value of 〈~φT〉 = (〈φ1〉, 0).
From now on, we shall always assume that the two limits have been taken in such a way that 〈~φ〉 remains finite, provided that the

parameters h̄σ and m̄σ have been chosen accordingly. In our present case, the (continuous) chiral symmetry of the ground state is

then said to be broken spontaneously.
17 Here, we evaluate the so-called gap equation for 〈~φT〉 = (〈φ1〉, 0). Equivalent ground states with 〈~φT〉 = (〈φ1〉 6=

0, 〈φ2〉 6= 0) are related to this ground state by means of a chiral transformation.
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U(φ̄1, φ̄2)

φ̄1

φ̄2

U(φ̄1, φ̄2)

φ̄1

φ̄2

Fig. 5 Sketch of the mean-field order-parameter potential U(φ̄1, φ̄2). The left panel depicts the shape of the potential

in the chirally symmetric phase (〈ψ̄ψ〉 ∼ |〈~φ〉| = 0, λσ ≤ λcrit.
σ ). The shape of the potential in a phase with broken

chiral symmetry in the ground state (|〈~φ〉| > 0, λσ > λcrit.
σ ) is shown in the right panel.

where mψ is defined in Eq. (62). Thus, the fermions acquire a finite mass due to the spontaneous break-

down of chiral symmetry, if we choose

λσ = λ̄σΛ
2 =

h̄2σΛ
2

2m̄2
σ

> 4π2 . (68)

From this inequality we can read off a critical value for the dimensionless four-fermion coupling λσ =
λ̄σΛ

2:

λcrit.σ = 4π2 . (69)

It is instructive to repeat this analysis with the optimized regulator function that we have also employed in

the previous section. Using Eqs. (15) and (351), the gap equation (66) assumes the following form:

〈φ1〉 = 4
h̄2σ
2m̄2

σ

∫
d4p

(2π)4

[ 〈φ1〉
p2 + 1

2 h̄
2
σ〈φ1〉2

− 〈φ1〉
Λ2 + 1

2 h̄
2
σ〈φ1〉2

]

θ(Λ2 − p2) . (70)

Note that the second term in the square brackets is absent when we choose a sharp cutoff. From Eq. (70)

we obtain

λcrit.σ = 8π2 . (71)

Our results for the critical value λcrit.σ can be identified with the value of the non-trivial fixed point of the

four-fermion coupling, which we have computed in the previous section, see e. g. Eqs. (36), (37) and (46).

In fact, we find that the critical values given in Eqs. (69) and (71) are identical to the fixed-point values

given in Eqs. (37) and (36), respectively. The role of the critical value as a fixed point becomes apparent

from the fact that the theory is (strongly) interacting for λσ = λcrit.σ but remains massless and ungapped

on all scales.

In Fig. 5 we show a sketch of the mean-field effective potential U(φ̄1, φ̄2, 0, 0) ≡ U(φ̄1, φ̄2, 0, 0)
for λσ > λcrit.σ (spontaneous breakdown of chiral symmetry) and for λσ < λcrit.σ (chirally symmetric

phase). This effective potential simply corresponds to a Ginzburg-Landau effective potential for the order

parameter fields.

A word of caution on the parameter dependence of the model needs to be added here: Our analysis

indicates that the Yukawa couplings and the boson masses are not independent input parameters of the

partially bosonized theory at the UV scale Λ. In fact, Eq. (67) suggests that the fermion mass, which is just
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one example for a physical observable, remains unchanged for a fixed ratio h̄2σ/(2m̄
2
σ). As in the purely

fermionic formulation, this is indeed the case for d < 4. In d = 4 space-time dimensions, however, the

Yukawa coupling h̄ is marginal. This then suggests that the partially bosonized theory in d = 4 depends

on two input parameters in contrast to d < 4, see also Refs. [33, 150]. We shall come back to this issue in

Sect. 5 where we discuss two examples.

In Sect. 3.1 we have discussed Fierz transformations in great detail in the context of the purely fermionic

formulation of our simple NJL model. One may wonder if the ambiguity arising from the possibility of

Fierz transformations is still present in the partially bosonized formulation. As we have discussed, the

Fierz transformation (22) states that only two of the three four-fermion couplings are independent. Thus,

one of these couplings, say λ̄A, can be chosen freely. For example, we may choose λ̄A = γλ̄V with γ ∈ R,

see Refs. [77,140]. Applying then the Fierz transformation (22) to our result for the critical coupling λcrit.σ

we observe that this quantity is not invariant under such a transformation:

λcrit.σ
Fierz−→ λcrit.σ − 2γλV = 4π2 − 2γλV . (72)

Thus, the critical value of the coupling depends on the arbitrary parameter γ, if λV is finite. As argued

above, the critical couplings correspond to the value of the non-trivial fixed-point of the four-fermion

interactions which are of course not universal but depend on the renormalization scheme. Therefore one

might be tempted to not worry about this artificial γ-dependence. However, it is fundamentally different

from a scheme dependence since the γ-dependence can be removed within any scheme. In particular, this

so-called Fierz ambiguity affects not only the values of the critical couplings but also physical observables,

such as the phase boundary at finite temperature or the mass spectrum of the theory. This can be readily

seen from the corresponding change in the self-consistency equation (67):

(
4π2

λσ + 2γλV
− 1

)

=

(

m2
ψ

Λ2

)

ln

(

m2
ψ

Λ2

)

. (73)

We stress that it is not possible to resolve this ambiguity within a mean-field approach [140]. Due to this,

mean-field results of fermionic models will always be tainted with an uncertainty.

Since mean-field studies underly many investigations of phases of strongly-interacting theories, ranging

from condensed-matter physics to QCD, we briefly discuss the relevance of the Fierz ambiguity for these

type of studies. Usually, the strategy for studying phases, e. g. finite-temperature phase transitions, in

NJL-type models is as follows: first, one chooses a physically motivated parameter set at zero temperature.

Then, one uses the same initial conditions for a study of the model at finite temperature. Naively, one might

now argue that the Fierz ambiguity is of no relevance since it might always be possible to adjust the initial

conditions such that the IR physics at zero temperature remains unchanged. However, our present analysis

already suggests that, e. g., a vector-like coupling might be generated due to quantum and also thermal

fluctuations, see Sects. 3.3 and 3.5.3. The finite-temperature dynamics might therefore be significantly

altered for different sets of parameters even though they have been adjusted to yield the same IR physics

at zero temperature.

A further comment on the present bosonization procedure is in order. In the remainder of this section,

we shall follow the strategy to bosonize the four-fermion interaction at a given UV scale Λ. Below this

scale, we then consider only operators in the RG flow which arise from the bosonization at k = Λ. We

stress that this is an approximation, since the four-fermion interactions are generated again in the RG flow,

after each infinitesimal RG step δk. This can be traced back to the existence of finite Yukawa couplings.

For example, the Yukawa coupling h̄σ re-generates the four-fermion coupling λ̄σ in the RG flow due to

the presence of so-called box diagrams, see Fig. 6. Thus, the β functions of the four-fermion couplings

are non-zero even though we have removed these couplings from the action at the initial scale Λ. The

right-hand side of the RG flow equations of the four-fermion couplings then assumes the following form:

∂tλ̄i ∼
∑

m,n

c(i)mnh̄
2
mh̄

2
n , (74)
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h̄σ h̄σ

h̄σ h̄σ

Fig. 6 Box diagram ∼ h̄4
σ which contributes to the RG flow of the four-fermion coupling. Dashed lines denote boson

propagators while straight lines depict fermion propagators.

where i,m, n ∈ {σ,V,A} and the c
(i)
mn’s are scale-dependent functions depending on the boson masses.

The box diagrams shrink to point-like diagrams corresponding to four-fermion interactions in the case of

large boson masses. Of course, the running of the four-fermion interactions generated by the Yukawa

couplings is then expected to be small. However, it may become significant if the bosons become light,

e. g. close to a phase boundary. In any case, the re-generation of the four-fermion couplings is problematic

from a field-theoretical point of view, as one now encounters bosonic as well as purely fermionic operators

at the scale Λ − δk. A so-called re-bosonization technique has been proposed to cure this problem by

performing a bosonization of the newly generated four-fermion interactions in each RG step [28,104,105,

124–127], to put it sloppily. This method has been successfully applied to QED and one-flavour QCD at

zero temperature [28,124,125] and finite temperature [32]. In addition to the phenomenological importance

of this re-bosonization technique, it is of great importance from a field-theoretical point of view. In fact,

the discussed Fierz ambiguity, which is present in the partially bosonized description of the NJL model,

can only be removed using this technique [140].

Let us make one more point by comparing the NJL model and its bosonized version in more detail. Our

analysis of the partially bosonized theory allows us to define a sufficient and necessary criterion for the

detection of the onset of (chiral) symmetry breaking in the purely fermionic formulation:

(i) Necessary condition: a four-fermion coupling must exceed its critical value to approach an IR regime

with broken (chiral) symmetry.

(ii) Sufficient criterion: a rapidly increasing (divergent) four-fermion coupling λ signals the onset of

(chiral) symmetry breaking:

1

λ
→ 0 ⇔ ǫ =

m̄2

Zk2
→ 0 ,

where ǫ and Z denote the dimensionless renormalized boson mass and the corresponding bosonic

wave-function renormalization, respectively. In other words, a divergent four-fermion coupling sig-

nals a change in the sign of the coefficient of the term quadratic in the fields in the Ginzburg-Landau

effective potential.

Note that the necessary criterion is equivalent to the sufficient criterion for vanishing temperature only, see

Sect. 3.5.3. At finite temperature, the two criteria are no longer equivalent. This can be ultimately traced

back to the fact that we only have pseudo fixed-points in the RG flow once we introduce a dimensionful

(external) parameter into the theory. This so-called pseudo fixed-points then depend on, e. g., the ratio of

the temperature T and the RG scale k.

Of course, the divergence of a four-fermion coupling at a finite scale kSB is an artifact of the point-

like approximation employed in our studies of the purely fermionic formulation. It can be resolved by
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taking into account (some of) the momentum dependence of the four-fermion coupling, see also below. In

any case, the scale kSB at which 1/λ(kSB) = 0 sets the scale for the IR observables. Thus, kSB can be

considered as the UV cutoff of a low-energy theory describing the physics in the regime with broken chiral

symmetry.

It is worth noting that, in general, the onset of (chiral) symmetry breaking is not simply indicated by a

single rapidly growing four-fermion coupling. It is rather signaled by a strong RG running of various differ-

ent four-fermion couplings associated with competing channels. This is due to the fact that a given rapidly

increasing four-fermion coupling potentially entails a strong running of other four-fermion couplings, see,

e. g., the set of flow equations (42) and (43). In a purely fermionic formulation it may therefore be a

highly non-trivial task to resolve the symmetry-breaking patterns of a given theory. A partially bosonized

formulation might then be more beneficial.

Our discussion shows that both the purely fermionic formulation in a point-like approximation and the

partially bosonized formulation come with advantages and disadvantages from a technical as well as from

a phenomenological point of view. The purely fermionic formulation is very convenient to study the phase

diagram of theories in the (chirally) symmetric regime without suffering from Fierz ambiguities. From

such a highly controlled study of the symmetric phase we can then determine the regimes in parameter

space in which the underlying symmetries are broken in the ground state of the theory. In particular, the

purely fermionic description is well-suited for analytic studies. On the other hand, the partially bosonized

ansatz allows us to resolve momentum dependences of fermionic self-interactions in a simple manner

and therefore permits a study of the formation of condensates and the mass spectrum of a given theory.

However, the Fierz ambiguity is more difficult to resolve in this picture. A fixed-point study in the purely

fermionic formulation of the theory may therefore provide important guidance for the construction of

suitable low-energy models.

To further illustrate the relation (and equivalence) of the purely fermionic formulation and the partially

bosonized formulation we study the RG flow of the following action:

Γk[ψ̄, ψ, φ1, φ2] =

∫

d4x
{

Zψψ̄i /∂ψ +
h̄σ√
2
ψ̄(~τ · ~φ)ψ

+
1

2
Zσ(∂µ~φ)

2 +
1

2
m̄2
σ
~φ 2 +

1

8
ω̄σ~φ

4
}

, (75)

where Zσ denotes the wave-function renormalization of the boson field. The coupling ω̄σ measures the

strength of the four-boson interaction. The boundary conditions of the flow equations at the initial RG

scale Λ read

lim
k→Λ

Zσ = 0 , (76)

lim
k→Λ

Zψ = 1 , (77)

lim
k→Λ

ω̄σ = 0 . (78)

These conditions together with the identity

λ̄σ =
h̄2σ
2m̄2

σ

(79)

allow us to map the ansatz (75) onto the action (19) at the initial RG scale. As our study of the RG flow of

the action (75) is just meant to highlight a few more aspects of the relation of purely fermionic theories and

their partially bosonized formulations, we drop the vector-interaction channel as well as the axial-vector

channel. We will also not make use of re-bosonization techniques. For a more complete study of the RG

flow of partially bosonized theories based on the action (57), we refer the reader to Refs. [77, 140].

Let us now demonstrate that the partially bosonized formulation of our model allows us to conveniently

resolve the momentum dependence of four-fermion interactions. To this end, we consider the (quantum)
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equations of motion of the fields φ1 and φ2 in momentum space, (δΓ/δφ1(p)) = 0 and (δΓ/δφ1(p)) = 0:

φ1(−p) = − i

Zσp2 + m̄2
σ

∫
d4q

(2π)4
h̄σ√
2

[
ψ̄(q)ψ(q − p)

]
, (80)

φ2(−p) = − 1

Zσp2 + m̄2
σ

∫
d4q

(2π)4
h̄σ√
2

[
ψ̄(q)γ5ψ(q − p)

]
, (81)

where we have set ωσ = 0 for simplicity. Now we insert these solutions for the scalar fields into our

ansatz (75). The Yukawa interaction term then assumes the following form in momentum space:

1

2

∫
d4p1
(2π)4

∫
d4p2
(2π)4

∫
d4p3
(2π)4

{ [
ψ̄(p1)ψ(p2)

] h̄2σ
Zσ(p1−p2)2+m̄2

σ

[
ψ̄(p3)ψ(p1−p2+p3)

]

−
[
ψ̄(p1)γ5ψ(p2)

] h̄2σ
Zσ(p1−p2)2+m̄2

σ

[
ψ̄(p3)γ5ψ(p1−p2+p3)

]}

. (82)

This corresponds to an s-channel approximation of the momentum dependence of the four-fermion vertex.

The expression in Eq. (82) illustrates that the interaction between the fermions is mediated by the scalar

fields which act as exchange bosons (see Fig. 4). We find that this term simply reduces to the point-like

four-fermion interaction term ∼ λ̄σ included in the action (19) for a large (renormalized) boson mass,

m2
σ = m̄2

σ/Zσ ≫ Λ2 ≥ p2, see also Eq. (28). Thus, this analysis shows that the partially bosonized for-

mulation allows us to resolve the momentum dependence of four-fermion interactions in a simple manner

and that the point-like approximation in our purely fermionic description in Sect. 3.1 is reasonable if the

exchange bosons are heavy. On the other hand, the point-like approximation ultimately breaks down in the

limit of vanishing boson masses, e. g. at the phase boundary and in the phase with a spontaneously broken,

continuous chiral symmetry where we encounter massless bosonic excitations.

The solutions of the equation of motion of the scalar fields, Eqs. (80) and (81), show also that the term

∼ ~φ 4 in the effective action (75) corresponds to an 8-fermion interaction term in the purely fermionic

description. Due to the boundary condition (78) this term is generated dynamically and not adjusted by

hand in our RG approach, see e. g. Refs. [28, 32, 33, 135, 151]. Thus, the value of the corresponding

coupling at the initial RG scale Λ does not represent an additional parameter of the theory. In any case,

this coupling only plays a prominent role in the (deep) IR regime with broken chiral symmetry where it

accounts for the mass difference between the Nambu-Goldstone boson and the mass of the radial mode.

Of course, the discussion in this section is mainly meant to address technical issues of fermionic models.

Nonetheless we would like to remind the reader at this point that, in particular, the (partially) bosonized

actions (57) and (75) resemble models from various fields of physics, ranging from condensed-matter

physics (e. g. Gross-Neveu-type models and ultracold atomic gases) to high-energy physics. In fact, our

model is closely related to the action of the so-called quark-meson model, see Sect. 5. In hadron physics,

the auxiliary fields play the role of the scalar meson and the pseudo-scalar Nambu-Goldstone modes, i. e.

the pions, whereas the fermions are the constituent quarks. The Yukawa-coupling h̄σ then specifies the

strength of the quark-meson interaction.

Let us now discuss the RG flow equations for the couplings specified in the action (75) as well as their

mapping onto the RG flows of the purely fermionic formulation of this model, see Eq. (19). The partially

bosonized version of our model has been studied in detail in Ref. [33] for zero and finite temperature.

To simplify the comparison between the two formulations, we shall employ a so-called covariant regulator

function for the bosons and the fermions which we have already used in Sect. 3.1. In the chirally symmetric

regime the flow equations can be computed along the lines of Sect. 3.1: we compute the second functional

derivative of the effective action (75) with respect to the boson and the fermion fields and evaluate it for

homogeneous fermionic and bosonic background fields, respectively. The second functional derivative of

the effective action can then be split into a background-field dependent part (fluctuation matrix) and a part

which does not depend on the background fields (propagator matrix). A straightforward calculation then



28 Jens Braun: Fermion Interactions and Universal Behavior in Strongly Interacting Theories

yields the following flow equations for the couplings:

∂tǫσ = (ησ − 2)ǫσ − 8v4l
(4)
1 (ǫσ; ησ)ωσ + 8v4l

(F),(4)
1 (0; ηψ)h

2
σ , (83)

∂tωσ = 2ησωσ + 20v4l
(4)
2 (ǫσ; ησ)ω

2
σ − 8v4l

(F),(4)
2 (0; ηψ)h

4
σ , (84)

∂th
2
σ = (ησ + 2ηψ)h

2
σ , (85)

where we have introduced the dimensionless renormalized couplings ǫσ = m̄2
σ/(Zσk

2), ωσ = ω̄σ/Z
2
σ and

the Yukawa coupling hσ = h̄σ/(Z
1/2
σ Zψ). The equations for the anomalous dimensions ησ = −∂t lnZσ

and ηψ = −∂t lnZψ read18

ησ = 4v4h
2
σm

(F),(4)
4 (0; ηψ) , (86)

ηψ = 2v4h
2
σm

(FB),(4)
1,2 (0, ǫσ; ηψ, ησ) . (87)

The threshold functions are defined in App. D. The functions l
(4)
n represent purely bosonic loops. Note that

the fermions are massless (ungapped) in the symmetric regime since the vacuum expectation value 〈~φ〉 of

the boson fields vanishes.

From the flow equation for the Yukawa coupling we recover the one-loop result for ǫσ → 0, see

Refs. [33, 124]:

∂th
2
σ =

h4σ
4π2

. (88)

The running of the Yukawa coupling is driven only by the anomalous dimensions in the symmetric regime.

This is a peculiarity of the present model with a continuous chiral symmetry but only one fermion species.

In theories with more than one fermion species, such as two-flavor QCD, or in theories with a discrete

chiral symmetry, the running of the Yukawa coupling receives also contributions from so-called triangle

diagrams, see Sect. 5. In these types of theories, it turns out that the contributions from triangle diagrams

are subleading in a systematic expansion of the flow equations in powers of the inverse number of fermion

species.19

We now have a closer look at the relation between the partially bosonized and the purely fermionic

formulation. To this end, we consider the RG flow of the ratio h2σ/(2ǫσ) = (k2/Z2
ψ)h̄

2
σ/(2m̄

2
σ) = λσ

which can be obtained straightforwardly from the flow equations (83) and (85):

∂tλσ ≡ ∂t
(
h2σ
2ǫσ

)

= (2 + 2ηψ)λσ − 16v4l
(F),(4)
1 (0; ηψ)λ

2
σ + 8v4l

(4)
1 (ǫσ; ησ)

λσωσ
ǫσ

. (89)

We observe that the first two terms on the right-hand side of this flow equation are identical to the terms

appearing in the flow equation (33) which we computed in the point-like approximation in the purely

fermionic formulation. In particular, we find that the flows are identical in the limit k → Λ where we

have ωσ = 0 and ǫσ → ∞ according to the boundary condtions (76)-(78). From this comparison we

deduce that the partially bosonized description indeed allows us to go conveniently beyond the point-like

approximation employed in Sect. 3.1. To be more specific, we observe that the momentum dependence

of the four-fermion vertex is effectively parameterized by the wave-function renormalization Zσ and the

mass parameter ǫσ ∼ m2
σ . As discussed above, ωσ parameterizes fermionic self-interactions of higher

order. Thus, the contribution ∼ ωσ on the right-hand side of Eq. (89) indicates that the RG flows of

fermionic interactions of higher order, such as eight-fermion interactions, contribute to the RG flows of

four-fermion interactions, if we go beyond the point-like approximation. For scales k < Λ, the purely

fermionic point-like description and the partially bosonized description are then no longer identical. From

18 In order to obtain the flow equations for the wave-function renormalizations, we have to evaluate the second functional

derivative of the effective action for spatially varying bosonic and fermionic background fields, see Sect. 3.1.
19 In the Gross-Neveu model the expansion parameter is the inverse number of fermion flavors, whereas it is the inverse number

of colors in QCD.
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the flow equation of the ratio h2σ/(2ǫσ), however, it follows that the differences are quantitatively small in

the (chirally) symmetric regime since the renormalized mass of the bosons is large.

In addition, we find that the anomalous dimension ηψ is non-zero in the partially bosonized formulation

whereas it is identically zero in the point-like approximation of the purely fermionic description. Again,

the running of Zψ is small in the symmetric regime due to the large (renormalized) boson mass.20

Our analysis of the partially bosonized NJL model reveals clearly that spontaneous (chiral) symmetry

breaking can be studied within a purely fermionic formulation. Some information on the symmetries of the

ground-state is already encoded in the strength of the four-fermion couplings compared to their values at

the non-trivial RG fixed point. These values can be viewed as critical values for the four-fermion couplings:

in this framework, the system approaches a phase with broken chiral symmetry in the ground state, if the

critical values are exceeded by the initial values of the four-fermion couplings at the UV scale.

Let us highlight a subtlety concerning the existence of the non-trivial RG fixed point of the four-fermion

coupling. From Eqs. (83)-(85) we deduce that we can only have fixed-points with (h∗σ)
2 ≡ 0. Considering

the relation λσ = h2σ/(2ǫσ), this suggests that only a Gaußian fixed point exists for the four-fermion

coupling beyond the point-like approximation. In fact, the non-trivial fixed point of the four-fermion

coupling in the present type of fermionic models21 is most likely an artifact of the point-like approximation

in d = 4. It is only present for a finite UV cutoff Λ. In the spirit of of low-energy models, the UV cutoff of a

fermionic model in d = 4 should therefore always be considered as an additional parameter of the theory.22

For any finite value of Λ, it is then still possible to define a critical value of the four-fermion coupling above

which we have chiral symmetry breaking in the IR limit, also beyond the point-like approximation. In our

discussion we refer to this critical coupling as a quantum critical point, even if we discuss fermionic models

in d = 4.

The partially bosonized formulation also allows us to study the deep IR regime in which the dynamics

are governed by massless Nambu-Goldstone bosons. Of course, this regime can also be studied with the

aid of RG flow equations, see e. g. Refs. [28, 32, 33, 113, 135, 136, 151]. We have shown that the mass

parameter m2
σ ∼ ǫσ assumes negative values in this regime. This behavior signals the existence of a finite

vacuum expectation value of the field ~φ. For an RG study, it is then convenient to parametrize the flow of

the effective action in terms of the four-boson coupling ωσ and the vacuum expectation value 〈~φ〉 rather

than the mass parameter ǫσ . The RG flow of 〈~φ〉 can be derived from the following condition:

d

dt

[
∂

∂~φ 2

(
1

2
m̄2
σ
~φ 2 +

1

8
ω̄σ~φ

4

)]

〈~φ〉

!
= 0 . (90)

However, a discussion of the regime governed by spontaneous symmetry breaking is beyond the scope of

this review. For a detailed study of the IR dynamics of this particular NJL model, we refer the reader to

Refs. [33, 140]. In the following we restrict our discussions to the RG flow of four-fermion interactions

in the point-like limit in the symmetric regime. As discussed, this already allows us to map the phase

diagram of a given theory as a function of various couplings in a clean and very controlled way. This has

been explicitly demonstrated in the context of gauge theories in Ref. [29], where the regularization-scheme

independence of universal quantities has been found to hold remarkably well in the point-like limit.

3.3 Spontaneous Symmetry Breaking and Fermion Interactions

Now that we have discussed the relation between spontaneous symmetry breaking and the fixed-point

structure of four-fermion interactions, we are in a position to compute the zero-temperature phase diagram

of the simple NJL model with only one species. To this end, we employ the flow equations (42) and (43)

as obtained from the Fierz-complete ansatz (26) for the effective action.

20 This follows immediately when we replace the four-fermion vertex in the diagram on the right in Fig. 1 with two Yukawa

vertices connected by a boson propagator.
21 This includes QCD low-energy models, see Sect. 5.2.
22 In contrast to the present NJL model in d = 4, the limit Λ → ∞ is well-defined in, e. g., the Gross-Neveu model in d = 3,

see Sect. 5.1.
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In the previous section we have found that the non-trivial fixed-point of the four-fermion coupling in a

single-channel approximation can be identified with the critical value which needs to be exceeded in order

to have chiral symmetry breaking in the IR limit. In such a single-channel approximation this non-trivial

fixed point is IR repulsive, as discussed in Sect. 3.1. Since the fermionic interactions are not induced by,

e. g., fluctuations of gauge fields, we have to tune the initial value λUV
σ of the four-fermion coupling such

that λUV
σ > λ∗σ in order to observe chiral symmetry breaking in the IR. The four-fermion coupling then

increases rapidly and diverges at a finite RG scale kSB, 1/λσ(kSB)→ 0. The value of this scale is clearly

scheme-dependent. In any case, kSB sets the scale for a given (chiral) low-energy observable O, e. g. the

chiral condensate or the phase transition temperature:

O ∼ kdOSB , (91)

where dO is the canonical dimension of the observable. This observation is at the heart of our study of

scaling in the subsequent section and our analysis of chiral symmetry breaking in gauge theories. On the

other hand, choosing λUV
σ < λ∗σ , we find that the λσ-coupling approaches zero in the IR limit. Thus, the

non-trivial fixed point separates a trivial (non-interacting) phase from a phase with broken chiral symmetry

in the ground state. The initial value for the four-fermion coupling can be considered as an external

parameter which controls chiral symmetry breaking and triggers a quantum phase transition at λUV
σ = λ∗σ .

From a thermodynamical point of view, one can think of λUV
σ as a proxy for the temperature of the system,

and of λ∗σ as the critical temperature.

At this point we would like to remind the reader that the divergence of the four-fermion coupling at a

finite scale kSB is an artifact of the point-like approximation. This divergence simply indicates the onset of

the breaking of the chiral U(1) symmetry of our model. Hence the divergence has a physical meaning. It

can be resolved by taking into account some of the momentum dependence of the coupling λσ , as discussed

in the previous subsection. Such an improvement of the truncation is indispensable if we are interested in

the IR properties of the model or the order of the phase transition. However, for a computation of the

phase boundaries at zero as well as at finite temperature, it is a good approximation to simply detect the

divergence in the RG flow.

Let us now turn to a discussion of symmetry breaking within our Fierz-complete ansatz for the effective

action. To this end, we can indeed apply similar arguments as for the discussion of the single-channel

approximation above. However, the RG flow is now governed by the existence of fixed points in the two-

dimensional plane spanned by the couplings λσ and λV. As discussed in Sect. 3.1, we find three fixed

points, see Eq. (46): one Gaußian fixed point with two IR attractive directions and two fixed points with

both a repulsive and an attractive direction. The notion of a critical coupling becomes more complicated

in the present case. The role of the critical coupling in the single-channel approximation is now essentially

taken over by the so-called separatrices. In the dc-dimensional space spanned by the dc couplings of a

given theory, separatrices can be viewed as (dc−1)-dimensional manifolds. These manifolds separate

disjunct domains of the RG flow. Fixed points are elements of the set of points defined by the separatrices.

This implies that a separatrix also determines the RG flow between two fixed points. In the present case,

we have dc = 2 and separatrices correspond to lines in the (λV, λσ)-plane, see Fig. 7.

In Fig. 7 we show the zero-temperature phase diagram of our model as obtained from an evaluation

of the flow equations with an optimized regulator function. The fixed points Fi are given by red (light

gray) points. We observe that the separatrices (thick solid lines) allow us to divide the (λσ, λV)-plane into

various distinct domains which we denote by roman numbers. Choosing a set of initial conditions in the

regimes Ia, Ib, IIIa and IIIb we find that the couplings increase rapidly and diverge at a finite scale kSB
indicating the onset of chiral symmetry breaking in the infrared. However, the four-fermion couplings in

the domains Ia/b and IIIa/b approach different points for k → kSB. While the RG flows in the regimes

Ia and Ib are attracted to the point

F∞
2 := lim

α→∞
α · F2

(46)
= lim

α→∞
(3αζ, αζ) , (92)
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Fig. 7 Phase diagram of the NJL model with only one fermion species. The fixed points Fi are given by red (light

gray) dots. The separatrices (thick solid line) separate domains with different IR properties. The arrows of the various

RG trajectories (thin solid lines) indicate the direction of the flow towards the infrared.

the flows approach the point

F∞
3 := lim

α→∞
α · F3

(46)
= lim

α→∞
(−32αζ, αζ) (93)

for k → kSB in the regimes IIIa and IIIb; the scheme-dependent quantity ζ is defined in Eq. (47). From a

phenomenological point of view, the low-energy theories associated with the domains Ia/b might therefore

be different, even though both correspond to theories with a broken chiral symmetry in the ground state.

To identify the IR properties of these theories, we would need to go beyond the point-like approximation

and include the momentum dependence of the fermionic interactions. However, this is beyond the scope

of the present analysis.

It is worth mentioning that the RG trajectories in the regimes Ib and IIIa originate from the very same

point at infinity. This point corresponds to a fixed point to which we refer as F4. This is the fixed point

which seems to be missing in our analysis in Sect. 3.1. It has two IR repulsive directions. In a study with

Nf fermions it indeed turns out that the two coordinates of F4 assume finite values, see e. g. Refs. [29, 31,

152, 153].

In contrast to the regimes with a strongly-interacting IR limit, the dynamics in the regimes II and IV are

governed by the Gaußian fixed point F1. These regimes represent the basin of attraction of the Gaußian

fixed point. If we choose a set of initial conditions in these two domains, both couplings are attracted to

the Gaußian fixed point and therefore vanish in the IR limit. Thus such initial conditions yield trivial, i. e.

non-interacting, IR theories.

From the phase diagram we can also read off that there exists no trajectory for which either of the two

couplings, namely λσ and λV, remains constant under RG transformations. For example, a vector-channel

interaction is always generated in the RG flow even if we set it to zero at the initial RG scale, provided
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we choose a non-vanishing initial value for the λσ-coupling. The existence of a trajectory with λV ≡ 0
(NJL-like trajectory) would imply that one of the non-trivial fixed points was located on the λσ-axis of the

phase diagram, with its IR repulsive direction pointing towards the Gaußian fixed point. In Sects. 3.5.1

and 3.5.2, we further discuss whether an NJL-like trajectory exists in the limit of many fermion flavors.

Note that this question is certainly an interesting and important question for, e. g., the construction of

low-energy QCD models in the limit of many colors. In a Fierz-complete study of the Thirring model in

three dimensions, it has indeed been found that a pure Thirring-like trajectory exists in the limit of many

fermion flavors. On this trajectory we only have a running of the four-fermion interaction that is included

in standard mean-field studies of the Thirring model [75].

3.4 A First Look at Scaling Behavior close to a Quantum Critical Point

In statistical physics, one finds that completely different many-body systems show the same quantitative

behavior near critical phase transitions, where long-range fluctuations are important. In the vicinity of

these critical points, the behavior of a given theory is independent of its (microscopic) details and can be

described completely by scaling relations and a small set of so-called critical exponents. This phenomenon

is called universality. For example, finite-temperature phase transitions of the 3d Ising model and SU(2)

Yang-Mills theory belong to the same universality class. Typical scaling relations near a critical point (e.

g. a second-order phase transition) are of the form

ξ ∼
(
T − Tcr

Tcr

)−ν
and G(x, 0) ∼ |x|2−d−η , (94)

where ξ is the range of correlated fluctuations (correlation length) and G denotes the two-point correlation

function between fluctuations at the origin and at space-time point x at T = Tcr. The universal critical

exponents are ν and η, and d denotes the number of Euclidean space-time dimensions. The temperature is

denoted by T and the critical temperature by Tcr.

The existence of universal behavior plays a very important role in modern physics. First, it allows us to

classify theories according to their scaling behavior close to a phase transition which turns out to depend

solely on the symmetry properties and the dimensionality of the critical system. Second, we may check

numerical data from studies of more involved theories with the aid of scaling functions as obtained from

an investigation of simpler models in the same universality class. Due to dimensional reduction at finite

temperature we can, for example, use scaling functions from a simple three-dimensional scalar O(4) model

to analyze lattice QCD data for d = 4 close to the chiral phase transition, see e. g. Refs. [55, 154–157].

It is important to stress that such scaling laws and functions cannot be deduced from any fixed-order

perturbation theory calculation, since there are inherently non-perturbative phenomena underlying these

laws.

In the following we discuss scaling behavior at zero temperature rather than at finite temperature. In

particular, we aim to understand the scaling behavior of fermionic theories at vanishing temperature close

to a so-called quantum critical point. The associated quantum phase transition is driven purely by the

variation of a parameter other than the temperature. For example, a variation of the number of fermion

flavors may induce a quantum phase transition, as we shall discuss in detail in Sect. 6. In this section,

however, we discuss only basic aspects of the scaling behavior close to quantum phase transitions. This

will be helpful for our investigations in the remainder of this review.

3.4.1 Power-law Scaling

For simplicity, we start our discussion with an analysis of scaling in the single-channel approximation

of the simple NJL model given in Eq. (33). As discussed above in detail, the statement about the mere

existence of the fixed-point λ∗σ , see Eq. (35), is universal, even though its actual value is clearly scheme-

dependent. The control parameter for quantum critical behavior is given by the value λUV
σ at the initial RG

scale Λ. In fact, choosing an initial value λUV
σ < λ∗σ at the UV scale Λ, we find that the theory becomes
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non-interacting in the IR regime, see Fig. 2. For λUV
σ > λ∗σ , we find that the four-fermion coupling λσ

increases rapidly and diverges eventually at a finite scale kSB, so that 1/λσ(kSB) = 0. This indicates the

onset of chiral symmetry breaking. Hence chiral symmetry breaking in the IR only occurs if we choose

λUV
σ > λ∗σ . Since λUV

σ distinguishes between two different phases in the IR limit, i. e. in the long-

range limit, we can consider λ∗σ as a quantum critical point which divides the model into two substantially

different physical regimes.

The scale kSB sets the scale for a given IR observable, see Eq. (91). In the present case, this scale can

be directly obtained from the solution Eq. (38) of the flow equation (33). Solving 1/λσ(kSB) = 0 for kSB,

we then find

kSB = Λθ(λUV
σ − λ∗σ)

(
λUV
σ − λ∗σ
λUV
σ

) 1
|Θ|

+O(η∗ψ) , (95)

where θ(. . . ) is the unit-step function. The critical exponent Θ associated with the fixed point λ∗σ , which

governs the critical behavior, is given by

Θ := −∂(∂tλσ)
∂λσ

∣
∣
∣
λ∗
σ

= 2 + 2η∗ψ − 2λ∗σ
∂ηψ
∂λσ

∣
∣
∣
λ∗
σ

+ 16v4 (λ
∗
σ)

2 ∂l
(F),(4)
1 (0; ηψ)

∂λσ

∣
∣
∣
λ∗
σ

, (96)

see also Eq. (49). This reduces to

Θ = 2 (97)

for ηψ ≡ 0, independent of the regulator function. Apparently an exact computation of the exponent Θ
requires to include corrections beyond the point-like limit.

In any case, the value kSB scales with the distance of the initial value λUV
σ from the fixed-point value λ∗σ .

If this distance is increased, the scale kSB increases and the values of physical (low-energy) observablesO,

such as the correlation length ξ or the fermion mass, increase in turn:

O ∼ kdOSB = ΛdOθ(λUV
σ − λ∗σ)

(
λUV
σ − λ∗σ
λUV
σ

) dO
|Θ|

. (98)

Here, dO is the canonical mass dimension of the observable O. From this expression it is clear that

the absolute values of the scheme-dependent quantities λUV
σ and λ∗σ are not physically relevant, but only

their relative distance is.23 We stress again that the critical exponent Θ governs the long-range physics

at the quantum critical point λ∗σ . It is related to the standard correlation length exponent ν by ν = 1/Θ.

In addition, it follows from the scaling law Eq. (98) that the quantum critical point is associated with a

vanishing boson mass m ∼ kSB and a diverging correlation length ξ ∼ 1/m in the long-range limit. The

critical exponent η in Eq. (94) is determined by the anomalous dimension of the (bosonic) order-parameter

field ∼ ψ̄ψ, and the fixed-point value λ∗σ plays the role of the critical temperature.

One may wonder how the scaling behavior changes when we consider the Fierz-complete set of flow

equations, since we then have to deal with two couplings instead of one. For illustration, let us consider a

situation in which we have chosen a set of initial conditions in the domain Ib of the phase diagram given

in Fig. 7. In this domain, the RG flows are attracted to the point F∞
2 :

F∞
2 := lim

α→∞
α · F2 . (99)

For any initial condition (λUV
σ , λUV

V ) in this domain we can then find a suitably chosen scale k0 < Λ for

which the RG trajectory is close to the separatrix connecting the points F2 and F∞
2 . In other words, the

point (λσ(k0), λV(k0)) lies close to this separatrix. Of course, the scale k0 depends strongly on the initial

conditions at the scale Λ. For scales k < k0, the direction of the RG flow is then essentially determined by

23 In a phenomenological application of the model, the initial condition λUV
σ is fixed by the values of a given set of IR

observables.
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the repulsive direction, i. e. the RG relevant direction, of the fixed point F2. Thus, our two-dimensional

flow is effectively reduced to a one-dimensional flow for k < k0 and we are left with the situation that we

have discussed above in the single-channel approximation. Consequently, we find the following scaling

behavior of physical observables:

O ∼ kdOSB ∼ kdO0
∣
∣
∣~λ0

∣
∣
∣

− dO
|Θ|
∣
∣
∣~λ0 − ~λ∗

∣
∣
∣

dO
|Θ|

, (100)

where ~λT
0 := (λσ(k0), λV(k0)) and ~λ∗ is determined by the coordinates of the fixed point F2. The

exponent Θ is given by the critical exponent associated with the RG relevant direction of F2. Thus, the

scale k0 now plays the role of the UV scale Λ in our single-channel approximation.

From the scaling relation (100), we deduce that the scaling behavior at the quantum critical point is still

universal and fully determined by the critical exponent Θ. Thus, the quantum critical behavior does not

dependent on the initial conditions, but only on the symmetries of the theory. The latter restrict the number

of allowed interactions in the underlying action. However, the absolute values of physical observables

depend on the scale k0 and the distance |~λ0 − ~λ∗|. Both depend strongly on the choice of the initial

conditions for k → Λ. The initial conditions are therefore of utmost importance for phenomenological

applications.

Our discussion is obviously not restricted to initial conditions in the domain Ib of the phase diagram in

Fig. 7. It can be easily adapted to initial conditions in the domains Ia, IIIa and IIIb. Of course, the present

analysis of scaling can be readily generalized to theories in d dimensions with more than two interaction

terms and symmetries different from those of this model.

3.4.2 Essential Scaling

Next we discuss a very special behavior of a theory close to a quantum critical point, namely essential

scaling. This type of scaling plays a crucial role in our study of gauge theories in Sect. 6. In the context of

gauge theories, such a scaling behavior is often referred to as Miransky scaling [158,159]. It has also been

found in the context of specific 2-dimensional condensed-matter systems where it is known as Berezinskii-

Kosterlitz-Thouless (BKT) scaling [160–162].

For this discussion we shall consider an extension of the presently employed NJL model. To be specific,

we shall assume that an extension of this model exists such that the RG flow equation for the λσ-coupling

remains unchanged, but that the one for the λV-coupling receives contributions from the extension of the

model. These additional contributions will give rise to a non-trivial, i. e. interacting, IR fixed point for the

λV-coupling, even in the limit λσ → 0. The fixed-point value λ∗V can then be controlled by the additional

parameters of the extended model. This still describes a very general setup and may therefore apply to

a large variety of theories. In particular, gauge theories in the limit of many fermion flavors are to some

extent reminiscent of this setup. This will be discussed in Sect. 6. There, the gauge coupling associated

with the gauge vector bosons plays the role of the vector-channel interaction in our study.24

In the following we ignore the running of the vector-like coupling and consider it as a scale-independent

“external” parameter. The RG flow of this coupling is then governed by

∂tλV ≡ 0 . (101)

This corresponds to a case in which the λV-coupling assumes a finite IR fixed point value λ∗V. In the

vicinity of this fixed point, Eq. (101) may still be a reasonable approximation.25 The flow equation for the

λσ-coupling reads

∂tλσ = 2λσ − 8v4 l
(F),(4)
1 (0; 0)

[
λ2σ + 4λσλV + 3λ2V

]
, (102)

24 The minimal coupling of the fermions and the gauge vector bosons is given by a term ∼ ψ̄γµAµ ψ. This type of interaction

corresponds to the Yukawa-like interaction term ψ̄γµVµ ψ which is present in the partially bosonized version of our simple NJL

model, λV ∼ h2V.
25 Note that λ∗V may depend on other control parameters of the theory, such as the number of fermion flavors or an external

magnetic field.
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where v4 = 1/(32π2) and we have set ηψ ≡ 0 for the sake of simplicity. As illustrated in Fig. 3, a

variation of λV allows to shift the fixed points of the λσ-coupling. In particular, a finite value of λV turns

the Gaußian fixed point into an interacting fixed point. Moreover, we observe that a critical value for λV
exists for which the two fixed points of the scalar-pseudoscalar channel merge. For λV > λcrit.V , the fixed

points then annihilate each other and the RG flow is no longer governed by any (finite) real-valued fixed

point. From Eq. (102) we find the following value for the critical coupling strength:

λcrit.V =
(2−

√
3)

8v4l
(F),(4)
1 (0; 0)

= 8π2(2−
√
3) . (103)

Here, we have used an optimized regulator function to evaluate this expression; for this regulator, one

finds l
(F),(4)
1 (0; 0) = 1

2 , see App. D.2. Note that λcrit.V is defined as the value of λV for which the

right-hand side of Eq. (102) has exactly one zero. Strictly speaking, there exist two solutions for λcrit.V :

0 < λcrit.V,1 < λcrit.V,2 . In the following we assume that we increase λV by hand starting from λV = 0. There-

fore we can exclude λcrit.V,2 from our considerations and set λcrit.V = λcrit.V,1 , where λcrit.V,1 is identical to the

right-hand side of Eq. (103).

For λV > λcrit.V , the λσ-coupling becomes a relevant operator and increases rapidly towards the IR

indicating the onset of chiral symmetry, even if we choose λσ = 0 as initial condition at k = Λ. Thus,

λσ necessarily diverges at a finite RG scale kSB for λV > λcrit.V . Again, this scale sets the scale for chiral

low-energy observables O.

