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Abstract. An Ito product formula is proved for stochastic integrals against
Fermion Brownian motion, and used to construct unitary processes satisfying
stochastic differential equations. As in the corresponding Boson theory [10,
11] these give rise to stochastic dilations of completely positive semigroups.

1. Introduction

In [10] a quantum stochastic calculus leading to an Ito product formula was
developed which, in its simplest form, uses as integrators the Boson field operators

A(®) = alx0,1)» Al(D)= aT(X[o,z]) . (L1

Here ys denotes the indicator function of the set S and the operators (1.1) are the
smeared fields corresponding to y , living in the Boson Fock space over the

Hilbert space 4=12[0, ). (1.2)

Under the duality transformation this Fock space transforms into the L2-space of
Wiener measure in such a way that A(f)+ A4'(t) becomes multiplication by
Brownian motion; thus the operators (1.1) constitute a quantum Brownian
motion [6]. The Ito product formula can be summarized by the multiplication
rules for stochastic differentials

| dA  dA*  dt

dA 0 dt 0
dAT | 0 0 0
dt 0 0 0

(1.3)

which contain the classical Ito formula as a special case [10].
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Underlying the theory of [10] is the heuristic principle {7] that the
eigenproperty of the coherent states w(f), fe 4,

a(@p(f) =<9, >w(f), (1.4)
can be written in differential form
dAp(f)=f(®)dtyp(f). (L.5)

Matrix elements between coherent states of stochastic integrals can thus be
expressed as Lebesgue integrals, permitting the extension of stochastic integration
from simple integrands to a natural I? class, and leading to the Ito formula (1.3) as
a consequence of the Boson commutation relations.

The resulting stochastic calculus was used in [10] to construct unitary
processes which generate stochastic dilations of certain uniformly continuous
completely positive semigroups, the general case being given in [11].

In this paper we develop the Fermion analog of this Boson theory, in which the
stochastic integrators (1.1) are now Fermion field operators in the Fermion Fock
space over the Hilbert space (1.2). Though the connection with classical Brownian
motion is now only formal, the same Ito product formula (1.3) is obtained,
rigorously justifying its heuristic use in [3].

The use of Grassmannian Fermion coherent states is formally attractive [2],
but it does not lend itself to rigorous treatment of the theory. Instead of coherent