In order to find the scaling behavior of the symmetry breaking scale kSB when λV is varied by hand as

a constant “external” parameter, we have to solve the RG flow equation of the coupling λσ . We find

ln k − ln Λ = −
2 arctan

(
2λV−8π2+λ′

σ

4π2δ(λV)

)

δ(λV)

∣
∣
∣
∣
∣

λσ

λUV
σ

, (104)

where we have again used an optimized regulator function for convenience. The function δ(λV) is given

by

δ(λV) =
1

4π2

√

3λ2V − 4(4π2 − λV)2 . (105)

We shall only consider values of λV such that δ(λV) is real-valued, e. g. λV ≥ λcrit.V . From Eq. (104), we

obtain kSB by solving for the zero of 1/λσ(k), i. e. 1/λσ(kSB) = 0:

ln kSB − ln Λ = − π

δ(λV)
+ const. . (106)

Here, we have chosen the initial conditions such that λUV
σ = λmax

σ where λmax
σ denotes the position of the

maximum of the βλσ -function (102), i. e., the peak of the parabola in Fig. 3. An expansion of Eq. (106)

around λcrit.V yields

kSB ∝ Λθ(λV − λcrit.V ) exp

(

− π

2ǫ
√

λV − λcrit.V

)

, (107)

where ǫ is simply a numerical factor,

ǫ =
4
√
3

2π
, (108)

which in general depends on the details of the theory under consideration and is scheme dependent. In

any case, the exponential (essential) scaling behavior of kSB is universal for λV close to λcrit.V . Since the

dynamically generated scale kSB sets the scale for the low-energy sector, we expect that all IR observables

O with canonical mass dimension dO scale according to

O ∼ kdOSB . (109)
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A few comments on the history of the scaling law Eq. (107) are in order at this point. In the context

of QCD, the scaling law in Eq. (107) has been first derived by Miransky [158, 159], but it has also been

found in the context of specific 2-dimensional condensed-matter systems [160–162]. A way to derive the

scaling law (107) via an analysis of the RG flow of four-fermion operators has been recently pointed out

by Kaplan, Lee, Son and Stephanov [163].

The scaling behavior (107) is clearly distinguishable from the power-law behavior (95). In particular,

we observe that essential scaling is not governed by the critical exponent Θ associated with the IR repulsive

direction at the fixed point λ∗σ . To find exponential (essential) scaling behavior, we have assumed that the

initial condition for the four-fermion coupling λσ at the UV scale Λ has been chosen such that λUV
σ is

smaller than the value of the IR repulsive fixed point λ∗σ , see Fig. 3. We therefore stress that essential

scaling behavior can only be observed when λUV
σ is chosen to be smaller than the corresponding value

of the IR repulsive fixed point for a given value of the constant “external” parameter λV. Otherwise we

expect power-law-like scaling behavior as discussed above, see Eq. (95). In our discussion of quantum

critical behavior in gauge theories in Sect. 6, we shall discuss a new kind of scaling behavior which can be

considered as a superposition of power-law scaling and essential scaling. In the present toy-model setup,

this new type of scaling behavior emerges when we allow for an RG running of the λV-coupling.

3.5 Deformations of Fermionic Theories

Deformations of a theory play a crucial role in physics. For example, studies of fermionic models at finite

temperature provide us with insights into the mechanisms of symmetry breaking as we expect them to

have been at work in the early stage of the universe. Further examples can be found in the context of

condensed-matter physics: Apparently, comprehension of so-called high-Tc superconductors requires an

understanding of the finite-temperature dynamics of strongly interacting fermions, see e. g. Ref. [110].

Other important deformations are given by the inclusion of terms which break explicitly the underlying

symmetries. For example, explicit mass terms for the fermions break the chiral symmetry. From the point

of view of a Ginzburg-Landau effective potential, such terms effectively play the role that an external

magnetic field plays for a ferromagnet, e. g. an Ising model. In the theory of the strong interaction, such

terms are of particular importance since they determine the so-called current quark masses. Also, studies

of fermionic theories in a finite volume are of interest and represent a valuable deformation. Depending

on the theory under consideration, the study of finite-size effects may help to make better contact between

theoretical results and experimental data, see e. g. Ref. [41]. On the other hand, finite-size effects are

important from a field-theoretical point of view. For example, Monte-Carlo simulations are necessarily

performed in a finite volume. For the extrapolation to the continuum limit a rigorous understanding of the

scaling behavior of a system with its volume size is certainly required, see e. g. Refs. [51,53–55,57,155] for

RG studies of finite-size effects relevant for Monte-Carlo simulations. In any case, we start our discussion

of deformations with a first analysis of theories with many fermion flavors. To this end, we consider two

distinct extensions of our NJL model with one fermion species. In Sect. 3.5.1 we study a NJL model with

Nf fermions and a chiral SU(Nf)L ⊗ SU(Nf)R symmetry. An extension with a chiral U(1)⊗Nf symmetry

is then discussed in Sect. 3.5.2. These studies of many-flavor physics should be considered as a warm-up

for Sects. 5 and 6.

3.5.1 Many-Flavor Physics I: Chiral SU(Nf)L ⊗ SU(Nf)R Symmetry

For our first study of many-flavor physics we employ a NJL model with a (chiral) SU(Nf)L ⊗ SU(Nf)R
symmetry. We will encounter this type of chiral symmetry again when we discuss QCD and, in particular,

when we analyze chiral symmetry breaking in strongly-flavored gauge theories in Sect. 6. QCD is in fact

symmetric under SU(Nf)L ⊗ SU(Nf)R transformations in the limit of massless quarks. Apart from its

relevance for QCD phenomenology, this type of flavor symmetry appears in studies of chiral symmetry

breaking in quantum gravity [153].
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In direct analogy to the simple NJLmodel with one fermion species, the chiral charge Q5,

Qa5 =

∫

d3xψ̄γ0γ5T
aψ , (110)

does not commute with the composite fields ∼ (ψ̄iγ0γ5T
aψ) ≡ ψ̄ciγ0γ5T acdψd, if the vacuum expectation

value 〈ψ̄ψ〉 is finite. In other words, the chiral symmetry of such a model is broken dynamically when 〈ψ̄ψ〉
assumes a finite value. Here, the T a denote the (N2

f −1) generators of the group SU(Nf) in the fundamental

representation. For SU(2) these generators are related to the Pauli matrices, whereas they are related to

the Gell-Mann matrices for SU(3). For a finite chiral condensate 〈ψ̄ψ〉 it then follows from the Nambu-

Goldstone theorem that (N2
f −1) massless states exist in the spectrum of the theory, the Nambu-Goldstone

bosons. In QCD, this yields a natural explanation for the existence of three light (massless) hadrons,

namely the pions, in the hadronic spectrum in the theory with two light (massless) quark flavors.

We are again interested in an analysis of the fixed-point structure of the theory. To this end, we consider

the effective action in leading order in the derivative expansion:

Γ
[
ψ̄, ψ

]
=

∫

d4x

{

Zψψ̄i /∂ψ +
1

2
λ̄−(V–A) +

1

2
λ̄+(V+A)

}

, (111)

where

(V–A) = [(ψ̄γµψ)
2 + (ψ̄γµγ5ψ)

2] ,

(V+A) = [(ψ̄γµψ)
2 − (ψ̄γµγ5ψ)

2] .

The flavor indices are contracted pairwise, (ψ̄Oψ) ≡ (ψ̄iOψi). This ansatz corresponds to the matter part

employed in a study of chiral symmetry breaking in quantum gravity [153].

The effective action (111) is complete with respect to Fierz transformations, i. e. all other SU(Nf)L ⊗
SU(Nf)R symmetric four-fermion interactions can be transformed into a linear combination of the terms

included in our ansatz. Note that

[(ψ̄ψ)2 − (ψ̄γ5ψ)
2]

is not invariant under SU(Nf)L ⊗ SU(Nf)R transformations. However,

[(ψ̄iψj)(ψ̄jψi)− (ψ̄iγ5ψj)(ψ̄jγ5ψi)]

is invariant, as can be seen from the following Fierz relation:

(V+A) ≡ [(ψ̄γµψ)
2 − (ψ̄γµγ5ψ)

2] = −2[(ψ̄iψj)(ψ̄jψi)− (ψ̄iγ5ψj)(ψ̄jγ5ψi)] . (112)

Of course, the effective action can be directly related to the action (26) of our simple one-flavor model.

Using the Fierz identity (112) , we find for Nf = 1 that

λ̄σ = 2(λ̄− − λ̄+) and λ̄V = −2λ̄− . (113)

From the point of view of high-energy phenomenology it is instructive to relate the interaction channels

in Eq. (111) to the interaction channel conventionally employed in so-called quark-meson models, namely

the scalar-pseudoscalar channel, see Sect. 5.2. From the Fierz identities in App. B it follows that

(V–A) =
[
(ψ̄iγµψj)(ψ̄jγµψi) + (ψ̄iγµγ5ψj)(ψ̄jγµγ5ψi)

]
(114)

and

(V+A) = −2
[
(ψ̄iψj)(ψ̄jψi)− (ψ̄iγ5ψj)(ψ̄jγ5ψi)

]

= −4[(ψ̄Tαψ)2 − (ψ̄γ5T
αψ)2]−

(
2

Nf

− 1

)

[(ψ̄ψ)2 − (ψ̄γ5ψ)
2]

(Nf=2)
= −[(ψ̄ψ)2 − (ψ̄γ5τ

aψ)2]− . . . , (115)
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with τa being the Pauli matrices. Here, we have dropped terms on the right-hand side of the last line in

Eq. (115). However, we have included all terms in our flow equation study. This is most conveniently

achieved by working with the (V+A)-channel and (V–A)-channel. Note that α = 0, 1, . . . , (N2
f − 1) and

a = 1, 2, . . . , (N2
f − 1). To derive Eq. (115), we have used the Fierz transformation for flavor indices:26

✶ab✶cd = 2

(
2

Nf

− 1

)

✶ad✶cb + 2

N2
f −1
∑

α=0

(Tαad) (T
α
cb) , (116)

where T 0 := (1/2)✶. We observe that the first term on the right-hand side of the last line in Eq. (115)

corresponds to the standard scalar-pseudoscalar channel included in low-energy models for 2-flavor QCD,

see Sect. 5.2 for a detailed discussion.

Let us now discuss the RG flow equations and the associated fixed-point structure. In our point-like

approximation, it follows immediately that ηψ = 0. Thus, we set Zψ ≡ 1 from now on. The flow

equations for the two four-fermion couplings specified in the action (3.5.1) read

∂tλ− = 2λ− + 8v4l
(F),(4)
1 (0; 0)

[
(Nf − 1)λ2− +Nfλ

2
+

]
, (117)

∂tλ+ = 2λ+ + 8v4l
(F),(4)
1 (0; 0)

[
2λ2+ + 2λ+λ−(Nf + 1)

]
, (118)

where λi = Z−2
ψ k2λ̄i. From this set of equations it is apparent that we only have three (finite) fixed points

for Nf = 1. For arbitrary Nf > 1, we find the following four fixed points FSU(Nf)
i = (λ∗+, λ

∗
−):

FSU(Nf)
1 ≡ FGauß = (0, 0) , FSU(Nf)

2 =

(

0,− 8ζ

Nf − 1

)

,

FSU(Nf)
3 =

(
8ζ

2Nf−1
,− 8ζ

2Nf−1

)

, FSU(Nf)
4 =

(

− 8ζ(Nf + 3)

9+5Nf+2N2
f

,− 8ζNf

9+5Nf+2N2
f

)

,

where ζ is defined in Eq. (47). From the stability matrix we obtain the critical exponents which allow us to

classify these fixed points. We find that the Gaußian fixed point has two infrared-attractive directions. The

second fixed point has two infrared-repulsive directions whereas the third and the fourth fixed point have

an infrared-attractive as well as an infrared repulsive direction. Using the relations given in Eq. (113), the

fixed-point values in the limit Nf → 1 can be translated into those of the NJL model with only one fermion

species, see Eq. (46). This confirms that the ”missing” fourth fixed point in our one-flavor study is pushed

to (λσ → −∞, λV →∞) for Nf → 1 from above, as indicated in Fig. 7.

Finally we would like to analyze this model in the limit of many flavors. In leading order in an expansion

in powers of 1/Nf we find a Gaußian fixed point FSU(Nf)
1 = (0, 0) as well as three non-Gaußian fixed

points:

FSU(Nf)
2 =

(

0,− 8ζ

Nf

)

, FSU(Nf)
3 =

(
4ζ

Nf

,− 4ζ

Nf

)

, FSU(Nf)
4 =

(

− 4ζ

Nf

,− 4ζ

Nf

)

.

Note that the rescaled fixed-point couplings Nf · FSU(Nf)
i approach constant values in the limit Nf → ∞.

The associated critical exponents in leading order in 1/Nf are given by

Θ
SU(Nf)
1 = {−2, 2} , Θ

SU(Nf)
2 =

{

2, 2 +
8

Nf

}

,

Θ
SU(Nf)
3 =

{

2,−2− 4

Nf

}

, Θ
SU(Nf)
4 =

{

2,−2− 4

Nf

}

.

Thus, the critical behavior of such a theory at the quantum phase transition is modified when we vary

the number of fermion flavors. Our analysis for Nf > 1 shows that an RG trajectory exists with λ+ ≡ 0

26 This identity can in principle be obtained from the general relation (24). The complete set of basis elements is now given

by { 1
2
✶, T 1, T 2, . . . }.
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which connects the fixed point FSU(Nf)
2 with the Gaußian fixed point in the IR limit. However, the interac-

tion channel associated with the λ−-coupling cannot be transformed into the phenomenologically relevant

scalar-pseudoscalar channel, see Eqs. (114) and (115). On the contrary, a Fierz-complete analysis of the

Thirring model in three dimensions provides evidence that a pure Thirring-like trajectory indeed exists

in the limit of many fermion flavors [75]. In any case, these observations show that a careful analysis

of fermionic theories in the large-Nf limit can provide useful information for a controlled and systematic

construction of effective theories for physically relevant systems.

3.5.2 Many-Flavor Physics II: Chiral U(1)⊗Nf Symmetry

As a second example for fermionic models with many flavors we consider an NJL model with a contin-

uous chiral U(1)⊗Nf ≡ ⊗Nf

i=1U(1) symmetry, i. e. each flavor transforms independently under the chiral

transformation given in Eq. (21). As a consequence, there is only one massless excitation in the spectrum

for each (spontaneously broken) U(1) symmetry rather than (N2
f − 1) massless excitations as in the case

of a spontaneously broken chiral SU(Nf)L ⊗ SU(Nf)R symmetry. Thus, the number of fermions can in

principle be arbitrarily increased without changing the number of the Nambu-Goldstone bosons. As we

shall discuss in Sect. 5, this chiral symmetry is closely related to the one realized in the Gross-Neveu model

with many flavors. Moreover, such a flavor number dependence is faintly reminiscent of the dependence of

QCD on the number of colors. In fact, increasing the number of colors increases the number of fermions

linearly but leaves the number of Nambu-Goldstone bosons unchanged. In Sect. 6 we shall come back to

QCD in the limit of many colors.

To be specific, let us consider the following ansatz for the effective action:

Γ
[
ψ̄, ψ

]
=

∫

d4x

{

Zψψ̄i /∂ψ +
1

2
λ̄σ[(ψ̄ψ)

2 − (ψ̄γ5ψ)
2]

−1

2
λ̄V[(ψ̄γµψ)

2]− 1

2
λ̄A[(ψ̄γµγ5ψ)

2]

}

. (119)

This ansatz has a continuous chiral U(1)⊗Nf symmetry. It is even invariant under U(Nf) flavor-transforma-

tions. However, it does not form a complete basis of (point-like) four-fermion interactions with respect

to the U(Nf) flavor-symmetry. For the latter, it is possible to show that the corresponding complete basis

includes six distinct four-fermion interaction channels [164]. Nonetheless, the ansatz (119) can be consid-

ered to be closed for our purposes in this section. By this, we mean that the RG flow of this model only

generates four-fermion interactions which are included in the ansatz (119). In other words, the ansatz (119)

forms an invariant subspace of operators with respect to continuous chiral U(1)⊗Nf transformations.

The RG flow equations for this model can be derived along the lines of Sect. 3.1. Since we restrict

oureselves to the point-like limit, the anomalous dimension vanishes, ηψ ≡ 0, and we set Zψ ≡ 1. The

flow equations for the three four-fermion couplings read:

∂tλσ = 2λσ − 16v4l
(F),(4)
1 (0; 0)

[
Nfλ

2
σ + 2λσλV − λσλA

]
, (120)

∂tλV = 2λV + 8v4l
(F),(4)
1 (0; 0)

[
2λVλA − λσλV − (Nf + 1)λ2V

]
, (121)

∂tλA = 2λA + 4v4l
(F),(4)
1 (0; 0)

[
3λ2V − λ2σ + (1− 2Nf)λ

2
A

−2λVλA + 2λσλA] . (122)

As discussed in Sect. 3.1, for Nf = 1 only two of the three couplings are independent, see also Eq. (22).

Using

λσ → λσ + 2λA and λV → λV − λA (123)

in the above flow equations, we indeed recover the flow equations (42) and (43) of the NJL model with one

fermion species.
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The fixed points and the associated critical exponents of our U(1)⊗Nf -symmetric NJL model can be

computed straightforwardly. We do not give the explicit expressions here, but we find eight distinct fixed

points for Nf > 1. In leading order in an expansion in powers of 1/Nf the expressions simplify signifi-

cantly. To be specific, we find the following eight points FU(1)
i = (λ∗σ, λ

∗
V, λ

∗
A):

FU(1)
1 =(0, 0, 0) , FU(1)

2 =

(
4ζ

Nf

,
8ζ

Nf

,
8ζ

Nf

)

, FU(1)
3 =

(
4ζ

Nf

,
8ζ

Nf

, 0

)

, FU(1)
4 =

(
4ζ

Nf

, 0,
8ζ

Nf

)

,

FU(1)
5 =

(

0,
8ζ

Nf

,
8ζ

Nf

)

, FU(1)
6 =

(

0,
8ζ

Nf

, 0

)

, FU(1)
7 =

(

0, 0,
8ζ

Nf

)

, FU(1)
8 =

(
4ζ

Nf

, 0, 0

)

,

where ζ is defined in Eq. (47).

In contrast to our study of the SU(Nf)L⊗SU(Nf)R symmetric NJL model, we now find an RG trajectory

on which only the scalar-pseudoscalar interaction is non-vanishing. This trajectory connects the non-trivial

fixed point FU(1)
8 with the Gaußian fixed point in the IR limit. This observation is of phenomenological

interest. Generally speaking, we can find RG trajectories in the large-Nf limit such that condensation can

only occur in one specific channel while the other channels remain trivial, i. e. non-interacting. This type

of observation may be used as a field-theoretical justification for models in which only one interaction

channel has been taken into account, e. g. studies of Gross-Neveu models in the large-Nf limit. This will

be discussed in more detail in Sect. 5.1.

3.5.3 Finite Temperature

Let us now study the dynamics of fermions at finite temperatures T . To this end, we start with an analysis

of the symmetries of our Fierz-complete NJL model with one fermion species, see Eq. (26).

For T > 0, the Euclidean time has a finite extent β = 1/T and therefore Lorentz symmetry is broken

explicitly.27 Thus, the time direction in our d = 4 Euclidean space-time is distinguished due to the presence

of a heat-bath. In fact, we can introduce a velocity nµ = (1,~0) which defines the velocity of the heat-bath

in the rest-frame of an observer. At finite temperature the most general ansatz for the effective action ΓNJL

compatible with the underlying symmetries of our model then reads28

ΓNJL

[
ψ̄, ψ

]
=

∫ β

0

dx0

∫

d3x

{

Z
‖
ψψ̄iγ0∂0ψ + Z⊥

ψ ψ̄iγi∂iψ +
1

2
λ̄σ[(ψ̄ψ)

2 − (ψ̄γ5ψ)
2]

−1

2
λ̄
(0)
V [(ψ̄γ0ψ)

2]− 1

2
λ̄⊥V [(ψ̄γµψ)

2]

−1

2
λ̄
(0)
A [(ψ̄γ0γ5ψ)

2]− 1

2
λ̄
(0)
T [(ψ̄σ0µψ)

2 − (ψ̄σ0µγ5ψ)
2]

}

, (124)

where

λ̄
(0)
V = λ̄

‖
V − λ̄⊥V , λ̄⊥V ≡ λ̄V , λ̄

(0)
A = λ̄

‖
A − λ̄⊥A , λ̄

(0)
T = λ̄

‖
T − λ̄⊥T .

(125)

Note that both the kinetic term as well as the interaction terms in Eq. (26) can be split up into contributions

longitudinal (‖) and perpendicular (⊥) to the heat bath. We add that the action (124) can be deduced from

the ansatz (26) with the aid of the following relation:

(ψ̄Oµψ)2 ≡ (ψ̄Oµψ)✶µν(ψ̄Oνψ) = (ψ̄Oµψ)
[

P ‖
µν + P⊥

µν

]

(ψ̄Oνψ) , (126)

where Oµ stands for γµ and γµγ5, respectively, and the heat-bath projectors are defined as follows:

P ‖
µν = nµnν and P⊥

µν = ✶µν − P ‖
µν . (127)

27 We restrict our discussion to quantum field theories in equilibrium. For related approaches to quantum field theories away

from equilibrium we refer the reader to Refs. [165–169].
28 We only take into account four-fermion interactions.
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∂tλσ

λσλ∗

σ

T > 0

Fig. 8 Sketch of the βλσ function of the four-fermion interaction for vanishing temperature (black/solid line) and a

given finite value of the temperature T (red/dashed line). The arrows indicate the direction of the RG flow towards the

infrared.

These projectors are orthogonal, P ‖ · P⊥ = P⊥ · P ‖ = 0, and idempotent. A further invariant at finite

temperature emerges from the tensor-axialtensor channel defined in Eq. (45). This channel is chirally

symmetric but vanishes identically at zero temperature, since

(ψ̄σµνψ)
2 = (ψ̄σµνγ5ψ)

2 .

However, the chirally symmetric combination

[(ψ̄σ0µψ)
2 − (ψ̄σ0µγ5ψ)

2] (128)

is not identical to zero.

For convenience, we have introduced the couplings λ̄
(0)
V , λ̄

(0)
A and λ̄

(0)
T which effectively measure the

difference between the couplings longitudinal and perpendicular to the heat bath and therefore allow for

a simple mapping between the couplings of the effective actions (26) and (124). To ensure comparability

of our results for zero and finite temperature, we have to fix the boundary conditions for our couplings

properly. To this end, it seems natural to fix the parameters (initial conditions) of our model at zero

temperature, e. g., by fitting them to a given set of low-energy observables. At finite temperature, we

then use the same set of initial conditions to compute, e. g., the phase transition temperature. It is evident

that such an approach requires T/Λ ≪ 1. Moreover, it naturally fixes the initial conditions for the new

couplings λ̄
(0)
V , λ̄

(0)
A and λ̄

(0)
T as follows:

lim
T/Λ→0

λ̄
(0)
V = lim

T/Λ→0
λ̄
(0)
A = lim

T/Λ→0
λ̄
(0)
T = 0 . (129)

In order to study chiral symmetry restoration at finite temperature, we now have to derive the RG flow

equations for the various four-fermion couplings in our ansatz (124). To keep our discussion as simple

as possible, we only take into account the λ̄σ-coupling and set all other couplings to zero. This leaves us

with the ansatz (19). Of course, this ansatz is not complete with respect to Fierz transformations. As in the

zero-temperature case, however, the underlying mechanisms of chiral symmetry breaking can nevertheless

be understood with such a simple ansatz. The Fierz-complete study will be published elsewhere [170].

The flow equation for the coupling λσ can in principle be derived along the lines of Sect. 3.1. Therefore

we only highlight the subtleties of the derivation. For studies of quantum field theories at finite tempera-

ture, it is convenient to use a dimensionally reduced regulator function which only regularizes the spatial

momenta but leaves the time-like momenta essentially unconstrained [137, 171, 172]. The (regularized)
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propagator matrix Pk then assumes the following form:

Pk =

(

0 −Z‖
ψγ

T
0 νn− Z⊥

ψ ~p/
T (1+rψ)

−Z‖
ψγ0νn−Z⊥

ψ ~p/(1+rψ) 0

)

βδn,n′(2π)3δ(3)(~p− ~p ′) ,

where the fermionic Matsubara frequencies are given by νn = (2n+ 1)πT .

At this point we would like to add a word of caution concerning dimensionally-reduced (spatial) reg-

ulator functions, e. g. Eq. (349) in the appendix. From the propagator matrix it is apparent that such

a regulator function necessarily breaks the O(d = 4) symmetry in the derivative terms of our trunca-

tion, i. e. ∂tZ
‖
ψ 6= ∂tZ

⊥
ψ even in the zero-temperature limit. In so-called local potential approxima-

tions, this problem does not appear since the non-trivial momentum dependence of the propagators is ne-

glected [33,137,138,171,172]. In studies beyond the point-like limit, however, we would have to deal with

the broken Poincare-invariance at vanishing temperature which arises due to the choice of our dimension-

ally reduced regulator function.29 In principle, one can solve this problem by taking care of the symmetry

violating terms with the aid of the corresponding Ward identities. Equivalently, one can adjust the initial

conditions for the RG flow equations such that one finds Z⊥
ψ = Z

‖
ψ for k → 0 and T → 0, see Ref. [33].

From a field-theoretical point of view the adjustment of the initial conditions for a given truncation means

nothing else than adding appropriate counter-terms, such that the theory remains Poincare-invariant for

k → 0 and T → 0. At finite temperature, the breaking of the O(d) symmetry in momentum space due to

the regulator function is not problematic since this symmetry is broken anyway. In any case, the choice

of a dimensionally reduced regulator function offers the possibility to perform the Matsubara sums in 1PI

diagrams analytically. This simplifies finite-temperature studies considerably and justifies our choice of

such a regulator function.

Let us now discuss the flow equations at finite temperature. In the present approximation, the fluctuation

matrix Fk remains unchanged and is given by Eq. (31). To study effects of a finite temperature, it is conve-

nient to consider the temperature T as an additional coupling and define the corresponding dimensionless

coupling τ as

τ =
T

k
. (130)

Together with the propagator and the fluctuation matrix this yields the following set of flow equations:

βλσ ≡ ∂tλσ = (2 + 2η⊥ψ )λσ − 16v3 l
(F),(4)
1 (τ, 0, 0; ηψ, ẑψ)λ

2
σ , (131)

∂tτ = −τ . (132)

where v3 = 1/(8π2). Note that the prefactor of the second term on the right-hand side of Eq. (131) differs

from the corresponding one in Eq. (33) since we use a dimensionally reduced regulator function; the

definition of the corresponding (thermal) threshold function can be found in App. D. The (dimensionless)

renormalized coupling λσ is given by

λσ = (Z⊥
ψ )

−2k2λ̄σ . (133)

In addition, we have η
‖,⊥
ψ = −∂t lnZ‖,⊥

ψ and ẑψ = Z
‖
ψ/Z

⊥
ψ . The flow of the latter reads

η̂ψ = −∂tẑψ
ẑψ

= η
‖
ψ − η⊥ψ . (134)

Recall that at vanishing temperature the wave-function renormalizations have to satisfy the boundary con-

dition ẑψ = 1 for k → 0 to render the IR limit Poincare-invariant.

29 This issue does not occur if one applies a 4d regulator function.
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Next, we turn to a discussion of the fixed-point structure at finite temperature in the point-like limit, i. e.

η
‖,⊥
ψ ≡ 0. Apart from a Gaußian fixed point, we find a pseudo fixed-point λ∗σ(τ) at which the right-hand

side of the flow equation is zero:30

λ∗σ(τ) =
1

8v3 l
(F),(4)
1 (τ, 0, 0; 0, 1)

. (135)

For high temperatures the fermions are screened due to the absence of a thermal zero mode. This is encoded

in the large-τ behavior of the (fermionic) threshold function. Independent of the regularization scheme,31

we have l
(F),(4)
1 ∼ (k/T )−3. As an immediate consequence we find λ∗σ ∼ (T/k)3. In other words, the

value of the pseudo fixed-point is pushed to larger values for increasing τ = T/k, see also Fig. 8.

Let us now assume that we have fixed the physical IR observables at zero temperature by choos-

ing λUV
σ > λ∗σ(τ = 0). This implies that we have chosen the initial condition for the four-fermion in-

teraction such that chiral symmetry is broken in the IR limit. Recall that the fixed point λ∗σ(τ =0) can be

viewed as a quantum critical point. Since the value of the (pseudo) fixed-point increases with increasing

τ = T/k, the rapid increase of the four-fermion coupling towards the IR is effectively slowed down and

the RG flow may even change its direction in the (λσ, τ)-plane, see Fig. 9 for an illustration. Due to this

behavior of the pseudo fixed-point λ∗σ(τ), it is already clear that for a fixed initial value λUV
ψ a critical

temperature Tχ exists above which the λσ-coupling does not diverge but tends to zero for k→ 0. From a

phenomenological point of view, such a behavior is indeed expected for high temperatures: The fermions

become effectively stiff degrees of freedom due to their ’Matsubara’ mass ∼ T and chiral symmetry is

restored.

With the aid of the pseudo fixed-point λ∗σ(τ) we can formulate a sufficient criterion for chiral symmetry

breaking at finite temperature. First, we note that for a given initial condition λUV
σ > λ∗σ(τ=0) the pseudo

fixed-point λ∗σ(τ) determines a dimensionless temperature τ∗ through

λ∗σ(τ∗) = λUV
σ . (136)

Since the βλσ -function is strictly positive for λσ < λ∗σ(τ), it follows immediately that it is sufficient to

choose τ > τ∗ to restore chiral symmetry for a given fixed value of λUV
σ . Thus, T∗ = Λτ∗ defines a strict

upper bound for the chiral phase transition temperature Tχ.

It is important to stress that λ∗σ(τ) does not define a separatrix in the space spanned by the coupling λσ
and τ . From the above discussion it is clear that λ∗σ(τ) only represents a strict upper bound for the separa-

trix λsep.σ (τ), see also Fig. 9:

λ∗σ(τ) ≥ λsep.σ (τ) . (137)

For a given initial condition λUV
σ > λ∗σ(τ =0), we can now define a second (dimensionless) tempera-

ture τsep. via

λsep.σ (τsep.) = λUV
σ . (138)

Due to the very definition of a separatrix in coupling space, this allows us to define a necessary criterion

for chiral symmetry breaking (restoration) at finite temperature: choosing τ < τsep. (τ > τsep.) for a

given fixed UV coupling λUV
σ , the theory approaches necessarily a regime with broken (restored) chiral

symmetry in the IR limit. For a given value of the UV cutoff Λ, the quantity τsep. can then be translated

into a physical temperature Tsep. = Λτsep.. Moreover, we have τsep. ≤ τ∗.

Strictly speaking, even the temperature Tsep. defines only an upper bound for the actual chiral phase

transition temperature Tχ since it is only sensitive to an emergence of a condensate on intermediate mo-

mentum scales, but insensitive to the fate of the condensate in the deep IR due to fluctuations of the bosonic

30 At finite temperature T , the fixed-point value depends on the dimensionless temperature τ = T/k. We shall refer to it as a

pseudo fixed point since its value has an intrinsic dependence on the RG scale k.
31 The associated perturbative Feynman diagram (diagram on the left in Fig. 1) has two internal fermion lines, yielding a fac-

tor τ−2. The regulator insertion splits one of the two internal lines apart and provides an extra factor τ−1.
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Fig. 9 RG flow of in the plane spanned by the four-fermion coupling λσ and the dimensionless temperature τ =
T/k. The blue (straight) line depicts the separatrix λsep.

σ (τ), whereas the red (dashed) line represents the line of

pseudo fixed-points λ∗
σ(τ). Here, the separatrix has been obtained by solving the flow equations (131) and (132) with

suitably fine-tuned initial conditions. For a given value of τ , the theory approaches a non-interacting IR limit for initial

conditions λUV
σ > λsep.

σ (τ), whereas the system flows into an IR limit with broken chiral symmetry in the ground

state for λUV
σ < λsep.

σ (τ). The dot represents the quantum critical point (λ∗
σ(0), 0). The arrows indicate the direction

of the RG flow towards the infrared.

modes, e. g. Nambu-Goldstone modes. In fact, the phase transition temperature decreases when one goes

beyond the point-like limit, e. g., by taking into account bosonic loops in the RG flow to resolve the mo-

mentum dependence of the fermionic vertices [33]. In particular, the Nambu-Goldstone bosons play a

prominent role at a thermal phase transition, since they tend to restore the chiral symmetry, while fermions

tend to build up a condensate and thereby break the symmetry of the ground state. In contrast to the bosonic

fields, however, the anti-periodic boundary conditions of the fermion fields in Euclidean time direction lead

to a suppression of the associated modes in the vicinity of the phase transition and above. We shall come

back to this in Sect. 5.2.2, where we discuss the thermal phase transition in QCD low-energy models.

In Fig. 9 we show the RG flow of our theory in the plane spanned by the coupling λσ and the dimen-

sionless temperature τ . It is instructive to analyze the RG flow in this plane with the aid of the matrix B̃:

B̃ =

(
∂(∂tλσ)
∂λσ

∂(∂tλσ)
∂τ

∂(∂tτ)
∂λσ

∂(∂tτ)
∂τ

)

.

Evaluated at the non-Gaußian zero-temperature fixed point (λ∗σ(τ = 0), τ = 0), the matrix B̃ corresponds

to the stability matrixB defined in Eq. (48). Following our discussion in Sect. 3.1, we find that we have two

IR repulsive (RG relevant) directions at the non-Gaußian fixed point. The eigenvectors of B are simply

given by ~v1 = (1, 0) and ~v2 = (0, 1). The associated critical exponents of B are given by Θ1 = 2
and Θ2 = 1, respectively. Note that the functional form of the separatrix in the (λσ, τ)-plane is determined
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by the largest critical exponent, namely Θ1, see Fig. 9. Close to the quantum critical point (λ∗σ(0), τ =0),
we therefore expect that the phase transition temperature Tχ scales according to

Tχ ∼ Λθ(λUV
σ − λ∗σ)

(
λUV
σ − λ∗σ
λUV
σ

) 1
|Θ1|

, (139)

see also Eq. (98) and Sect. 5.2.2. Corrections to this scaling behavior then arise from the subleading

exponent Θ2.

Away from the fixed point, we can use the eigenvectors of the matrix B̃ to study the direction of the

RG flow towards the IR. Let us first consider the eigenvectors of B̃ for increasing λσ but fixed (dimen-

sionless) temperature τ > 0. For λσ ≫ λ∗σ(τ), the eigenvectors become independent of τ : ~v1 = (1, 0)
and ~v2 = (cλσ, 1) with a constant c > 0. Thus, the angle between the two directions shrinks to zero and

we are effectively left with a one-dimensional RG flow pointing into λσ-direction, i. e. (1, 0)-direction.

At the Gaußian fixed-point we find that the eigenvectors are given by ~v1 = (1, 0) and ~v2 = (0, 1) with

exponents Θ1 = −2 and Θ2 = 1, respectively. Thus, the flow is driven by the (0, 1)-direction close to the

Gaußian fixed point. In accordance with this observation, we find that the flow is pushed into the (0, 1)-
direction (τ -direction) for fixed λσ and increasing τ . For sufficiently large values of τ , the RG flows are

therefore attracted by the ’thermal’ fixed-point F∞
T := limα→∞(0, α). On the other hand, the RG flows

are attracted by the line of fixed points F∞
λ := limα→∞(α, τ) for a given λUV

σ < λsep.σ (τ). Overall, this is

simply another way of saying that a finite temperature tends to restore chiral symmetry, whereas increasing

the coupling tends to break the chiral symmetry of the ground state.

Finally we would like to comment on the effect of other four-fermion interaction channels compatible

with the underlying symmetries of our model. Qualitatively, the effect of a finite temperature is the same

in a Fierz-complete ansatz. To be specific, we have shown that the (modulus) of the the pseudo fixed-

point value increases with increasing τ . For the Fierz-complete phase diagram32 in Fig. 7 this means that

the fixed-points F2 and F3 are pushed away from the Gaußian fixed point F1 for increasing τ . Hence

the domain II increases for increasing τ while the domains Ia/b and IIIa/b effectively shrink. Since the

domains II and IV represent the basin of attraction of the Gaußian fixed point, we conclude that a chiral

phase transition temperature Tχ must exist for any initial condition lying in the domains Ia/b and IIIa/b.

Thus, the very general mechanisms of dynamical chiral symmetry breaking remain unchanged. However,

we expect that the prediction for the actual value of the (chiral) phase transition temperature changes when

a Fierz-complete ansatz is considered.

3.5.4 Mass-like Explicit Symmetry Breaking

Let us now study another phenomenologically highly important deformation of fermionic theories, namely

the inclusion of an explicit mass term ∼ ψ̄m̄ψψ. For example, in QCD such terms correspond to the

so-called current quark masses. From a field-theoretical point of view, the deformation of a theory with

an explicit mass term is also of great importance since it can be used as a control parameter to study

systematically the scaling behavior of physical observables in finite volumes and at finite temperatures, see

e. g. Refs. [154, 173–176]. From this scaling behavior the critical exponents at the phase transition can be

read off, which then allows to assign the theory under consideration to a certain universality class. Such an

approach is indeed applied in the context of Monte-Carlo simulations to determine the QCD universality

class, see e. g. Ref. [177].

In the following we shall discuss only general aspects of RG flows of fermionic theories with an explicit

mass term. In our discussion we leave aside other possible deformations such as finite temperature and

finite volume. As in our study of finite-temperature effects in the previous section, we shall consider only

32 Note that the study of the phase diagram in Fig. 7 is only Fierz-complete for T = 0. We only use it here to illustrate our point

concerning the effect of a Fierz-complete basis of four-fermion interactions. This is justified since the difference between couplings

longitudinal and transversal to the heat bath is parametrically suppressed for T/k < 1 anyway. Note also that Tχ/kSB . 1 in our

present study.
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a scalar-pseudosclar interaction channel to keep our discussion of the physical mechanisms as simple as

possible. However, a more quantitative study would again require the consideration of a Fierz-complete

set of four-fermion interactions. To be specific, we consider a theory with only one fermion species and

employ the following effective action:33

Γ
[
ψ̄, ψ

]
=

∫

d4x

{

ψ̄ (Zψi /∂ + im̄ψ)ψ +
1

2
λ̄σ(ψ̄ψ)

2 − 1

2
λ̄PS(ψ̄γ5ψ)

2

}

. (140)

This ansatz represents a straightforward generalization of the effective action (19). Since we allow for an

explicit fermion mass term in our ansatz, the chiral symmetry is broken explicitly and the couplings λ̄σ
and λ̄PS will in general be different. We assume that the UV cutoff Λ has been chosen such that m̄UV

ψ /Λ≪
1 and fix the initial conditions for the various couplings at the UV scale Λ as follows:

lim
m̄UV
ψ
/Λ→0

λ̄σ = lim
m̄UV
ψ
/Λ→0

λ̄PS = λUV
σ and lim

m̄UV
ψ
/Λ→0

m̄ψ = m̄UV
ψ . (141)

Thus, we are left with only two input parameters for our simple model, namely λ̄UV
σ and m̄UV

ψ . In QCD,

the latter parameter plays the role of the current quark mass.

It is also possible to consider a partially bosonized version of the fermionic action (140). This yields two

different Yukawa couplings and corresponding mass terms, and a linear term for the composite field φ1 ∼
ψ̄ψ appears. The net effect of this term is to stretch and tilt the order-parameter potential shown in Fig. 5

into the direction associated with the field φ1. As a result, we have a finite vacuum expectation value 〈φ1〉
on all scales and the ground state is no longer degenerate. Of course, it is also possible to deal with such

an order-parameter potential in RG flows. As is well known, a linear symmetry breaking term remains

unchanged in the RG flow [176]. Therefore the usual strategy is to evolve the potential without a symmetry

breaking term. Explicit symmetry breaking is then taken into account after the quantum fluctuations have

been integrated out on all scales [113, 135, 136]. Alternatively, it is also possible to include the explicit

symmetry breaking in the (partially) bosonized RG flows which is particularly convenient for studies of

finite-volume effects in quantum field theories [51, 53, 54, 57, 154, 155].

Returning to the purely fermionic formulation, we first note that the propagator matrix now includes a

mass term m̄ψ:

Pk =

(
0 −Zψp/T (1 + rψ)− im̄ψ

−Zψp/(1 + rψ) + im̄ψ 0

)

(2π)4δ(4)(p− p′) .

In the following we shall employ a covariant regulator function (d-dimensional regulator) for convenience.

The fluctuation matrix in Eq. (32) remains unchanged except for the fact that the coupling λ̄PS is attached

to the terms depending on γ5, whereas the coupling λ̄σ is attached to the terms independent of γ5. Since

we allow for a term ∼ ψ̄ψ in our ansatz for the effective action, the Feynman diagram shown on the right

in Fig. 1 also contributes to the RG flow of the effective action on all scales and yields a mass renormal-

ization.34 Within the present truncation of the effective action there are nevertheless no contributions to

the RG flow of the wave-function renormalization Zψ in the point-like limit, which we shall consider from

now on. For Zψ ≡ 1 and ηψ = 0, the flow equations then read

∂tǫψ = −2ǫψ − 8 [3λσ − λPS] v4 b
(F),(4)
1 (ǫψ; 0) , (142)

∂tλσ = 2λσ − 8
[
λ2σ + λσλPS

]
v4 l̂

(F),(4)
1 (ǫψ; 0)

−8
[
λ2PS − λσλPS

]
v4 l̃

(F),(4)
1 (ǫψ; 0) , (143)

∂tλPS = 2λPS − 8
[
λ2PS + λσλPS

]
v4 l̂

(F),(4)
1 (ǫψ; 0)

−8
[
λ2PS + 3λσλPS

]
v4 l̃

(F),(4)
1 (ǫψ; 0) , (144)

33 The imaginary unit factor ”i” in front of the mass term m̄ψ appears due to our conventions in Euclidean space-time.
34 Strictly speaking, our RG approach includes resummations of both diagrams in Fig. 1 as well as combinations thereof.
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where the renormalized dimensionless fermion mass is given by

ǫψ =
m̄2
ψ

k2
, (145)

and the renormalized dimensionless four-fermion couplings are defined as λσ = k2λ̄σ and λPS = k2λ̄PS.

The various threshold functions are defined in App. D. Here we only note that

l
(F),(4)
1 (ǫψ; ηψ) = l̂

(F),(4)
1 (ǫψ; ηψ) + l̃

(F),(4)
1 (ǫψ; ηψ) (146)

and l
(F),(4)
1 (0; 0) = l̂

(F),(4)
1 (0; 0). This implies l̃

(F),(4)
1 (0; 0) = 0. The function b

(F),(4)
1 behaves as

b
(F),(4)
1 (ǫψ; 0) ∼ ǫψ (147)

for ǫψ ≪ 1, whereas l̂
(F),(4)
1 and l̃

(F),(4)
1 are constant for small ǫψ . Moreover, we have

b
(F),(4)
1 (ǫψ; 0) ∼

1

ǫψ
, l̂

(F),(4)
1 ∼ − 1

ǫ2ψ
and l̃

(F),(4)
1 ∼ 1

ǫ2ψ
(148)

for ǫψ ≫ 1. With the aid of these identities it is straightforward to show that the flow equations for λσ
and λPS are identical in the limit ǫψ→ 0. Thus, we have λσ ≡ λPS in the chirally symmetric limit, as it

should be. Moreover, the flow equations of these coupling reduce to the flow equation (33) in this limit.

From our RG equations (142)-(144) we read off that a strong four-fermion interaction induces a strong

increase in the fermion mass. This is in accordance with our expectations, since strong fermion self-

interactions signal the onset of chiral symmetry breaking which is associated with a finite fermion mass

(gap). From the 1PI Feynman diagrams and the associated threshold functions, it is clear that a large

fermion mass suppresses quantum corrections and therefore prevents the couplings and the mass from

growing further. Nevertheless it is in general not possible to “stabilize” the RG flows in the point-like

approximation with the aid of the evolving fermion mass term, such that the four-fermion interactions

remain finite on all scales. We only find that for a given value of λUV
σ a critical initial value ǫcr.ψ =(mcr.

ψ /Λ)2

exists, such that the four-fermion interactions remain finite on all scales for ǫUV
ψ > ǫcr.ψ . For ǫUV

ψ < ǫcr.ψ the

four-fermion couplings still diverge at a finite scale kSB, provided we choose the initial conditions λUV
σ to be

larger than the fixed-point λ∗σ of the chirally symmetric theory (ǫUV
ψ → 0), see Eq. (35). To put it sloppily,

the critical value ǫcr.ψ plays a role roughly similar to that of the critical (dimensionless) temperature. More

precisely, the functional dependence of ǫcr.ψ on λUV
σ can be viewed as a critical line similar to the separatrix

discussed in our finite-temperature studies in the previous section. We indeed find that ǫcr.ψ increases

monotonously with increasing λUV
σ . In other words, larger masses are required to screen strong self-

interactions.

From a phenomenological point of view, ǫcr.ψ distinguishes between a phase with a trivial explicit chiral

symmetry breaking in the IR limit and a phase with spontaneous chiral symmetry breaking associated with

a non-trivial momentum dependence of the fermionic self-interactions. In fact, a large initial value ǫUV
ψ >

ǫcr.ψ suppresses the fermion self-interactions and therefore keeps the theory from approaching criticality.

From a field-theoretical point of view, the deformation of a fermionic theory with an explicit mass term

might be still useful to guide lattice studies of conformal phases in gauge theories [178–180], see also

Sect. 6. Whereas functional approaches (RG and Dyson-Schwinger equations) allow to study explicitly

the chiral limit (ǫUV
ψ → 0) of such theories, lattice simulations usually involve explicit mass terms for the

fermions and therefore require a controlled extrapolation to the chiral limit.

Finally we remark that once one has resolved the momentum-dependence of the fermionic vertices,

the explicit mass term can indeed be used to “stabilize” the RG flows to study IR observables, even for

(arbitrarily) small values of ǫUV
ψ . This was found in the context of condensed-matter physics [110, 181],

where it was shown explicitly that the point-like limit and the limit ǫUV
ψ → 0 do not commute in general.
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4 Non-relativistic Quantum Field Theories

As first examples of strongly interacting fermionic field theories we consider non-relativistic many-body

systems. However, we do not aim at a quantitative study of these systems. We only present very general

arguments concerning universality in non-relativistic Fermi gases and the existence of inhomogeneous

phases in such systems. This allows us to apply our field-theoretical discussion in the previous section to

phenomenologically relevant systems, such as ultracold atomic gases and nuclear physics. In Sect. 4.1,

we show that the non-Gaußian fixed-point of the four-fermion coupling plays a decisive role in ultracold

atomic gases. In fact, the coupling strength of fermions in two different hyperfine states can be tuned

in experiments by means of an external magnetic field [2]. This strong experimental control opens up

the possibility to gain deep insights into the mechanisms of quantum many-body phenomena, such as

Bose-Einstein (BEC) condensation and Bardeen-Cooper-Schrieffer (BCS) superfluidity, and to benchmark

different approaches to strongly interacting field theories.

In principle, non-relativistic many-body problems can be studied by simply solving the Schrödinger

equation. However, exact solutions of the Schrödinger equation are difficult (or even impossible) to find

for most of the problems, making approximations necessary. Therefore a path-integral approach to many-

body problems might be promising since it allows us to employ complementary approximation schemes

and gain insights into the dynamics of the system from a different perspective. In the spirit of this review,

we shall restrict our discussion to path-integral approaches in what follows.

Before we actually discuss RG flows of non-relativistic systems, it is instructive to compare actions

which describe the dynamics of relativistic and non-relativistic theories, respectively. For non-relativstic

fermions with spin 1/2, we consider an action consisting of only a one-body part (kinetic term) and a two-

body part (interaction term). Whether it is justified to neglect higher n-body interactions depends on the

system under consideration and needs to be carefully analyzed. For example, this might be a reasonable

approximation for the description of a dilute gas of ultracold atoms. In nuclear physics, on the other hand,

it has been found that three-body interactions have to be taken into account to compute accurately ground-

state properties of nuclei, see e. g. Refs. [182–184]. In any case, it is sufficient for our purposes to consider

the following ansatz for the action in d+ 1 Euclidean space-time dimensions:

S[ψ†, ψ] =
∑

σ

∫

dτ

∫

ddxψ†
σ(τ, ~x) (∂τ −∆)ψσ(τ, ~x)

+
1

2

∑

σ,σ′

∫

dτ

∫

ddx

∫

ddy ψ†
σ(τ, ~x)ψ

†
σ′(τ, ~y)U(~x, ~y)ψσ′(τ, ~y)ψσ(τ, ~x) , (149)

where ∆ denotes the Laplace operator and the indices σ, σ′ refer to the spin components of the two-

component Grassmann-valued spinor ψT = (ψ↑, ψ↓). For example, we can think of these two components

as two different hyperfine-states of the atoms in ultracold gases. As usual, Hermitian conjugation is defined

as ψ† = (ψ∗)T . For convenience, we have set ~ = 1 and 2m = 1, where m denotes the mass (parameter)

of the fermions. The interaction potential is given by the function U . Prominent examples are the Coulomb

potential or a contact interaction potential.

Comparing the non-relativistic action (149) with a simple action describing relativistic fermions, see

e. g. Eq. (19), we immediately observe that we have an O(d) symmetry in the kinetic term in Eq. (19)

owing to Poincare invariance. In non-relativistic theories, on the other hand, we have Galilei invariance

and the (canonical) mass dimension of space- and time-like coordinates is different, see App. A.1 for

our conventions. This implies that the dimension of the interaction potential U and the four-fermion

coupling in Eq. (19) is also different. On the other hand, both the relativistic as well as the non-relativistic

theory are invariant under continuous U(1) transformations. For the non-relativistic case, the symmetry

transformations are given by

ψ↑ 7→ eiαψ↑ , ψ∗
↑ 7→ e−iαψ∗

↑ , ψ↓ 7→ eiαψ↓ , ψ∗
↓ 7→ e−iαψ∗

↓ . (150)

This symmetry reflects particle number conservation. The corresponding transformation for the relativistic

case is given in Eq. (20).
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In the subsequent section we study universality in non-relativistic Fermi gases. To this end, we consider

a special choice for the interaction potential, namely a contact interaction. In Sect. 4.2 we then discuss

an RG approach to density functional theory (DFT) which gives direct access to the density and opens

up the possibility to conveniently resolve inhomogeneities of the ground state of (self-bound) many-body

systems, such as nuclei.

4.1 Cold Atomic Quantum Gases

While particles approach the classical limit for high temperatures, their quantum nature becomes important

for low temperatures T , where the thermal wavelength∼ 1/
√
T becomes much larger than the interparticle

distance. In the past fifteen years it has become possible to achieve low temperatures in ultracold Fermi

gases and study quantum many-body phenomena, such as Bose-Einstein condensation and BCS superfluid-

ity in great detail [185–188]. Different experimental setups can be used to study quantum effects of atomic

gases at low temperatures. Here, we shall consider a dilute gas consisting of fermions in two different

hyperfine states which interact resonantly. For example, such a situation can be achieved in experiments

with 6Li atoms. From now on, we refer to the fermions in the two different hyperfine states as spin-up and

spin-down fermions. For simplicity, we shall assume that the number of fermions in these two spin states

is identical which implies that the corresponding chemical potentials are identical. However, we would

like to point out that spin-polarized Fermi gases have also attracted a lot of attention in the past few years,

both from the experimental [3, 4] as well was from the theoretical side, see e. g. Refs. [15, 18, 23, 41].

Let us now discuss the interaction of the fermions in such experiments in more detail. The two-body in-

teraction potential U of two fermions at position ~x and ~y is short-range repulsive and long-range attractive.

A prominent and simple example for such a potential is a hard-core square-well potential with range R:

U(~x, ~y)→∞ for 0 ≤ |~x− ~y| ≤ Ra , U(~x, ~y) = −U0 for Ra < |~x− ~y| ≤ R ,
and

U(~x, ~y) = 0 for |~x− ~y| > R ,

where U0 and Ra are positive constants characterizing the specific type of the atoms. In a situation where

the interparticle distance r is much larger than the range R of the interaction (limit of a dilute gas; atom

density n ∼ 1/r3), the details of the interaction potential U are of no importance and we may simply

approximate it by a δ-function:

U(~x, ~y) ≈ λ̄ψδ(d)(~x− ~y) , (151)

where λ̄ψ defines the (bare) four-fermion coupling. Note that only fermions in different hyperfine states

can interact via such a potential due to the Pauli exclusion principle. It should be also stressed that our

approximation of using a contact interaction potential causes UV divergences. To obtain the ”true” effective

interaction potential in the limit of a dilute Fermi gas, these divergences have to be removed by, e. g.,

introducing a UV cutoff Λ ≫ n1/3 ∼ 1/r. From a phenomenological point of view, this UV cutoff

acquires a physical meaning and can be viewed as the Bohr radius of the atoms in cold gases. As we shall

discuss below, the dynamics of the system can become effectively independent of this parameter, i. e. it is

possible to remove this parameter by taking the limit Λ→∞.

The (dimensionless) renormalized four-fermion coupling λψ can be directly related to an experimentally

accessible control parameter, namely the s-wave scattering length as of the atoms. This can be readily seen

from a study of the 2→ 2 scattering process. To be more specific, one needs to compute the contributions to

the T-matrix arising from the 2→ 2 scattering process. These contributions can be summed up analytically

and then be related to the s-wave scattering amplitude [189]. The leading order of an expansion of the

scattering amplitude in the external momentum (i. e. the relative momentum of the atoms) is constant

and defines minus the s-wave scattering length as. In the limit of low temperatures 1/
√
T ≫ r and low

densities n ∼ 1/r3, the typical momenta of the atoms are indeed small (low-energy limit) and the wave-

function describing the scattered atoms is therefore mainly dominated by s-wave states. Overall, such
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an analysis yields a relation between the dimensionless renormalized four-fermion coupling λψ and the

s-wave scattering length as:

λψ =
8πΛ

1
as
− csΛ

, (152)

where Λ denotes the UV cutoff. The constant cs > 0 depends on the employed regularization scheme. For

example, we have cs = 2/π for the sharp UV cutoff.

At this point a comment is in order concerning the expansion of the scattering amplitude in the (external)

momentum. The coefficient of the quadratic term in this expansion determines the so-called effective

range re of the interaction potential which allows us to distinguish between narrow and broad Feshbach

resonances. While the effective range |re| is much larger than R in the vicinity of narrow Feshbach

resonance,35 we have re ∼ R close to a broad Feshbach resonance. However, we have as → ∞ in both

cases. As we shall see below, these two types of Feshbach resonances are associated with two distinct fixed

points of the theory.

In experiments, it is possible to tune the scattering length as by hand to arbitrarily large values with the

aid of an external magnetic field B. In fact, one finds the following relation between as and a magnetic

field B that couples to the magnetic moment of the fermions [2]:

as ≃ abg
(

1− ∆W

B −B0

)

, (153)

where abg is the (background) scattering length away from the resonance limit and ∆W defines the width

of the resonance; B0 is the value of the magnetic field at which the resonance occurs. From Eqs. (152)

and (153) it follows that the (effective) interaction strength can be tuned to arbitrarily large values by

varying the external magnetic field B. The limit of large scattering length |as| defines a universal regime

(unitary regime), provided the range R of the interaction potential as well as the effective range re are

much smaller than the interparticle distance r:

0← 1

|as|
≪ 1

r
∼ n 1

3 ≪ 1

re
∼ 1

R
. (154)

Here, n is the atom density. Since r/R≫ 1 and r/re ≫ 1, the theory depends on only a single parameter,

namely the density.36 Thus, the dynamics of the theory is independent of the details of the interaction

(potential). For a narrow Feshbach resonance (re > R), the details of the interaction potential become

important and the theory depends on more than one parameter. We shall return to the case of a narrow

Feshbach resonance at the end of this section.

From our discussion it becomes already apparent that the s-wave scattering length as plays a prominent

role in ultracold Fermi gases. Away from the Feshbach resonance for B > B0, where as is positive and

small, the interaction between the fermions is strongly attractive. Two fermions can form a tight bosonic

bound state (bosonic molecule) with a binding energy Eb ∼ 1/a2s . For sufficiently low temperatures and

as > 0, we therefore expect Bose-Einstein condensation which is associated with a spontaneous breakdown

of the U(1) symmetry of the theory.37 We shall therefore refer to this regime as the BEC regime.

In the regime where |as| is small but as < 0, the interaction of atoms with opposite spin is weakly attrac-

tive. Therefore it is not possible to form tightly bound bosonic molecules. However, pairs of fermions with

opposite spin and opposite momenta can form bound states, so-called Cooper pairs, since the Fermi sur-

face is unstable to pairing in this case [34]. These pairs can be viewed as bosonic bound states with a large

spatial extent, i. e. they are highly-localized in momentum space. These bound states can also condense

at sufficiently low temperatures and form a superfluid macroscopic state. The existence of this superfluid

35 Near a narrow Feshbach resonance we have re < 0 and |re| > R.
36 In this case, the scattering amplitude is proportional to i/q, where q denotes the external momenta. Therefore this limit is also

known as the unitary limit.
37 Note that the interaction between the tightly bound bosonic molecules is effectively repulsive.
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state is associated with a broken U(1) symmetry in the ground state of the theory. In the following we refer

to this regime as the BCS regime.

At the Feshbach resonance B = B0, i. e. |as| → ∞, we encounter resonant Cooper pairs. The binding

energy of these states becomes arbitrarily small and we are left with spatially delocalized bound-states.

Let us now discuss the fixed-point structure of an ultracold Fermi gas in d = 3 space dimensions close

to a broad Feshbach resonance. To be specific, we consider the following ansatz for the effective action:38

Γ[ψ†, ψ] =

∫

dτ

∫

d3x

{

ψ†
(

Z
‖
ψ∂τ − Z⊥

ψ∆− µ
)

ψ +
1

2
λ̄ψ(ψ

†ψ)(ψ†ψ)

}

, (155)

where µ denotes the chemical potential of the fermions. The wave-function renormalizations Z
‖
ψ and Z⊥

ψ

are in general different. We would like to stress that we solely consider the continuum limit in this section.

This implies that we study the system in the infinite-volume limit. The particle number is then not well-

defined but only the (fermion) density.

Ultracold Fermi gases have been studied extensively within the functional RG approach. The phase

diagram of symmetric Fermi gases at zero and finite temperature has been studied in Refs. [21, 190–193];

for reviews, see Refs. [27, 194]. The phase transition in a non-relativistic Bose gas (regime with a small

positive s-wave scattering length) has been studied in great detail in Refs. [39, 195, 196]. Note that the

latter studies have triggered the development of novel techniques to resolve the momentum dependence of

correlation functions in non-perturbative RG flows [197–199]. Moreover, spin-polarized Fermi gases have

also been studied with Wilsonian-type RG flows [23,40]. Here, we do not aim at a quantitative study of the

phase diagram of ultracold gases. In the spirit of this review, we are rather interested in a simple analysis

of the fixed-point structure of the four-fermion coupling λψ . As it will turn out, such an analysis is already

sufficient to understand the experimentally observed universality in these systems.

The flow equation for the λ̄ψ-coupling can be derived along the same lines as the flow equations for the

four-fermion couplings of the NJL model in Sect. 3.1. We only add that in the present case it is convenient

to define a generalized field vector ΦT = (ψT, ψ∗). The regularized propagator matrix (in Φ-space) then

reads39

Pk=
(

0 ip0−(~p 2−µ)−k2rψ(Z)
ip0+(~p 2−µ)+k2rψ(Z) 0

)

(2π)4δ(p0−p ′
0)δ

(3)(~p−~p ′)

with Z = (~p 2 − µ)/k2. Here, we have chosen a spatial regulator for convenience. A possible choice

for the shape function rψ is given in Eq. (353). Since it is suffices to consider the point-like limit for our

purposes, we can set the wave-function renormalizations equal to one. The fluctuation matrix F can be

derived straightforwardly from the action (155). Using the regulator shape function (353), we find the

following set of flow equations:

∂tλψ = λψ +
8

6
v3 l(µ̃)λ

2
ψ , (156)

∂tµ̃ = −2µ̃ , (157)

where v3 = 1/(8π2). The dimensionless four-fermion coupling is defined as λψ = kλ̄ψ . The dimension-

less chemical potential is given by µ̃ = µ/k2. Moreover, we have

l(µ̃) = (1 + µ̃)
3
2 θ(1 + µ̃)− (µ̃− 1)

3
2 θ(µ̃− 1) . (158)

Analogous to our studies of spontaneous symmetry breaking in the NJL model in Sect. 3, the onset of

U(1) symmetry breaking in the present case is signaled by the fact that the four-fermion coupling diverges

at a finite scale kSB, i. e. 1/λψ(kSB) = 0. Recall that in experiments the spontaneous breakdown of the

U(1) symmetry is associated with a superfluid behavior of the system.

38 Our ansatz follows directly from the action (149) by employing the interaction potential given in Eq. (151).
39 Recall that the mass-dimension of time-like and space-like momenta are different.
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Let us now analyze the fixed-point structure of an ultracold Fermi gas. We begin with a study of the

UV limit of the theory, i. e. we first consider k2 ≫ |µ|. This limit can be viewed as the ”vacuum” limit

associated with the two-body scattering problem [21]. The flow equation for the λψ coupling simplifies

considerably for k2 ≫ |µ|:

∂tλψ = λψ +
8

6
v3λ

2
ψ . (159)

For the sharp cutoff, this flow equation reads

∂tλψ = λψ + 2v3λ
2
ψ . (160)

Independent of the regularization scheme, we find two fixed points. The Gaußian fixed point is IR attractive

(UV repulsive), whereas the non-Gaussian fixed point λ∗ψ < 0 is IR repulsive (UV attractive). For the

regulator function (353), the non-Gaußian fixed point is given by

λ∗ψ = −6π2 . (161)

For the sharp cutoff, on the other hand, we find

λ∗ψ = −4π2 . (162)

From a comparison of these fixed-point values with the relation (152), we conclude that the non-Gaußian

fixed point can be identified with the renormalized four-fermion coupling in the limit as →∞ (for a broad

Feshbach resonance). In other words, the experimentally observed universal behavior of ultracold Fermi

gases in the limit as → ∞ is tightly linked to the existence of the non-Gaußian fixed point λ∗ψ . This fixed

point can be viewed as a quantum critical point since the choice for the initial value λUV
ψ relative to λ∗ψ

distinguishes between two distinct regimes in the IR limit, namely a strongly interacting superfluid phase

and a weakly interacting phase with restored U(1) symmetry. The Gaußian fixed point, on the other hand,

can be associated with the limit of a narrow Feshbach resonance, as we shall see below.

In Fig. 10 we show the RG flow of an ultracold Fermi gas in the plane spanned by the dimensionless

four-fermion foupling λψ and the dimensionless chemical potential µ̃ = µ/k2. The red line depicts the

separatrix λsep.ψ (µ̃), which separates a weakly interacting IR regime from a strongly interacting regime

associated with spontaneous U(1)-symmetry breaking. By definition, we have λsep.ψ (µ̃ = 0) = λ∗ψ . For

large positive values of µ̃, the separatrix tends to zero, λsep.ψ (µ̃) ∼ µ̃−1/2. On the other hand, it approaches

the asymptote µ̃ = −1 for large negative values of λψ .

Let us now discuss the (physical) meaning of the initial value λUV
ψ at the scale Λ. Choosing λUV

ψ <

λsep.ψ (µ̃), we find that the four-fermion coupling increases rapidly and diverges eventually at a finite

scale kSB. This indicates the breakdown of the U(1) symmetry of the ground state, see Fig. 10. From

Eq. (152), on the other hand, it follows that

∆ψ :=
1

λ∗ψ
− 1

λUV
ψ

∼ − 1

asΛ
, (163)

where we have tacitly assumed that λUV
ψ is of the order of the fixed-point value λ∗ψ . Since the s-wave scat-

tering length as is directly related to the applied (external) magnetic field B, see Eq. (153), it follows that

a variation of λUV
ψ corresponds to a variation of B. Recall that the latter is an experimentally controllable

parameter.

From the action (155) we deduce that a negative chemical potential has a similar effect as a fermion

mass. In other words, a negative chemical potential suppresses the fermion propagation and the dynamics

of the system is rather governed by bosonic bound states of two fermions. The binding energy of these

bosons is twice the chemical potential of the fermions [200]. We conclude that the low-energy limit

for λUV
ψ < λsep.ψ (µ̃UV) (i. e. positive s-wave scattering length) and µ̃UV = µ/Λ2 < 0 defines a superfluid
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Fig. 10 RG flow of an ultracold Fermi gas in the plane spanned by the four-fermion coupling λψ and the dimensionless

chemical potential µ̃. The red (straight) line depicts the separatrix which separates the regime with a dynamically

broken U(1) symmetry in the IR from a weakly interacting IR regime. The dots represent the Gaußian and the non-

Gaußian fixed point, respectively. The latter can be viewed as quantum critical point, see main text. The arrows

indicate the direction of the RG flow towards the infrared.

phase of bosonic bound states: these bosons macroscopically occupy the ground-state and form a Bose-

Einstein condensate.40

Now we turn to the limit of infinite s-wave scattering length. Here, the initial condition for the four-

fermion coupling is given λUV
ψ = λ∗ψ . From Fig. 10 it follows immediately that condensation can then

only occur for µ̃ > 0. For µ/Λ2 ≪ 1, we can approximate l(µ̃) by l(µ̃) ≈ 1 + 3
2 µ̃. This allows us to solve

the flow equation for the four-fermion coupling (156) analytically. For λUV
ψ = λ∗ψ we then find that the

symmetry breaking scale kSB is solely determined by the density, as it should be in the universal regime:

kSB ∼
√
µ ∼ n 1

3 . (164)

Here, we have dropped a scheme-dependent constant of proportionality. As discussed in detail for the NJL

model in Sect. 3.2, the scale kSB sets the scale for all low-energy observables, e. g. the fermion gap or

the critical temperature. We conclude that all physical low-energy observables are fully determined by our

choice for the density n.

Finally we discuss the regime defined by a positive chemical potential and λUV
ψ 6= λ∗ψ . The flow

equation for the λψ-coupling can again be solved analytically and assumes a simple form, provided we

approximate the function l(µ̃) by l(µ̃) ≈ 1+ 3
√
µ̃; the limit µ̃ = 0 as well as the limit µ̃≫ 1 are correctly

reproduced by this approximation. The solution for λψ then reads

1

λψ(k)
=

1

λ∗ψ
−
(
Λ

k

)

∆ψ −
1

2π2

√
µ

k2
ln

(
k

Λ

)

. (165)

40 This is signaled by a finite expectation value of the order-parameter potential.
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From this expression we can derive the symmetry breaking scale kSB. For kSB/Λ≪ 1, we find

kSB = Λexp

(

−2π2Λ∆ψ√
µ

)

∼ Λexp

(

− cBCS

|as|n 1
3

)

, (166)

where we have used Eq. (163) and as < 0; cBCS is a positive constant. Thus, kSB scales exponentially

in the BCS regime. Moreover, we observe that kSB depends only on the dimensionless quantity asn
1/3.

With decreasing asn
1/3, the scale kSB decreases exponentially. As an immediate consequence, we expect

that all low-energy observables (fermion gap, phase transition temperature, . . . ) depend only on the value

of asn
1/3 for as < 0 and change exponentially when asn

1/3 is varied. This was first observed by Bardeen,

Cooper and Schrieffer [34] and then further investigated by Gorkov and Melik-Barkhudarov [35]. We

stress that kSB does not scale exponentially on the BEC side for increasing 1/(asn
1
3 ). In fact, it is well

known that the phase transition temperature of a Bose gas is finite, even in the non-interacting limit.

We would like to point out that the transition from a BCS-type superfluid to a BEC-type superfluid

at 1/|as| → 0 should not be confused with a quantum phase transition. On the contrary, the U(1) symmetry

of the ground state is spontaneously broken in the (deep) IR on both sides of the Feshbach resonance. Thus,

the transition from positive to negative s-wave scattering length rather corresponds to a smooth crossover

between two phenomenologically different superfluid regimes.

We have seen that the analysis of the fixed point structure and the RG flows in the U(1) symmetric

regime already allows us to understand many aspects of ultracold Fermi gases in the limit of a broad Fesh-

bach resonance. Moreover, such an analysis provides insights into the dynamics away from the Feshbach

resonance. Let us close this section by discussing the limit of a narrow Feshbach resonance. To this end,

it is convenient to consider the partially bosonized form of the effective action (155). Following our dis-

cussion in Sect. 3.2, this form can be obtained by introducing a complex scalar field ϕ ∼ (h̄ϕ/m̄
2
ϕ)(ψ↑ψ↓)

into the path integral by means of a Hubbard-Stratonovich transformation. The complex field ϕ describes

the dynamics of the bound states; the prefactors h̄ϕ and m̄ϕ are a priori constants at our disposal and are

chosen such that the four-fermion interaction term is canceled, λ̄ψ = −h̄2ϕ/m̄2
ϕ, see also Sect. 3.2. Due

to the Hubbard-Stratonovich transformation, the (classical) action now includes a Yukawa-type interaction

term ∼ h̄ϕ and a mass term m̄ϕ for the composite field ϕ:

S =

∫

dτ

∫

d3x
{

ψ† (∂τ −∆− µ)ψ + m̄2
ϕϕ

∗ϕ− h̄ϕ
[
ϕ∗ψ↑ψ↓−ϕψ∗

↑ψ
∗
↓
] }

. (167)

Due to quantum corrections, the Yukawa interaction generates kinetic terms for the bosonic fields in the

RG flow,

Z‖
ϕϕ

∗∂τϕ and Z⊥
ϕ ϕ

∗∆ϕ , (168)

even if these terms have been set to zero at the initial RG scale Λ. The (non-trivial) momentum-dependence

of the four-fermion vertex is to some extent encoded in these kinetic terms. Close to a narrow Feshbach

resonance, the details of the interaction (potential) of the atoms matter. The wave-function renormaliza-

tions Z
‖,⊥
ϕ should then be rather considered as parameters of the theory, which in general assume finite

values even at the initial scale Λ, see also below.

In leading order in a derivative expansion, the anomalous dimensions associated with the wave-function

renormalizations Z
‖,⊥
ϕ are essentially given by a purely fermionic 1PI diagram in the U(1) symmetric

regime. Thus, we have

η‖,⊥ϕ = cϕh̄
2
ϕ , (169)

where cϕ is a positive constant [27]. Contributions from 1PI diagrams with one internal fermion line and

one internal boson line are suppressed in the symmetric regime due to the large (renormalized) boson

mass, at least in the limit of a broad Feshbach resonance. For the same reason, the running of the fermionic

wave-function renormalizations is subleading. Finally, the RG flow equation of the Yukawa coupling also
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assumes a simple form in the symmetric regime, since it is only driven by the anomalous dimensions of

the bosonic fields:

∂th
2
ϕ = (η⊥ϕ − 1)h2ϕ , (170)

where h2ϕ = h̄2ϕ/(Z
⊥
ϕ k), see Ref. [27]. Note that we are free to choose either Z

‖
ϕ or Z⊥

ϕ to renormalize

the Yukawa coupling. Since we have λψ ≡ −h2ϕ/m2
ϕ, we conclude that a non-trivial fixed-point of the

four-fermion coupling λψ requires that η⊥ϕ = 1. From Eq. (169) it is then clear that (h∗ϕ)
2 > 0.

In our study of the NJL model with one species in Sect. 3.2, we have also found that the Yukawa coupling

is only driven by the anomalous dimensions of the bosonic fields.41 However, the Yukawa coupling is

marginal in the NJL model in d = 4 space-time dimensions. Strictly speaking, the non-trivial fixed-point

of the four-fermion coupling in the NJL model in d = 4 is an artifact of our point-like approximation and

is only there for a finite UV cutoff Λ. In the present case of a non-relativistic theory, the non-trivial four-

fermion fixed-point also exists in the limit Λ → ∞ beyond the point-like approximation. In this respect,

our non-relativistic model should be rather compared to an NJL model with one fermion species in d = 3
space-time dimensions, where the Yukawa coupling is also a relevant coupling. We shall come back to this

when we discuss the partially bosonized form of the Gross-Neveu model in d = 3 space-time dimensions

in Sect. 5.1.3.

For the NJL model we have shown in Eq. (82) that the partially bosonized form of the action allows

us to conveniently resolve momentum dependences of four-fermion vertices. A corresponding expression

can be derived for the present non-relativistic theory. In any case, we conclude that the Gaußian fixed

point of the four-fermion coupling λψ ∼ h2ϕ/m2
ϕ is associated with the Gaußian fixed-point of the Yukawa

coupling hϕ. Since λ̄ψ ∼ as, it also follows that the width of the resonance is directly related to the value

of the Yukawa coupling at the initial RG scale, see Eq. (153). The narrow resonance limit is therefore

approached with h̄2ϕ → 0, corresponding to the Gaußian fixed-point of the four-fermion coupling.

As discussed above, universality in the limit of a broad Feshbach resonance means that the RG flow is

governed by the non-trivial fixed-point. In the partially bosonized formulation of the action (155), this is

the case, if the initial Yukawa coupling (h̄UV
ϕ )2 is chosen to be reasonably close to the fixed-point (h∗ϕ)

2Λ.

Close to the Gaußian fixed-point, the theory can be treated perturbatively [200]. However, the details

of the underlying interaction potential (e. g. the effective range re) now become important. These are

encoded in the momentum dependence of the four-fermion vertex. Therefore we expect that a description

of an ultracold Fermi gas close to the narrow Feshbach resonance in general depends on more than one

parameter. For a detailed discussion of this fixed point, we refer the reader to Ref. [21].

Up to this point, we have mainly discussed the (UV) fixed-point structure of a non-relativistic Fermi gas.

Although such a study already provides us with important information about the properties of the theory,

the phenomenologically relevant IR observables are not accessible. For a consideration in the continuum

limit, a derivative expansion of the partially bosonized action allows us to conveniently gain access to

IR observables [21, 27, 190, 192–194]. However, a derivative expansion becomes inefficient when we are

interested in, e. g., density profiles of finite systems. In the next section, we discuss an RG approach which

treats the density as an effective degree of freedom and therefore provides an alternative approach for a

study of inhomogeneities of the ground state of strongly interacting fermionic theories.

41 Recall that the partially bosonized version of our NJL model with one fermion species can be rewritten in terms of a complex

scalar field ϕ = (φ1+iφ2)/
√
2. The associated Yukawa interaction term in Eq. (57) is then given by ∼ h̄σ

[

ϕψ̄RψL − ϕ∗ψ̄LψR

]

,

where the left- and right-handed fermions are defined as ψL,R = (✶ ± γ5)ψ. This reformulation of the Yukawa interaction term

in the NJL model with one fermion species is clearly reminiscent of the Yukawa interaction given in Eq. (167). Note that the mass

dimension of the Yukawa coupling in relativistic and non-relativistic theories in d = 4 space-time dimension is different, see also

App. A.1.
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4.2 Excursion: Density Functional Theory and the Renormalization Group

In general, the ground-state density of a given finite many-body problem is inhomogeneous, even in the

case of a non-interacting system. For example, the ground-state density ngs(~x) of N fermions in a har-

monic oscillator potential is clearly not uniform: it varies rapidly for |~x| . ℓHO ∼ 1/
√
w and approaches

zero exponentially for |~x| ≫ ℓHO, where ω is the oscillator frequency and ℓHO denotes the length scale

set by the oscillator potential. For increasing N the effective extent of the ground-state wave-function

increases and inhomogeneities of the ground-state density are washed out. In the limit N → ∞, we

effectively approach the continuum limit and the density becomes uniform.

We emphasize that it depends on the details of the theory under consideration, whether the continuum

limit is approached rapidly for increasing particle number N , see e. g. Refs. [41, 201–203] for explicit

studies of this issue. However, the ground-state of a theory might also be inhomogeneous in the continuum

limit. For example, this can be the case in a (weakly) interacting theory if the chemical potentials of the

spin-up and the spin-down fermions are different. It was shown by Fulde and Ferrell and independently by

Larkin and Ovchinnikov that only Cooper pairs with a finite center-of-mass momentum can be formed if

the difference in the chemical potentials is large [204]. The finite center-of-mass momentum then renders

the ground state inhomogeneous. We would like to point out that the existence of inhomogeneous phases

is not bound to non-relativistic systems, a stable inhomogeneous ground state can also occur in relativistic

theories. This has been explicitly shown for the high-density phase of the Gross-Neveu model in d = 1+1
space-time dimensions [42].

In the following we are particularly interested in strongly-interacting many-body systems away from

the continuum limit. In particular, we aim at a study of a finite system of fermions interacting via a non-

local interaction which is repulsive at short range and attractive at long range. Prominent examples for such

systems are nuclei, but also ultracold trapped Fermi gases fall into this class of systems. Indeed, the density

profiles of protons and neutrons in (heavy) nuclei are reminiscent of the density profiles of the spin-up and

spin-down fermions in spin-polarized Fermi gases. In order to study the ground-state properties of such

systems, density functional theory (DFT) has proven to be useful.

Let us begin with a brief discussion of the underlying principles of DFT. To this end, we consider the

following action:

S[ψ†, ψ] =
∑

σ

∫

dτ

∫

ddxψ†
σ(τ, ~x) [∂τ −∆+ V (~x)]ψσ(τ, ~x)

+
1

2

∑

σ,σ′

∫

dτ

∫

ddx

∫

ddy ψ†
σ(τ, ~x)ψ

†
σ′(τ, ~y)U(~x, ~y)ψσ′(τ, ~y)ψσ(τ, ~x) , (171)

where V (~x) is a (background) potential. DFT is based on the famous Hohenberg-Kohn theorem [205]. For

a given interaction potential U , this theorem states that there exists a one-to-one correspondence between

the ground-state density and the potential V (~x) (up to an additive constant), at least for non-degenerate

ground states. This implies that the ground-state density (uniquely) determines the ground-state wave-

function of theN -body problem under consideration. The latter can therefore be considered as a functional

of the ground-state density. Moreover, the expectation value of any physical observable is determined by

a unique functional of the ground-state density. In particular, this is true for the ground-state energy of

the system and implies the existence of an energy density functional E[n]. Following the Rayleigh-Ritz

theorem, the ground-state energy ngs(~x) can then be obtained by minimizing E[n] with respect to the

density:

Egs = min
n
E[n] . (172)

Moreover, it can be shown that the energy density functional in the limit of vanishing external potential V ,

the so-called Hohenberg-Kohn functional EHK, is universal for a given interaction potential U :

EHK[n] = E[n]−
∫

ddxn(~x)V (~x) . (173)
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These considerations can be generalized to the case of degenerate ground states.42

Originally, DFT has been invented to compute efficiently ground-state energies of atoms. In recent

years, however, DFT has also been successfully employed in condensed-matter physics and for studies

of ground-state properties of (heavy) nuclei [63–65]. For reviews and introductions to DFT approaches

in nuclear physics, we refer the reader to Refs. [206, 207]. At this point we would like to highlight an

important difference between DFT studies of atoms and nuclei. In studies of the ground-state energy of

atoms, the center-of-mass momentum of the system is essentially carried by the nucleus. This allows us

to easily subtract the center-of mass energy of the system. The electrons in the atomic shell can then

essentially be considered as an electron gas with vanishing center-of-mass motion in an external Coulomb

potential. In studies of ground-state properties of nuclei, however, the center-of-mass energy cannot be

simply subtracted since the constituents , namely the protons and neutrons, have almost identical masses.

Therefore an accurate computation of ground-state energies (binding energies) of nuclei is generically

spoilt by the finite center-of-mass energy of the system. Fortunately, these contributions become smaller

when the number of nucleons increases. Nonetheless, a systematic computation of the corrections to the

ground-state energies of nuclei due to the center-of-mass motion of the system is inherently difficult [208,

209].

The Hohenberg-Kohn theorem can be viewed as a starting point for an efficient description of many-

body problems. However, the theorem does not provide a recipe for the computation of the Hohenberg-

Kohn functional. Similar to the effective action in conventional quantum field theory, the Hohenberg-Kohn

functional consists of infinitely many terms.43 Therefore it is in general not possible to write down the

exact Hohenberg-Kohn functional for a given many-body problem. This implies that an ansatz for this

functional is required in order to compute the ground-state energy of a given many-body problem. The sim-

plest approximation to the energy density functional is the so-called local density approximation (LDA).

This approximation can be obtained straightforwardly from the density dependence of the ground-state en-

ergy Egs(n) of the associated uniform many-body problem,44 where Egs(n) = V ǫgs(n) (n = const.). The

energy-density functional in LDA then corresponds to the coordinate-space integral of ǫgs(n(~x)). It is pos-

sible to show that LDA represents the lowest order in a derivative expansion of the exact energy-density

functional [210]. Such an approximation might be justified in systems with weakly varying densities,45

such as ultracold Fermi gases with a large number of atoms in an isotropic trap [61].

Let us now make contact to the effective action approach to quantum field theories which underlies most

of our studies in the present review.46 To this end, we consider the following path integral

Z[J ] =

∫

Dψ†Dψ e−S[ψ
†,ψ]+

∑
σ

∫
β

0
dτ

∫
ddxJσ(τ,~x)(ψ

†
σ(τ,~x)ψσ(τ,~x)) ≡ eW [J] , (174)

where the action S is defined in Eq. (171) and, for convenience, we assume that the Euclidean-time di-

rection is compactified. In order to fix the particle number in a study of a finite many-body problem, we

have essentially two options: First, one can introduce chemical potentials into the path integral to fix the

numbers of the various particle species. Second, one does not include chemical potentials into the path

integral but fixes the particle numbers by choosing appropriate boundary conditions for the equations of

motion [212]. In the following we shall follow the latter approach to fix the particle number since it turns

out to be more convenient for studies of finite many-body problems.

In contrast to the conventional textbook approach to quantum field theories, we have coupled the exter-

nal source J in Eq. (174) to a term which is bilinear in the fermion fields and can be viewed as a composite

42 Here, we leave aside a discussion of the issue of V -representability.
43 As we shall see below, the Hohenberg-Kohn functional is indeed closely related to the effective action.
44 For example, LDA requires the knowledge of the ground-state energy of a uniform electron gas when we are interested in

a computation of the ground-state energies of atoms. We add that the computation of ground-state energies of uniform systems is

already a highly non-trivial problem.
45 We stress that LDA should by no means be confused with the so-called local potential approximation (LPA) which represents

the lowest order in an expansion of the effective action in derivatives of the fields.
46 For conciseness, we shall skip many details in the following. For reviews and introductions on this subject matter, we refer

the reader to, e. g., Refs. [206, 207, 211].
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bosonic degree of freedom. As usual, we may define the classical field ρσ(τ, ~x) as the (functional) deriva-

tive of W [J ] with respect to the corresponding source Jσ(τ, ~x):

ρσ(τ, ~x) =
δW [J ]

δJσ(τ, ~x)
. (175)

Apparently, these classical fields are related to the particle densities. Similar to the derivation of the 1PI

effective action, we can now define a 2PPI effective action as follows:47

Γ[ρ] = sup
{Jσ}

{

−W [J ] +
∑

σ

∫ β

0

dτ

∫

ddxJσ(τ, ~x)ρσ(τ, ~x)

}

. (176)

The effective action Γ[ρ] determines the dynamics of the many-body problem under consideration and

should be compared with the energy-density functional mentioned above in the context of the standard

Hohenberg-Kohn DFT formalism. The exact equivalent of the energy density functional as introduced by

Hohenberg and Kohn can be derived along these lines by employing time-independent sources Jσ(~x), see

Refs. [212–215].

As in the conventional 1PI formalism, the effective action Γ[ρ] does not dependent on the sources Jσ ,

i. e. (δΓ[ρ]/δJσ) = 0. Let us now consider the first functional derivative of Γ[ρ] with respect to the

classical field ρσ:

δΓ[ρ]

δρσ(τ, ~x)
= Jσ(τ, ~x) . (177)

The ground-state configuration ρσ,gs is determined by this equation in the limit Jσ → 0. We add that this

equation can be also viewed as the equation of motion of the composite degree of freedom ρσ . From the

solutions ρσ,gs(τ, ~x) of Eq. (177), we obtain the (time-independent) ground-state density ngs(~x):

ngs(~x) =
1

β

∫ β

0

dτ ρgs(τ, ~x) . (178)

The ground-state energy Egs can be obtained from an evaluation of the effective action Γ[ρ] at the ground-

state ρgs:

Egs = lim
β→∞

1

β
Γ[ρgs] . (179)

We would like to add that the universality of the Hohenberg-Kohn functional EHK can be easily proven in

the effective action approach [216]. It follows from the fact that background potential can be absorbed into

source term Jσ by a simple shift, Jσ → Jσ + V . Exploiting this observation, we find

Γ[ρ] = ΓHK[ρ] +
∑

σ

∫ β

0

dτ

∫

ddxV (~x)ρσ(τ, ~x) , (180)

where ΓHK[ρ] = ΓV=0[ρ]. Thus, the functional ΓHK[ρ] depends only on our choice for the interaction

potential but not on the background potential V .

As mentioned above, the computation of the effective action Γ[ρ] for a given theory can be inherently

difficult. Following Refs. [215–217], we now present an RG flow equation which allows for a systematic

computation of the density functional Γ[ρ]. Since this equation can be essentially derived along the lines of

the Wetterich equation (see Sect. 2), we shall be brief here. To keep our discussion as simple as possible,

we consider a system of N spinless fermions. However, the derivation of the flow equation is not bound

47 Here, “2PPI” stands for “two-particle point-irreducible”. A 2PPI diagram is a 1PI diagram that cannot be split into two by

cutting two internal lines attached to the same vertex. To put it sloppily, this type of effective actions arises generically from the

path-integral when one couples a local source term to a term bilinear in the fields. For a more general discussion of the properties of

2PPI effective actions and RG flow equations thereof, we refer the reader to Ref. [104].
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to such a theory but can be straightforwardly generalized to other non-relativistic theories [216]. To be

specific, we consider an action of the following form:

Sγ [ψ
∗, ψ] =

∫ β

0

dτ

∫

ddxψ∗(τ, ~x) [∂τ −∆+ Vγ(~x)]ψ(τ, ~x)

+
γ

2

∫ β

0

dτ

∫

ddx

∫ β

0

dτ ′
∫

ddx′ ψ∗(τ, ~x)ψ(τ, ~x)U(τ, τ ′; ~x, ~x′)ψ∗(τ ′, ~x′)ψ(τ ′, ~x′) .

For convenience, we have reordered the fermion fields in the second term compared to Eq. (171). The

parameter γ ∈ [0, 1] denotes a dimensionless control parameter. For γ = 0, the two-body interaction

potential U is turned off and we are left with an exactly soluble problem. For γ = 1, the potential U is

fully turned on. We shall assume that the interaction potential U is attractive at long range and repulsive at

short range, such that the system can potentially be self-bound for Vγ → 0. In particular, we shall assume

that the Fourier transform of the interaction potential U falls off sufficiently rapidly for large momenta

to avoid the occurrence of UV divergences. Examples for such a two-body potential are nucleon-nucleon

interaction potentials. The one-body potential Vγ is at our disposal. However, it needs to be chosen such

that the N -body system has a finite extent ℓV for γ = 0, where the interaction term vanishes identically.

This length scale ℓV sets a momentum scale 1/ℓV which screens (potentially existing) IR divergences.

Moreover, our choice for Vγ partially defines the many-body problem under consideration. For a study of

ground-state properties of nuclei, one may choose Vγ = 1
4 (1−γ)ω2~x2 where ω is the oscillator frequency,

see Ref. [216]. For a study of trapped Fermi gases, on the other hand, one may choose a γ-independent

potential Vγ = 1
4ω

2~x2. (Note that we have set 2m = 1 in our conventions.)

Now it is straightforward to derive the effective action Γγ [n] associated with the (classical) action Sγ .

By taking the derivative of Γγ [ρ] with respect to γ we find the following flow equation [216, 217]:

∂γΓγ [ρ] = (∂γVγ) · ρ+
1

2
ρ · U · ρ+ 1

2
TrU ·

(
δ2Γ[ρ]

δρδρ

)−1

, (181)

where the dot indicates a product in Euclidean space-time, i. e.

A ·B ≡
∫ β

0

dτ

∫

ddxA(τ, ~x)B(τ, ~x) . (182)

This flow equation governs the flow from the non-interacting system at γ = 0 to the (strongly) interacting

system at γ = 1. In the terminology of many-body physics, the second term can be identified as the

so-called Hartree term. The third term on the right-hand side depends on the density-density correlator

δ2Γ[ρ]/(δρδρ) and includes all higher order corrections to the effective action, e. g. the so-called Fock

term.

Note that the derivation of the flow equation (181) does not require that the (effective) interaction

strength is small. Moreover, this flow equation does not rely on an approximation scheme, such as a

gradient expansion. In fact, the flow equation (181) is exact, if we only allow for a two-body interac-

tion potential in the underlying action Sγ . A generalization of this flow equation to include the effects

of higher n-body operators is straightforward. In any case, it is in general not possible to solve the flow

equation (181) exactly. Therefore, a systematic approximation scheme is required, such as an expansion of

the effective action Γγ [ρ] about the ground state ρgs. This would correspond to a vertex expansion in the

terminology of quantum field theory.

In order to obtain the initial condition of the flow equation (181) at γ = 0 for a given many-body

problem, we need to solve the non-interacting N -body problem defined by the action Sγ evaluated at

γ = 0. The effective action Γγ=0[ρ] associated with this exactly soluble N -body problem then determines

the initial condition of the RG flow. For illustration, let us assume that we would like to compute the

ground-state energies of so-called Alexandrou-Negele nuclei [218], i. e. self-bound systems in d = 1+1
Euclidean space-time dimensions consisting of N spinless fermions interacting via a specific choice for a
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long-range attractive and short-range repulsive potential U . A convenient and appropriate choice for the

background potential V is then a harmonic oscillator potential [216]: Vγ(~x) = (1/4)(1 − γ)ω2x2. Thus,

the initial condition at γ = 0 corresponds to a simple oscillator potential in which theN lowest lying states

are filled. In other words, the initial condition is simply given by a one-dimensional shell model (”mean-

field” approximation). By lowering the control parameter γ, i. e. by solving the flow equation (181),

we gradually remove the background potential V and turn on the interaction potential U . In the spirit of

the RG, removing the background potential corresponds to lowering the RG scale which is given by the

inverse of the γ-dependent oscillator length ℓHO ∼ ((1−γ) 1
4ω

1
2 )−1. For γ → 1, the background-potential

is removed and we are left with the fully interacting system. A quantitative study of Alexandrou-Negele

nuclei with the presented RG approach to DFT is on its way [217]; preliminary results have been presented

in Refs. [219, 220].

Let us close this section by stating that the presented RG approach to DFT is promising for a study

of finite many-body problems since an expansion of the theory in terms of the density scales favorably to

large systems, i. e. systems with many constituents. Since the presented RG-inspired approach allows for

an ab-initio calculation of ground-state properties of strongly interacting many-body systems, it might be

promising tool for studies of ground-state properties of (heavy) nuclei from microscopic interactions.

5 Gross-Neveu and Nambu-Jona-Lasinio-type Models

In this section we apply the techniques discussed and developed in Sect. 3 to specific examples of rel-

ativistic quantum field theories, namely the Gross-Neveu model and QCD low-energy models. While

Gross-Neveu-type models play a prominent role in the description of (ferromagnetic) superconductors,

QCD low-energy models aim to describe the equation of state of hadronic matter under extreme condi-

tions. Recently, the Gross-Neveu model in two space-time dimensions has attracted a lot of attention in the

high-energy physics community, since its finite-temperature phase diagram can be computed analytically

in the limit of many fermion flavors and shows an intriguing phase structure exhibiting inhomogeneous

phases at high densities [42]. Whether such phases also exist as stable ground states beyond this limit is

still not clear. Since relatives of the Gross-Neveu model, namely Nambu-Jona-Lasinio-type models, under-

lie the construction of QCD low-energy models, it is tempting to speculate whether such inhomogeneous

phases are also present in the phase diagram of 3+1-dimensional field theories, such as QCD [44, 45].

Even though these are certainly interesting questions, we shall restrict ourselves in the following to much

simpler issues which arise in studies of Gross-Neveu models and QCD low-energy models.

After a brief discussion of the Gross-Neveu model and its symmetries in Sect. 5.1.1, we study the fixed-

point structure of its purely fermionic formulation in Sect. 5.1.2. The partially bosonized formulation and

quantum critical behavior are then analyzed in detail in Sect. 5.1.3 in the large-Nf limit and in Sect. 5.1.4 in

next-to-leading order in the 1/Nf-expansion. In addition to a discussion of quantum criticality, we highlight

the differences between the derivative expansion and the 1/Nf-expansion of the effective action. We shall

keep our discussion as general as possible. However, explicit numerical solutions are presented only for

the 2+1-dimensional case, if not stated otherwise. As a bonus, we relate quantum criticality to the issue of

non-perturbative renormalizability of quantum field theories in Sect. 5.1.5.

In Sect. 5.2 we study aspects of QCD low-energy models in d=3+1 space-time dimensions. To this

end, we begin in Sect. 5.2.1 with a discussion of the Fierz ambiguity in QCD low-energy models and study

the fixed-point structure of a Fierz-complete low-energy model in the limit of many colors, the so-called

large-Nc limit. This limit corresponds to the limit of many-flavors in the Gross-Neveu model. Quantum

and thermal phase transitions in low-energy QCD models are then discussed in Sect. 5.2.2, where we

mainly focus on the large-Nc limit. In addition, we comment on the widely used so-called local potential

approximation (LPA) and its relation to the 1/Nc-expansion. This includes a discussion of the effects of

the next-to-leading order corrections in a 1/Nc-expansion.
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In addition to the discussion of physical aspects of the Gross-Neveu model and QCD low-energy mod-

els, our goal is to highlight the field-theoretical differences and the similarities in the description of these

models. The latter allow for a cross-fertilization of QCD and condensed-matter physics.

5.1 Gross-Neveu Model and Quantum Criticality

5.1.1 Gross-Neveu Model

The Gross-Neveu model represents a quantum field theory of Nf massless (relativistic) fermion flavors

in d space-time dimensions which allows to study dynamical chiral symmetry breaking. This model is

related to the Peierls-Froehlich model and models for ferromagnetic (relativistic) superconductors, see

e. g. Refs. [72, 73]. Moreover, the Gross-Neveu model has attracted a lot of attention in high-energy

physics, since the finite-temperature phase boundary in d = 2 can be studied analytically, at least in the

limit of many flavors, see e. g. Ref. [42].

The classical action of the Gross-Neveu model reads

SGN[ψ̄, ψ] =

∫

ddx

{

ψ̄i /∂ψ +
1

2
λ̄σ(ψ̄ψ)

2

}

, (183)

where (ψ̄ψ) ≡ ψ̄iψi and i = 1, . . . , Nf. The model depends on a single parameter which is the coupling

constant λ̄σ with mass dimension 2 − d. In d = 2, the model is asymptotically free and perturbatively

renormalizable, as the Gaußian fixed point is UV attractive. In this respect the Gross-Neveu model is

reminiscent of QCD. On the other hand, d = 4 turns out to be a marginal case, see our discussion of the

NJL model in Sect. 3.2. In the following we shall restrict ourselves mainly to the case d=3 for which we

shall employ a four-component (reducible) representation for the Dirac γ-matrices, γµ = {γ0, γ1, γ2}, see

App. B for our conventions.

The action of the Gross-Neveu model is invariant under global U(Nf) transformations of the fermion

fields. This implies that the model is invariant under U(1)⊗Nf transformations, i.e. the associated U(1)-

charge is conserved in each flavor-sector separately. The matrix γ35 = iγ3γ5 further realizes a U35(1)

symmetry in each flavor sector:

ψ̄j 7→ ψ̄je
−iαγ35 , ψj 7→ eiαγ35ψj , (184)

where α denotes the “rotation” angle. In addition to these two symmetries, the Gross-Neveu model is

invariant under discrete ❩5
2 = {✶4, γ5} chiral transformations acting on all flavors simultaneously:

ψ̄ 7→ −ψ̄γ5 , ψ 7→ γ5ψ . (185)

Note that a similar symmetry transformation involving γ3 can be understood as a combination of ❩5
2 and

U35(1) transformations.

In Sect. 5.1.3 we shall see that the chiral symmetry of the Gross-Neveu model can be associated with a

❩2 symmetry for the order parameter. As we shall also discuss below, the infrared regime of the theory is

governed by dynamical chiral symmetry breaking, provided the only parameter of the model, namely λ̄σ ,

is adjusted accordingly.

5.1.2 Fermionic Formulation

Let us start with an analysis of the fermionic fixed-point structure of the Gross-Neveu model. To this end,

we consider only a point-like four-fermion interaction. Our ansatz for the effective action then reads

ΓGN[ψ̄, ψ] =

∫

ddx

{

Zψψ̄i /∂ψ +
1

2
λ̄σ(ψ̄ψ)

2

}

. (186)

As we have discussed in detail in Sect. 3, this ansatz can be viewed as a derivative expansion of the effective

action, with the leading-order defined by a constant Zψ . A running wave-function renormalization then
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corresponds to the next-to-leading order approximation. Aside from derivatives, further fermion interaction

channels and higher-order interactions compatible with the symmetries can be taken into account. Recall

that Zψ is indeed constant when we treat the four-fermion interaction in the point-like limit, see discussion

of Eq. (41). Thus, we set Zψ ≡ 1 in the following.

The RG flow equation for the four-fermion coupling can be derived along the lines of Sect. 3.1. We find

∂tλσ = (d− 2)λσ − 4(Nfdγ−2)vd l(F),(d)1 (0; 0)λ2σ , (187)

where

λσ = kd−2λ̄σ , (188)

and dγ = 4 denotes the dimension of the Dirac algebra. For the sake of simplicity, we have dropped

contributions from further (possibly fluctuation-induced) interaction channels as well as dependences on

the Fierz basis, see discussion in Sect. 3.1 and Refs. [76, 77, 140]. Nevertheless, we expect this to be a

reasonable approximation for two reasons: first, we find that the considered scalar interaction channel does

not generate other interaction channels.48 Second, we are particularly interested in a study of the Gross-

Neveu model in the large-Nf limit which we consider as a controlled starting point for the construction of

an effective (low-energy) theory for this model. This means we assume that a pure Gross-Neveu-type RG

trajectory exists in the large-Nf limit, i. e. a trajectory on which only the λσ-coupling is finite but all other

four-fermion couplings are identical to zero. In Sect. 3.5.2 we have shown that a fermionic model with

similar symmetry properties as the Gross-Neveu model indeed exhibits a trajectory which corresponds to a

pure Gross-Neveu-type trajectory in our present study. However, further studies are needed to confirm the

existence of such a trajectory in the Gross-Neveu model.

Apart from a Gaußian fixed point, we find a second non-trivial fixed point for the coupling λσ which is

given by

λ∗σ =
d− 2

4(Nfdγ−2)vd l(F),(d)1 (0; 0)
. (189)

For the optimized regulator function defined in Eq. (349) we find

λ∗σ =
d(d− 2)

8(Nfdγ−2)vd
(d=3)
=

3π2

(4Nf−2)
.

Recall that the fixed-point value is a non-universal quantity as indicated by the regulator dependence.

Nevertheless, the mere existence of the fixed point is a universal statement.

For a sketch of ∂tλσ as a function of λσ we refer to Fig. 2. As discussed in detail in Sect. 3, the choice

for the initial condition λUV
σ relative to the fixed-point λ∗σ distinguishes between two different phases in

the long-range limit: for λUV
σ < λ∗σ , we approach a trivial phase in the IR limit, whereas we run into a

phase with broken chiral symmetry in the ground state for λUV
σ > λ∗σ . Thus, the fixed-point λ∗σ can be

considered as a quantum critical point which divides the model into two physically different regimes.

The scale for a given IR observable O is set by the scale kSB at which 1/λσ(kSB)→ 0. In our study of

power-law scaling in Sect. 3.4.1, we have discussed how this scale can be obtained from the flow equation

of the four-fermion coupling. We proceed along these lines to compute kSB. From the flow equation (187)

we then find

kSB = Λθ(λUV
σ − λ∗σ)

(
λUV
σ − λ∗σ
λUV
σ

) 1
|Θ|

, (190)

where the critical exponent Θ is given by

Θ = −∂(∂tλσ)
∂λσ

∣
∣
∣
λ∗
σ

= d− 2 . (191)

48 Note that this does not mean that the ansatz (186) is closed with respect to Fierz transformations. In fact, other four-fermion

interactions compatible with the symmetries may generate contributions to the flow of the coupling λσ .
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Thus, relation (190) determines how a given physical IR observable scales when λUV
σ is varied. In partic-

ular, we observe that the exponent Θ governing the scaling behavior does not depend on Nf in the present

approximation.

Let us conclude with a word of caution concerning the derivative expansion in the fermionic truncation.

In this simple approximation, the fixed point seems to exist with similar properties in any dimension d > 2,

in particular also in d = 4 and beyond. This conclusion changes when composite bosonic degrees of

freedom are taken into account in the subsequent section. In the purely fermionic description, the bosonic

degrees of freedom correspond to specific nonlocal interactions or momentum-structures in the fermionic

vertices. These are not properly resolved in a derivative expansion. As d = 4 is a marginal case, the

conclusions for fermionic theories in d = 4 may depend on the details of the interaction and the algebraic

structure of a given model.

5.1.3 Partial Bosonization and the Large-Nf Limit

We now study the fixed-point structure of the Gross-Neveu model by employing its (partially) bosonized

version. We follow closely our discussion of (partial) bosonization in Sect. 3.2 We relate our findings to

the purely fermionic description, study the large-Nf limit analytically and show how corrections beyond

the mean-field approximation can be systematically taken into account. In particular, we demonstrate how

the quantum critical behavior of the model is affected by the inclusion of momentum dependences and

corrections beyond the large-Nf limit. Note that the partially bosonized formulation has been used to study

various aspects of the Gross-Neveu model, such as the phase structure at zero and finite temperature and

density [42, 221, 222].

A partially bosonized description of the Gross-Neveu model is appealing from a field-theoretical point of

view as it also forms the basis for an expansion in powers of 1/Nf. In addition, it allows us to systematically

resolve parts of the momentum dependence of the vertices by means of a derivative expansion. As we shall

see below, these two expansion schemes are not identical and should therefore not be confused with each

other. For our study we use the following ansatz for the effective action:

Γ[ψ̄, ψ, σ] =

∫

ddx

{
1

2
Zσ(∂µσ)

2 + Zψψ̄i /∂ψ + ih̄σψ̄σψ +
1

2
m̄2
σσ

2 +
1

8
ω̄σσ

4

}

, (192)

where we allow all couplings and wave-function renormalizations to be scale dependent. Note that we

drop possibly generated higher-order bosonic self-interaction terms for the sake of simplicity. As we

have discussed in Sect. 3.2, cf. Eq. (75), the kinetic term of the boson field allows us to go beyond the

local approximation of simple mean-field theory. In terms of the fermionic language, this kinetic term

corresponds to a specific momentum dependence in the scalar interaction channel of the four-fermion

coupling. Thus, it allows us to conveniently resolve (part of) the momentum dependence of the associated

four-point function. As we shall see below, this term and the associated wave-function renormalization

receive contributions to leading order in the large-Nf approximation. Therefore the large-Nf approximation

corresponds to the following choice for the initial conditions of Zσ and Zψ:

lim
k→Λ

Zσ = 0 , ∂tZσ 6= 0 , lim
k→Λ

Zψ = 1 , ∂tZψ ≡ 0 . (193)

This choice for the initial conditions exemplifies nicely the difference between large-Nf and derivative ex-

pansions, as we include next-to-leading order corrections in terms of a derivative expansion in the bosonic

sector but treat the fermionic sector in the leading-order approximation.

As detailed in Sect. 3.2, the choice for the initial conditions allows us to map the partially bosonized

action (192) exactly onto the purely fermionic ansatz (186) at the initial RG scale Λ. In fact, we fix

the bosonized Yukawa-type model to the fermionic Gross-Neveu model by a suitable choice of initial

conditions for Γ at the scale Λ:

lim
k→Λ

Zσ = 0 , lim
k→Λ

Zψ = 1 , lim
k→Λ

ω̄σ = 0 . (194)
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Thus, the renormalized boson mass mσ = m̄σ/Z
1/2
σ at the UV cutoff Λ becomes much larger than Λ and

renders the boson propagator essentially momentum independent. This so-called compositeness condition

for the bosonic formulation can be considered as a locality condition at the UV scale for the four-fermion

coupling λσ in the purely fermionic formulation of the model.

Since we are interested in the quantum critical behavior associated with the fixed-point structure49 of

the partially bosonized Gross-Neveu model, we anticipate that a possible non-Gaußian fixed point occurs

in the symmetric regime. Therefore, we only need to study the RG flow in the symmetric regime with

vanishing vacuum expectation value for the σ field. The flow equations for the Yukawa coupling h as well

as the anomalous dimensions ησ = −∂t lnZσ and ηψ = −∂t lnZψ read50

∂th
2
σ = (d− 4 + 2ηψ + ησ)h

2
σ + 8vd h

4
σ l

(FB),(d)
1,1 (0, ǫσ; ηψ, ησ) , (195)

ησ = 8Nf

dγvd
d

h2σm
(F),(d)
4 (0; ηψ) , (196)

ηψ = 8
vd
d
h2σm

(FB),(d)
1,2 (0, ǫσ; ηψ, ησ) , (197)

where ǫσ = m̄2
σ/(Zσk

2), ωσ = ω̄σ/(Z
2
σk

(d−4)) and h2σ = h̄2σ/(ZσZ
2
ψk

(d−4)). The definition of the

threshold functions can be found in App. D. The RG flow equations of the bosonic self-interactions are

given by

∂tǫσ = (ησ − 2)ǫσ − 6vd l
(d)
1 (ǫσ; ησ)ωσ + 4Nfdγvd l

(F),(d)
1 (0; ηψ)h

2
σ , (198)

∂tωσ = (d− 4 + 2ησ)ωσ + 18vdl
(d)
2 (ǫσ; ησ)ω

2
σ − 8Nfdγvd l

(F),(d)
2 (0; ηψ)h

4
σ . (199)

From these flow equations we deduce that 1PI diagrams with at least one inner bosonic line do not con-

tribute to the flow of the couplings in the large-Nf limit. As a consequence, ησ is non-vanishing in leading

order in the 1/Nf expansion, whereas the fermionic anomalous dimension is zero. We emphasize that the

large-Nf counting is very different from that in scalar O(N ) models, where the anomalous dimensions are

zero to leading order at large N , see e. g. Ref. [225]. This already makes clear that such a large-N ex-

pansion should not be confused with the large-Nf expansion in the Gross-Neveu model. In fact, we always

have to deal with an O(1) ≃ Z(2) symmetric order-parameter potential in the Gross-Neveu model due to

its underlying symmetries.

At this point it is instructive to make contact to expansion schemes employed in the context of high-

energy physics. The parameterNf counting the number of flavors in the Gross-Neveu model should then be

compared to the number of colors in QCD. Thus, a large-Nc expansion in QCD (models) corresponds to a

large-Nf expansion in the Gross-Neveu model.51 On the other hand, the number of fermion flavors in QCD

is directly related to the number of Nambu-Goldstone modes and therefore to the symmetry properties of

the order-parameter potential. In fact, we expect52 that QCD falls into the O(N2
f ) universality class [226].

49 More precisely, quantum critical behavior in the Gross-Neveu model is associated with the UV fixed-point structure, see also

Sect. 5.1.5.
50 These flow equations agree with those derived in Refs. [223, 224].
51 For an analysis of the role of corrections beyond the large-Nc approximation for the thermodynamics of QCD low-energy

models we refer to Sect. 5.2 and Ref. [33].
52 Note that QCD exhibits a (continuous) chiral SU(Nf)L⊗SU(Nf)R symmetry, in contrast to the Gross-Neveu model, see also

Sect. 5.2 and Sect. 6.
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Let us now begin with an analysis of the Gross-Neveu model in the large-Nf limit. In this limit, the flow

equations simplify considerably:

∂tǫσ = (ησ − 2)ǫσ + 4Nfdγvd l
(F),(d)
1 (0; ηψ)h

2
σ , (200)

∂tωσ = (d− 4 + 2ησ)ωσ − 8Nfdγvd l
(F),(d)
2 (0; ηψ)h

4
σ , (201)

∂th
2
σ = (d− 4 + 2ηψ + ησ)h

2
σ , (202)

ησ = 8Nf

dγvd
d

h2σm
(F),(d)
4 (0; ηψ) , (203)

ηψ = 0 . (204)

Fixed points of the theory can be identified as the zeroes of these β functions. Of course, we have a

Gaußian fixed point with all couplings vanishing. As the RG flows for the bosonic couplings decouple in

the large-Nf limit, a non-trivial fixed point requires hσ,∗ 6= 0. From this it follows that

η∗σ = 4− d , (205)

independent of the RG scheme. While this close relation between the dimensionality and the bosonic

anomalous dimension here is an artifact of the large-Nf expansion, a similar relation exists in gravity for

the graviton anomalous dimension at the (interacting) fixed point as a consequence of background gauge

invariance [227]. Similar sum rules are known for Yukawa theories with chiral symmetries [76]. Such a

sum rule for a corresponding fixed point is also responsible for the universality of the BCS-BEC crossover

in the broad resonance limit of ultracold Fermi gases, see Sect. 4.1 and Ref. [190]. In the present case, this

rule simply determines the value of the Yukawa fixed-point coupling:

(h∗σ)
2 =

1

Nf

(
d

8dγvd

)
(4− d)

m
(F),(d)
4 (0; 0)

=
1

Nf

(
d

dγvd

)
(d− 4)(d− 2)

(8− 6d)
, (206)

where we have used the optimized regulator function defined in Eq. (349) to evaluate the threshold func-

tion m
(F),(d)
4 (0; 0). Note that the fixed point is interacting for 2 < d < 4 and merges with the Gaußian

fixed point of the Yukawa coupling in d = 4, see also Fig. 11. Also the fixed-point values for the bosonic

mass parameter and couplings can be given analytically. For the optimized regulator we find

ǫ∗σ = − 8d(d− 4)(d− 2)

dγ(8− 6d)(2− d) , ω∗
σ =

1

Nf

8d2(d− 4)2(d− 2)2

dγ(8− 6d)2(4− d)vd
. (207)

Thus, the fixed-point values for the bosonic mass parameter as well as the four-boson self-interaction are

non-vanishing. In a purely fermionic formulation of the model, higher bosonic self-interactions, such as

the four-boson interaction, correspond to higher (non-local) fermionic self-interactions. In any case, we

find that the fixed-point structure in 2 < d < 4 for Nf →∞ is not identical to the effective action (186) at

the initial RG scale Λ but involves operators of higher order. Recall our discussion in Sect. 3.2 where we

have shown that bosonic self-interaction terms ∼ σ2n can be viewed as momentum-dependent (non-local)

fermionic self-interaction terms ∼ (ψ̄ψ)2n.

We add that the fixed-point values of all bosonic self-interactions of the form σ2n can be computed

analytically in the limit Nf → ∞ and that they are non-vanishing with their sign determined by (−1)n. It

turns out that the resulting alternating series for the full fixed-point (effective) potential,

u∗(σ2) = const.+
1

2
ǫ∗σσ

2 +
1

8
ω∗
σσ

4 + . . . ,

can be resummed analytically, yielding u∗(σ2) ∼ (σ)3/2 for large σ, see Ref. [150].

From a phenomenological point of view the scale-invariant fixed-point action describes a theory of

massless fermions interacting via the exchange of scalar bosons. On the other hand, we have seen that the

purely fermionic formulation of the Gross-Neveu model depends only on a single input parameter, namely
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Fig. 11 RG flow of the partially bosonized Gross-Neveu model in leading order in the 1/Nf-expansion in the plane

spanned by Nfh
2
σ and ǫσ , see Ref. [150]. The arrows indicate the direction of flow towards the infrared.

the four-fermion coupling at the initial RG scale. In the following we show that the partially bosonized

theory still has predictive power. It will turn out that the deviations of the partially bosonized fixed-point

theory from the classical GN action are only due to IR irrelevant operators which neither modify the

predictive power of the Gross-Neveu model nor the leading-order scaling behavior at the quantum critical

point.

The number of physical parameters is determined by the number of RG relevant directions correspond-

ing to the number of positive critical exponents. As discussed in Sect. 3.1, the latter can be computed from

the stability matrix:

B =







∂(∂th
2
σ)

∂h2
σ

∂(∂th
2
σ)

∂ǫσ

∂(∂th
2
σ)

∂ωσ
∂(∂tǫσ)
∂h2

σ

∂(∂tǫσ)
∂ǫσ

∂(∂tǫσ)
∂ωσ

∂(∂tωσ)
∂h2

σ

∂(∂tωσ)
∂ǫσ

∂(∂tωσ)
∂ωσ







h∗
σ,ǫ

∗
σ,ω

∗
σ

. (208)

More precisely, the zeroes of the (characteristic) polynomial det(B +Θ✶) of the stability matrix B repre-

sent the critical exponents at the non-Gaußian fixed point. In the present case the polynomial reads

det(B +Θ✶) = (4− d+Θ) (2− d+Θ) (4− d+Θ) . (209)

In d = 3 we thus have one positive critical exponent associated with an RG relevant direction and two

negative critical exponents associated with RG irrelevant directions. As it should be, the exponent of the

RG relevant direction is identical to the the one found in the purely fermionic formulation, see Eq. (191).

In d = 4 the situation is substantially different. There, we have two marginal directions and one relevant

direction. This suggests that the Gross-Neveu model in d = 4 may depend on more than one input

parameter. In any case, we observe that the critical exponents are independent of Nf.

Even if we take into account bosonic self-interactions σ2n of arbitrarily high order, we still have only

a single RG relevant direction at the non-Gaußian fixed point. All additional directions are RG irrelevant,
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see Ref. [150]. Thus, the IR physics of the model depends on only a single parameter as stated above in

the case of the purely fermionic formulation.

At the Gaußian fixed point the critical exponents coincide with the mass dimension of the Yukawa

coupling and the bosonic couplings, reproducing simple perturbative power counting. In total, one finds

three relevant RG directions and one marginal RG direction in d = 3. Note that the Gaußian fixed point in

the purely fermionic flow in Sect. 5.1.2 translates into a diverging dimensionless renormalized boson mass,

ǫ
1/2
σ ∼ λ−1/2

σ .

At this point it is instructive to make the contact with the purely fermionic description more explicit and

deduce the fixed point of the four-fermion coupling from the fixed point values of the Yukawa coupling

and the bosonic mass parameter ǫσ . We find

λ∗σ =
(h∗σ)

2

ǫ∗σ
=

1

Nf

(
d

dγvd

)
d− 2

8

(d=3)
=

3π2

4Nf

(210)

for the optimized regulator, which agrees with our findings in Sect. 5.1.2. As we have discussed in Sect. 3.2,

the flow equation of the four-fermion interaction λσ can be reconstructed from the flow of h2σ/ǫσ:

∂t

(
h2σ
ǫσ

)

= (2 + 2ηψ)

(
h2σ
ǫσ

)

− 4Nfdγvd l
(F),(d)
1 (0; ηψ)

(
h2σ
ǫσ

)2

+6vd l
(d)
1 (ǫσ; ησ)ωσ

(
h2σ
ǫ2σ

)

+8vd l
(FB),(d)
1,1 (0, ǫσ; ηψ, ησ)

(
h4σ
ǫσ

)

. (211)

Using Eq. (194) and λσ = h2σ/ǫσ as well as

l
(FB),(d)
1,1 (0, ǫσ; ηψ, ησ)

(ǫσ≫1)−→ 1

ǫσ
l
(F),(d)
1 (0; ηψ) , (212)

we recover the flow equation (187) found in the purely fermionic formulation. In the large-Nf limit, the

flow equation (211) simplifies considerably. We find

∂t

(
h2σ
ǫσ

)

= (d− 2)

(
h2σ
ǫσ

)

− 4Nfdγvd l
(F),(d)
1 (0; 0)

(
h2σ
ǫσ

)2

. (213)

We observe that the flow equations for λσ and h2σ/ǫσ are indeed identical. In turn, also the scale kSB,

which sets the scale for low-energy observables, must be the same in both cases. Recall that ηψ = 0 in this

limit.

Due to the equivalence of λσ and h2σ/ǫσ , the quantum critical point found in the purely fermionic

formulation is also present in the partially bosonized theory for Nf →∞, as it should be the case. As can

be seen from the scaling law (190), this quantum critical point is associated with a vanishing boson mass,

i.e. a diverging correlation length, in the long-range limit. The scaling behavior of physical observables

close to this point is governed by the critical exponent associated with the RG relevant direction.

Let us conclude our large-Nf analysis with a word of caution on the widely used LPA in which the

running of the wave-function renormalizations are neglected. If we ignored the running of the wave-

function renormalization of the bosonic field in the present case, the model would depend on more than

one physical parameter and this additional dependence would be artificial. To be more specific, let us

consider the mass spectrum of the theory in the regime with broken chiral symmetry and assume that we

have already fixed the mass of the fermions. Using the definition of the masses and the flow equations of

the couplings, we find that the (dimensionless) renormalized boson mass mσ in the broken regime can be

written in terms of the (renormalized) fermion mass mψ:

m2
σ = ωσσ

2
0 ∼ Z−1

σ h̄2σ(h̄
2
σσ̄

2
0) ∼ Z−1

σ h̄2σm
2
ψ , (214)

where σ0 is the expectation value of the bosonic field in the regime with broken chiral symmetry in the

ground state,53 see also Fig. 5 for illustration. Neglecting the running of Zσ , i. e. setting Zσ = const. as

53 Note that our conventions are such that ǫσ = m2
σ/k

2 and ǫψ = m2
ψ
/k2.
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done in the LPA, we observe that the boson mass does not only depend on a single physical parameter, but

on two parameters independently, namely the fermion mass and the (bare) Yukawa coupling. In contrast,

taking the running of Zσ ∼ h̄2σ into account, the value of the boson mass is fixed solely in terms of the

fermion mass, in agreement with the fixed-point analysis.

While this argument might be altered in d = 4 space-time dimensions, where the Yukawa coupling is

marginal, it is true for the Gross-Neveu model (as well as the Nambu-Jona-Lasinio model) in any dimen-

sion d in which the flow equation for Zσ is non-vanishing even at leading order in an expansion in 1/Nf.

Therefore the flow of Zσ has to be taken into account in a systematic and consistent expansion of the flow

equations in powers of 1/Nf. To be specific, the flow of the bosonic self-interactions Eqs. (198) and (199)

incorporates fluctuations at next-to-leading order in 1/Nf due to the presence of the bosonic loop. How-

ever, for a systematic and consistent study of the effects of corrections beyond the large-Nf expansion, the

flow of Zσ , Zψ as well as of the Yukawa coupling needs to be taken into account.

5.1.4 Quantum Critical Behavior Beyond the Large-Nf Limit

Let us now discuss quantum critical behavior beyond the large-Nf limit. Beyond the large-Nf approxi-

mation, bosonic fluctuations play an important role. As an immediate consequence, a new fixed point for

hσ ≡ 0 arises for the flow of the effective potential in 2 < d < 4. In the limit Nf → 0 we are left with a

scalar ❩2 theory. This limit is equivalent to the limit hσ → 0 and therefore this fixed point of the purely

bosonic theory is nothing but the Wilson-Fisher fixed point which describes critical phenomena in the Ising

universality class.

The non-Gaußian fixed point of the full Gross-Neveu system can now be understood as stemming from

the leading large-Nf terms discussed above and the bosonic fluctuations inducing a Wilson-Fisher fixed

point. Depending on the value of Nf, the non-Gaußian Gross-Neveu fixed point interpolates between the

large-Nf fixed point for Nf → ∞ and the Wilson-Fisher fixed point in the (formal) limit Nf → 0. For the

latter, the functional RG has proven to be a useful quantitative tool for describing non-perturbative critical

phenomena, see e. g. Refs. [100, 143–146, 228, 229].

In the following we repeat the large-Nf analysis with the full set of flow equations for d = 3 at next-

to-leading order of the derivative expansion, see Eqs. (195)-(199). In particular for our numerical study of

the critical behavior in d = 3, we restrict ourselves to this set of flow equations evaluated for the linear

regulator. This implies that we only consider the RG flows of bosonic self-interaction terms up to order σ4.

We do not take into account corrections arising from higher bosonic self-interactions terms. However,

we expect that our analysis is sufficient to analyze the effect of corrections beyond the large-Nf limit as

well as of the next-to-leading order terms in the derivative expansion. For a more quantitative study of the

critical exponents including, effects of bosonic self-interactions up to 22nd order in σ, we refer the reader

to Refs. [150, 223].

In the chirally symmetric regime, a nontrivial fixed point in the Yukawa coupling requires that the

following inequality is satisfied:

d− 4 + 2η∗ψ + η∗σ < 0 , (215)

for Nf < ∞. This holds because the second term of the Yukawa flow Eq. (195) is strictly positive for all

admissible values of the anomalous dimensions ησ, ηψ . O(1). For instance, in d = 3, the sum of the

anomalous-dimension terms is always slightly smaller than one, see Tab. 1. The inequality becomes an

equality in the large-Nf limit, see Eq. (205).

In the following we use the optimized regulator functions given in Eqs. (350) and (351) to evaluate the

flow equations. The fixed point values for the Yukawa coupling in d = 3 are given in Tab. 1. For increasing

Nf, the fixed point quickly approaches its large-Nf limit (206), whereas it decreases and (slowly) tends to

zero for small Nf, leaving us with the pure Wilson-Fisher fixed point of a pure scalar model [150,223]. As

the latter is known to exhibit a fixed-point potential in the broken regime [100, 143–146, 228] with a non-

vanishing expectation value of the scalar field σ, we expect such a fixed-point potential to appear for small

Nf. For all integer values of Nf ≥ 1 Dirac (four-component) fermions, we still find fixed-point actions in
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Nf η∗σ η∗ψ Nf (h
∗
σ)

2 ǫ∗σ
2 0.7598 0.0320 4.5576 0.3966
4 0.8869 0.0138 5.2812 0.5831
6 0.9267 0.0087 5.5068 0.6534
8 0.9458 0.0063 5.6152 0.6894
10 0.9571 0.0050 5.6788 0.7113
12 0.9644 0.0041 5.7205 0.7260
50 0.9917 0.0009 5.8746 0.7821
100 0.9958 0.0004 5.8983 0.7911
∞ 1 0 5.9218 0.8

Table 1 Non-Gaußian fixed-point values of the universal anomalous dimensions and the (non-universal) fixed-point

values of the couplings h∗
σ and ǫ∗σ for various flavor numbers Nf in d = 3. The results have been obtained using the

flow equations (195)-(199) evaluated for the linear regulator. In Monte-Carlo simulations [230], ησ,∗ = 0.754(8) has

been found for Nf = 4 two-component fermions (corresponding to Nf = 2 in our setting).

the chirally symmetric regime, see also Ref. [223]. As has also been pointed out in Ref. [223], the fixed

point seems to occur in the broken regime for the Gross-Neveu model with one two-component fermion.54

This would correspond to Nf = 1/2 in our setting.

Let us now turn our discussion to the universal critical exponents Θ(i). In our conventions, Θ(1) denotes

the leading, i. e. the largest, critical exponent. The critical exponents for Nf = 2 read

Θ(1) = 0.9928 , Θ(2) = −0.8687 , Θ(3) = −1.5743 .

Our result for the critical exponent Θ(1) agrees within errors with the result from corresponding Monte-

Carlo (MC) simulations [230], 1/Θ
(1)
MC = νMC ≈ 1.00(4). For Nf = 12, we find the following values for

the critical exponents:

Θ(1) = 0.9898 , Θ(2) = −0.9735 , Θ(3) = −1.0701 .

From this we conclude that the critical exponents do depend on Nf but converge rapidly to their values

in the large-Nf limit, namely Θ(1) = 1, Θ(2) = −1 and Θ(3) = −1. This is also visible in the values

of the anomalous dimensions and of the fixed points for the couplings, see Tab. 1. Whereas the values

of the fixed-point couplings are non-universal, the anomalous dimensions are universal and illustrate the

inequality (215).

As we have discussed above, the critical exponent Θ(1) governs the long-range physics at the quantum

critical point associated with the fixed-point λ∗σ ∼ (h∗σ)
2/ǫ∗σ of the four-fermion coupling. The expo-

nent Θ(1) is related to the correlation length exponent ν by ν = 1/Θ(1). Together with the scalar anoma-

lous dimension and the corresponding scaling and hyperscaling relations, all thermodynamic exponents of

the (quantum) phase transition are determined. The results presented here are in quantitative agreement

with the functional RG study of Höfling et al. [223]. The agreement with results from other methods such

as 1/Nf expansions [231] and Monte Carlo simulations is also satisfactory [230, 232]. Discrepancies are

mainly visible in the anomalous dimensions for small Nf, a feature familiar from scalar models.

To summarize, the non-perturbative features of the Gross-Neveu model near the quantum critical point

can be described well by our functional RG approach, as the model interpolates between two well-accessible

limits within this framework: the large-Nf limit and the Wilson-Fisher fixed point in the Ising universality

class for Nf → 0. The ansatz for the effective action employed in our study is still incomplete in the

sense that is does not exhibit all possible four-fermion terms compatible with the underlying symmetries

of the model. However, we have argued that a Gross-Neveu-type RG trajectory might exist in the large-Nf

limit, similar to the corresponding NJL-type trajectory in our study in Sect. 3.5.2. In any case, our results

54 Note that two-component fermions have been used in Ref. [223].
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suggest that the Gross-Neveu model depends only on a single parameter, even when we take into account

corrections beyond the large-Nf limit. This might provide helpful information for a systematic study of the

finite-temperature phase diagram of the Gross-Neveu model beyond the large-Nf approximation.

5.1.5 Excursion: Quantum Criticality and Asymptotic Safety

Let us finally exploit our results for the Gross-Neveu model to discuss aspects of renormalizability in

quantum field theories. In the context of our model, this question can be related to the question of quantum

criticality. In fact, the Gross-Neveu model allows us to discuss the issue of renormalizability in quantum

gravity in a very pedagogic way, as pointed out in Ref. [150].

Renormalizability is often described as a technical cornerstone for the construction of admissible models

in particle physics. Renormalization fixes physical parameters of a model to measured values of observable

quantities. A main physical meaning of renormalizability is the capability of a model to provide an accu-

rate description of a physical system over a wide range of scales at which measurements can be performed.

The set of physical parameters, e. g. mass parameters, measured at different scales then defines the renor-

malized trajectory in parameter space. We have already introduced this idea in our basic discussion of the

RG in Sect. 2. If we demand for a specific model to provide a fundamental description of nature, the model

must be valid on all scales, in particular down to arbitrary short-distance scales, i. e. large momentum

scales. In turn, the renormalized trajectory must exist on all scales without developing singularities.

The requirement of renormalizability can formally be verified and realized in perturbatively renormal-

izable theories in a weak coupling expansion. Here, all free parameters of a model can be fixed to physical

values and the renormalized trajectory can be constructed order-by-order in a perturbative expansion. This

strategy can be applied successfully to theories that exist over a wide range of scales, such as QED. How-

ever, the perturbative construction can even be applied on all scales if a theory is asymptotically free, i. e.

if the Gaußian fixed point is UV attractive. Prominent examples are SU(Nc) Yang-Mills theories in d = 4
and the theory of the strong interaction, namely QCD.

However, renormalizability is by no means tied to a perturbative construction. Even though reliable non-

perturbative information might be difficult to obtain, the concept of renormalizability and the existence of

a renormalized trajectory on all scales can be formulated rather generally within Weinberg’s asymptotic

safety scenario [233]. To put it sloppily, asymptotic safety is the generalization of asymptotic freedom

at the Gaußian fixed point to the case of a non-Gaußian fixed point. By construction, a fixed point of

the RG defines a point in parameter space where the system becomes scale invariant, RG trajectories that

hit the fixed point towards the UV can be extended to arbitrarily high energy scales, thereby defining a

fundamental theory; for reviews we refer to Refs. [108, 234]. On the other hand, we have shown that

non-Gaußian fixed-points can be viewed as quantum critical points governing long-range physics.

While quantum criticality plays a crucial role in fermionic models of, e. g., condensed-matter sys-

tems, the asymptotic safety scenario has recently become an important ansatz for quantizing gravity. In

contrast to other approaches, this scenario is based on the standard gravitational degrees of freedom and

also the quantization procedure proceeds in a rather standard fashion; for recent developments we refer to

Refs. [153, 227, 235–243]

In our study of the purely fermionic formulation of the Gross-Neveu model, we have found that the

critical exponent Θ is positive for d > 2 and determines the scaling behavior of physical IR observables.

From a field-theoretical point of view this means that the Gross-Neveu coupling λσ corresponds to an RG

relevant coupling being repulsed by the non-Gaußian fixed point λ∗σ towards the IR. However, we can also

think of λσ as a coupling which is in the RG flow attracted by the non-Gaußian fixed point λ∗σ towards the

UV. In our simplified study, this suggests that the Gross-Neveu model can be renormalized and extended

as a fundamental theory over all scales on RG trajectories that emanate from the non-Gaußian fixed point.

As there is only one relevant direction, only one physical parameter has to be fixed (say, the value of the

coupling at a UV scale Λ) in order to predict all physical quantities in the long-range limit. Thus, the

Gross-Neveu model is asymptotically safe, i. e. non-perturbatively renormalizable. This observation has

also been confirmed by our study of the partially bosonized Gross-Neveu model in Sect. 5.1.4 where we
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have systematically included corrections beyond the large-Nf limit. Our results indeed suggest that the

Gross-Neveu model in d = 3 is asymptotically safe for all Nf > 0. In any case, the present discussion

illustrates the tight connection between quantum criticality and asymptotic safety.

Let us make one more point concerning the asymptotic safety scenario by considering the Gross-Neveu

model at the Gaußian fixed point. At the Gaußian fixed point the critical exponent associated with the

coupling λσ is given by ΘGauß = 2 − d. Thus, the Gaußian fixed point is IR attractive. In this case, the

limit Λ → ∞ can only be taken if the RG trajectory emanates from the fixed point, but then the theory

would be noninteracting on all scales and therefore “trivial”. Within perturbation theory, one therefore

concludes that the Gross-Neveu model is perturbatively non-renormalizable. Note that this conclusion

remains unchanged also if the anomalous dimension is taken into account. In fact, we have ηψ = 0 at the

Gaußian fixed point, implying that standard power-counting can only be modified logarithmically.

In quantum gravity, there is strong evidence that an IR repulsive non-Gaußian fixed point exists. It has

been found that this fixed point indeed exists in (simple) truncations based on derivative expansions in all

d > 2, see Refs. [237, 244]. The (upper) critical dimension for the existence of this non-Gaußian fixed

point is d = 2 as in the Gross-Neveu model. It is interesting to speculate about a possible destabilization

of the fixed point above another so far unknown critical dimension due to strong-coupling phenomena

such as bound-state formation. A similar phenomenon has been observed in extra-dimensional Yang-Mills

theories [245], where a non-Gaußian fixed point exists in d = 4 + ǫ but is non-perturbatively destabilized

for ǫ & O(1).
We would like to add that the underlying ideas of the asymptotic safety scenario allow to construct

UV-complete scenarios for the matter sector of the standard model (as well as for toy models of the Higgs

sector), see Refs. [152, 224, 246], and Ref. [247] for a study of the non-linear sigma model.

Our comparison of the Gross-Neveu model and quantum gravity shows that the property of asymp-

totic safety in the Gross-Neveu model is closely related to the occurrence of a quantum phase transition

of second order separating a disordered phase from a phase with broken chiral symmetry in the ground

state. More generally, models with such quantum phase transitions of second order are guaranteed to be

asymptotically safe. Whether the converse is true, i.e., whether asymptotically safe models always exhibit

a physically relevant order-disorder quantum phase transition, is an interesting question for future studies.

5.2 Nambu-Jona-Lasinio Models and QCD at Low Energies

The Gross-Neveu model represents an effective theory for systems relevant in the context of condensed-

matter physics. However, we have already hinted that the Gross-Neveu model also shares certain aspects

with the theory of the strong interaction, namely QCD. In this section we now discuss aspects of strongly

interacting fermions in the context of QCD low-energy models. As we shall see below, such models can

be viewed as an extension of the simple NJL model discussed in Sect. 3. Of course, the construction of

the NJL model has been originally inspired by the mechanisms of superconductivity in condensed-matter

physics [132, 133]. The application of these type of models to QCD exemplifies once more that the action

itself does not completely specify a physical system. Only the (quantum) equations of motion together with

their boundary conditions fully determine the physical system under consideration. The “universality” of

the equations of motion resulting from a given action allows for a cross-fertilization of seemingly different

fields of physics, e. g. QCD and condensed-matter physics.

In Sect. 5.2.1 we discuss some facets of QCD and related low-energy models. Quantum and ther-

mal phase transitions are then discussed in Sect. 5.2.2 with the aid of a particular low-energy model, the

so-called quark-meson model. The corresponding RG flow equations can be derived along the lines of

Sect. 3. In particular, we shall see that QCD low-energy models are closely related to the NJL model with

a continuous chiral SU(Nf)L ⊗ SU(Nf)R symmetry as discussed in Sect. 3.5.1.
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5.2.1 Low-energy QCD Models and the Fierz Ambiguity

As a prelude to Sect. 6 we briefly outline how QCD low-energy models can in principle be derived from

the QCD action functional. One of the “ancestors” of QCD is the Gell-Mann-Zweig quark model for

hadrons [248, 249] which is based on the observation that hadrons can be classified according to the struc-

ture of the (flavor) SU(Nf = 3) gauge group. Even though this model was able to explain the existence of

some particles, it was not possible to explain the existence of all hadronic resonances in a simple manner.

For example, it was not possible to reconcile the existence of the baryonic resonance ∆++( 32
+
), which is

made up of three up-quarks in a spin-up state, with the Pauli Principle. In the 1970s, it was then shown that

the shortcomings of the original quark model could be resolved by assigning a so-called color charge to the

quarks [250–253]. Considering the problems of the original quark model with the resonance ∆++( 32
+
),

this was a reasonable assumption. Starting from the principle of gauge invariance, the existence of gauge

bosons, the gluons, which carry combinations of color and anti-color, was postulated as well. The gluons

are massless and mediate the interaction between the quarks, as the photons do in QED. In contradistinc-

tion to QED, however, the gauge bosons of the strong interaction interact with each other, which explains

the short range of the strong force. As a consequence, photons are represented by Abelian gauge fields

while gluons are described by non-Abelian gauge fields.

The action functional of QCD is approximately symmetric under continuous chiral flavor SU(Nf)L ⊗
SU(Nf)R transformations. As motivated above, the quarks also carry a color charge resulting in a local

SU(Nc) gauge symmetry, where Nc denotes the number of colors. The simplest action compatible with

these symmetry constraints reads

SQCD =

∫

d4x

{
1

4
F aµνF

a
µν + ψ̄ (i /∂ + ḡ /A)ψ

}

, (216)

where Aµ ≡ AaµT
a
ij denotes the gauge fields and ḡ is the (bare) coupling constant; the T aij are the gener-

ators of the SU(Nc) gauge group. Note that the fermions transform under the fundamental representation

of the SU(Nc) color group, whereas the gluons transform under the adjoint representation. The parame-

ters Nc and Nf can in principle be chosen freely. For low-energy QCD phenomenology, we have Nf = 2
(and Nc = 3). In nature the flavor symmetry is broken explicitly by so-called current quark mass terms

for the fermions, see also Sect. 3.5.4. For a study of the thermal phase transition of QCD, however, we

expect that the dynamics is essentially driven by the two lightest quark flavors, which we shall assume to

be massless in the following. The masses of the other quarks are large compared to the relevant scale of

the theory,55 e. g. the (chiral) phase transition temperature or the condensate |〈ψ̄ψ〉|1/3 (associated with

the light quarks).

The QCD action functional possesses also a conformal symmetry which is broken in the quantum theory

due to the generation of a mass gap, even in the limit Nf → 0. Moreover, the axial UA(1) symmetry of the

flavor group, which is present on the classical level, is broken explicitly due to topologically non-trivial

gauge configurations. This is known as the chiral anomaly. We shall comment on this anomaly below.

We now discuss how the basic structure of QCD low-energy models emerges from the QCD action

functional. The local gauge symmetry gives rise to an interaction between the quarks and the gluons. The

details of the momentum-scale dependence of the associated (renormalized) quark-gluon coupling g is of

no relevance for the subsequent discussion. We only state that it increases towards the IR for Nf <
11
2 Nc.

In Sect. 6 we shall then discuss this issue in more detail. In any case, the interaction between the quarks

and the gluons induces quark self-interactions, e. g. by two-gluon exchange, of the following form:
∫

d4x λ̄αβγδψ̄αψβψ̄γψδ , (217)

where α, β . . . denote a specific set of collective indices including, e. g., flavor and/or color indices.

Thus, quark self-interactions are gluon-induced in QCD, and the associated couplings are not fundamental

55 Strange quarks with mass ms ≈ 200MeV might still affect the dynamics close to the chiral phase boundary. Here, we do

not take these effects into account for the sake of simplicity.
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parameters. In fact, QCD in the chiral limit (i. e. limit of vanishing current quark masses) does depend only

on a single parameter, e. g. the value of the (renormalized) coupling g at a given scale. Once we have fixed

the coupling, all physical observables are fixed. This is reminiscent of the situation in the Gross-Neveu

model in 2 ≤ d < 4 which also depends on only a single input parameter, see Sect. 5.1.

Let us assume for the moment that it would be possible to integrate out the gauge degrees of freedom

completely. The dynamics associated with the gauge fields would then be encoded in highly non-local

fermionic self-interactions of arbitrarily high order.56 We assume further that the strength of these dy-

namically generated fermionic self-interactions can be related to a set of initial conditions for this purely

fermionic theory at a given (UV) scale ΛH by means of an RG trajectory. These initial conditions are in

principle fixed by the gauge dynamics at scales k & ΛH. The scale ΛH can then be viewed as a UV cutoff

for this (purely) fermionic effective low-energy theory. For (momentum) scales k . ΛH we may expect a

description of QCD in terms of a purely fermionic effective field theory to be valid and convenient, at least

for a study of some aspects of QCD, such as dynamical chiral symmetry breaking.

We add a comment on the scale ΛH: This scale essentially divides QCD into two regimes, namely a

perturbative high-energy regime and a low-energy regime governed by dynamical mass generation. We

therefore expect ΛH to be at least of the order of the scale kSB associated with chiral symmetry breaking,

ΛH & kSB, see also Sects. 6.4 and 6.5.1. Of course, the scale kSB is a scheme-dependent quantity. In the

context of QCD low-energy models, however, ΛH should be considered as an additional (input) parameter

which needs to be fixed by comparison to physical observables.

Based on these considerations effective low-energy QCD models are usually constructed from a given

set of four-fermion interactions, see e. g. Refs. [134] for a review. Fermionic operators of higher order are

usually dropped for the sake of simplicity. A commonly used ansatz for a low-energy effective theory for

QCD with two massless quark flavors is given by57

ΓNf=2[ψ̄, ψ] =

∫

d4x

{

ψ̄i /∂ψ +
1

2
λ̄σ

[

(ψ̄ψ)2 − (ψ̄τχγ5ψ)
2
]
}

, (218)

with τχ being the Pauli matrices (χ = 1, 2, 3), see e. g. Refs. [33,53,55,100,113,134–139,254–260]. For

three light (massless) quark flavors one may use [134, 254, 261–266]

ΓNf=3[ψ̄, ψ] =

∫

d4x

{

ψ̄i /∂ψ +
1

2
λ̄σ

[

(ψ̄Tχψ)2 − (ψ̄Tχγ5ψ)
2
]
}

, (219)

where the Tχ denote the generators of the SU(Nf) flavor group. In the three flavor case the generators are

related to the so-called Gell-Mann matrices. In Eqs. (218) and (219) color indices (a, b, . . . ) are contracted

pairwise, e. g. (ψ̄ψ) ≡ ψ̄aψa. Moreover, we employ the following convention for the flavor indices

(α, β, . . . ): (ψ̄Tχγ5ψ)
2 ≡ (ψ̄αT

χ
αβγ5ψβ)(ψ̄γT

χ
γδγ5ψδ). From a phenomenological point of view this

ansatz is obvious since it incorporates pions πχ ∼ (ψ̄τχγ5ψ) as composite degrees of freedom. This can

be seen most easily from the partially bosonized formulation of this ansatz.58 The pions arise as effective

degrees of freedom in the low-energy limit of QCD due to the spontaneous breakdown of the chiral flavor

symmetry. Since they are the massless Nambu-Goldstone bosons of QCD, they dominate the long-range

physics and are of utmost importance for an accurate description of, e. g., the dynamics close to the finite-

temperature phase boundary.

The ansatz (218) represents an effective two-flavor model for dynamical chiral symmetry breaking at

intermediate scales of k . ΛH. It is important to stress that this model cannot predict the temperature

56 In studies of the Gross-Neveu model in the large-Nf limit the fermions are often integrated out explicitly, yielding a highly

non-local but purely bosonic action, as discussed in Sect. 3.2.
57 Note that this ansatz does not possess a UA(1) symmetry, see discussion below. On the other hand, the ansatz (219) has

a UA(1) symmetry.
58 In the literature the partially bosonized versions of the purely fermionic actions (218) and (219) are often referred to as the

quark-meson model. We refer the reader to Sect. 3.2 for a detailed discussion of bosonization and to Sect. 3.5.1 for a discussion of

symmetry breaking in theories with a chiral SU(Nf)L ⊗ SU(Nf)R symmetry.
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dependence of physical observables exactly. By construction, it has neither gluons nor quark confinement.

At moderate energy scales, below the hadronic mass scale ΛH, unconfined constituent quarks appear in-

stead of baryonic degrees of freedom. However, the low-energy couplings as derived from the partially

bosonized version of this model are compatible with those of chiral perturbation theory [267, 268].

From a phenomenological point of view the ansatz (218) is well-justified for a description of two-flavor

QCD at low energies. However, it is not complete with respect to Fierz transformations. The most general

ansatz for the effective action compatible with the underlying symmetries of QCD reads [152]

Γk[ψ̄, ψ] =

∫

d4x

{

ψ̄i /∂ψ +
1

2

[

λ̄−(V–A) + λ̄+(V+A) + λ̄σ(S–P)

+λ̄VA[2(V–A)adj+ (1/Nc)(V–A)]
]
}

. (220)

The four-fermion interactions appearing here have been classified according to their color and flavor struc-

ture. Color and flavor singlets are

(V–A) = (ψ̄γµψ)
2 + (ψ̄γµγ5ψ)

2, (221)

(V+A) = (ψ̄γµψ)
2 − (ψ̄γµγ5ψ)

2, (222)

where (fundamental) color (i, j, . . . ) and flavor (χ, ξ, . . . ) indices are contracted pairwise, e.g., (ψ̄ψ) ≡
(ψ̄χi ψ

χ
i ). The remaining operators have non-singlet color or flavor structure,

(S–P) = (ψ̄χψξ)2− (ψ̄χγ5ψ
ξ)2≡(ψ̄χi ψ

ξ
i )

2− (ψ̄χi γ5ψ
ξ
i )

2,

(V–A)adj = (ψ̄γµT
aψ)2 + (ψ̄γµγ5T

aψ)2, (223)

where (ψ̄χψξ)2 ≡ ψ̄χψξψ̄ξψχ, etc., and (T a)ij denote the generators of the gauge group in the funda-

mental representation. We stress that the set of fermionic self-interactions introduced in Eq. (220) forms

a complete basis. This means that any other pointlike four-fermion interaction which is invariant under

SU(Nc) gauge symmetry and SU(Nf)L ⊗ SU(Nf)R flavor symmetry can be related to those in (220) by

means of Fierz transformations. Here, we have dropped UA(1)-violating interactions induced by topolog-

ically non-trivial gauge configurations. These interactions can in principle be parametrized by fermionic

self-interactions of the form ∼ (ψ̄ψ)Nf and then be included straightforwardly in effective low-energy

models [269–273].

The action (220) represents a very general ansatz for an effective low-energy model. The strategy for

employing such a model is usually as follows: First, one uses a set of parameters and the UV cutoff ΛH

to fit the values of low-energy observables at vanishing temperature and chemical potential, e. g. the pion

decay constant and the meson masses.59 Second, one then computes the phase boundary while keeping the

parameters at the UV cutoff fixed. A shortcoming of these models is apparent: The set of parameters used

to fit a given set of low-energy observables is not necessarily unique. Even worse, two sets of parameters,

which both give the same results for the low-energy observables, do not necessarily lead to the same

results for the chiral phase boundary, see e. g. Ref. [274]. Strictly speaking, the initial conditions for the

four-fermion couplings are fixed by gluodynamics at high momentum scales p ∼ k & ΛH. However,

this information is usually not available. Here, RG approaches may provide a systematic and consistent

framework to derive these initial conditions from first principles QCD, see Sect. 6.

The effective action (220) naturally encompasses the ansatz (218). One may wonder whether the ac-

tion (218) represents an ”exact” limit of the action (220), e. g. in the limit Nc → ∞. This would be

indicated by, e. g., the existence of an RG trajectory on which only the coupling included in Eq. (218) is

finite and all other interaction channels vanish identically. In order to investigate this question we study

the fixed-point structure of the Fierz-complete ansatz (220). The RG flow equations for the couplings

59 We stress that the limit ΛH → ∞ is not meaningful here, in contrast to the Gross-Neveu model in 2 ≤ d < 4 where the

limit Λ → ∞ is well-defined.
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can be derived straightforwardly along the lines of Sect. 3.1. In the point-like limit we then find (see

Refs. [29, 152])

∂tλ− = 2λ−− 8v4l
(F),(4)
1

{

−NfNc(λ
2
− + λ2+) + λ2−

−2(Nc +Nf)λ−λVA +Nfλ+λσ + 2λ2VA

}

, (224)

∂tλ+ = 2λ+− 8v4l
(F),(4)
1

{

− 3λ2+ − 2NcNfλ−λ+ − 2λ+(λ− + (Nc +Nf)λVA)

+Nfλ−λσ + λVAλσ +
1

4
λσ

2
}

, (225)

∂tλσ = 2λσ − 8v4l
(F),(4)
1

{

2Ncλ
2
σ−2λ−λσ− 2NfλσλVA−6λ+λσ

}

, (226)

∂tλVA = 2λVA− 8v4l
(F),(4)
1

{

−(Nc +Nf)λ
2
VA+ 4λ−λVA−

1

4
Nfλ

2
σ

}

, (227)

where l
(F),(4)
1 = l

(F),(4)
1 (0; 0) and the dimensionless couplings λi are defined as λi = k2λ̄i with i ∈

{+,−, σ,VA}. Apart from a Gaußian fixed point, this set of equations possesses 15 non-trivial fixed

points. The values of these can be computed straighforwardly from the flow equations. In the following,

however, we restrict our analysis to the limit Nc → ∞. Loosely speaking, this limit corresponds to the

large-Nf limit in the Gross-Neveu model discussed in Sect. 5.1.

From the (Dirac) Fierz transformations given in App. B we deduce that the channels associated with

the couplings λ− and λVA cannot be directly transformed into a channel with a scalar-pseudoscalar Dirac

structure as included in the commonly employed action (218). On the other hand, the (V+A)-channel can

be transformed into a channel with a scalar-pseudoscalar structure. Thus, we are left with the (V+A)-

channel and the (S–P)-channel. In the large-Nc limit it then turns out that no non-trivial fixed point exists

at which only the λ+-coupling assumes a finite value. Moreover, no non-trivial fixed point exists at which

only the λ−- and λVA-coupling are zero. However, a non-Gaußian fixed point exists at which only the

λσ-coupling assumes a finite value. In fact, the set of flow equations for the couplings λ−, λ+, λσ and

λVA simplifies considerably in the limit Nc →∞ for λ− = λ+ = λσ = 0:

∂tλσ = 2λσ − 16Ncv4l
(F),(4)
1 λ2σ . (228)

The associated fixed point F∞
(S-P) = (λ∗−, λ

∗
+, λ

∗
σ, λ

∗
VA) of the full set of equations in this limit reads

F∞
(S-P) =

(

0, 0,
8π2

Nc

, 0

)

, (229)

where we have used the optimized regulator function for illustration, l
(F),(4)
1 (0; 0) = 1

2 .

Let us have closer look at the (S–P)-channel and its relation to the the interaction channel included in

the simplified action (218). Similar to our study in Sect. 3.5.1, we may use the Fierz transformation for

flavor indices Eq. (116) to obtain

(S–P) =

(
1

2Nf

− 1

4

)
[
(ψ̄ψ)2−(ψ̄γ5ψ)2

]
+
[
(ψ̄Tχψ)2−(ψ̄Tχγ5ψ)2

]
, (230)

where χ = 0, 1, . . . , N2
f − 1. For convenience, we have defined T 0 = 1

2✶ and the Tχ for χ ≥ 1 denote

the generators of the SU(Nf) flavor group in the fundamental representation. Note that the second term

in Eq. (230) is invariant even under U(Nf) transformations. For the phenomenologically important case

Nf = 2 we are left with

(S–P) =
1

4

[
(ψ̄τχψ)2−(ψ̄τχγ5ψ)2

]

=
1

2

[
(ψ̄ψ)2−(ψ̄τχγ5ψ)2

]
−
[
det ψ̄(1 + γ5)ψ + det ψ̄(1− γ5)ψ

]
, (231)
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with τχ being the Pauli matrices, Tχ = 1
2τ

χ, see also Ref. [134]. The determinant is performed in flavor

space.

Apparently, the (S–P)-channel includes the standard scalar-pseudoscalar interaction channel of com-

monly used effective low-energy models for QCD with two massless flavors, see Eq. (218). The second

term in Eq. (231) has the same structure as a term associated with topologically non-trivial gauge con-

figurations that break the UA(1) symmetry of the theory [269–273]. In our case, we have attached the

same coupling to the first and the second term in Eq. (231). This keeps the UA(1) symmetry intact. In an

even more general approach we could allow for an explicit UA(1) breaking term by, e. g., replacing the

(S–P)-channel in Eq. (220) as follows:

λ̄σ (S–P) −→ λ̄σ (S–P)−
(
λ̄σ − λ̄top.

) [
det ψ̄(1 + γ5)ψ + det ψ̄(1− γ5)ψ

]
. (232)

In any case, our analysis suggests that in the large-Nc limit a separatrix in coupling-constant space exists

on which only the coupling included in Eq. (218) assumes a finite value. The fixed point on this separatrix

can be considered as a quantum critical point in analogy to our study of the Gross-Neveu model. The

initial condition for the scalar-pseudoscalar coupling being smaller or larger than the value of the fixed

point then distinguishes between two different phases in the long-range limit (IR limit): a non-interacting

phase and a strongly-interacting phase in which the dynamics is governed by the pions. In practice, the

initial condition for the scalar-pseudoscalar coupling is adjusted to fit the values of low-energy observables.

In the subsequent section we shall now employ the effective action (218) to study quantum and thermal

phase transitions.

5.2.2 Phase Transitions in QCD Low-energy Models

We now study quantum60 and thermal phase transitions with the effective action (218). According to our

analysis in the previous section this ansatz can be considered as a controlled starting point for an analysis

of the QCD matter sector in the large-Nc limit.61 As mentioned above, the partially bosonized action

corresponding to the purely fermionic action (218) is widely known as the quark-meson model.

Despite the shortcomings of this low-energy model, we believe that its study can shed some light on

the mechanisms underlying chiral symmetry breaking in QCD. While the actual mechanism in (full) QCD

may be different due to the presence of color interactions, the approach employed here gives a possible

explanation for the scaling behavior observed in the low-energy observables, as far as they relate to the

mechanisms of chiral symmetry breaking in an effective low-energy description of QCD by means of light

Nambu-Goldstone particles.

We start our discussion of chiral symmetry breaking at zero and finite temperature with an analysis of

the fixed-point structure of the purely fermionic formulation of the quark-meson model, see Eq. (218). In

this two-flavor model, the spontaneous breakdown of chiral symmetry gives rise to the existence of three

massless Nambu-Goldstone bosons. In the following, we restrict ourselves to the case Nf = 2 but keep

the number of colors Nc as an arbitrary (control) parameter. Of course, the ansatz (218) is not complete

with respect to Fierz transformations. In particular, we do not take into account additional four-fermion

operators which arise at finite temperature due to the broken Poincare invariance, see Sect. 3.5.3. In the

large-Nc limit, however, the scalar-pseudoscalar channel defines an RG trajectory on which all other four-

fermion couplings are identical to zero, see Sect. 5.2.1.

In our study we follow closely the steps detailed in Sects. 3.1 and 3.5.3. This means that we drop a

possible momentum dependence of the four-fermion coupling, λσ(|p| ≪ k) which implies ηψ = 0. This

approximation does not permit a study of properties of the system, such as the meson mass spectrum, in

60 Concerning the issue of the existence of a non-trivial fixed-point of the four-fermion coupling associated with a quantum

critical point in d = 4 space-time dimensions, we refer the reader to our discussion in Sects. 3.2 and 4.1.
61 In (full) QCD, we have a UA(1) symmetry. However, this symmetry is anomalously broken due to the presence of topologi-

cally non-trivial gauge configurations. The widely-used definition of the two-flavor quark-meson model, see Eq. (218), does not have

such a UA(1) symmetry. This becomes apparent from the fact that the interaction term in the ansatz (218) essentially arises from the

UA(1)-invariant expression Eq. (231) by simply dropping the contributions from the determinants.
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the chirally broken regime; for example, mesons manifest themselves as momentum singularities in the

four-fermion couplings. As discussed in detail in Sect. 3.2, the point-like limit can still be a reasonable

approximation in the chirally symmetric regime above the chiral phase transition. It allows us to gain some

insight into the question how the theory approaches the regime with broken chiral symmetry in the ground

state [30–32]. Since we are simply interested in mapping the phase diagram in the plane spanned by the

temperature and the initial condition for the coupling λσ , the point-like limit still represents a reasonable

approximation.

At this point we would also like to remind the reader that in the point-like limit the RG flow of the

four-fermion coupling, which signals the onset of chiral symmetry breaking, is completely decoupled from

the RG flow of fermionic n-point functions of higher order. For example, 8-fermion interactions do not

contribute to the RG flow of the coupling λ̄σ in this limit.

Using the ansatz (218) we obtain the RG flow equation for the dimensionless renormalized four-fermion

coupling λσ = k2λ̄σ in the point-like limit:62

βλσ ≡ ∂tλσ = 2λσ − 16(2Nc + 1)v3l
(F),(4)
1 (τ, 0)λ2σ , (233)

where v3 = 1/(8π2). Note that the coupling λσ depends on the dimensionless temperature τ = T/k. Here,

we have used a 3d (optimized) regulator function which is convenient for an analysis of chiral symmetry

breaking at finite temperature. The definition of the regulator and the temperature-dependent threshold

function l
(F),(4)
1 can be found in App. D. Recall that the wave-function renormalizations longitudinal and

transversal to the heat bath are constant in leading order in the derivative expansion, i. e. η
‖,⊥
ψ = 0.

Let us now discuss the fixed-point structure of the coupling λσ . Apart from a Gaußian fixed point

we have a second non-trivial fixed point. The value of this fixed point depends on the dimensionless

temperature τ , see also Fig. 8. At vanishing temperature we find

λ∗σ =
1

8(2Nc + 1)v3l
(F),(4)
1 (0, 0, 0)

=
6π2

(2Nc + 1)
(234)

for the non-Gaußian fixed point. For illustration we have evaluated the threshold function l
(F),(4)
1 for the 3d

optimized regulator, see Eq. (349). Note that the rescaled fixed-point couplingNcλ
∗
σ approaches a constant

value for Nc →∞: Ncλ
∗
σ → 3π2.

Let us briefly recall the physical observations of Sect. 3 which are of relevance here: First of all, we

stress that the fixed-point value λ∗σ is not a universal quantity, as its dependence on the threshold function

indicates. However, the statement about the mere existence of the fixed point is universal. Choosing an

initial value λUV
σ < λ∗σ at the initial UV scale ΛH, we find that the theory becomes non-interacting in the

infrared regime (λσ → 0 for k → 0), see Fig. 8. For λUV
σ > λ∗σ we find that the four-fermion coupling λσ

increases rapidly and diverges eventually at a finite scale kSB. This behavior indicates the onset of chiral

symmetry breaking associated with the formation of a quark condensate and the emergence of massless

Nambu-Goldstone bosons, namely the pions. Hence chiral symmetry breaking in the IR only occurs if we

choose λUV
σ > λ∗σ and λ∗σ can be viewed as a quantum critical point.

The scale kSB at which 1/λσ(kSB) = 0 sets the scale for a given IR observable O:

O ∼ kdOSB , (235)

where dO is the canonical mass dimension of the observable O. At vanishing temperature the scale kSB
can be computed analytically from Eq. (233). Analogously to our derivation of Eq. (95), we find

kSB = ΛHθ(λ
UV
σ − λ∗σ)

(
λUV
σ − λ∗σ
λUV
σ

) 1
Θ

, (236)

62 Note that the factor in front of λ2σ differs from the one in Eq. (228) for two reasons: first, we have used a 3d regulator function.

Second, we started from the action (218) to derive Eq. (233). This action is not complete with respect to Fierz transformations.

However, this only changes the (non-universal) fixed-point value but not the (universal) critical exponents in the large-Nc limit.
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where the critical exponent Θ is independent of Nc in the present approximation:

Θ = −∂(∂tλσ)
∂λσ

∣
∣
∣
λ∗
σ

= 2 . (237)

Thus, the critical value kSB scales with the distance of the initial value λUV
σ from the fixed-point value λ∗σ .

For increasing λUV
σ the scale kSB increases and, in turn, the values of low-energy observables, such as the

pion decay constant fπ and the chiral phase transition temperature Tχ, increase.

From now on, let us assume that we have fixed λUV
σ > λ∗σ at T = 0. The value of λUV

σ then determines

the scale kSB ≡ kSB(λUV
σ ) which is related to the values of the low-energy values. For a study of the effects

of a finite temperature we then leave our choice for λUV
σ unchanged. This ensures comparability of the

results at zero and finite temperature for a given theory defined by the choice for λUV
σ at zero temperature.

At finite temperature we still have a Gaußian fixed point. Moreover, we find a pseudo fixed-point λ∗σ(τ)
for arbitrary values of τ = T/k at which the right-hand side of the flow equation is zero:

λ∗σ(τ) =
1

8(2Nc + 1)v3l
(F),(4)
1 (τ, 0, 0)

. (238)

We would like to remind the reader that the pseudo fixed-point λ∗σ(τ) is not necessarily an element of

the separatrix in the plane spanned by the coupling λσ and the dimensionless temperature τ . However,

we have λ∗σ(τ) ≥ λsep.σ (τ) for a given value of τ , where λsep.σ (τ) defines the separatrix in (λσ, τ)-space,

see our detailed discussion in Sect. 3.5.3. Therefore the analytically accessible value of the pseudo fixed-

point λ∗σ(τ) is well-suited for a discussion of the basic mechanisms of chiral symmetry breaking at finite

temperature.

For high temperatures T ≫ k we find λ∗σ ∼ (T/k)3. Since the value of the (pseudo) fixed-point in-

creases with increasing τ = T/k, the rapid increase of the four-fermion coupling towards the IR (k → 0)

is effectively slowed down and may even change its direction in the plane spanned by the coupling λσ
and τ , see Figs. 8 and 9. This behavior of the pseudo fixed-point λ∗σ(τ) already suggests that for a fixed

initial value λUV
σ a critical temperature Tχ exists above which the four-fermion coupling does not di-

verge but approaches zero in the IR. Such a behavior is indeed expected for high temperatures since the

quarks become effectively stiff degrees of freedom due to their thermal mass ∼ T and chiral symme-

try is restored. As discussed in Sect. 3.5.3, the equation λ∗σ(τ∗) = λUV
σ defines a strict upper bound

for the critical temperature Tχ for a given value of λUV
σ and ΛH, i. e. Tχ ≤ T∗ = τ∗ΛH. More-

over, the equation λsep.σ (τsep.) = λUV
σ defines an even stronger upper bound for the critical temperature:

Tχ ≤ Tsep. ≤ T∗. The actual phase transition temperature Tχ might be smaller than Tsep. due to fluctua-

tions of the Nambu-Goldstone bosons in the IR close to the phase boundary. However, we have Tχ ≡ Tsep.
for Nc →∞ since bosonic fluctuations are parametrically suppressed in this limit.

To illustrate our analytic results we have studied the RG flow of the four-fermion coupling λσ for

finiteNc numerically. Following the discussion in the previous paragraph, the phase transition temperature

Tχ is defined to be the smallest temperature for which λσ remains finite in the infrared limit k → 0. In

Fig. 12 we present the phase diagram for two massless quark flavors and various values of Nc in the plane

spanned by the temperature and the UV coupling λUV
σ (Nc). For the UV cutoff ΛH defining the range

of validity of our model, we have chosen ΛH = 1GeV. In accordance with our analytic findings we

observe that there is only a chirally symmetric phase for λUV
σ < λ∗σ . Increasing λUV

σ above λ∗σ , the system

undergoes a quantum phase transition at λ∗σ . We expect that the chiral phase transition temperature Tχ
increases monotonously with λUV

σ > λ∗σ according to

Tχ ∼ kSB . (239)

Therefore we expect that the scaling behavior of this chiral observable is determined by the exponent Θ = 2,

see Eq. (236). In fact, the numerical data can be fitted to this analytic estimate:

Tχ
ΛH
≈ 0.316

(
λUV
σ − λ∗σ
λUV
σ

)0.498

, (240)



Jens Braun: Fermion Interactions and Universal Behavior in Strongly Interacting Theories 79

 0

 

 0.1

 

 0.2

 

 0.3

 

 0.4

 0.6  0.8  1  1.2  1.4  1.6  1.8  2

Nc =     2

Nc =     3

Nc = 100

T
χ
/Λ

H

λUV

σ
/λ∗

σ
(Nc)

Fig. 12 Phase diagram for two massless quark flavors and Nc = 2, 3, 100 colors in the plane spanned by the temper-

ature and the rescaled coupling λUV
σ /λ∗

σ(Nc). The lines depict our results for the phase boundary for various values

of Nc. For T > Tχ the theory remains in the chirally symmetric phase on all skales k ≤ ΛH. For T = 0 and

increasing λUV
σ the system undergoes a quantum phase transition at λUV

σ /λ∗
σ(Nc) = 1. Note that Tχ as a function of

λUV
σ /λ∗

σ(Nc) does not depend on Nc in the present approximation.

which is in good agreement with the expected behavior. For the fit we have used the results for Tχ/ΛH for

11 equidistant values of λUV
σ /λ∗σ between λUV

σ /λ∗σ = 1.0 and λUV
σ /λ∗σ = 1.01. Note that our estimate

for the phase transition temperature does not depend on Nc if we keep the initial condition λUV
σ /λ∗σ(Nc)

fixed. This illustrates that the values of (chiral) observables in the large-Nc limit depend only on the

relative distance of the initial condition λUV
σ from the fixed-point value λ∗σ(Nc), as indicated by the scaling

behavior of the critical scale kSB in Eq. (236).

Let us now relate our model study of the phase diagram in the (T, λUV
σ )-plane to QCD. First of all, the

initial condition λUV
σ is not a free parameter in QCD but originally generated by quark-gluon interactions

at high (momentum) scales. In a given regularization scheme, the value of λUV
σ can therefore in principle

be related to the value of the gauge coupling at some scale (e. g. the τ mass scale), see Sect. 6 and

Refs. [29–32]. We would like to point out that neither the value of the gauge coupling at some scale nor the

value of λUV
σ on a given RG trajectory are physical observables. Nevertheless, their values can be related

to physical low-energy observables, e. g. the pion decay constant or the quark condensate. For example,

this has been explicitly illustrated in Ref. [275] by means of partial bosonization. In fact, the value of λUV
σ

determines the scale for IR observables, as explicitly demonstrated for the phase transition temperature Tχ.

Since we expect that the (constituent) quark mass mψ also scales as mψ ∼ kSB in leading order, it follows

that Tχ ∼ mψ . In the following, however, we are not interested in a quantitative analysis of the relation

of λUV
σ to low-energy observables but rather in very general aspects of QCD low-energy models.

Within our point-like approximation of the fermionic vertices it is not possible to predict the order of the

finite-temperature phase transition. In particular, our present approximation does not allow to determine

the associated critical exponents. However, we expect our model to fall into the O(N2
f ) universality class

at the critical temperature. This can be understood most easily in terms of the partially bosonized version
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of our model:63

Γk[ψ̄, ψ, σ, {πχ}] =
∫

d4x
{

Zψψ̄i /∂ψ +
1

2
Zσ (∂µσ)

2
+

1

2
Zσ (∂µπ

χ)
2

+ih̄σψ̄(σ + iτχπχγ5)ψ +
1

2
m̄2
σ(σ

2 + ~π 2) +
1

8
ω̄σ(σ

2 + ~π 2)2
}

, (241)

with χ = 1, . . . , N2
f − 1, ~π 2 := πχπχ, a Yukawa coupling h̄σ ∈ R and the boundary conditions

lim
k→ΛH

Zσ = 0 , lim
k→ΛH

Zψ = 1 , lim
k→ΛH

ω̄σ = 0 . (242)

These boundary conditions together with the identity

λ̄σ =
h̄2σ
m̄2
σ

(243)

allow us to map the ansatz (241) onto the fermionic action (218) at the initial UV scale Λ. In this picture,

we assume that the bosons are composites of fermions and do not carry an internal charge, e. g. color or

flavor: σ ∼ (ψ̄ψ) and πχ ∼ (ψ̄τχγ5ψ). The interaction between the fermions is mediated by the Nambu-

Goldstone bosons, namely the pion fields πχ. The expectation value of the σ-field is proportional to the

pion decay constant fπ . This is a consequence of the Goldberger-Treiman relation, which results from a

detailed study of the axial-vector currents of the bosonized action [276].

At this point we mention a subtlety concerning the mapping of the partially bosonized formulation onto

the purely fermionic formulation of our model. First of all, the identity (243) suggests that we have only

one input parameter in the present study, namely the value of the ratio (h̄UV
σ /m̄UV

σ ) at the UV scale ΛH.

In d = 4 space-time dimensions, however, the Yukawa coupling h̄σ is marginal. This suggests that the

partially bosonized theory in d = 4 depends on two input parameters in contrast to d = 3, see also our

discussion of the Gross-Neveu model in d = 3 in Sect. 5.1. Nonetheless the critical scale kSB depends

only on the ratio (h̄UV
σ /m̄UV

σ ) in leading order in an expansion in powers of 1/Nc and receives only small

corrections from the next-to-leading order, see also below. On the other hand, the ratio of IR observables,

such as the ratio of the σ-mass and the constituent quark mass, depends on both parameters, see Eq. (214).

In practice, this means that the ratio (h̄UV
σ /m̄UV

σ ) and the Yukawa coupling h̄UV
σ should be considered as

independent input parameters at the UV scale Λ.

As we have seen in Sect. 3.2, the partially bosonized formulation of a fermionic model allows us to

conveniently compute the order parameter, i. e. the chiral condensate, and in principle also its temperature

dependence. The latter can be used to determine the order of the phase transition and to relate the initial

condition λUV
σ to physical observables. The gap equation for the expectation value of the σ-field in the

mean-field approximation can be obtained along the lines of the derivation of Eq. (66). From the effective

action (241) with Zσ = 0 and ω̄σ = 0, we find

〈σ〉 = 8Nc

(
h̄2σ
m̄2
σ

)

T

∞∑

n=−∞

∫
d3p

(2π)3

[ 〈σ〉
ν2n+~p

2+〈σ〉2 −
〈σ〉

ν2n+Λ2
H+〈σ〉2

]

θ(Λ2
H−~p 2) , (244)

where we have used Eq. (15) and the optimized 3d regulator function given in Eq. (349). We have chosen

this regulator since it allows us to directly relate the initial conditions λUV
σ in Fig. 12 to the expectation

value 〈σ〉. The Yukawa coupling has been absorbed into a redefinition of the bosonic field which is possible

in the mean-field approximation. Using Eq. (244) we find that (Λ2
Hh̄

2
σ/m̄

2
σ) ≈ 14.1 yields a (constituent)

63 Recall that at finite temperature the Poincare invariance of the theory is broken explicitly. Therefore the wave-function renor-

malizations longitudinal and transversal to the heat-bath obey a different RG running. We neglect this difference for our general

discussion in this section. In general, this is at least a reasonable approximation since it has indeed been found in Ref. [33] that

the difference is small at low temperatures and only yields mild corrections to, e. g., the thermal mass of the bosonic degrees of

freedom for intermediate temperatures T & Tχ. Moreover, we identify the wave-function renormalizations and the couplings of the

Nambu-Goldstone modes and the so-called radial σ-mode. This is justified for our general discussion concerning universality at finite

temperature.
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quark mass mψ ≈ 0.3GeV for T = 0, Nc = 3 and ΛH = 1GeV. Now we can either read off the corre-

sponding phase transition temperature Tχ from Fig. 12 or we can compute Tχ with the gap equation (244).

It is reassuring that we find Tχ ≈ 0.183GeV either way. Moreover, the phase transition turns out to be of

second oder in this simple large-Nc approximation.

Concerning the phase diagram in the (T, λUV
σ )-plane, we expect that corrections to the large-Nc approx-

imation arising from boson fluctuations will lower the phase transition temperature. This implies that the

Nc-independence of the phase boundary is lifted. To be specific, we expect that the exact phase boundary

approaches the large-Nc phase boundary from below. Since fluctuations of the bosons are parametrically

suppressed for Nc → ∞, the phase boundary shown in Fig. 12 simply represents the large-Nc phase

boundary. Note that 1/Nc-corrections to the gap equation (244) can be conveniently taken into account

within our RG framework, see e. g. Refs. [135–137,275]. However, a detailed analysis of such corrections

is beyond the scope of the present work. We only state that the results of these studies agree qualitatively

with the simple estimates presented here.

Returning to the universal critical behavior of the theory at the thermal phase transition, we find that the

Nambu-Goldstone bosons, namely the pions, tend to restore the chiral symmetry while the fermions tend

to build up a condensate and thereby break the symmetry of the ground state. However, the anti-periodic

boundary conditions for the fermions in Euclidean time direction lead to a suppression of the fermionic

modes in the vicinity and above the phase transition due to the absence of a zero mode.

The critical temperature Tχ of our model can be viewed to be the temperature at which all N2
f bosonic

modes are exactly massless in the limit k → 0. In this limit the (dimensionless) extent 1/τ = k/T of

the Euclidean time direction becomes arbitrarily small. This means that the wave-length of these bosonic

modes becomes much larger than the extent of the Euclidean time direction. Thus, the dynamics close to

the thermal phase transition is effectively described by an O(N2
f ) scalar theory in d = 3 dimensions:

Γk[σ, {πχ}] =
∫

d3x

{
1

2
Z⊥
σ (∂iσ)

2
+

1

2
Z⊥
σ (∂iπ

χ)
2
+

1

2
m̄2
σ(σ

2 + ~π 2) + . . .

}

, (245)

where i = 1, 2, 3. This three-dimensional scalar field theory possesses a quantum critical point similar

to the one in our fermionic theories at vanishing temperature. This critical point divides the theory into

two physically distinct regimes in the IR limit, namely one with a spontaneously broken O(N2
f ) symmetry

in the ground-state and one with a restored O(N2
f ) symmetry. The critical exponents associated with this

quantum critical point govern the scaling behavior of physical observables at the thermal phase transition of

the quark-meson model. The computation of these (thermal) critical exponents is beyond the scope of this

review. However, we stress that the Wetterich equation can indeed be used to determine these exponents

accurately, see e. g. Refs. [106, 143–146, 229].

In the present work we have essentially restricted ourselves to an analysis of QCD low-energy effective

models in the large-Nc limit. In this limit we expect the effective action (218) to be a controlled starting

point according to our fixed-point analysis in the previous section. In principle, we have to take into

account the Fierz-complete basis of four-fermion interactions given in Eq. (220) when we intend to go

beyond the large-Nc limit. Moreover, we would have to take into account further four-fermion operators

at finite temperature due to the broken Poincare invariance, see our discussion in Sect. 3.5.3. In a partially

bosonized language this means that we have to take into account the associated bosonic degrees of freedom,

e. g. vector bosons and axial-vector bosons. This already indicates that the determination of the order

of the chiral phase transition in QCD and, in particular, the determination of the location of a possibly

existing critical point at finite temperature and density is an inherently complicated task. Note that in our

considerations we have not even taken into account effects of topologically non-trivial gauge configurations

which break the UA(1) symmetry.

We would also like to add that our simple model description breaks down above the phase transition. In

fact, we expect gluonic degrees of freedom to become relevant at high temperatures. In order to cure this

shortcoming, extensions of the presently studied low-energy model have been put forward in Refs. [137,

255–260, 277–284].
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Despite all these shortcomings of this simple model, our study already reveals the basic mechanism

of dynamical chiral symmetry breaking. Moreover, we have shown in this and the previous section that a

detailed analysis of the fixed-point structure is extremely useful since it provides us with important insights

for a reliable construction of effective models.

Let us conclude our discussion of QCD low-energy models with a few words of caution concerning

the LPA which is often used to include corrections beyond the large-Nc limit in studies of the partially

bosonized action Eq. (241). To this end, we consider the mapping of the fermionic and partially bosonized

theory in more detail. In the chirally symmetric regime the flow equations for the dimensionless renormal-

ized couplings ǫσ = m̄2
σ/(Zσk

2), ωσ = ω̄σ/Z
2
σ and the Yukawa coupling hσ = h̄σ/(Z

1/2
σ Zψ) are given

by64

∂tǫσ = (ησ − 2)ǫσ − 12v3 l
(4)
1 (τ, ǫσ; ησ)ωσ + 32Ncv3 l

(F),(d)
1 (τ, 0, 0; ηψ)h

2
σ , (246)

∂tωσ = 2ησωσ + 24v3 l
(4)
2 (τ, ǫσ; ησ)ω

2
σ − 64Ncv3 l

(F),(4)
2 (τ, 0, 0; ηψ)h

4
σ , (247)

∂th
2
σ = (ησ + 2ηψ)h

2
σ − 16v3 l

(FB),(4)
1,1 (τ, 0, ǫσ; ηψ, ησ)h

4
σ, (248)

where v3 = 1/(8π2). Again, we have employed 3d regulator functions to derive these equations. The

threshold functions are defined in App. D. Note that the sign in front of the term ∼ h4σ in Eq. (248) differs

from the one in Eq. (195). This change in the sign is due to the existence of the Nambu-Goldstone bosons

in our QCD model; the latter enter this equation with the opposite sign compared to the radial mode (σ-

mode). Moreover, we would like to point out that the term ∼ h4σ is not present in the NJL model with one

fermion species and a continuous chiral symmetry. In this case, we have one Nambu-Goldstone mode and

one radial mode which cancel each other identically, see Eq. (88).

As in our study of the Gross-Neveu model we can now study the RG flow of the ratio h2σ/ǫσ which can

be obtained straightforwardly from the flow equations (246) and (248). We obtain

∂t

(
h2σ
ǫσ

)

= (2 + 2ηψ)

(
h2σ
ǫσ

)

− 32Ncv3 l
(F),(4)
1 (τ, 0, 0; ηψ)

(
h2σ
ǫσ

)2

+12v3 l
(4)
1 (τ, ǫσ; ησ)ωσ

(
h2σ
ǫ2σ

)

−16v3 l(FB),(4)
1,1 (τ, 0, ǫσ; ηψ, ησ)

(
h4σ
ǫσ

)

. (249)

Using Eqs. (212), (242) and (243), we recover the RG flow equation (233) of the four-fermion coupling λσ .

Thus, the partially bosonized and the purely fermionic description are indeed identical at the UV scale ΛH.

Note that the prefactor of the term ∼ h2σ/ǫσ would turn out to be incorrect if we did not include the RG

running of the Yukawa coupling, as done in the standard LPA. In other words, a standard LPA does not

incorporate all terms associated with a systematic expansion of the flow equations in powers of 1/Nc. This

observation agrees with our analysis of the Gross-Neveu model in Sect. 5.1.

6 Gauge Theories

6.1 Gauge Theories with Few and Many Fermion Flavors - A Motivation

Chiral gauge theories are of utmost importance for our understanding of the fundamental forces in nature.

For example, the strong interaction is mediated by the exchange of gluons, the gauge bosons of the theory

of the strong interaction (QCD). To obtain a quantitatively and qualitatively consistent description of the

generation of hadron masses in the early universe, a comprehensive understanding of chiral symmetry

breaking in gauge theories is therefore mandatory.

Strongly-flavored asymptotically free gauge theories, i. e. gauge theories with many flavors, are cur-

rently very actively researched. Two prominent examples are QCD with many (light) flavors and QED3,

i. e. QED in d = 2+1 dimension. While there is a long-standing interest in QED3 as an effective theory for

64 We have set Z
‖
ψ
= Z⊥

ψ
and Z

‖
σ = Z⊥

σ for simplicity. This implies η
‖
ψ
= η⊥

ψ
and η

‖
σ = η⊥σ .
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graphene [285–287], QCD with many quark flavors has drawn a lot of attention in recent years. The rea-

sons for this great interest in strongly-flavored gauge theories are manifold. First, the number of (massless)

fermions can be considered as an external parameter. Such gauge theories are then expected to exhibit

a quantum phase transition from a chirally broken to a conformal phase when the number of fermion

flavors is increased. Second, the understanding of strongly-flavored gauge theories underlies (walking)

technicolor-like scenarios for the Higgs sector, see e. g. Refs. [80–88]. Returning to the dynamics under-

lying the generation of hadron masses, a controllable deformation of real QCD (with two light flavors) can

teach us important lessons about the underlying principles of chiral symmetry breaking in nature.

The phase structure of gauge theories with Nf fermions can indeed be rich, as simple considerations

may already suggest. Due to the screening property of fermionic fluctuations in gauge theories, asymptotic

freedom is lost for large Nf. For instance, an SU(Nc) gauge theory with Nf fermions is no longer asymp-

totically free (a.f.) for Nf > N a.f.
f := 11

2 Nc. Another prominent fermion number, NCBZ
f , potentially exists

and denotes the smallest flavor number for which an infrared fixed point g2∗ of the running gauge coupling

in QCD still occurs. Consider the universal65 two-loop βg2 function of the gauge coupling g2:

βg2 ≡ ∂tg2 = −
(

β0 + β1

(
g2

16π2

)

+ . . .

)
g4

8π2
(250)

with

β0 =
11

3
Nc −

2

3
Nf and β1 =

34N3
c + 3Nf − 13N2

c Nf

3Nc

. (251)

One readily observes that this β-function exhibits a non-trivial fixed point for Nf > NCBZ
f , the so-called

Caswell-Banks-Zaks (CBZ) fixed point [288]. For SU(3), we have NCBZ
f ≃ 8.05 in the two-loop approx-

imation, marking a sign change of the coefficient β1. With increasing Nf > NCBZ
f , the fixed-point value

g2∗ decreases and a perturbative treatment of the theory therefore seems possible near Nf . N a.f.
f . More-

over, the existence of this fixed point suggests the existence of a conformally invariant limit in the deep

infrared [289]. For decreasing Nf, g
2
∗ becomes larger, suggesting the onset of chiral symmetry breaking.66

The fermions then acquire a mass and decouple from the dynamics of the theory. This effect destabilizes

the CBZ fixed point g2∗ in the gauge sector of the theory. In this case, the IR limit of the theory is dom-

inated by massless bosonic excitations, the Nambu-Goldstone modes, and the spectrum of the theory is

characterized by a dynamically generated mass gap. A similar reasoning also applies to QED3, see e. g.

Refs. [290, 291].

Our considerations suggest the existence of a critical value g2cr of the gauge coupling which needs to

be exceeded to trigger chiral symmetry breaking. As a direct consequence, we expect the existence of a

quantum critical point associated with a critical flavor number NCBZ
f ≤ Nf,cr < N a.f.

f above which gauge

theories approach a conformally invariant IR limit, see Fig. 13. Thus, Nf serves as a control parameter for

a quantum phase transition. Note the difference to our studies of quantum critical behavior in the Gross-

Neveu model and NJL-type models, where we have varied the initial values of the fermionic couplings

directly to force the system to undergo a quantum phase transition.

Studies of the phase structure of strongly-flavored gauge theories have been performed with continuum

methods as well as lattice simulations. In QED3 many studies have provided estimates for Nf,cr using

Dyson-Schwinger equations and resummation techniques [290–300]. Since the dynamically generated

mass is substantially smaller than the scale set by the gauge coupling, lattice simulations of QED3 with

many flavors are inherently challenging [301–304]. The phase structure of many-flavor QCD has also been

studied with continuum methods [29–31, 159, 272, 288, 289, 305–317] and lattice simulations [318–333].

Recent results suggest in this case that a conformal phase indeed exists, with a quantum phase transition

occurring around 9 . N cr
f . 13.

65 While the one-loop coefficient is independent of the scheme, the two-loop coefficient is only universal in mass-independent

regularization schemes, e. g. the MS scheme.
66 Of course, it is well-known that the phenomenologically important case of two massless flavors exhibits chiral symmetry

breaking in the IR limit.
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g2

g2
cr

kkcr

Nf

Fig. 13 Illustration of the IR running of the gauge coupling in comparison to the critical value of the gauge cou-

pling g2cr. The figure has been taken from Ref. [79]. Below the conformal window, Nf < Nf,cr, the gauge coupling g2

exceeds its critical value g2cr at the scale k = kcr, triggering chiral symmetry breaking. For increasing flavor number,

the IR fixed-point value g2∗ becomes smaller than the critical value, indicating that the theory is inside of the conformal

window. Note that kcr should not be confused with the chiral symmetry breaking scale kSB. In fact, we have kcr ≥ kSB,

see discussion below.

Given the existence of such a quantum critical point in an asymptotically free gauge theory with Nf

flavors, the question arises how the spectrum of the theory behaves when we approach this point from

below. This question is tightly bound to the Nf-dependence of the dynamically generated chiral symmetry

breaking scale kSB. It is well-known from studies of Dyson-Schwinger equations in the rainbow-ladder

approximation that physical observables, e. g. the fermion condensate or the fermion mass, exhibit an

exponential scaling close to Nf,cr, provided that the (momentum) scale dependence of the gauge coupling

can be neglected [158, 306, 334–337]:

mψ ∝ Λθ(Nf,cr −Nf) exp

(

− π

2ǫ
√

|α1||Nf,cr −Nf|

)

. (252)

This type of scaling behavior has already been introduced in Sect. 3.4.2. Here,mψ denotes the dynamically

generated fermion mass, and Λ denotes a suitably chosen UV scale. The quantities ǫ and α1 in Eq. (252)

are constants arising from the details of the theory and will be defined in Sect. 6.3.1. This scaling behavior

can be viewed as a generalization of essential Berezinskii-Kosterlitz-Thouless (BKT) scaling [160–162] to

higher-dimensional systems [163]. We rush to add that the spectra of the different theories below and above

Nf,cr are substantially different. In particular, a construction of an effective low-energy theory in terms of

light scalar fields may no longer be possible aboveNf,cr. In any case, the fact that essential scaling behavior

may occur in various different systems, ranging from specific 2-dimensional condensed-matter systems

over QED3 to QCD, exemplifies once more that a phenomenological and technical exchange between

these seemingly different research fields offers great potential to gain deep insights into the mechanisms of

symmetry breaking in fermionic theories.

One may wonder how the essential scaling behavior (252) close to the quantum phase transition is

altered when the running of the gauge coupling is taken into account. We shall derive the corresponding

modified scaling laws for physical observables in this case, following the discussion in Ref. [79]. Our main

arguments are based on very general considerations and involve only few assumptions about the fixed-point

structure of the theory. The resulting scaling laws can be tested in QCD and QED3, for example with the

aid of Monte-Carlo simulations. In Sect. 6.2 we begin our discussion of chiral symmetry breaking in

gauge theories with the simple few-flavor case using the example of QCD. We explain the issue of scale

fixing in gauge theories which arises when one is interested in a meaningful comparison of theories with

a different number of flavors. These ideas have been put forward in Refs. [31, 78] and have been used to



Jens Braun: Fermion Interactions and Universal Behavior in Strongly Interacting Theories 85

improve the parameter fixing in QCD model studies [281]. In Sect. 6.3 we analyze the scaling behavior

in gauge theories close to a quantum critical point on general grounds. In Sect. 6.3.1, we briefly repeat

the arguments given in Sect. 3.4.2 which lead to an exponential scaling behavior at a quantum phase

transition. In addition, we give the leading-order correction to the exponential scaling behavior in gauge

theories. In Sect. 6.3.2, we discuss power-law-like scaling behavior in gauge theories, which provides

a strict upper bound for the Nf-scaling of chiral low-energy observables. In Sect. 6.3.3, we present the

universal corrections to the exponential scaling behavior (252) which arise due to the running of the gauge

coupling. Moreover, we show that power-law scaling and exponential scaling arise as two different limits

of one and the same RG flow. The consequences for low-energy observables from the existence of a nearby

quantum critical point are explained in Sect. 6.4 with the aid of a simple low-energy model. To illustrate

our analytic findings, we review numerical results from non-perturbative RG studies of the scaling behavior

in many-flavor QCD in Sect. 6.5.

For our discussion of many-flavor QCD in Sect. 6.5, we focus on the chiral phase transition, even

though we also expect an impact of the confining nature of the theory on the properties of the system near

criticality. However, since we work in the chiral limit, there is no good order parameter for confinement, in

particular for many quark flavors. This implies that for largeNf nonanalyticities in the correlation functions

are rather dominated by the chiral degrees of freedom. For few-flavor QCD, on the other hand, we may

indeed expect that the fixed-point structure of the matter sector is significantly affected by the confining

dynamics of the theory. In Sect. 6.6, we show that at finite temperature an interrelation of the confinement

and chiral order parameter exists, at least for small Nf. This can be simply understood in terms of the

fixed-point structure of the matter sector.

An outlook is given in Sect. 6.7, including a discussion of the implications of our findings for other

gauge theories, e. g., with fermions in the adjoint representation.

6.2 The Issue of Scale Fixing in Gauge Theories

To illustrate the issue associated with scale fixing in gauge theories, let us consider few-flavor QCD. In

the limit of zero current quark masses (chiral limit), QCD depends only on one parameter, namely the

gauge coupling g, see Eq. (216). In the quantum theory, the gauge coupling has to be fixed at a certain

momentum scale in terms of a renormalization condition. The RG finally trades the gauge coupling fixed

at an arbitrary scale in for one single parameter ΛQCD of mass dimension one. The latter sets the mass scale

for all physical observables of the theory. In other words, all physical observables respond trivially to a

variation of ΛQCD according to their canonical mass dimension. In units of ΛQCD, the theory is completely

fixed.

In order to discuss the dependence on quantities such as the flavor number, it is important to emphasize

that a variation of the flavor number does not correspond to a change of a parameter of the theory. It rather

corresponds to changing the theory itself. In particular, there is no unique way to unambiguously compare

theories of different flavor number with each other, as different theories may have different scales ΛQCD.

For example, it may seem natural to compare theories with different flavor numbers at fixed ΛQCD with

each other. However, ΛQCD itself is not a direct observable. Hence, such a comparison is generically

spoilt with theoretical uncertainties. Moreover, ΛQCD is regularization-scheme dependent which can affect

comparisons between different theoretical methods, say, lattice and functional approaches. Another option

could be a scale fixing in the deep perturbative region, say, at the Z-boson mass scale by fixing g2(MZ).
However, theories with different flavor numbers then exhibit a different perturbative running, such that IR

observables vary because of both high-scale perturbative as well as non-perturbative (RG) evolution.

Following Ref. [78], we propose to choose a mid-momentum scale for the scale fixing, as the high-

scale perturbative running is then separated from the more interesting non-perturbative dynamics. For

example, we may fix the theories at any Nf by keeping the running coupling at the τ mass scale fixed

to g2(mτ )/(4π) = 0.322. Even though also this choice is scheme dependent, these dependences should

be subdominant, as they follow a perturbative ordering. In general, fixing the scale via the coupling is a

prescription which is well accessible by many non-perturbative methods. As an alternative of the described
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Fig. 14 Strong coupling αs = g2/(4π) as a function of the momentum (transfer) Q. The figure has been taken

from Ref. [338].

scale-fixing prescription, however, one might think of keeping the value of an IR observable fixed for

theories with different Nf, e. g. the pion decay constant or the critical temperature. Of course, this is also

possible, e. g. in lattice QCD simulations. We shall comment on possible difficulties arising from such a

procedure in Sect. 6.3.2.

Let us now present a simple argument that illustrates how the Nf-dependence of physical observables

can be understood in the limit of small Nf. As already stated above, all IR observables such as the chiral

phase transition temperature Tχ, the pion decay constant fπ , the chiral condensate 〈ψ̄ψ〉, and model-

dependent concepts such as the constituent quark mass, are proportional to ΛQCD. On the one hand, the

latter can be read off from the UV behavior of the running coupling, g2(k) ∼ 1/ ln(k/ΛQCD) for large

k ∼ Q, see also Fig. 14. On the other hand, the value of ΛQCD can be associated with the position of the

Landau pole in perturbation theory.67 In this simple reasoning, the artificial Landau pole in the one-loop

βg2 function can be taken as an estimate for the scaling of physical observables. To be specific, we have

β1-loop

g2 ≡ ∂tg2 = −β0
(
g4

8π2

)

, (253)

where β0 is defined in Eq. (251). The position of the Landau pole can then be read off from

0 =
1

g2(ΛQCD)
=

1

g2(µ0)
+ β0 ln

(
ΛQCD

µ0

)

, (254)

where µ0 denotes a perturbative scale, such as the τ -mass scale mτ or the Z-boson mass MZ. Solving this

equation for ΛQCD and expanding the result for small Nf leads us to

ΛQCD ≃ µ0 e
− 1
b0g

2(µ0) ≃ µ0 e
− 24π2

11Ncg
2(µ0)

(
1− xNf +O((xNf)

2)
)
. (255)

67 Of course, this statement has to be taken with care, since ΛQCD is a meaningful scale, whereas the Landau pole is simply an

artifact of perturbation theory.
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Fig. 15 Representation of the terms on the right-hand side of the RG flow equation (258) by means of 1PI Feynman

diagrams, see Refs. [79, 341]. Our functional RG approach, see e. g. Sect. 6.5, includes resummations of all diagram

types including ladder-diagrams generated by type (b) and (c) as well as the corresponding crossed-ladder diagrams.

Choosing µ0 = mτ , we find x = 48π2

121N2
c g

2(µ0)
≃ 0.107 for Nc = 3. Two conclusions can immediately be

deduced from this expression: first, ΛQCD can be expanded in Nf and has a generically nonvanishing linear

term. Second, for the present way of scale fixing the linear behavior should be a reasonable approximation

for Nf . 4, as the (dimensionless) expansion parameter x is small in this regime.

Since ΛQCD sets the scale for all dimensionful IR observables, we are tempted to conclude that all

IR observables scale linearly with Nf for small Nf with the same proportionality constant x. Of course,

this would be too simple since the dynamics which establishes the value of the IR observables generi-

cally carries an Nf dependence as well. For example, the chiral symmetry-breaking dynamics depends on

the number of light mesonic degrees of freedom, which is an Nf-dependent quantity. Nonetheless, it is

reasonable to expect that in leading order (chiral) low-energy observables O indeed scale according to

O = O0 ( 1− xNf + . . . ) , (256)

where O0 is a dimensionful proportionality constant. For example, a linear dependence of the chiral phase

transition temperature O = Tχ on Nf has been found in lattice simulations [339] and in studies with

functional RG methods [30, 31], see also Sect. 6.5.2. Note that Eq. (255), which underlies Eq. (256), has

led to a significant improvement of the parameter fixing in studies of so-called Polyakov-loop extended

low-energy models [259, 281, 340].

Let us finally generalize our discussion to gauge theories other than QCD. Our scale-fixing prescription

indeed also applies to other theories in which dynamical chiral symmetry breaking is triggered by a running

coupling that approaches a non-trivial IR fixed point. To be more specific, we shall focus our discussion

on strongly-flavored asymptotically free gauge theories, such as QCD with many flavors and QED3. By

asymptotic freedom, we refer here to the vanishing of the dimensionless renormalized coupling in the UV.

In such theories, it seems natural to expect that the dependence of the coupling on the (momentum) scale

modifies the exponential scaling behavior (252). We will discuss this in detail in Sect. 6.3.3.

6.3 General Aspects of Quantum Critical Behavior in Gauge Theories

6.3.1 Miransky Scaling

In Sect. 3.4.2 we have discussed essential/exponential scaling behavior in a simple NJL-type model. These

considerations can be straightforwardly generalized to gauge theories. The role of the vector-coupling in

our simple model is now played by the squared gauge coupling g2. In gauge theories, exponential scaling

behavior near a quantum critical point is also known as Miransky scaling [158, 159].

The following analysis is by no means bound to QCD. To make this explicit, we shall keep our dis-

cussion as general as possible and consider a very general class of theories where symmetry breaking and
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condensate formation is driven by fermionic self-interactions. Independently of whether these interactions

may be fluctuation-induced (as in QCD) or fundamental (as in beyond standard-model applications) This

class of theories can be parameterized by the following action:

SM =

∫

ddx
{

ψ̄(i /∂ + ḡ /A)ψ + λ̄αβγδψ̄αψβψ̄γψδ

}

, (257)

where α, β . . . denote a specific set of collective indices including, e. g., flavor and/or color indices. In

general, we expect to have more than just one four-fermion interaction channel as it is indeed the case in

QCD, see Eq. (220).

From the action (257) we can derive the β function of the dimensionless four-fermion coupling λ in the

point-like limit. It assumes the following simple form:

βλ ≡ ∂tλ = (d− 2)λ− aλ2 − bλg2 − cg4 . (258)

The couplings λ ∼ λ̄/k(d−2) and g ∼ ḡ/k4−d denote dimensionless and suitably renormalized couplings.

The quantities a, b and c do not depend on the RG scale but may depend on control parameters, such as

the number of fermion flavors Nf or the number of colors Nc in QCD. This βλ function can be directly

compared to the flow equation (102) of our toy model, where the role of g2 is played by the vector coupling.

Note that the coefficients a, b and c can depend implicitly on the RG scale as soon as we introduce a

dimensionful external parameter, e. g., temperature T . However, the coefficients remain dimensionless

since they depend only on the ratio T/k, see e. g. Refs. [30, 31].

The various terms on the right-hand side of Eq. (258) can be understood in terms of perturbative Feyn-

man diagrams [341], see Fig. 15. Note that we have dropped terms in Eq. (258) which are proportional to

the anomalous dimension ηψ of the fermion fields. In contrast to purely fermionic theories, ηψ can be finite

in gauge theories even in the point-like limit. This is due to the existence of 1PI diagrams proportional to g2

with one internal fermion line and one internal gauge boson line.68 In the following we assume that these

contributions are small. This is indeed true in the chirally symmetric regime where these contributions are

proportional to the gauge-fixing parameter and therefore vanish at least in the Landau gauge [152].

As we have not specified the running of the vector coupling in our toy model study of essential scaling

in Sect. 3.4.2, we have not further specified the details of the gauge sector in Eq. (257). In fact, let us ignore

the running of the gauge coupling in this section, and consider the gauge coupling as a scale-independent

“external” parameter. The RG flow of the gauge coupling is then trivially governed by

∂tg
2 ≡ 0 . (259)

This might be an acceptable approximation in the vicinity of an IR fixed point g2∗ . Nonetheless, the value

of g2∗ may still depend on other control parameters such asNf orNc, see our discussion of QCD with many

flavors in Sect. 6.5.

In Fig. 16 we show a sketch for the βλ function, implicitly assuming that a > 0, b > 0 and c > 0 in

Eq. (258). For a vanishing gauge coupling g2 we find two fixed points, an IR attractive Gaussian fixed

point at λ = 0 and an IR repulsive fixed point at λ > 0. For increasing g2 these fixed points approach each

other and eventually merge for a critical value g2cr,

g2cr =
d− 2

b+ 2
√
ac
. (260)

For g2 > g2cr we strictly have ∂tλ < 0 and the four-fermion coupling then becomes a relevant operator

and increases rapidly towards the IR, indicating the onset of (chiral) symmetry breaking. Thus, the four-

fermion coupling λ necessarily diverges for g2 > g2cr at a finite RG scale kSB = kSB(g
2). Here, we

assume that the initial conditions at the UV scale k = Λ for the four-fermion coupling λ are chosen such

68 This is in close analogy to the partially bosonized formulations of purely fermionic models where ηψ is finite due to the

existence of a 1PI diagram with one internal fermion line and one internal boson line, see e. g. Eqs. (87) and (197).
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Fig. 16 Sketch of a typical β function for the fermionic self-interactions λ, see Refs. [29, 79] and also [31] for

the generalization to finite temperature): at vanishing gauge coupling, g2 = 0, the Gaußian fixed point λ = 0
is IR attractive. For g2 = g2cr, the fixed-points merge due to a shift of the parabola induced by the gauge-field

fluctuations ∼ g4. For gauge couplings larger than the critical coupling g2 > g2cr, no fixed points remain and the

strength of the self-interactions increases rapidly, signaling the onset of chiral symmetry breaking. The arrows indicate

the direction of the flow towards the infrared. For increasing temperature, the parabolas become broader and higher.

This is indicated by the dashed line.

that λUV is smaller than the value of the IR repulsive fixed point, see Fig. 16. In beyond-standard model

applications λUV is sometimes considered to be a finite parameter, see e. g. Ref. [342]. We therefore add

that the exponential scaling behavior discussed below can only be observed when λUV is chosen to be

smaller than the value of its repulsive fixed point for a given g2. Otherwise, we expect a power-law-like

scaling behavior as discussed in Sect. 3.4.1.

This picture of the emergence of chiral symmetry in gauge theories is not new but has been put forward

in [29–31, 78] and successfully employed for an analysis of the phase structure of QCD with various

numbers of flavors and colors at zero and finite temperature [29–31, 78]. Moreover, this picture has also

been employed to study conformal scaling in quantum field theories, see e. g. Ref. [163].

Even though the symmetry breaking scale kSB is not a direct observable, it sets the scale for (chiral)

observables O such as condensates, decay constants, critical temperatures, etc.:

O = fO k
dO
SB , (261)

where dO is the canonical mass dimension of the observableO and fO is a function which does not depend

on g2cr but may depend on g2 and other external parameters, e. g., Nf and/or Nc. The function fO can be

computed systematically within certain approximations schemes such as large-Nc expansions or chiral

perturbation theory, see Sect. 6.4 and Refs. [78, 343].

Let us now briefly discuss the scaling behavior of the symmetry-breaking scale kSB when g2 is varied

by hand as a constant “external” parameter. To this end, we have to solve the RG flow equation (258). In

close analogy to our study in Sect. 3.4.2, we obtain the following result for the scale kSB:69

kSB ∝ Λθ(g2 − g2cr) exp
(

− π

2ǫ
√

g2 − g2cr

)

. (262)

69 We have chosen the initial conditions such that λUV = λmax, where λmax denotes the position of the maximum of the βλ
function, i.e., the peak of the parabola in Fig. 16.
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Here, ǫ is a numerical factor,

ǫ =

√

(d− 2)(2ac+ b
√
ac)

b+ 2
√
ac

, (263)

which in general depends on the details of the theory under consideration, e. g. the number of colors and

flavors in QCD. In any case, we find an exponential scaling behavior of kSB for g2 close to g2cr. Due to

Eq. (261) it is reasonable to expect that physical chiral observablesO inherit this scaling behavior from the

symmetry breaking scale kSB.

Let us now discuss the consequences of the scaling law (262) when we apply our considerations to

strongly-flavored gauge theories, such as QED3 or QCD with many fermion flavors. In these cases we may

choose the IR fixed-point of the gauge coupling as an external parameter, i. e. g2 = g2∗(Nf ) in Eq. (262).

Depending on the Nf dependence of the coefficients a, b and c in the βλ function, the critical value for

the gauge coupling may depend on the number of flavors as well, g2cr = g2cr(Nf). The critical number of

fermion flavors Nf,cr can then be obtained from the criticality condition

g2cr(Nf,cr) = g2∗(Nf,cr). (264)

This corresponds to the coupling value for which the two fixed points of the four-fermion coupling λmerge

and then annihilate each other for g2 > g2cr. Expanding g2∗(Nf)− g2cr(Nf,cr) around Nf,cr,

g2∗(Nf)− g2cr(Nf,cr) = α1(Nf−Nf,cr) + α2(Nf−Nf,cr)
2 + . . . , (265)

and plugging Eq. (265) into Eq. (262), we find the exponential Nf-scaling of kSB:

kSB ∝ Λθ(Nf,cr −Nf) exp

(

−
π(1− α2

|α1| |Nf,cr −Nf|+ . . . )

2ǫ
√

|α1||Nf,cr −Nf|

)

. (266)

We observe that the size of the regime for exponential scaling depends on the ratio |α2/α1| which in

turn depends on the theory under consideration. Thus, the size of the scaling regime may presumably be

different in, e. g., QCD and QED3. In Sect. 6.5 we compare these analytic findings with results from a

numerical analysis of QCD with many quark flavors.

6.3.2 Power-law Scaling

In this section we discuss how the running of the gauge coupling affects the RG flow of four-fermion

couplings. In particular, we argue that (chiral) symmetry breaking in strongly-flavored gauge theories is

a multi-scale problem, in contrast to the scenario associated with Miransky scaling. In other words, the

(chiral) symmetry breaking scale kSB and its scaling with the control parameters, e. g. the number of

flavors Nf, depends on the scale fixing and its potential flavor dependence.

In the following, we include the running of the gauge coupling which goes beyond standard rainbow-

ladder approaches employed in the context of strongly-flavored gauge theories, see e. g. Ref. [309].

As we have argued in detail in Sect. 6.2, fixing the scale of theories with, say, different flavor numbers

Nf by keeping the running coupling at some scale Λ (e. g. τ mass) fixed to a certain value, seems to

be a well accessible prescription for many non-perturbative methods. In general, it is important to take

care that this scale-fixing procedure is not (or as little as possible) spoilt by scheme dependences. The

latter constraint then essentially rules out ΛQCD as a proper scale in QCD to be kept fixed in theories with

different flavor numbers. For what follows, we shall choose a mid-momentum scale for the scale fixing,

lying in between the high-scale perturbative running and the more interesting non-perturbative dynamics.

Thus, we fix the theories at any Nf by keeping the running coupling at some intermediate scale Λ fixed to

a certain value, say g2Λ ≡ g2(Λ).
For a monotonically increasing coupling flow, the value of the non-trivial IR fixed point g2∗ of the gauge

coupling corresponds to the largest possible coupling strength of the system in the conformal window, i. e.
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Fig. 17 Sketch of the βg2 -function for Nf,1 < Nf,cr and Nf,2 > Nf,cr. The slope of the βg2 -function at the IR fixed-

point corresponds to minus the critical exponent Θ, see Eq. (267) and Eq. (49) for a general discussion. The vertical

line to the right gives the value of g2cr. The dotted vertical line to the left gives the value of the gauge coupling at the

UV scale Λ which we keep fixed for all Nf. However, the value of g2cr may depend on Nf. The critical number of

fermion flavors Nf,cr is determined by g2cr(Nf,cr) = g2∗(Nf,cr), see Eq. (264). The arrows indicate the direction of the

flow towards the infrared.

for Nf,cr < Nf < Na.f.
f . As both g2∗ and g2cr depend on the number of flavors, the criticality condition

g2∗(Nf,cr) = g2cr(Nf,cr) defines the lower end of the conformal window and thus the critical flavor number,

see Sect. 6.3.1 and Fig. 13 for an illustration.

For g2∗ > g2cr, our model (257) is below the conformal window and runs into the broken phase. Slightly

below the conformal window, the running coupling g2 exceeds the critical value while it is in the attractive

domain of the IR fixed point g2∗ . The flow in this fixed-point regime can approximately be described by the

β-function expanded around the fixed point g2∗:

βg2 ≡ ∂tg2 = −Θ(g2−g2∗) +O((g2 − g2∗)2) . (267)

The universal “critical exponent” Θ denotes (minus) the first expansion coefficient and depends on Nf. We

know that Θ < 0 for Nf & Nf,cr, since the fixed point is IR attractive, see Fig. 17. The flow equation (267)

for the running coupling can then be solved analytically:

g2(k) = g2∗ −
(
k

k0

)−Θ

. (268)

The scale k0 corresponds to a scale where the system is already in the fixed-point regime. For the present

fixed-point considerations, k0 provides for all dimensionful scales. However, from the knowledge of the

full RG trajectory, k0 can be related to the initial scale Λ, say the τ mass scale in QCD, by RG evolution.

In the following we keep the scale k0 fixed, as we keep the UV scale Λ fixed.

As already discussed, a necessary condition for (chiral) symmetry breaking is that g2∗ > g2cr. This

implies that g2(k) exceeds g2cr at some scale kcr which is implicitly defined by the criticality condition,

g2∗(Nf,cr) = g2cr(Nf,cr), and therefore we have

kcr ≥ kSB , (269)

where kSB is the scale at which the four-fermion coupling λ diverges. Thus, kcr is an upper bound for the

symmetry breaking scale kSB. From Eq. (268) and the criticality condition g2(kcr) = g2cr, we derive an

estimate for kcr valid in the fixed-point regime

kcr ≃ k0 (g2∗ − g2cr)
− 1

Θ . (270)
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The scale kcr is dynamically generated. Note that kcr/k0 → 0 for g2∗ → g2cr from above. Due to our

scale-fixing procedure, this scale depends on Nf and Nf,cr in a non-trivial way. Note that it is, in principle,

possible to adjust the initial value of the coupling at the initial scale Λ such that the scale kcr is independent

of Nf and Nf,cr. This procedure would be similar to keeping the ΛQCD fixed for different values of Nf. As

indicated in Sect. 6.2, we expect that such a scale-fixing procedure would, however, be strongly affected

by scheme dependences, at least in our truncation. Using Eq. (265) and a Taylor expansion of the critical

exponent near the quantum phase transition,

Θ(Nf) = Θ0 +Θ1(Nf −Nf,cr) +O((Nf −Nf,cr)
2) , (271)

we find the following Nf dependence of kcr for Nf ≤ Nf,cr:

kcr ≃ k0|Nf,cr−Nf|−
1

Θ0

(

1− |Nf,cr−Nf|
Θ0

(
α2

|α1|
− Θ1

Θ0
ln(|α1||Nf,cr−Nf|)

))

+. . . , (272)

where Θ0 := Θ(Nf,cr). Since kcr defines the scale at which the fixed-points in the β function of the four-

fermion coupling merge, the existence of a finite kcr can be considered as a necessary condition for (chiral)

symmetry breaking. Thus, we expect that the scale for a given IR observables O for Nf ≤ Nf,cr is set

by kcr:

O = fOk
dO
cr , (273)

where dO is again the canonical mass dimension and fO dependes onNf but not onNf,cr, see also Eq. (261).

However, we stress that kcr does not include the full dependence of kSB on (Nf − Nf,cr), i. e. kcr/kSB is

still a function of the control parameter, as we shall discuss in the subsequent section.

Finally we would like to point out that the power-law scaling behavior discussed in this section is

different from the power-law scaling behavior discussed in purely fermionic models, such as the Gross-

Neveu model. In the latter, the scaling behavior at the quantum phase transition is governed by the critical

exponent of the (relevant) four-fermion coupling. The scaling behavior in gauge theories, on the other

hand, is governed by the critical exponent of the gauge coupling which drives the fermions to criticality.

The four-fermion couplings at the UV scale are not considered to be free parameters in the present setup,

as we have set them to zero at the UV scale.70

6.3.3 Beyond Miransky Scaling

Let us now discuss how the symmetry breaking scale kSB ≤ kcr depends on (Nf − Nf,cr). We consider

again an action of the form (257), and assume that Nf . Nf,cr. The crucial new ingredient compared to

the derivation of Miransky scaling is the RG flow of the coupling. We also assume that the system has

already evolved from the initial UV scale Λ to the scale kcr at which the fixed points of the β function

of the four-fermion coupling have merged. Sufficiently close to Nf,cr, the flow of the gauge coupling is

governed by the fixed point regime for g2 > g2cr. The running of the gauge coupling is then given by

g2(k) = g2∗ − (g2∗ − g2cr)
(
k

kcr

)−Θ

= g2∗ − (∆g2)

(
k

kcr

)−Θ

, (274)

where ∆g2 = g2∗ − g2cr, see Eq. (268). Recall that g2∗ ∼ Nf and ∆g2 ∼ |Nf,cr − Nf|. Plugging Eq. (274)

into Eq. (258), we find

βλ ≡ ∂tλ = βλ

∣
∣
∣
g2∗

− ∂βλ
∂g2

∣
∣
∣
g2∗

(∆g2)

(
k

kcr

)−Θ

+ . . . (275)

= (d−2)λ− aλ2 − bλg2∗ − cg4∗ −
∂βλ
∂g2

∣
∣
∣
g2∗

(
k

k0

)−Θ

+ . . . ,

70 Strictly speaking, we only require that the initial values of the four-fermion couplings are smaller than the values of their IR

repulsive fixed points.
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where we have used Eq. (270). Recall that k ≤ kcr ≪ k0 and Θ < 0. We observe that the zeroth order in

∆g2 coincides with the βλ function for which we have found an (implicit) analytic solution for constant

g2 in Sect. 6.3.1, yielding Miransky scaling. We refer to this analytic solution as λg2∗ . The solution of the

β-function (275) can then be found by an expansion around the solution λg2∗ :

λ = λg2∗ + (∆g2)δλ+ · · · = λg2∗ +

(
kcr

k0

)−Θ

δλ+ . . . , (276)

where δλ = −(∂λ/∂g2)|g2∗ . This expression allows us to systematically compute the scaling behavior

for Nf . Nf,cr. Since we are interested in the (chiral) symmetry breaking scale kSB we have to solve

1/λ(kSB) = 0 for kSB. In zeroth order, the scale kSB can be computed along the lines of our analysis in

Sect. 6.3.1. We find

kSB ∝ kcrθ(Nf,cr −Nf) exp

(

− π

2ǫ
√

|α1||Nf,cr−Nf|

)

≃ k0θ(Nf,cr −Nf)|Nf,cr −Nf|−
1

Θ0 exp

(

− π

2ǫ
√

|α1||Nf,cr−Nf|

)

, (277)

where we have used Eq. (272) in leading order. Higher order corrections to Eq. (277) can be computed

systematically as outlined above and in the previous sections. Thus, we have found a universal correction

to the exponential scaling behavior which is uniquely determined by the universal “critical” exponent Θ. A

similar result has been suggested by Jarvinen and Sannino using a standard rainbow-ladder approach with

a constant gauge coupling but a properly adjusted scale [343]. The presented RG analysis demonstrates in

a simple and systematic way that such a rainbow-ladder approach is indeed justified and yields the correct

leading-order scaling behavior. In the context of the RG the scaling law (277) has been first derived in

Ref. [79].

Let us now turn to the scaling behavior of physical observables. The scale of all (chiral) low-energy

observables is set by kSB. In other words, kSB represents the UV cutoff of an effective theory at low

energies, such as chiral perturbation theory and NJL-type models in case of QCD. At zero temperature we

therefore expect that a given IR observable O with mass dimension dO scales according to

O = fO(Nf) k
dO
SB , (278)

where fO(Nf) is a function which depends on Nf but not on Nf,cr; in principle, it can be computed system-

atically in QCD using, e. g., chiral perturbation theory or a large-Nc expansion, see Sect. 6.4.

The scaling law (278) can be used as an ansatz to fit, e. g., data from lattice simulations. This scaling law

is remarkable for a number of reasons: first, it relates two universal quantities with each other: quantitative

values of observables and the IR critical exponent Θ. Second, it establishes a quantitative connection

between the (chiral) phase structure and the IR gauge dynamics which is encoded in Θ. Third, it is a

parameter-free prediction following essentially from scaling arguments. Last but not least, it shows that

Miransky scaling and power-law scaling are simply two limits of the very same set of RG flows: in the

limit |Θ| → ∞ we find pure Miransky-scaling behavior, while we have pure power-law scaling in the limit

Θ→ 0.

At this point, we would like to emphasize again that the scaling behavior of any IR observable nearNf,cr

depends crucially on the scale-fixing procedure applied in the first place. Still, the universal scaling will

always show up at one or the other place and thus cannot be removed, as stressed in Ref. [78]. Our choice to

fix the scale at, e. g., the τ -mass scale which is large enough not to be affected by chiral symmetry breaking

is certainly not unique. In principle, the point where to fix the scale can be chosen as a free function of Nf.

In Eq. (268), this would correspond to the choice of an arbitrary function k0 = k0(Nf) for the global

scale, which then appears also in the scaling relations (272) and (277). Indeed, an extreme choice would

be given by measuring all dimensionful scales in units of a scale induced by chiral symmetry breaking

(such as Tχ or fπ). In this case, all chiral observables would jump non-analytically across Nf = N cr
f .
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The scaling relations would then translate into scaling relations for other external scales. For example,

the scale kg2 at which the running coupling acquires a specific value would diverge with Nf → N cr
f

according to kg2 ∼ |Nf − N cr
f |

− 1
|Θ0| exp(cM/

√

|Nf,cr −Nf|), where cM = π/(2ǫ
√

|α1|). This point of

view establishes a different way of verifying the above scaling relations on the lattice.

Let us conclude this section with a discussion of the importance of the corrections to the exponential

scaling behavior due to the running of the gauge coupling. To this end, it is convenient to consider the

logarithm of the (chiral) symmetry breaking scale kSB,

ln kSB = const.− 1

Θ0
ln |Nf,cr −Nf| −

π

2ǫ
√

|α1||Nf,cr−Nf|
. (279)

This expression can be used to estimate the regime in which the corrections to the exponential scaling

become subdominant. For this, we compute the minimum of the function

1

|Θ0|
ln |Nf,cr −Nf|+

π

2ǫ
√

|α1||Nf,cr−Nf|
(280)

with respect to |Nf,cr−Nf|. In accordance with Eq. (271), we assume |Nf,cr−Nf| < 1 here. From Eq. (280),

we can then estimate that corrections to the exponential scaling behavior are subdominant as long as

|Nf −Nf,cr| .
π2|Θ0|2
16ǫ2|α1|

, (281)

with ǫ being defined in Eq. (263). Thus, corrections to Miransky scaling due to the running of the gauge

coupling are small when |Θ0| ≫ 1 and large when |Θ0| ≪ 1. In Sect. 6.5.4 we apply Eq. (281) to QCD to

estimate the size of the regime in which the exponential scaling behavior dominates. We will see that the

exponential scaling behavior is dominantly visible only very close to Nf,cr, provided that Nf,cr ≈ 12. This

implies that the Θ-dependent universal corrections are more significant in QCD.

The role of |Θ| for the scaling behavior close to Nf,cr can also be understood by simply looking at the

βg2 function of the gauge coupling, see Fig. 17. For |Θ| ≫ 1, the gauge coupling runs very fast into its IR

fixed point once it has passed g2cr. Thus, the situation for g2 > g2cr is as close as possible to the situation

studied in Sect. 6.3.1 where the coupling has been simply approximated by a constant. For |Θ| ≪ 1 the

gauge coupling runs very slowly (“walks”) into its IR fixed point once it has passed g2cr. This walking

behavior for g2 & g2cr then gives rise to sizable corrections to the exponential scaling behavior.

6.4 Scaling in Low-energy Models

In the previous sections we have stated that the dimensionless function fO in the scaling law (278) can be

computed explicitly with the aid of effective low-energy models. In the following we use the example of

low-energy models of QCD to demonstrate that this is indeed the case. However, the subsequent analysis

is by no means restricted to QCD. It can also be applied straightforwardly to other gauge theories, such as

QED3.

Let us now be explicit and compute the function fO for the pion decay constant fπ . To this end, we

employ a straightforward generalization of the simple ansatz (241) to QCD with Nf flavors. For the sake

of the argument, it suffices to consider the large-Nc limit. Along the lines of our study in Sect. 5.2.2, it is

then possible to derive a gap equation for the vacuum expectation value of the order parameter 〈σ〉 ≡ fπ ,

see Ref. [78]. Here, we skip the details and only state that the resulting expression for 〈σ〉 is proportional

to the square of the Yukawa coupling times a purely fermionic loop which yields a factor of NfNc, see

also Eq. (244). This loop integral is UV divergent and needs to be regularized at an effective (regulator)

scale ΛH.

For momentum scales p . ΛH, we expect a description in terms of such a hadronic low-energy model

to be reasonable. We choose ΛH = creg.kSB, where creg & 1 is a numerical factor independent of Nf
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and Nc. The gap equation for 〈σ〉 can then be solved straightforwardly and yields71

〈σ〉 ∝
√

NfNck0θ(Nf,cr −Nf)|Nf,cr −Nf|−
1

Θ0 exp

(

− π

2ǫ
√

|α1||Nf,cr−Nf|

)

, (282)

where the last step holds near the conformal window, using the relation (277). Since fπ ≡ 〈σ〉, we have

ffπ (Nf) =
√

Nf . (283)

In the large-Nc approximation the Nf-scaling behavior of fπ and of the constituent quark mass mψ

is identical. Following our discussion in Sect. 5.2.2, we also expect that mψ has a Nf-scaling behavior

near Nf,cr which is identical to that of the critical temperature Tχ ∼ mψ . The scaling behavior of other

observables can be computed along these lines.

We would like to stress that the prefactor
√
NfNc in the present example is an outcome of our large-Nc

approximation of the low-energy sector. In general, we expect that any observable O comes along with a

complicated prefactor function fO depending on the number of flavors Nf and Nc. The determination of

this function, e. g. for the constituent mass, may become complicated, depending on the truncations made

in the low-energy sector. However, we emphasize that the prefactor function is independent of Nf,cr and

therefore the Nf dependence coming from this function does not modify the |Nf −Nf,cr|-scaling.

Finally we would like to add that the current quark mass is expected to modify the scaling relations away

from the chiral limit. In order to study these modifications, a generalized Gell-Mann-Oakes-Renner relation

based on the fixed-point scenario in many-flavor QCD has been advocated in Ref. [344]. Note that the

scaling behavior of observables with the current quark mass in the (quasi-)conformal72 phase of strongly-

flavored gauge theories is of particular interest for lattice simulations and currently under investigation, see

Refs. [179, 180, 345].

6.5 Chiral SU(Nc) Gauge Theories

In this section we review numerical RG studies of strongly-flavored SU(Nc) gauge theories from first

principles. In Ref. [29] the zero-temperature phase diagram in the (Nf, Nc)-plane has been computed

using the functional RG. The phase diagram in the plane spanned by the temperature and Nf has first been

computed in Refs. [30, 31]. In Sect. 6.5.1 we briefly review the RG setup. The various phase diagrams are

then discussed in Sect. 6.5.2. In Sects. 6.5.3 and 6.5.4 we present a quantitative study of scaling close to the

quantum critical point Nf,cr. This comprehensive analysis of scaling has first been performed in Ref. [79].

Before we begin with our discussion of strongly-flavored gauge theories, we would like to add a few

words on the application of the Wetterich equation to gauge theories and, in particular, to QCD. The Wet-

terich equation has been employed for first-principles studies of QCD since the mid 1990s, where it started

out with non-perturbative studies of the running of the gauge coupling [346], gluon condensation [118,347]

and the momentum dependence of Yang-Mills propagators [115, 116]. Since then these studies have been

refined and further developed from a technical point of view (see Refs. [97, 104, 105, 108] for reviews)

but also for the application to QCD phenomenology. Let us name a few examples. The running of the

strong coupling has been computed on all scales at zero [348–350] and at finite temperature [30, 31]. The

approach to chiral symmetry breaking, which we mainly review here, has been studied from first princi-

ples in Refs. [28–31]. Confinement has been investigated at zero [349, 350] as well as at finite tempera-

ture [151,351–353]. In particular, the results for the deconfinement phase transition in Yang-Mills theories

are in very good agreement with lattice simulations. Moreover, the interrelation of quark confinement and

chiral symmetry breaking has been analyzed in Refs. [151, 275], and the question of gluon condensation

has been recently revisited in Ref. [354]. Last but not least, the emergence of hadronic states in the IR limit

71 This can be most easily seen from a rescaling of the Yukawa coupling by a factor
√
NfNc.

72 Of couse, conformal invariance is broken explicitly when we allow for a finite current quark mass. In this case, the theory

never reaches the IR fixed point of the gauge coupling. However, the theory can still get close to the IR fixed-point of the gauge

coupling for small quark masses and remain in its vicinity for a long RG time.
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has been studied with so-called re-bosonization techniques in Refs. [28, 32]. These studies include a de-

tailed discussion of how to bridge the gap between the fundamental degrees of freedom, namely quarks and

gluons, and hadronic degrees of freedom as, e. g., described by low-energy QCD models. These studies

have recently motivated further studies in this direction for QCD with two colors [355].

6.5.1 Renormalization Group Approach to Gauge Theories

In Refs. [29–31] the RG flow of QCD starting from quarks and gluons has been studied employing a

covariant derivative expansion. A crucial ingredient for chiral symmetry breaking are the scale-dependent

gluon-induced quark self-interactions of the type included in Eq. (257). We note that dynamical quarks

influence the RG flow of QCD by qualitatively different mechanisms. First, quark fluctuations directly

modify the running of the gauge coupling due to the screening nature of these fluctuations. On the other

hand, gluon exchange between quarks induces quark self-interactions which can become relevant operators

in the IR, as we have already discussed in the previous sections. These two mechanisms strongly influence

each other as well. As we have seen, however, it is possible to disentangle the system once we accept that

these fluctuations can be associated with different scales in the problem.

In the following we shall restrict ourselves to d = 4 Euclidean space-time dimensions at vanishing

temperature and work solely in the Landau gauge which is known to be a fixed point of the RG flow [115,

356]. Our strategy to study phases of strongly-interacting gauge theories is now the same as applied

before in the context of fermionic models: we consider the point-like limit and restrict our discussion

to the RG flow in the chirally symmetric regime. This does not provide us with a direct access to the

hadronic mass spectrum at low energies. However, it already allows us to map various phase diagrams

in a clean and very controlled way. In fact, it has been explicitly shown in Ref. [29] that the point-like

limit is a reasonable approximation in the chirally symmetric regime, where the regularization-scheme

independence of universal quantities has been found to hold remarkably well in this limit.

For our study, we employ the following ansatz for the effective action which represents the lowest

nontrivial order in a consistent and systematic operator expansion, see Ref. [152] and also Refs. [29–31]:

Γk =

∫

d4x

{

1

4
F aµνF

a
µν + ψ̄(i /∂ + ḡ /A)ψ +

1

2

[

λ̄−(V–A) + λ̄+(V+A) + λ̄σ(S–P)

+λ̄VA[2(V–A)adj+ (1/Nc)(V–A)]
]
}

+ Γgauge

k . (284)

We do not further specify Γgauge

k since it is of no relevance of what follows. We only state that Γgauge

k

contains the gauge-fixing term and the ghost terms as well as it may also contain higher gluonic operators,

e. g., of the type ∼ (F aµνF
a
µν)

n, see e. g. Refs. [30, 31, 118, 347, 348]. For details and reviews on gauge

theories we refer the reader to Refs. [97, 104, 105, 108].

The ansatz (284) for the effective action represents a straightforward generalization of the Fierz-complete

ansatz (220) for the matter sector, see Sect. 5.2.1 for a detailed discussion. The definition of the four-

fermion interaction channels can be found in Eqs. (221)-(223). This ansatz falls into the QCD universality

class when we set the various four-fermion interactions to zero at the initial RG scale, e. g. at the Z-boson

mass scale.

In our analysis, we neglect UA(1)-violating interactions induced by topologically non-trivial gauge

configurations since we expect them to become relevant only inside the χSB regime or for small Nf. In

addition, the lowest-order UA(1)-violating term schematically is ∼ (ψ̄ψ)Nf , see e. g. Refs. [269–273].

Thus, larger Nf correspond to larger RG “irrelevance” by naive power-counting. Moreover, interactions of

the type ∼ (ψ̄ψ)Nf for Nf > 3 do not contribute directly to the flow of the four-fermion interactions due to

the one-loop structure of the underlying RG equation for the effective action, as discussed in Sect. 3.
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Using the truncated effective action (284), we obtain the following β functions for the dimensionless

couplings λi = λ̄i/k
2, see Refs. [29, 152]:

∂tλ− = 2λ−− 4v4l
(FB),(4)
1,1

[
3

Nc

g2λ− − 3g2λVA

]

− 1

8
v4l

(FB),(4)
1,2

[
12 + 9N2

c

N2
c

g4
]

(285)

−8v4l(F),(4)
1

{

−NfNc(λ
2
−+λ2+) + λ2−− 2(Nc+Nf)λ−λVA +Nfλ+λσ + 2λ2VA

}

,

∂tλ+ = 2λ+− 4v4l
(FB),(4)
1,1

[

− 3

Nc

g2λ+

]

− 1

8
v4l

(FB),(4)
1,2

[

−12+3N2
c

N2
c

g4
]

−8v4l(F),(4)
1

{

− 3λ2+ − 2NcNfλ−λ+ − 2λ+(λ− + (Nc +Nf)λVA)

+Nfλ−λσ + λVAλσ +
1

4
λσ

2
}

, (286)

∂tλσ = 2λσ− 4v4l
(FB),(4)
1,1

[
6C2(Nc) g

2λσ − 6g2λ+
]
− 1

4
v4l

(FB),(4)
1,2

[

− 24− 9N2
c

Nc

g4
]

−8v4l(F),(4)
1

{

2Ncλ
2
σ−2λ−λσ− 2NfλσλVA−6λ+λσ

}

, (287)

∂tλVA = 2λVA− 4v4l
(FB),(4)
1,1

[
3

Nc

g2λVA − 3g2λ−

]

− 1

8
v4l

(FB),(4)
1,2

[

−24− 3N2
c

Nc

g4
]

−8v4l(F),(4)
1

{

−(Nc +Nf)λ
2
VA+ 4λ−λVA−

1

4
Nfλ

2
σ

}

. (288)

Here, C2(Nc) = (N2
c − 1)/(2Nc) is a Casimir operator of the gauge group, and v4 = 1/(32π2). The

definition of the threshold functions l
(F),(4)
1 = l

(F),(4)
1 (0; 0), l

(FB),(4)
1,2 = l

(FB),(4)
1,2 (0, 0; 0, ηA) and l

(FB),(4)
1,1 =

l
(FB),(4)
1,1 (0, 0; 0, ηA) can be found in App. D. Recall that ηψ vanishes in the point-like limit in Landau

gauge. In the numerical analysis of these flow equations, which we present below, we have dropped the

contributions from the anomalous dimensions of the gauge coupling ηA = βg2/g
2. This is justified since

it has been found in Ref. [79] that the contributions ∝ ηA in the threshold functions do not strongly affect

the results for Nf,cr. This can be also understood from an analytic point of view: we have ηA → 0 for

Nf → Na.f.
f and g2 < g2∗ . Moreover, we can estimate ηA with the aid of the βg2 function in the MS

scheme. We find for g2 < g2∗ that |η2−loop
A | . 1 for Nf & 11 and |η4−loop

A | . 0.5 for Nf & 8. For our

purposes, we therefore expect that these contributions may lead to quantitative corrections at most on the

percent level. However, these terms may become relevant for smallNf and in the regime with broken chiral

symmetry where we have ηA ∼ O(1).
Let us now further discuss the running of the gauge coupling. As mentioned above, the running coupling

has been computed within the functional RG approach [30, 31, 346, 348, 349]. However, we will closely

follow the analysis in Ref. [79] and employ for simplicity the two- and four-loop result obtained in the

MS scheme [357, 358]. This is justified since our results for the phase boundary show a satisfactory

convergence in the large-Nf regime. In the following we will often restrict ourselves to the two-loop βg2
function, see Eq. (250), as it already shows all qualitative features and can be dealt with analytically.

At this point a critical comment on the scheme dependence is in order: The chosen regularization

scheme in the matter sector and the MS scheme do not coincide. This inconsistency results in an error

for the estimate for the critical number of quark flavors, i. e. for the location of the quantum critical

point. Since we are interested in the scaling behavior which is related to the universal critical exponent

Θ rather than in a high-precision determination of Nf,cr, our results are only influenced indirectly by this

approximation.73 Therefore the results using the four-loop running may not necessarily be considered as

a more precise calculation. Instead, the difference between two-loop and four-loop MS results should be

73 Of course, the actual value of Θ0 = Θ(Nf,cr) depends on the actual value ofNf,cr which itself, as a universal quantity, depends

on the difference of the scheme-dependent quantities g2cr and g2∗ .
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viewed as an estimate of the dependence of our results on the quantitative details of the running gauge

sector.

We close this section with a comment on gauge symmetry. Here, a subtlety becomes important. Naively,

one may expect that the running of the gauge coupling is modified due to the presence of finite four-fermion

couplings. In fact, it is possible to construct a 1PI diagram ∼ gλi with one external gluon line and two

external fermion lines which potentially contributes to the running of the quark-gluon vertex ∼ gψ̄ /Aψ.

Now a detailed analysis shows that the question of gauge invariance is intimately linked to the existence of

such contributions ∼ gλi to the running of the gauge coupling: To render the RG flow gauge invariant we

have to take into account regulator-dependent Ward-Takahashi identities [346, 359]. In the present case,

these symmetry constraints yield contributions to the running of the gauge coupling which depend on the

quark self-interactions:

∂tg
2 = βg2 − 4v4l

(F),(4)
1

g2

1− 2v4l
(F),(4)
1

∑
ciλi

∑

ci ∂tλi , (289)

where i ∈ {σ,+,−,VA} and βg2 denotes the standard βg2 function, e. g. in the two-loop approximation.

The dimensionless factors ci are given by

cσ = 1 +Nf , c+ = 0 , c− = −2 , cVA = −2Nf . (290)

Apparently, the additional contributions on the right-hand side of Eq. (289) are proportional to the β-

functions of the four-fermion couplings and therefore vanish as long as the four-fermion couplings are at

their fixed points, i. e. as long as g2 ≤ g2cr; this has first been pointed out in Refs. [29, 152]. We conclude

that these contributions ∝ λi do not alter the scaling law (277) in leading order.74 In particular, the power-

law behavior is unaffected by these corrections arising due to symmetry constraints. In the following we

ignore these corrections in our numerical analysis.

In the regime with broken chiral symmetry in the ground state, the λi-dependent contributions may alter

the running of the gauge coupling. However, the fermions acquire a finite mass and diagrams with at least

one internal fermion line are expected to be suppressed compared to diagrams with no internal fermion

lines: l
(F),(4)
1 (ǫψ; ηψ) → 0 in the limit of a large dimensionless fermion mass ǫψ . In any case, we are not

aiming at a study of the properties of QCD inside the broken regime but rather intend to map the phases

of strongly-interacting gauge theories by determining the parameter sets (Nf, Nc) for which the system

remains in the chirally symmetric regime.

6.5.2 Phases of Strongly-flavored SU(Nc) Gauge Theories

Now we discuss phases of strongly-flavored gauge theories at zero and finite temperature. To simply

determine the size of the conformal window at zero temperature, it suffices to consider the approximation

of a constant gauge coupling:

∂tg
2 = 0 .

As discussed in Sect. 6.3.1, the gauge coupling can then be considered as an “external” Nf-dependent pa-

rameter of the theory. To estimate the error of our truncation in the gauge sector, we choose the fixed-point

value of the gauge-coupling at two-loop and four-loop level as the external parameter. This value corre-

sponds to the largest possible IR value of the coupling inside of the conformal window. For illustration,

we give the fixed-point value at two-loop level which assumes a simple form:

g2∗,2−loop(Nf) =
16(11N2

c − 2NcNf)π
2

13N2
c Nf − 34N3

c − 3Nf

. (291)

74 In addition to the discussed next-to-leading order corrections to Eq. (277), these symmetry constraints may shift the fixed-point

value g2∗ of the gauge coupling and therefore cause additional higher-order corrections to the scaling law (277).
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Fig. 18 Phase diagram of strongly-flavored SU(Nc) gauge theories in the (Nf, Nc)-plane, see also Ref. [29]. The

upper solid (black) line gives the value of Nf at which asymptotic freedom is lost, N a.f.
f = 11

2
Nc. The shaded area

depicts the conformal window in the approximation with a running gauge coupling at four-loop level. The result

for Nf,cr as obtained from a running coupling at two-loop level is given by the red line. We observe that the conformal

window is increased when we employ the gauge coupling in the four-loop approximation instead of the two-loop

approximation.

In the matter sector we employ two different truncations to which we refer as one-channel and all-

channels approximation. The latter one is Fierz complete, i. e. we take into account the full set of flow

equations (285)-(288). In the one-channel approximation, on the other hand, we only take into account the

RG flow of the scalar-pseudoscalar channel λσ and set all other four-fermion couplings to zero:

∂tλσ = 2λσ −
Nc

4π2
λ2σ −

3

4π2
C2(Nc)λσg

2 − 3

256π2

(
9N2

c − 24

Nc

)

g4 . (292)

While the all-channels approximation can only be dealt with numerically, the one-channel approxi-

mation together with the two-loop gauge-coupling fixed-point allows for analytic estimates for Nf,cr and

the scaling behavior close to the (quantum) phase transition. It is worth mentioning that the RG flow

of the λσ-coupling decouples from the other channels in the large-Nc limit, see Sect. 5.2.1. Recall that

the associated (S–P)-channel is Fierz-equivalent to the interaction channel included in widely used QCD

low-energy models, e. g. the quark-meson model.

For illustration, we first compute the critical value of the gauge coupling in the one-channel approxima-

tion using the value of the IR fixed point of the two-loop gauge-coupling. We find

g2cr,one =
32π2

(

2N3
c − 2Nc −

√

3N6
c − 8N4

c

)

3(4 +N4
c )

(Nc=3)≈ 10.86 , (293)

which does not depend on Nf. In the all-channels approximation the critical value has to be computed

numerically. As found in Ref. [29], the resulting critical value g2cr,all of the gauge coupling then depends

on Nf: for a given number of colors, g2cr,all decreases slightly with increasing Nf.

The fixed-point value g2∗,2−loop together with the critical value of the gauge coupling can be used to

estimate the critical number of quark flavors above which there is no chiral symmetry breaking in the IR.
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Nc 2 3 4 5 6 7

None
f,cr 7.6 11.7 15.7 19.7 23.6 27.6
Nall

f,cr 7.9 11.9 15.9 19.9 23.8 27.8

N4−loop
f,cr 6.8 10.0 13.4 16.8 20.2 23.6

∆N2−loop
f 0.36 0.27 0.31 0.36 0.42 0.48

Table 2 Critical number of flavors Nf,cr for various values of Nc as obtained from different approximations: one-

channel approximation with two-loop running gauge coupling (None
f,cr ), all-channels approximation with two-loop run-

ning gauge coupling (Nall
f,cr ), and all-channels approximation with four-loop running gauge coupling (N4−loop

f,cr ). The

difference between Nall
f,cr and N4−loop

f,cr can be considered as an error estimate for the uncertainty arising due to the

truncated gauge sector in our study. In the bottom row, we give estimates for the size of the regime in which the

exponential scaling behavior dominates. These estimates have been obtained from Eq. (281) by using the one-channel

approximation together with a two-loop running gauge coupling. We observe that ∆N2−loop
f increases only slightly

with Nc, i. e. (∆N2−loop
f )/Nc ≪ 1.

In accordance with the numerical results given in Ref. [29], we find [79]

None
f,cr =

169N6
c −136N4

c +132N2
c −68

√

N4
c (3N2

c −8)N3
c

58N5
c −64N3

c −26
√

N4
c (3N2

c −8)N2
c +6

√

N4
c (3N2

c −8)+36Nc

(Nc=3)≈ 11.7 (294)

for the one-channel approximation. In the all-channels approximation we obtain

Nall
f,cr ≈ 11.9 (295)

for Nc = 3. We may use our analytic estimate for Nf,cr from the one-channel approximation to estimate

Nf,cr in the limit Nc →∞:

None
f,cr

Nc

=
68
√
3− 169

2
(
13
√
3− 29

) ≈ 4.0 . (296)

For the all-channels approximation with a running coupling in the two-loop and four-loop approximation,

we find numerically that Nall
f,cr/Nc ≈ 4.0 and Nf,cr/Nc ≈ 3.4 for large values of Nc, respectively, see

Tab. 2. These results for Nf,cr are in accordance with the results from Dyson-Schwinger equations in the

rainbow-ladder approximation, see e. g. Refs. [85, 309, 342], as well as with those from current lattice

simulations [318–331].

In Fig. 18 we show the zero-temperature phase diagram of strongly-flavored SU(Nc) gauge theories in

the (Nf, Nc)-plane, see also Tab. 2. Within the RG framework this phase diagram has first been computed

in Ref. [29]. The upper solid (black) line represents the boundary at which asymptotic freedom is lost. The

shaded area depicts the conformal window. We observe that the absolute size of the conformal window

increases with Nc. However, the relative size (N a.f.
f − Nf,cr)/N

a.f.
f ≈ 3/11 is approximately independent

of Nc. In addition, we find that the size of the conformal window is increased when we employ a running

coupling in the four-loop approximation instead of the two-loop approximation. To be specific, we obtain

N4−loop
f,cr ≈ 10.0 (297)

for Nc = 3 in the all-channels approximation and N4−loop
f,cr ≈ 9.8 in the one-channel approximation, in

agreement with Ref. [29]. The difference between the two-loop and four-loop result can be viewed as an

error estimate for the uncertainty arising due to the truncated gauge sector in our study. In addition to a

test of the uncertainty in the gauge sector, the regularization scheme in the matter sector has been varied in

Ref. [29]. Such a variation leaves its imprint in the estimate for the critical value g2cr. It turns out that the

present truncation is remarkably stable under a variation of the scheme which instills further confidence

in our present approach. To be specific, one finds N cr
f = 10.0+1.6

−0.7 for Nc = 3 from a variation of the
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β-function of the gauge coupling and the regularization scheme.75 This is in accordance with an another

RG study of the conformal phase transition in which the running gauge coupling has not been treated as an

“external” input but computed within the exactly same scheme as the matter sector [30, 31].

We would like to add that the phase diagram shown in Fig. 18 is also in accordance with the phase

diagram found by Dietrich and Sannino with Dyson-Schwinger equations in the rainbow-ladder approxi-

mation [85]. On the present level of accuracy of lattice simulations, the results for this phase diagram go

well together with those from functional RG approaches [29–31] and Dyson-Schwinger approaches, see

e. g. Refs. [85, 342].

Finally, we would like to discuss the finite-temperature many-flavor phase boundary in QCD. In Fig. 19

we show the chiral phase transition temperature Tχ as a function of the number of massless quark fla-

vors Nf. This phase diagram has been computed for the first time in Refs. [30, 31]. The results are in

accordance with those obtained more recently with the aid of Dyson-Schwinger equations in the rainbow-

ladder approximation [343]. We do not discuss the details related to these computations here but only

name the basic ingredients which have entered the RG study. First of all, the truncation in the matter

sector is identical to the one discussed in Sect. 6.5.1. The resulting flow equations (286)-(288) have been

straightforwardly generalized to finite temperature. Further four-fermion operators, which may arise at

finite temperature due to the broken Poincare invariance, have been neglected for the sake of simplicity.

This appears to be a reasonable approximation for large Nf where Tχ becomes small and eventually ap-

proaches zero at the quantum critical point Nf,cr. Moreover, the chiral symmetry breaking scale was found

to be larger than the phase transition temperature for small Nf. Therefore these additional four-fermion

operators are expected to be parametrically suppressed in the chirally symmetric regime.76 The second

important ingredient is the running of the gauge coupling at finite temperature which has been computed

self-consistently within the functional RG framework in Refs. [30, 31]. It was found that the running cou-

pling (in Landau-DeWitt gauge) remains finite on all scales at finite temperature and approaches the fixed

point of the underlying 3d Yang-Mills theory in the IR limit. We stress that a naive generalization of the

perturbative zero-temperature running of the gauge coupling is bound to fail since the quarks decouple in

the IR limit due their antiperiodic boundary conditions in Euclidean time direction. Thus, we have effec-

tively Nf → 0 at finite temperature for k → 0 and we are left with the pure gauge coupling, even in the

(quasi) conformal phase.77

Let us now discuss the phase diagram in Fig. 19 from a physical point of view. In order to compute this

diagram, the scale has been fixed at the τ -mass scale to the same value for allNf, see discussion in Sect. 6.2.

Due to the finite temperature of the system, the critical coupling g2cr inherits a T -dependence from the quark

modes which acquire a thermal (Matsubara) mass. This leads to a quark decoupling, requiring stronger

interactions for critical quark dynamics. In Fig. 16 this is indicated by the λi-parabolas becoming broader

with a higher maximum. Hence, the annihilation of the Gaußian fixed point by pushing the parabola below

the λi axis requires a larger gauge coupling. It follows that g2cr(T/k) ≥ g2cr(0).

At zero temperature and for small Nf, the IR fixed point g2∗ is far larger than g2cr. Hence QCD is in

the phase with broken chiral symmetry. For increasing T , the temperature dependence of the coupling

and that of g2cr compete with each other. In accordance with our analytic estimate in Sect. 6.2 we observe

an almost linear decrease of the critical temperature for small but increasing Nf with a slope of ∆Tχ =
Tχ(Nf) − Tχ(Nf + 1) ≈ 25MeV at small Nf. The predicted relative difference for Tχ for Nf = 2 and 3
flavors of 2∆Tχ/(Tχ(Nf =2)+Tχ(Nf =3)) ≃ 0.146 is in good agreement with lattice studies [339]. We

conclude that the shape of the phase boundary for small Nf is basically dominated by fermionic screening.

For the case of large flavor numbers, which is of particular interest here, the critical temperature de-

creases further and the phase transition line terminates at the zero-temperature quantum phase transition at

75 Note that a variation of the β function of the gauge coupling can be effectively considered as a variation of the truncation in

the gauge sector.
76 Note that T/k & 1 corresponds to large temperatures in the RG flow, whereas T/k < 1 corresponds to low temperatures.
77 At finite temperature conformality is broken.
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Fig. 19 Chiral phase transition temperature Tχ as a function of the number of massless quark flavors Nf for Nf ≥ 2,

as obtained in Ref. [31]. Strictly speaking, the shown results for Tχ only represent an upper bound for the (exact) chiral

phase transition temperature due to the presence of potentially strong fluctuations of the Nambu-Goldstone modes in

the (deep) IR sector of the theory, see main text for a detailed discussion. The flattening at Nf & 10 is a consequence

of the IR fixed-point structure. The dotted line depicts the power-law scaling behavior near Nf,cr, see Eq. (298).

Nf,cr, representing the lower end of the conformal window. Within the approximations in Refs. [30,31] one

finds that Nf,cr ≈ 12.9 and |Θ0| ≈ 0.71 for Nf=Nf,cr; the discrepancy to the above given zero-temperature

study can be essentially traced back to the differences in the running of the gauge coupling.

In Refs. [30, 31] it was found that the scaling of the phase boundary for large Nf is consistent with the

pure power-law scaling behavior (272), as depicted by the dotted line in Fig. 19:

Tχ ∼ k0|Nf,cr −Nf|
1

|Θ0| . (298)

From our discussion of scaling behavior this result is understandable, since the exponential scaling behav-

ior sets in only very close to Nf,cr and thus remains invisible in numerical fits over a wider Nf-range, see

Eq. (281). Of course, our analytic estimate for the scaling behavior of Tχ still remains an upper bound,

even if we took into account the exponential factor in Eq. (278). This is due to the fact that strong fluctu-

ations of Nambu-Goldstone modes in the IR may yield further corrections and lower the phase transition

temperature, see e. g. Ref. [33]. Whether these corrections at finite temperature yield additional corrections

to the scaling behavior cannot be answered within the scaling analysis presented here.78 However, it may

very well be that such corrections depend only on Nf but not on Nf,cr.

We emphasize that further investigations of the finite-temperature scaling behavior close to the quantum

critical point, Nf = Nf,cr, is worthwhile. In particular, a study of the order of the nature of the finite-

temperature phase transition seems to be rewarding since it may provide us with deep insights into the

underlying chiral dynamics. An analysis in this direction based on RG arguments has been performed

by Wilczek and Pisarski [226]. In Fig. 20 we show a sketch of the many-flavor phase diagram which is

inspired by our RG results depicted in Fig. 19. For our discussion we shall assume that the number of

massless quark flavors can be indeed considered as a continuous control parameter. In the limitNf → 0 we

are left with a pure SU(Nc) gauge theory. In this regime we do not have any chiral quark dynamics but only

a deconfinement phase transition. For 0 < Nf . 2, we then expect a crossover rather than an actual chiral

78 We would naively expect that corrections to Eq. (298) can be only resolved in lattice simulations with very small masses for

the pseudo Nambu-Goldstone modes and on very large lattice sizes.
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Fig. 20 Sketch of the many-flavor QCD phase diagram (for massless quark flavors). For Nf < Nf,cr(∼ 12), we

have different regimes which are distinguished by the nature of the chiral phase transition. At Nf = Nf,cr, the system

undergoes a quantum phase transition (QPT). For Nf,cr ≤ Nf ≤ (11/2)Nc = 16.5 (conformal window), there is no

chiral symmetry breaking in the IR limit but the theory is still asymptotically free.

phase transition.79 This can be understood from a consideration of the lowest-order UA(1)-violating term(s)

which are schematically given by ∼ (ψ̄ψ)Nf , see e. g. Refs. [269–272]. For Nf = 1, such terms associated

with topologically non-trivial gauge transformations act as a mass term for the quark fields which explicitly

breaks the chiral symmetry. The associated crossover line (dashed line in Fig. 20) is expected to end at

some point below Nf = 2. For Nf = 2, QCD is assumed to fall in the O(4) universality class [226]. Recent

lattice QCD data seem to be compatible with a second-order chiral phase transition for two massless quark

flavors and O(4) scaling behavior at the phase boundary [360–363]. The second-order phase transition line

then most likely terminates in a “critical endpoint” close to Nf . 3. For Nf = 3, evidence for a chiral

first-order phase transition has been found in lattice QCD simulations, see e. g. Refs. [364–367]. For larger

values of Nf, only little is known about the nature of the phase transition. As discussed above, the role

of UA(1)-violating terms∼ (ψ̄ψ)Nf is probably subleading forNf & 3. From a simple “entropy” argument,

it seems reasonable to expect that the chiral phase transition is also of first order: The order of the phase

transition is (strongly) sensitive to the mismatch in the number of dynamical degrees of freedom below and

above the chiral phase transition. Once the number of massless flavorsNf exceeds some “critical” value for

a given Nc, this mismatch potentially triggers a discontinuous behavior in the associated order parameter.

This type of argument is similar to arguments which seem to hold in studies of, e. g., the nature of the

deconfinement transition in pure gauge theories [353, 368, 369]. In these studies it has been found that

the order of the deconfinement phase transition changes from second to first order when the dimension of

the gauge group is increased. In any case, the line of first-order phase transitions hits the quantum critical

point at T = 0 for Nf → Nf,cr (Nf,cr ≈ 12 in Fig. 20). We stress that the phase transition in Nf-direction

at T = 0 is expected to be continuous, whereas the phase transition in temperature direction for Nf . Nf,cr

is presumably of first order. For Nf,cr ≤ Nf ≤ (11/2)Nc = 16.5, we are then in the conformal phase

(regime) in which the theories are asymptotically free but we do not have chiral symmetry breaking in the

IR limit.

79 We add that a generalization of ’t Hooft vertices to non-integer values of Nf may not be unique.
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Fig. 21 Logarithm of the (chiral) symmetry-breaking scale ln(kSB/mτ ) as a function of the relative distance (Nf,cr −
Nf)/Nf,cr from the quantum critical point for an Nf-dependent but scale-independent, i.e. constant gauge coupling.

The corresponding fits are given in Eq. (300). The figure has been taken from Ref. [79].

At vanishing temperature, the analysis of the scaling behavior of IR observables is simplified compared

to a scaling analysis at finite temperature since dimensional reduction does not set in in the deep IR en-

hancing the Nambu-Goldstone modes. In the next two sections we shall therefore restrict ourselves to a

quantitative analysis of scaling at vanishing temperature.

6.5.3 Miransky Scaling

In the previous section we have computed the critical number of quark flavors Nf,cr as a function of Nc. To

this end, it was not necessary to know the details of the running of the strong coupling g2. In the following

we are interested in a quantitative study of the Nf-scaling behavior of the symmetry breaking scale kSB

close to the quantum critical point as encountered when the running of the gauge coupling is ignored,

∂tg
2 = 0 .

To be precise, we shall consider a scenario in which the gauge coupling has assumed its IR fixed point

value g2∗ for some Nf with Nf < N a.f.
f but Nf & Nf,cr. The fixed-point coupling then plays the role of

an “external” parameter of the theory which can be changed by varying Nf and/or Nc. This allows us to

increase the fixed-point coupling above the critical value g2cr required for chiral symmetry breaking. In

Sect. 6.3.1 we have analyzed analytically the scaling behavior of physical observables for such a setup.

For our quantitative study below, we employ the fixed-point value of the gauge-coupling at two-loop level.

Moreover, we restrict our quantitative analysis of exponential scaling behavior to the specific case Nc = 3.

In Fig. 21 we show the results for ln(kSB/Λ) as function of (Nf,cr − Nf)/Nf as obtained from the

one-channel (dots) and from the all-channels (triangles) approximation using g2∗,2−loop as a fixed input

parameter.80 As initial conditions for the λi’s for a given g2∗,2−loop(Nf) we have used the solution of the

coupled set of linear equations

∂(∂tλi)

∂λi
= 0 , (299)

80 Recall that the all-channels approximation is Fierz complete, while we only take into account the RG flow of the scalar-

pseudoscalar channel λσ in the one-channel approximation and set all other four-fermion couplings to zero.
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Fig. 22 Left panel: Double-logarithmic plot of Nf dependence of kcr and kSB as obtained from a study with a running

coupling in the two-loop approximation. The criticality scale kcr (blue circles) is dominated by power-law scaling

(straight line with slope ∼ |Θ0|
−1 in this double-log plot), and clearly serves as an upper bound for the symmetry

breaking scale kSB (red triangles), being a superposition of power-law and Miransky scaling. If the theories are probed

at integer Nf, i.e., ∆Nf & O(1), the contribution due to Miransky scaling may not be visibile. Right panel: Double-

logarithmic plot of Nf dependence of kcr and kSB as obtained from a study with a running gauge coupling in the

four-loop approximation. The contributions due to Miransky scaling, roughly parameterized by the difference between

kcr (blue circles) and kSB (red triangles), extend to larger values of ∆Nf = Nf,cr − Nf, as the estimate for the critical

exponent Θ0 = Θ(Nf,cr) at four-loop level is larger than at two-loop level. In this perturbative estimate for the running

coupling, the curves cannot be extended to larger values of ∆Nf, see main text. The figures have been taken from

Ref. [79].

where i ∈ {+,−, σ,VA}. This corresponds to starting the flow at the maxima (extrema) of the parabolas.

We observe that for a given value of Nf the symmetry breaking scale kSB is smaller in the all-channels

approximation compared to the one-channel approximation. The fits to the data points are also shown in

Fig. 21. In agreement with the analytic results presented in Sect. 6.3.1 we find:

ln koneSB ≈ const.− 2.481

|Nf,cr −Nf|0.494
, ln kallSB ≈ const.− 3.932

|Nf,cr −Nf|0.516
. (300)

Thus, we clearly observe the expected exponential scaling behavior in the one-cannel and in the all-

channels approximation for Nf → Nf,cr.

The result from the one-channel approximation is in reasonable agreement with the analytic leading-

order (LO) result found in Sect. 6.3.1:

ln kLOSB = const.− π

2ǫ
√

|α1||Nf,cr −Nf|
≈ const.− 2.386

√

|Nf,cr −Nf|
. (301)

Note that |α2/α1| ≈ 0.273. Differences to the analytic results are due to numerical errors of the fit and

higher-order corrections which we have derived in Sect. 6.3.1.

6.5.4 Power-law Scaling and Beyond

We now study scaling in a setup in which we take into account the (momentum) scale-dependence of the

running gauge coupling. In order to compare the theories with different flavor numbers we fix the scales by

keeping the running coupling at the τ -mass scale Λ = mτ fixed to g2(mτ )/(4π) ≈ 0.322. Since we apply

the truncation (284) to QCD, we do not consider the four-fermion couplings λ as independent external

parameters as, e.g., in NJL-type low-energy QCD models, see Sect. 5.2.1. More precisely, we impose the

boundary condition λi → 0 for k → ∞ which guarantees that the λi’s at finite k are solely generated by

quark-gluon dynamics, e.g., by 1PI “box” diagrams with 2-gluon exchange, see Fig. 15(c).
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Fig. 23 Left panel: Critical exponent Θ of the running gauge coupling at the CBZ fixed point forNc = 3 as a function

of the number of flavors Nf as obtained from two-, three- and four-loop perturbation theory in the MS scheme. Right

panel: Critical exponent Θ of the two-loop running gauge coupling at the CBZ fixed point as a function ofNf/Nf,cr for

Nc = 2, 3, . . . , 7 (from top to bottom). Recall that Nf,cr depends on Nc, see Sect. 6.5.

In Fig. 22 we show the results for the Nf dependence of the scales kcr and kSB for Nc = 3 as obtained

from a study with a running gauge coupling in the two-loop and the four-loop approximation, respectively.

The data points can be fitted to the analytic results for the scaling behavior of kSB and kcr. For the all-

channels approximation, we find

ln k2−loop
cr ≈ const.+ 2.566 ln |Nf −Nf,cr| , (302)

ln k2−loop
SB ≈ const.− 3.401

|Nf −Nf,cr|0.54
+ 2.540 ln |Nf −Nf,cr| , (303)

and

ln k4−loop
cr ≈ const.+ 1.180 ln |Nf −Nf,cr| , (304)

ln k4−loop
SB ≈ const.− 5.196

|Nf −Nf,cr|0.52
+ 1.171 ln |Nf −Nf,cr| . (305)

Thus, the fits are in reasonable agreement with our analytic predictions. For the multi-parameter fits (303)

and (305), we have fixed the coefficient of the ln-term which is the inverse critical exponent Θ0 = Θ(Nf,cr).
We emphasize that the predicted values for the critical exponent Θ(Nf,cr) are substantially different for the

running coupling in the two- and four-loop approximation, see left panel of Fig. 23:

1

|Θ(Nf,cr)|
≈ 2.540 (two-loop) ,

1

|Θ(Nf,cr)|
≈ 1.171 (four-loop) . (306)

In Fig. 22 we observe that the critical exponent Θ clearly influences the scaling behavior close to the

quantum critical point Nf,cr. In agreement with the analytic findings presented in Sect. 6.3, the size of the

regime with exponential scaling increases with increasing |Θ|. Using Eq. (281) we can give a quantitative

estimate for the size of the regime in which the exponential scaling behavior dominates. For the one-

channel approximation, see Eq. (294), we find

∆N2−loop
f := |Nf −Nf,cr| . 0.27 , (307)

where we have used the running coupling at two-loop level, see also Tab. 2. Using a running coupling in

the four-loop approximation (N4−loop
f,cr ≈ 10.0), the size of this Miransky scaling regime can be estimated

to be larger than one flavor. This is in agreement with the numerical results shown in Fig. 22. Since our

studies rely on a perturbative estimate for the running coupling, the curves in Fig. 22 cannot be extended
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Fig. 24 Nf dependence of kcr (blue circles) and kSB (red triangles) as obtained from a study with a specifically

designed running gauge coupling for Nc = 3, cf. Eq. (309). The associated β function allows us to vary the critical

exponent Θ by hand. Here, we show the results for Θ0 = |Θ(Nf,cr)| ≈ 4.3 which can be compared to the results from

the “real” two-loop running coupling in the left panel of Fig. 22. Contributions due to Miransky scaling are visible as

deviations from a straight-line behavior (power law) in this double-logarithmic plot. These results confirm our estimate

that the Miransky-scaling window is larger for larger |Θ0|, whereas power-law scaling dominates for small |Θ0|, see

left panel of Fig. 22. The figure has been taken from Ref. [79].

to larger values of ∆Nf = Nf,cr −Nf. For instance, in the four-loop case, we have Nf,cr ≃ 9.8. However,

the CBZ fixed-point vanishes for Nf . 8. Our RG arguments based on expansions about an IR fixed point

thus only extend to ∆Nmax
f ≃ 1.8, see right panel of Fig. 22. In non-perturbative functional studies in

the Landau gauge, an IR fixed point appears to exist already in the pure gauge sector and thus also for

Nf < NCBZ
f , see Refs. [30, 31, 348, 350, 370–377]. In this case, no restriction on ∆Nf arises.

Let us now discuss our results in the light of lattice simulations. Since it is found that Nf,cr & 9 in

current lattice simulations [318–331], we expect that the pure exponential scaling behavior is difficult to

resolve and the corrections due to the running of the gauge coupling might be more relevant for a scaling

analysis in lattice simulations. From the viewpoint of such simulations, one might be interested in keeping

the power of the “Miransky” term fixed to 1/2 and use the scaling law (278) to fit Nf,cr and the critical

exponent Θ0 = Θ(Nf,cr). Recall that all chiral low-energy observables, such as the pion decay constant,

are expected to scale according to Eq. (278).

In QCD, it appears to be a general feature that Θ0 ≡ Θ(Nf,cr) decreases with Nf,cr. Estimates of Θ(Nf)
within two- and higher-loop approximations in the MS scheme are shown in the left panel of Fig. 23.

Therefore, power-law scaling is more prominent for larger Nf,cr. In particular, power-law scaling should

be visible if theories are probed only for integer values of Nf as, e.g., on the lattice.

Up to this point, we have restricted our scaling analysis to the case Nc = 3. One may wonder whether

the size of the Miransky scaling regime changes significantly when we vary the number of colors Nc. As

discussed above, this question can be essentially answered by looking at the value of the critical expo-

nent Θ. In the right panel of Fig. 23 we show Θ as a function of Nf/Nf,cr for Nc = 2, 3, . . . , 7, where

Nf,cr = Nf,cr(Nc) and Θ has been extracted from the running coupling in the two-loop approximation.

Interestingly, we observe that Θ at Nf = Nf,cr is approximately independent of Nc. This observation is in

accordance with the result from a 1/Nc expansion of Θ0 ≡ Θ(Nf,cr), which yields

Θ0 ≡ Θ(Nf,cr) ≈ −
1

3
− 2

9N2
c

+O(1/N4
c ) . (308)
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In order to obtain this simple form, we have used the estimate Nf,cr = 4Nc, see Eq. (296). The large-

Nc expansion of Θ0 suggests that the exponential scaling behavior is only visible close to Nf,cr, even

for Nc > 3. Using Eq. (281) we can even give a direct estimate of the size of the regime in which the

exponential scaling behavior dominates. The results are listed in Tab. 2. From this analysis we conclude

that pure exponential scaling behavior seems to be difficult to resolve in, e. g., lattice simulations, even

for larger values of Nc. Therefore the corrections due to the running of the gauge coupling (power-law

scaling) might be more relevant from a practical point of view in QCD.

To further illustrate the important influence of the critical exponent Θ it is instructive to compute the

scaling behavior of the scales kcr and kSB using a specifically designed running gauge coupling. This

coupling is inspired by the two-loop approximation modified by an artificial higher-order term. The latter

is constructed such that the critical exponent Θ can be changed by hand but the two-loop fixed point

remains unchanged:

∂tg
2 ≡ βg2 = β2−loop

g2 + φ g6(g2 − g2∗,2−loop) , (309)

where the parameter φ allows us to change Θ without changing Nf,cr. In Fig. 24 we present our results

for kSB and kcr for φ = 0.003 (i. e. |Θ(Nf,cr)| ≈ 4.3) as obtained from the one-channel approximation

for Nc = 3. The comparison of these results with the results from the ”real” two-loop running coupling

with Θ0 ≈ 0.39 (left panel of Fig. 22) clearly confirms that the size of the exponential-scaling regime

depends strongly on Θ.

In our scaling analysis we have mainly studied the behavior of the symmetry breaking scale kSB which

sets the scale for low-energy observables, see e. g. Eq. (278) and Sect. 6.4. Although we expect that chi-

ral observables scale according to the behavior of kSB, an explicit computation with the aid of functional

methods and lattice simulations is still appealing. In Ref. [378], the quark mass, the chiral condensate

and the pion decay constant have been computed within a truncated set of Dyson-Schwinger equations for

many-flavor QCD. Signatures of the quantum critical point have been identified and the critical exponents

have been extracted from a pure power-law fit to the numerical data available for Nf < N cr
f . In the light

of our scaling relations Eqs. (273) and (278), the results of Ref. [378] unfortunately remain somewhat

inconclusive for two reasons: First, the exponential factor in Eq. (278) has not been taken into account in

the fit. Second, Nf,cr has been fitted for each chiral IR observable separately yielding slightly different val-

ues. While neglecting the exponential scaling factor might be reasonable due to the fact that the Miransky

scaling window is expected to be small in QCD, the uncertainty in Nf,cr arising from the fitting procedure

is likely to spoil the fit for the critical exponent. We expect that a more careful analysis in the vicinity of

the quantum critical point can easily put our scaling relation to test.

6.6 Excursion: Confinement and Chiral Symmetry Breaking

Up to this point we have restricted our discussion to chiral symmetry breaking in gauge theories, such

as QCD. We have totally left aside effects arising from the confining dynamics in QCD. However, we

were mainly interested in phase transitions in the limit of many massless quark flavors. In this case,

there is no good order parameter for confinement available anyway and it seems reasonable to expect that

nonanalyticities in the correlation functions are mainly dominated by the chiral degrees of freedom. Now

we shall discuss QCD with a small number of quark flavors. There, we may expect that the confining

dynamics significantly affects the chiral dynamics at the finite-temperature phase transition.

In order to gain some insight into the interrelation of quark confinement and chiral symmetry breaking

we analyze how the order parameter for confinement influences the chiral fixed-point structure of the

theory. The relation of both has been studied in detail in Ref. [275]. Here, we only review the main

arguments and restrict ourselves to the large-Nc limit. Before we start with our analysis, however, we would

like to discuss some issues arising in studies of the relation of quark confinement and chiral symmetry

breaking.

The deconfinement phase transition has been studied in pure SU(Nc) gauge theories (Nf → 0) and QCD

with both lattice simulations, see e. g. Refs. [360–363,379–384], and functional continuum methods [151,
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351–353,385–388]. Concerning chiral symmetry breaking, we have seen that the (chiral) condensate 〈ψ̄ψ〉
serves as an order parameter. A finite chiral condensate implies that the chiral SU(Nf)L⊗ SU(Nf)R flavor

symmetry of QCD is broken. Concerning the confinement phase transition, on the other hand, an order

parameter can be constructed from the so-called Polyakov-loop variable:

L[A0] =
1

Nc

P exp

(

iḡ

∫ β

0

dx0A0(x0, ~x)

)

, (310)

where β = 1/T is the inverse temperature and ḡ denotes the bare gauge coupling; P stands for path

ordering. In QCD with Nc colors and infinitely heavy quarks this quantity is related to the operator that

generates a static quark, i. e. an infinitely heavy quark [389]. Loosely speaking, the logarithm of the

expectation value 〈trFL[A0]〉 can be related to the free energy Fq of a static quark. To be more specific,

we can interpret it as half of the free energy Fqq̄ of a static quark–anti-quark pair at infinite distance. Here,

the trace trF is evaluated in the fundamental representation. Moreover, the expectation value 〈trFL〉 is

an order parameter for center symmetry breaking of the underlying gauge group [390]. To see this, we

consider gauge transformations Uz(x0, x) with U−1
z (0, ~x)Uz(β, ~x) = z, where z ∈ Z is an element of

the center Z of the gauge group. Under such a transformation the Polyakov loop is multiplied with a

center element z, 〈trFL〉 → z 〈trFL〉. Thus, a center-symmetric confining disordered ground state with

Fq →∞ is ensured by 〈trFL〉 = 0. In turn, deconfinement with Fq <∞ is signaled by 〈trFL〉 6= 0. This

consideration implies center-symmetry breaking in the ordered phase.

The relation of quark confinement and chiral symmetry breaking in QCD is indeed not yet fully un-

derstood. As the chiral and the deconfinement phase transition are related to different symmetries of the

theory, it is difficult to establish a simple (analytic) relation between both. Even worse, the deconfinement

phase transition turns into a crossover in the presence of dynamical quarks since the latter break explicitly

the underlying center symmetry.81 As there is no unique way to define the critical temperature associated

with a crossover, a proof of an exact coincidence of the two transitions seems to be impossible in any case.

On the other hand, both phase transitions are driven by the gauge degrees of freedom in QCD. This is read-

ily apparent for the deconfinement phase transition. For the chiral phase transition the relation to the gauge

degrees is more indirect.82 However, we have seen in the previous sections that the quark self-interactions

are dynamically generated and driven to criticality by the gauge degrees of freedom: once the gauge cou-

pling exceeds a critical value, the quark sector is driven to criticality without requiring any fine-tuning.

This observation may suggest that there might be a deeper relation between the chiral dynamics in the

matter sector and the confining dynamics in the gauge sector and serves as a motivation for the subsequent

analysis.

In Polyakov-loop extended low-energy models a background field 〈A0〉 is introduced to study some

aspects of quark confinement and the associated phase transition [255–260, 277–284]. This background

field can be related to the Polyakov variable L[A0]. In fact, it has been shown that trF L[〈A0〉] serves

as an order parameter for quark confinement in Polyakov-Landau-DeWitt gauge [351, 352], where 〈A0〉
is an element of the Cartan subalgebra and denotes the ground state of the associated order-parameter

potential in the adjoint gauge algebra.83 This potential can be computed, e. g., from the knowledge of

gauge correlation functions, as first demonstrated in a first-principles RG study [351,353]. In any case, the

order parameter trF L[〈A0〉] is related to the standard Polyakov loop 〈trFL[A0]〉 via the Jensen inequality,

trF L[〈A0〉] ≥ 〈trF L[A0]〉 . (311)

81 The explicit symmetry breaking becomes stronger the smaller the current quark masses are.
82 As a matter fact, the chiral phase transition in QCD can be investigated with NJL-type models (and in Polyakov-loop extended

versions thereof). In these models the quark interactions are considered as parameters which are tuned by hand to fit low-energy

observables, see our discussion in Sect. 5.2.
83 Strictly speaking, we have to distinguish between the background temporal gauge field in Landau-DeWitt gauge and its

expectation value associated with the order parameter for confinement, see Refs. [351, 353]. We skip this subtlety here since it is of

no importance for our present analysis and refer to 〈A0〉 as the position of the ground-state of the order-parameter potential.
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We would like to add that one of the underlying approximations in (Polyakov-loop extended) low-energy

model studies is to set trF L[〈A0〉] = 〈trF L[A0]〉. This opens up the possibility to incorporate results for

the Polyakov loop 〈trFL[A0]〉 as obtained from lattice simulations in these studies. It is then found that

the chiral and the deconfinement phase transition lie indeed close to each other at small values of the quark

chemical potential, as it is found to be the case in lattice QCD simulations [360–363, 379, 382–384].

Recently, so-called dual observables arising from a variation of the boundary conditions of the fermions

in time-like direction have been introduced [391] and employed for a study of the relation of quark confine-

ment and chiral symmetry breaking at finite temperature [151,385–387,392–399]. These dual observables

relate the spectrum of the Dirac operator to the order parameter for confinement, namely the Polyakov loop.

The introduction of these observables constitutes an important formal advance which allows us to gain a

deeper insight into the underlying dynamics at the QCD phase boundary. However, they do not allow us to

fully resolve the question regarding the relation of quark confinement and chiral symmetry breaking.

In the following we aim to shed more light on the question under which circumstances the chiral and

the deconfinement transition lie close to each other. To this end, we analyze the deformation of the RG

fixed-point structure of chiral four-fermion interactions due to confining gauge dynamics. Technically

speaking, this means that we couple the order parameter for confinement to the RG flow of four-fermion

interactions. As discussed in detail in Sect. 3.2, the latter can be related to the order parameter for chiral

symmetry breaking by means of partial bosonization. As we shall see, this yields an intimate relation

between the chiral and the deconfinement order parameter which suggests the existence of a dynamical

locking mechanism for the chiral phase transition. To keep our discussion of the general mechanisms as

simple as possible, we restrict ourselves to Nf = 2 massless quark flavors with Nc colors and employ the

following ansatz for the effective action:

Γk[ψ̄, ψ, 〈A0〉] =
∫

d4x
{

ψ̄ (i /∂ + ḡγ0〈A0〉)ψ +
1

2
λ̄σ
[
(ψ̄ψ)2−(ψ̄~τγ5ψ)2

] }

, (312)

where the τi represent the Pauli matrices and couple the spinors in flavor space.

The action (312) can be considered as an ansatz for a QCD low-energy model. In fact, we have discussed

this action for 〈A0〉 ≡ 0 in the context of QCD low-energy models in Sect. 5.2, where we have shown that

the RG flow of the λ̄σ-interaction decouples from the RG flows of other allowed four-fermion interaction

channels in the large-Nc limit. Of course, fermionic self-interactions are fluctuation-induced in full QCD,

e. g. by two-gluon exchange, and are therefore not fundamental, see our discussion in the previous sections.

However, we are here rather interested in studying how the fixed-point structure of four-fermion interaction

is deformed under the influence of confining dynamics. For such a general discussion, we expect the

ansatz (312) to be sufficient.

Based on the action (312) we have discussed quantum and thermal phase transitions in QCD low-

energy models in Sect. 5.2.2 for 〈A0〉 ≡ 0. Let us now turn to a discussion of the fixed-point structure for

finite 〈A0〉. The value of the background field 〈A0〉 is determined by the ground state of the associated

order-parameter potential, see Refs. [351,353]. As discussed above, this ground-state value 〈A0〉 is directly

related to an order parameter for confinement, namely trFL[〈A0〉]. In the following we do not need to

know the exact values of 〈A0〉 and trFL[〈A0〉]. We only need to know about some general properties of

the confinement order parameter.

For temperatures much larger than the deconfinement phase-transition temperature Td we have 〈A0〉 =
0, i. e. trFL[〈A0〉] = 1. On the other hand, the position 〈A0〉 of the ground state in the confined phase of

pure SU(Nc) Yang-Mills theory is uniquely determined up to center transformations by [351, 353]

trF(L[〈A0〉])n = 0 (313)

with (n mod Nc) = 1, . . . , Nc − 1. These conditions determine the Nc − 1 coordinates {φ(a)} of 〈A0〉:

βḡ〈A0〉 = 2π
∑

Ta∈Cartan

T aφ(a) = 2π
∑

Ta∈Cartan

T av(a)|φ| , v2 = 1 , (314)
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where the T a’s denote the generators of the underlying SU(Nc) gauge group in the fundamental repre-

sentation.84 Concerning the parameterization of 〈A0〉, it turns out that it is convenient to introduce the

eigenvalues νl of the hermitian matrix in Eq. (314):

νl = spec
{
(T ava)ij | v2 = 1

}
. (315)

Finally, we have

1

Nc

|trF(L[〈A0〉])n| ≤
1

Nn
c

(316)

for n ∈ N. Note that the ground-state value 〈A0〉 is shifted in QCD with dynamical quarks and yields a

small but finite order parameter in the confined phase.

We now have set the stage for a discussion of the fixed-point structure of the four-fermion coupling λσ .

The flow equation of the latter can be computed along the lines of Sect. 3.1. In the point-like limit we

find [275]:

βλσ ≡ ∂tλσ = 2λσ − 16
(

2 +
1

Nc

)

v3

Nc∑

l=1

l
(F),(4)
1 (τ, 0, νl|φ|)λ2σ , (317)

where v3 = 1/(8π2) and λσ = k2λ̄σ . Since we work in the point-like limit, we have ηψ = 0. To

derive this equation we have employed a 3d regulator function; the definition of the background-field

dependent threshold function can be found in App. D. Moreover, we have exploited the fact that the fermion

propagator (Γ(2))−1 (inverse two-point function) can be spanned by the generators of the Cartan subalgebra

as follows:
(

Γ(2)[{νl|φ|}]
)−1

ij
=

1

Nc

(

Γ
(2)
0 [{νl|φ|}]

)−1

✶ij +
∑

Ta∈Cartan

(

Γ(2)
a [{νl|φ|}]

)−1

T aij . (318)

Here, the T aij’s denote the generators in the fundamental (color) representation. The expansion coefficients

on the right-hand side can be computed straightforwardly by using trFT
aT b = 1

2δab and trFT
a = 0.

For vanishing temperature as well as temperatures much larger than the deconfinement phase-transition

temperature Td, the fixed-point structure is identical to the one discussed in Sect. 5.2.2 since 〈A0〉 tends to

zero for T ≫ Td and 〈A0〉 ≡ 0 for T = 0. For finite 〈A0〉, the pseudo fixed-point λ∗σ depends on 〈A0〉 and

the dimensionless temperature τ = T/k. Within the present approximation, the value of the pseudo-fixed

point λ∗σ can be given in closed form:

λ∗σ(τ, 〈A0〉) =

(

1

π2

(

2+
1

Nc

) Nc∑

l=1

l
(F),(4)
1 (τ, 0, νl|φ|)

)−1

=

(

1

λ∗σ(0, 0)
+

1

6π2

(

2+
1

Nc

) ∞∑

n=1

(−Nc)
n
[

trF(L[〈A0〉])n

+trF(L
†[〈A0〉])n

] (

1 +
n

τ

)

e−
n
τ

)−1

. (319)

The specific form in the second line has been obtained with the regulator function (349). However, we

stress that the general form of the asymptotic series (319) holds for any regulator function, as can be

shown by means of Poisson resummation techniques. Note that the series (319) effectively represents a

low-temperature expansion and that the sum over the τ -dependent terms in the second line of Eq. (319) is

closely related to the geometric series.

Using Eq. (313) it follows that all finite-temperature corrections to the (pseudo) fixed-point value vanish

identically in the confined phase for Nc → ∞, provided that the ground-state value 〈A0〉 is identical in

84 The dimension of the Cartan subalgebra is Nc − 1.



112 Jens Braun: Fermion Interactions and Universal Behavior in Strongly Interacting Theories

∂tλσ

λσλ∗

σ

T > 0 & 〈A0〉 = 0

〈A0〉 > 0

Fig. 25 Sketch of the βλσ function of the four-fermion interaction for T = 0 (black/solid line), a given finite value

of the temperature T and 〈A0〉 = 0 (red/dashed line) and the same temperature T but 〈A0〉 > 0 (blue/dashed-dotted

line), see Ref. [275]. The arrows indicate the direction of the RG flow towards the infrared.

SU(Nc) Yang-Mills theory and QCD with dynamical fermions. Of course, this assumption is not exactly

fulfilled but for physical quark masses it is reasonable to assume

trFL[〈A0〉]≪ 1 (320)

for T . Td. Thus, we have found that

λ∗σ(0, 0) ≡ λ∗σ(τ, 〈A0〉) (321)

in the limit Nc →∞, independent of the temperature for T . Td. On the other hand, we have

λ∗σ(τ, 〈A0〉)→ λ∗σ(τ, 0) for 〈A0〉 → 0 . (322)

With the same reasoning it also follows that

βλσ (0, 0) ≡ βλσ (τ, 〈A0〉) (323)

for T . Td and Nc → ∞, see also Fig. 25 for illustration. This means that for T < Td the question

of whether chiral symmetry is spontaneously broken or not is in fact independent of the temperature, but

depends only on the choice of the initial condition λUV
σ relative to its fixed-point value λ∗σ at T = 0. We add

that Eqs. (321)-(323) are regularization-scheme independent statements and that λ∗σ(τ, 〈A0〉) interpolates

continuously for a given finite value of τ between λ∗σ(0, 0) and λ∗σ(τ, 0). Note that we have not specified

the precise value of Td since it simply does not enter our analysis.

Provided that we choose an initial value λUV
σ > λ∗σ(0, 0), it follows immediately from Eq. (323) that

Tχ ≥ Td (324)

for Nc → ∞, see Ref. [275]. This means that the chiral phase transition is locked in due to the confining

dynamics in the gauge sector. Loosely speaking, thermal fluctuations of the quark fields, which tend

to restore the chiral symmetry, are suppressed since they are directly linked to the deconfinement order

parameter. Thus, we have found that the restoration of chiral symmetry is intimately connected to the

confining dynamics in the gauge sector. These findings emerging from a non-perturbative analysis of the

fermionic fixed-point structure confirm the results of a mean-field study by Meisinger and Ogilvie [277].

Let us now discuss how our (simplified) analysis relates to (full) QCD. In QCD, we only have a single

input parameter, e. g. the value of the strong coupling g2 at a given scale which then determines ΛQCD.

Thus, we have

Tχ ∼ ΛQCD ,
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Fig. 26 Ratio Tχ/Td of the chiral and the deconfinement phase transtion temperature as a function of λUV
σ /λ∗

σ

for Nc = 2, 3. In the large-Nc limit, the lower end of the locking window (i. e. the regime with Tχ/Td = 1) is given

by λUV
σ /λ∗

σ = 1. The figure has been taken from Ref. [275].

see also Sect. 6.2. In the present analysis the chiral transition temperature Tχ depends on two parameters,

namely the value of the background field 〈A0〉 and the initial condition λUV
σ . Nevertheless, Eq. (324) is

a parameter-free statement which simply follows from an analysis of the effect of gauge dynamics on the

fixed-point structure in the matter sector. In particular, we have only made use of general properties of the

deconfinement order parameter and the fact that λUV
σ > λ∗σ(0, 0) is a necessary condition for chiral sym-

metry breaking at T = 0 and 〈A0〉 = 0. Of course, the initial condition λUV
σ is not a free parameter in QCD

but originally generated by quark-gluon interactions at high (momentum) scales. In a given regularization

scheme the value of λUV
σ can therefore in principle be related to the value of the strong coupling g2 at,

e. g., the τ mass scale, see our discussion of chiral symmetry breaking in the previous sections. We would

like to point out that neither the value of g2 at some scale nor the value of λUV
σ on a given RG trajectory

is a physical observable. However, their values can be related to physical low-energy observables. Recall

that the value of λUV
σ determines the critical scale kSB which sets the scale for IR observables, see e. g.

Eq. (235).

Since our general statements do not depend on the actual value of the deconfinement temperature Td,

one may wonder which role this quantity plays at all in our analysis. We have argued that Tχ depends

on both λUV
σ and 〈A0〉 in our study. The presence of the background field 〈A0〉 implies the existence of

the transition temperature Td which defines a scale in the theory. For 〈A0〉 = 0, on the other hand, we

have argued that Tχ ∼ kSB. In this case, the scale kSB is eventually determined by our choice for λUV
σ .

If we now take into account the background field 〈A0〉, then the chiral phase transition temperature Tχ is

locked in and we necessarily have Tχ ≥ Td in the large-Nc limit, see Eq. (324). Thus, the chiral phase

transition temperature for all theories which would allow for Tχ ≤ Td for 〈A0〉 = 0 is shifted such that

Tχ ≃ Td. This observation allows us to define a “locking window” for the parameter λUV
σ in which the

chiral phase transition Tχ and the deconfinement phase transition Td lie close to each other [275]. The

upper end of this window can be estimated by the smallest value for λUV
σ for which Tχ for 〈A0〉 = 0 is

still larger than Td. The lower end of this window is given by λ∗σ(0, 0) in the large-Nc limit. Whereas

λ∗σ and λUV
σ are scheme-dependent quantities, the mere existence of such a window in parameter space

can be viewed as a universal statement. Since λUV
σ sets the scale for physical low-energy observables,

the existence of a “locking window” for λUV
σ suggests the existence of a corresponding window for the
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values of low-energy observables, such as the pion decay constant fπ . In Ref. [275] the existence of

the latter has indeed been confirmed. It was also found that that the physical value for the pion decay

constant (fπ ≈ 90MeV) is compatible with the almost coinciding phase transition temperatures observed

in lattice QCD simulations [360–363, 379, 382–384] and in functional first-principles studies [151, 400].

In our analysis we have concentrated on the limit Nc →∞. One may suspect that finite-Nc corrections

alter our conclusions. In fact, we observe that terms with

n mod Nc = 0 (325)

contribute to the right-hand side of Eq. (319) and to the RG flow of λσ , when we go beyond the large-

Nc limit. Strictly speaking, Eq. (321) then holds only for τ ≪ 1 but not for arbitrary values of τ =
T/k. However, this does not necessarily imply that we do not have a finite range of values for the initial

condition λUV
σ anymore in which the chiral and the deconfinement phase transition are tightly linked. It

only implies that the lower end of the window for λUV
σ is shifted to larger values compared to the large-Nc

limit where the lower end is given by λ∗σ(0, 0). In Ref. [275], finite-Nc corrections have been explicitly

taken into account. It was found that the locking mechanism for the chiral phase transition is still present

for finite Nc, in particular for Nc = 2 and Nc = 3. In Fig. 26 we show Tχ/Td as a function of λUV
σ /λ∗σ

for Nc = 2, 3. For the computation of Tχ/Td, the results from Ref. [351] for 〈A0〉 for the corresponding

SU(Nc) Yang-Mills theory have been used to solve the flow equation for λσ , see Eq. (317).

We would like to close our discussion of confinement and chiral symmetry breaking with a few (crit-

ical) comments concerning the approximations underlying our present analysis. First, it is clear that the

confinement order parameter in full QCD receives contributions from Feynman diagrams with at least one

internal fermion line. These contributions tend to lower the deconfinement phase transition temperature.85

We anticipate that our analytic findings are not (strongly) affected by this approximation since they rely

on very general properties of the confinement order parameter. Therefore we still expect that a window in

parameter space exists in which the chiral and the deconfinement phase transition lie close to each other.

However, our estimate for the dependence of Tχ on λUV
σ and the size of the “locking window” will change

quantitatively when we take into account the corrections to the confinement oder parameter due to quark

fluctuations. Second, our ansatz (312) for the effective action is not complete with respect to Fierz trans-

formations; for example, we have dropped the vector-channel interaction ∼ (ψ̄γµψ)
2. Such interactions

would also contribute to the RG flow of the four-fermion interaction λσ . At finite temperature the minimal

set of point-like four-fermion interactions is larger than at vanishing temperature, since the Poincare in-

variance is broken by the heat bath. If we allow for a finite 〈A0〉, the minimal set is even larger than in the

case of a vanishing background field 〈A0〉. This is due to the fact that a finite background field 〈A0〉 dis-

tinguishes a direction in color space. For example, our expansion (318) of the fermion propagator suggests

that a finite background field 〈A0〉 gives rise to additional point-like interactions of the type ∼ (ψ̄T (3)ψ)2

and ∼ (ψ̄T (8)ψ)2 for Nc = 3. However, the additional diagrams are of the same topology as the one

shown in Fig. 15 (a), if we drop gluon-induced terms. We therefore expect that the inclusion of additional

four-fermion interactions associated with a Fierz-complete basis is important for a quantitative computa-

tion of the chiral phase transition temperature beyond the large-Nc limit. Such an analysis is beyond the

scope of this review. A study of the impact of the confinement order-parameter on contributions to the

RG flow arising from 1PI diagrams with one- or two internal gluon lines, see Fig. 15 (b) and (c), certainly

constitutes a further important improvement. As discussed in Sect. 6.5.2, the inclusion of such terms in the

RG flow of four-fermion interactions opens up the possibility to remove the parameter λUV
σ , so that we are

left with a single input parameter for the gauge and the matter sector, namely g2 at a given UV scale. In

any case, the locking mechanism for the chiral and deconfinement phase transition discussed here already

provides a simple explanation for the observed almost-coincidence of both phase transitions.

85 Recall that we only have a deconfinement crossover in the presence of dynamical quarks.
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6.7 Fermions in Higher Representations and QED-like Theories

In this section we briefly discuss the applicability of the present approach to non-abelian gauge theories

with fermions in higher representations, e. g. the adjoint representation, and to QED-like theories in

d = 2+1 space-time dimensions. The latter class of theories is of great interest since the associated models

may serve as effective theories for graphene, see e. g. Refs. [285–287]. The general discussion of scaling

behavior in gauge theories in Sect. 6.3 indeed also holds for QED-like theories in 2 < d < 4 space-time

dimensions, as it essentially relies on only two assumptions (minimal requirements):

(i) The existence of a non-trivial IR fixed-point of the gauge coupling for a large number of fermions

flavors, i. e. in the chirally symmetric regime.

(ii) The existence of an IR-attractive Gaußian as well as an IR-repulsive non-trivial fixed-point in the RG

flows of the four-fermion couplings in the limit of vanishing gauge coupling.86

These assumptions are fulfilled for QED in 2 < d < 4 space-time dimensions.

The existence of a critical number Nf,cr of fermion flavors in QED3 has been confirmed in several

studies, see e. g. Refs. [290–300]. However, the scaling behavior of physical observables as a function

ofNf close to the quantum critical pointNf,cr has not yet been analyzed in great detail. Only little is known

about the (precise) size of the regime in which Miransky (exponential) scaling is dominant. It might well

be that the critical exponent Θ associated with the gauge coupling is large at the phase transition (i. e.

|Θ(Nf,cr)| & 1). As a consequence, the scaling of physical observables close to Nf,cr would be governed

mainly by an exponential behavior, and the universal power-law corrections associated with Θ might be

parametrically suppressed. An analysis of the presently available data for QED3 in this direction as well

as an independent RG study therefore seem to be worthwhile. Although Nf does not correspond to an

experimentally accessible parameter of the theory, an analysis of the Nf-scaling behavior might provide us

with important insights into the dynamics underlying chiral symmetry breaking in graphene.

A further fruitful extension of the discussed RG approach is represented by the study of gauge theories

with fermions in higher representations, e. g. fermions in the adjoint representation. To this end, the use

of computer algebra systems might be advisable [401]. Comprehension of these classes of gauge theories

underlies (walking) technicolor-like scenarios for the Higgs sector and it is therefore important for our

understanding of physics beyond the standard model. The quantum phase transition, which occurs in such

theories for largeNf, has been studied using both Dyson-Schwinger equations as well as lattice simulations,

see e. g. Refs. [85, 342, 344, 402–407]. An RG study in this direction can be used to benchmark presently

available results for the critical number of fermion flavors in these theories and therefore contribute to a

better understanding of dynamical symmetry breaking in gauge theories. Since Nf,cr for a given number of

colors is smaller in QCD with adjoint fermions than in QCD with fermions in the fundamental represen-

tation, it is tempting to speculate whether the dynamics close to the quantum phase transition is strongly

affected by the confining dynamics in the gauge sector. In this respect, an analysis of the interrelation of

confining and chiral dynamics along the lines of Sect. 6.6 could be rewarding.

7 Summary

We have reviewed RG approaches to various strongly interacting fermionic theories, ranging from non-

relativistic many-body problems to relativistic gauge theories. We have shown that an analysis of the

fixed-point structure of such theories allows us to study universal long-range behavior associated with

quantum and thermal phase transitions in a clean and controlled way. Due to the intimate relation between

phase transitions in a given theory and its fixed-point structure, evidence for the existence of fixed points

can be verified in experiments. For example, we have shown in Sect. 4.1 that the existence of a non-trivial

86 This assumption might be violated in d = 2, e. g., if the anomalous dimension of the fermions is zero in the limit of vanishing

gauge coupling.
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(IR repulsive) fixed-point in the four-fermion coupling is tightly linked to the observed universal behavior

in experiments with ultracold atomic Femi gases in the limit of a broad Feshbach resonance.

The analogue of the fixed-point associated with universal behavior in ultracold Fermi gases also exists in

the Gross-Neveu model in 2 < d < 4 space-time dimensions. For example, Gross-Neveu-type models play

an important role in the context of (relativistic) superconductors. In any case, the existence of a non-trivial

IR repulsive fixed-point in the Gross-Neveu model in 2 < d < 4 space-time dimensions is associated

with a second-order quantum phase transition, see Sect. 5.1. We have argued that theories with such a

quantum phase transition are guaranteed to be asymptotically safe, i. e. nonperturbatively renormalizable.

It is still an open question whether the converse is also true. An answer to this question might provide us

with further insights into the asymptotic-safety scenario which underlies the quantization of gravity within

a conventional path-integral approach.

In QCD low-energy models, we have seen that a non-trivial IR-repulsive fixed-point for the four-fermion

couplings exists as well, see Sect. 5.2. In these models, the fermions play the role of (constituent) quarks.

The mass of these fermions can be tuned by varying the four-fermion couplings. We have analyzed Fierz

ambiguities in these models and shown that the dynamics close to the finite-temperature phase boundary

can be easily understood in terms of the fixed-point structure of the theory.

In QCD-like gauge theories, the fermionic interactions do not represent free parameters. On the con-

trary, the running gauge coupling can drive the fermion sector to criticality, resulting in chiral symmetry

breaking without any fine-tuning of the fermionic couplings, see Sect. 6. This is generically true for

asymptotically free (chiral) gauge theories with Nf (massless) fermion flavors, such as QCD or even effec-

tive theories for graphene. A detailed analysis of the fixed-point structure in this class of theories provides

a quantitative determination of the quantum phase transition that occurs for large values of Nf.

In Sects. 6.3 and 6.5 we have reviewed our understanding of phases of strongly-flavored gauge theories

and the scaling behavior of their mass spectrum close to a quantum phase transition. We have discussed that

essentially three different types of scaling behavior can occur close to such a phase transition: power-law

behavior, exponential behavior, or a combination thereof. In the first and the third case, the scaling behavior

in leading order is governed by a universal critical exponent which is determined by the symmetries and

the dimensionality of the theory. Interestingly, this critical exponent also determines the infrared dynamics

of the gauge sector. Therefore an analysis of the Nf-scaling behavior of observables in asymptotically free

gauge theories allows us to probe the infrared gauge dynamics.

In summary, our review of universal aspects of various strongly interacting theories shows that a transfer

of knowledge between studies of strongly-interacting hadronic matter and (non-relativistic) many-body

problems is important and inspiring in order to gain a deeper insight into the dynamics which underlie the

equation of state of hadronic matter as well as the generation of bound states in many-body problems.
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A Conventions

A.1 Units

In our studies of relativistic quantum field theories set ~ = c = kB = 1. As a consequence of this conven-

tion, the SI units for length (meter, m) and temperature (Kelvin, K) are related to the energy unit MeV as
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follows

1 m = 1015 fm ≈ 5.1× 1012
1

MeV
and 1 K ≈ 8.6× 10−11 MeV .

If not indicated otherwise, we set ~ = kB = 2m = 1 in our studies of non-relativistic quantum field

theories, wherem is the mass (parameter) of the fermions. As for relativistic quantum field theories, length

and inverse momenta then have the same dimension, i. e.

[length] = [momentum]−1 .

Moreover, temperature and energy have the same dimension. From our choice 2m = 1, it follows that the

dimensions of energy and squared momenta are identical. Thus, we have

[temperature] = [energy] = 2× [momentum] .

Finally is worth mentioning that in our conventions relativistic and non-relativistic spinors have the same

mass dimension:

[ψ]rel. = [ψ]non−rel. =
d

2
× [momentum] ,

where d denotes the number of space dimensions. Note that this is not true for the scalar fields φ. In this

case, we have

[φ]rel. =
d− 1

2
× [momentum] , and [φ]non−rel. = [ψ]non−rel. =

d

2
× [momentum] .

A.2 Minkowski- and Euclidean Space-Time

The coordinates in d-dimensional Euclidean space-time and Minkowski (M) space-time are related by

xM,0 = −ix0 , xM,i = xi ,

gµνM xM,µxM,ν = x2M,0 − ~x 2
M = −x20 − ~x 2 = −gµνxµxν = −x2 ,

where µ, ν = 0, . . . , d−1 and correspondingly for the momenta. The metric tensor in Euclidean space-time

is given by the Kronecker-Delta, gµν = δµν , whereas we have the metric tensor gµνM = diag(+,−,−, . . . ,−)
in Minkowski space-time.

A.3 Fourier Transformation

Our conventions for Fourier transformations in d-dimensional Euclidean space are summarized. For

fermion fields we employ

ψ(x) =

∫
ddp

(2π)d
ψ(p) eipµxµ , (326)

ψ̄(x) =

∫
ddp

(2π)d
ψ̄(p) e−ipµxµ . (327)

For bosonic fields we use

φ(x) =

∫
ddp

(2π)d
φ(p) eipµxµ . (328)

Our conventions for the Fourier transformation of the fields imply that
∫

ddx e−ipµxµ = (2π)dδ(d)(p) . (329)
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B Dirac Algebra

B.1 Clifford Algebra in d = 4 (Euclidean) Space-Time Dimensions

We work exclusively in Euclidean space-time in this work and restrict our quantitative discussions to d = 3
and d = 4 space-time dimensions. The Dirac algebra is then defined through

{γµ, γν} = γµγν + γνγµ = 2δµν✶ , (330)

(γµ)
†

= γµ , (331)

γ5 = γ1γ2γ3γ0 , (332)

σµν =
i

2
[γµ, γν ] =

i

2
(γµγν − γνγµ) . (333)

B.2 Clifford Algebra in d = 3 (Euclidean) Space-Time Dimensions

For our studies of quantum field theories in d = 3 Euclidean space-time dimensions, we employ a four-

component representation for the γ-matrices. The explicit representation of our choice for the 4 × 4
representation of the Dirac algebra can be written as

γ0 = τ3 ⊗ τ3 , γ1 = τ3 ⊗ τ1 , γ2 = τ3 ⊗ τ2 . (334)

Here, the τi denote the Pauli matrices which satisfy τiτj = δijτ0 + iǫijkτk, with i, j, k = 1, 2, 3 and

τ0 = ✶2 is a 2 × 2 unit matrix. The γ-matrices satisfy the anticommutation relation given in Eq. (330)

Moreover, we have two additional 4× 4 matrices which anticommute with all γµ and with each other:

γ3 = −τ1 ⊗ τ0 , γ5 = τ2 ⊗ τ0 , γ 2
3 = γ 2

5 = ✶ . (335)

On the other hand, the matrix γ35 ≡ iγ3γ5 commutes with γµ and anticommutes with γ3 and γ5.

B.3 Fierz Transformations

The Clifford Algebra defined in Sect. B.1 is spanned by 16 basis elements γ(A):

{γ(A)} := {✶, γ0, γ1, γ2, γ3, σ03, σ13, σ23, σ01, σ12, σ20, iγ0γ5, iγ1γ5, iγ2γ5, iγ3γ5, γ5} , (336)

which obey

tr
{

γ(A)γ(B)
}

= 4 δAB . (337)

This basis is complete:

1

4

∑

A

γ
(A)
ad γ

(A)
ef = δafδed . (338)

From the completeness relation it is straightforward to expand two matrices, e. g. M
(1)
ab M

(2)
cd , in terms of

the basis elements γ(A):

M
(1)
ab M

(2)
cd =

1

4

∑

A

γ
(A)
ad

∑

e,f

(M (2)
ce γ

(A)
ef M

(1)
fb ) . (339)

This expression corresponds to the general expression given in Eq. (24). Defining

OS = ✶ , OV = γµ , OT =
1√
2
σµν , OA = γµγ5 and OP = γ5 , (340)

we then obtain the following Fierz identities:

(ψ̄aOXψb)(ψ̄cOXψd) =
∑

Y

CXY(ψ̄aOYψd)(ψ̄cOYψb), (341)
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where X,Y = S,V,T,A,P and

CXY =
1

4









−1 −1 −1 1 −1
−4 2 0 2 4
−6 0 2 0 −6
4 2 0 2 −4
−1 1 −1 −1 −1









. (342)

In Sect. 3, we study a NJL model with one fermion species at zero and at finite temperature. In this special

case, the combination

(ψ̄OVψ)
2 + (ψ̄OAψ)

2

is invariant under Fierz transformations. Due to the relation

(ψ̄OVψ)
2 − (ψ̄OAψ)

2 + 2[(ψ̄OSψ)
2 − (ψ̄OPψ)] = 0 , (343)

we can transform the combination

(ψ̄OVψ)
2 − (ψ̄OAψ)

2

completely into scalar and pseudo-scalar channels.

C SU(N ) Algebra

In this appendix we give our conventions for the generators of the SU(N ) Lie-groups. The group SU(N )

of unitary matrices U of rank N with determinant detU = 1 has N2 − 1 generators T a which obey the

commutation relations

[
T a, T b

]
= ifabcT c , (344)

where fabc are the (anti-symmetric) structure constants of the group, and a, b, c take the values 1, . . . , N2−
1. The normalization of the generators is given by

Tr
{
T aT b

}
=

1

2
δab . (345)

Moreover, the generators fulfill the following (Fierz) identities:

∑

a

(T a)αβ(T
a)γδ =

1

2
δαδδβγ −

1

2N
δαβδγδ (346)

and

∑

a

{

(T a)αβ(T
a)γδ +

1

N
(T a)αδ(T

a)βγ

}

=
N2 − 1

2N2
δαδδβγ . (347)

For SU(2), the generators are related to the Pauli matrices τa via T a = 1
2τ

a and the structure constants

fabc are given by the (standard) totally antisymmetric tensor ǫabc. The generators for the group SU(3) can

be expressed in terms of the Gell-Mann matrices λa via T a = 1
2λ

a.
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D Regulator Functions and Threshold Functions

D.1 Regulator Functions

In the computation of the RG flow equations a regulator function needs to be specified which determines

the regularization scheme. For explicit calculations we employ optimized regulator functions at zero and

at finite temperature [129–131, 171, 172].

If not indicated otherwise, we employ the following so-called spatial regulator functions whenever we

study a relativistic theory at zero and at finite temperature. To be specific, we choose

RB(~p
2) = ~p 2

(
k2

~p 2
−1
)

θ(k2−~p 2) ≡ ~p 2rB

(
~p 2

k2

)

(348)

for the bosonic degrees of freedom, whereas we choose

Rψ(~p) = −/~p

(√

k2

~p 2
−1
)

θ(k2−~p 2) ≡ −/~p rψ

(
~p 2

k2

)

(349)

for the fermionic degrees of freedom. In many cases these regulator functions open up the possibility to

perform analytically the Matsubara sums as well as the momentum integrals appearing in the 1PI diagrams.

For cases in which we consider a theory only at vanishing temperature, we use the following so-called

covariant regulator functions for the bosons and fermions, respectively:

RB(p
2) = p 2

(
k2

p 2
−1
)

θ(k2−p 2) ≡ p 2rB

(
p 2

k2

)

, (350)

Rψ(p) = −/p

(√

k2

p 2
−1
)

θ(k2−p 2) ≡ /p rψ

(
p 2

k2

)

. (351)

For our studies of non-relativistic fermionic many-body problems we use [27]

Rψk (~p
2) = k2 rψ(Z) with Z = (~p 2 − µ)/k2 , (352)

where

rψ(Z) = (sign(Z)−Z)θ(1− |Z|) (353)

and ~p 2 denotes the square of the spatial momentum.

In the next two sections we list the threshold functions which appear in the RG flow equations. These

functions represent the 1PI diagrams contributing to the RG flow of the studied couplings. Note that

we have adopted the conventions introduced in Refs. [113]. The list of threshold functions in the two

subsequent sections is not exhaustive. We only list those functions which have been employed explicitly

in this review.

D.2 Threshold Functions for Covariant Regulators

In this section we give the general definition of the threshold functions as obtained for covariant regulators.

For (explicit) evaluation of the momentum integrations we have used the (optimized) regulator functions

defined in Eqs. (350) and (351). In order to define the threshold functions, it is convenient to define

dimensionless propagators for the bosons (B) and the fermions (ψ), respectively:

G̃B(ω) =
1

x(1 + rB) + ω
(354)

and

G̃ψ(ω) =
1

x(1 + rψ)2 + ω
, (355)
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where x = p2/k2.

The threshold functions representing purely bosonic 1PI diagrams in the flow equations of bosonic

self-interactions are given by

l
(d)
0 (ω; ηB) =

1

2

∫ ∞

0

dx x
d
2 (∂trB − ηBrB) G̃B(ω)

=
2

d

(

1− ηB
d+ 2

)
1

1 + ω
, (356)

where ηB ≡ −∂t lnZB. Bosonic threshold functions of order n can then be obtained from Eq. (356) by

taking derivatives with respect to the dimensionless mass parameter ω:

∂

∂ω
l(d)n (ω; ηB) = −(n+ δn,0) l

(d)
n+1(ω; ηB) . (357)

The threshold functions representing purely fermionic 1PI diagrams in the flow equations of bosonic

self-interactions as well as fermionic self-interactions are given by

l
(F),(d)
0 (ω; ηψ) =

∫ ∞

0

dx x
d
2 (∂trψ − ηψrψ)(1 + rψ)G̃ψ(ω)

=
2

d

(

1− ηψ
d+ 1

)
1

1 + ω
, (358)

where ηψ = −∂t lnZψ . Again, higher-order fermionic threshold functions can be found by taking deriva-

tives with respect to the dimensionless mass parameter ω:

∂

∂ω
l(F),(d)n (ω; ηψ) = −(n+ δn,0) l

(F),(d)
n+1 (ω; ηψ) . (359)

Let us now turn to the threshold functions representing mixed boson-fermion diagrams. For example,

these functions enter the flow equations of Yukawa couplings and flow equations of four-fermion couplings.

We have

l
(FB),(d)
1,1 (ωψ, ωB; ηψ, ηB) = −

1

2

∫ ∞

0

dx x
d−2
2 ∂̃t

[

G̃ψ(ωψ)G̃B(ωB)
]

. (360)

In order to evaluate the integral over x, we use87

∂̃t

∣
∣
∣
ψ

=

(
1

x1/2
− ηψ

(
1

x1/2
− 1

))

θ(1− x) ∂

∂rψ
, (361)

∂̃t

∣
∣
∣
B

=

(
2

x
− ηB

(
1

x
− 1

))

θ(1− x) ∂

∂rB
, (362)

where the first and the second line states how the formal derivative ∂̃t acts on the fermion and boson

propagator, respectively. This yields

l
(FB),(d)
1,1 (ωψ, ωB; ηψ, ηB)

=
2

d

1

(1+ωψ)(1+ωB)

{(

1− ηψ
d+1

)
1

1+ωψ
+

(

1− ηB
d+2

)
1

1+ωB

}

. (363)

87 Here, we only give the explicit expressions for the formal derivatives for the (optimized) regulator functions given in Eqs. (350)

and (351).
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The threshold function l
(FB),(d)
1,2 is defined as follows:

l
(FB),(d)
1,2 (ωψ, ωB; ηψ, ηB) = −1

2

∫ ∞

0

dx x
d−2
2 ∂̃t

[

G̃ψ(ωψ)
(

G̃B(ωB)
)2
]

=
2

d

1

(1+ωψ)(1+ωB)2

{
1

1+ωψ

(

1− ηψ
d+1

)

+
2

1+ωB

(

1− ηB
d+2

)}

. (364)

The threshold functions entering the RG flow equations of the wave-function renormalizations read

m
(FB),(d)
1,2 (ωψ, ωB; ηψ, ηB) =

1

2

∫ ∞

0

dxx
d
2 ∂̃t

[

(1 + rψ)G̃ψ(ωψ)
d

dx
G̃B(ωB)

]

=

(

1− ηB
d+ 1

)
1

(1 + ωψ)(1 + ωB)2
(365)

and

m
(F),(d)
4 (ω; ηψ) = −1

2

∫ ∞

0

dxx
d+2
2 ∂̃t

[
d

dx
(1 + rψ)G̃ψ(ω)

]2

=
1

(1+ω)4
+

1−ηψ
d−2

1

(1+ω)3
−
(
1−ηψ
2d−4 +

1

4

)
1

(1+ω)2
. (366)

Finally, we define the threshold functions which appear in the flow equations of fermionic theories with

an explicitly broken chiral symmetry:

l̃
(F),(d)
1 (ω; ηψ) = −ω

2

∫ ∞

0

dxx
d−2
2 ∂̃t

(

G̃ψ(ω)
)2

(ηψ=0)
=

4

d

ω

(1 + ω)3
(367)

and

l̂
(F),(d)
1 (ω; ηψ) = −1

2

∫ ∞

0

dxx
d
2 ∂̃t

[

(1 + rψ)
2
(

G̃ψ(ω)
)2
]

(ηψ=0)
=

2

d

1− ω
(1 + ω)3

. (368)

Note that

l
(F),(d)
1 (ω; ηψ) = l̂

(F),(d)
1 (ω; ηψ) + l̃

(F),(d)
1 (ω; ηψ) , (369)

since

∂̃t

∣
∣
∣
ψ
= (∂trψ − ηψrψ)

∂

∂rψ
. (370)

Moreover, we have

b
(F),(d)
1 (ω; ηψ) = −ω

2

∫ ∞

0

dxx
d−2
2 ∂̃tG̃ψ(ω)

(ηψ=0)
=

2

d

ω

(1 + ω)2
. (371)
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D.3 Threshold Functions for Dimensionally Reduced Regulators

Spatial (or thermal) regulator functions are mostly applied in the context of finite-temperature studies.

However, their application is not limited to these kind of investigations. Below we give the general def-

inition of the resulting threshold functions employed in this review. For the (explicit) evaluation of the

momentum integrations we have used the regulator functions given in Eqs. (348) and (349).

In order to define the threshold functions, it is convenient to define dimensionless propagators for the

bosons (B) and the fermions (ψ), respectively:

G̃B(x0, ω) =
1

ẑBx0 + x(1 + rB) + ω
(372)

and

G̃ψ(x0, ω) =
1

ẑ2φx0 + x(1 + rψ)2 + ω
, (373)

where x = ~p 2/k2. Here, we have dressed the ratio of the wave-function renormalizations longitudinal and

transversal to the heat-bath, ẑB = Z
‖
B/Z

⊥
B and ẑψ = Z

‖
ψ/Z

⊥
ψ .

First, we define the threshold functions which appear in the RG flow equations for the bosonic self-

interactions. For the purely bosonic loops, we find

l
(d)
0 (τ, ω; ηB, ẑB) =

τ

2

∞∑

n=−∞

∫ ∞

0

dx x
d−1
2 (∂trB − ηBrB) G̃B(ω̃

2
n, ω)

=
2

d− 1

1√
1 + ω

(

1− ηB
d+ 1

)(
1

2
+ n̄B(τ, ω)

)

, (374)

where ηB ≡ −∂t lnZ⊥
B , τ = T/k denotes the dimensionless temperature and ω̃ = 2πnτ denotes the

dimensionless bosonic Matsubara frequencies. The function nB represents the Bose-Einstein distribution

function

n̄B(τ, ω) =
1

e
√
1+ω/τ − 1

. (375)

Bosonic threshold functions of order n can then be obtained from Eq. (374) by taking derivatives with

respect to the dimensionless mass parameter ω:

∂

∂ω
l(d)n (τ, ω; ηB , ẑB) = −(n+ δn,0) l

(d)
n+1(τ, ω; ηB , ẑB) . (376)

For the purely fermionic loops contributing to the flow equations of the bosonic self-interactions but

also to the RG flow of the four-fermion coupling, we find

l
(F),(d)
0 (τ, ω, µ; ηψ, ẑψ) = τ

∞∑

n=−∞

∫ ∞

0

dx x
d−1
2 (∂trψ−ηψrψ)(1+rψ)G̃ψ((ν̃n + 2πτµ)2, ω)

=
1

d−1
1√
1+ω

(

1− ηψ
d

)

(1−n̄ψ(τ, iµ, ω)−n̄ψ(τ,−iµ, ω)) . (377)

Here, we have introduced the dimensionless fermionic Matsubara frequencies ν̃n = (2n+1)πτ and ηψ ≡
−∂t lnZ⊥

ψ . The function n̄ψ denotes the Fermi-Dirac distribution function:

n̄ψ(τ, µ, ω) =
1

e(
√
1+ω/τ)+2πµ + 1

. (378)

Higher-order fermionic threshold functions can again be found by taking derivatives with respect to the

dimensionless mass parameter ω:

∂

∂ω
l(F),(d)n (τ, ω, µ; ηψ, ẑψ) = −(n+ δn,0) l

(F),(d)
n+1 (τ, ω, µ; ηψ, ẑψ) . (379)



124 Jens Braun: Fermion Interactions and Universal Behavior in Strongly Interacting Theories

Finally, we give the definition of the threshold function which appears in the RG flow equations of the

Yukawa coupling. We have

l
(FB),(d)
1,1 (τ, ωψ, ωB; ηψ, ηB, ẑψ, ẑB)

= −τ
2

∞∑

n=−∞

∫ ∞

0

dx x
d−3
2 ∂̃t

[

G̃ψ(ν̃
2
n, ωψ)G̃B(ν̃

2
n, ωB)

]

. (380)

To evaluate the integral over x (spatial momenta), we have to take derivatives with respect to the regulator

function. For the regulator functions (348) and (349) these derivatives are given by

∂̃t

∣
∣
∣
ψ

=

(
1

x1/2
− ηψ

(
1

x1/2
− 1

))

θ(1− x) ∂

∂rψ
, (381)

∂̃t

∣
∣
∣
B

=

(
2

x
− ηB

(
1

x
− 1

))

θ(1− x) ∂

∂rB
, (382)

where the first and the second line defines how the formal derivative ∂̃t acts on the fermion propagator

and the boson propagator, respectively. These expressions are only valid for the spatial regulator functions

given in Eqs. (350) and (351). Recall that x refers to the squared spatial (loop) momentum. In this

review, we have only used general properties of the threshold function l
(FB),(d)
1,1 (for µ = 0), but we have

not employed it in the numerical evaluations of the flow equations. Therefore we only give the general

definition of this function here.
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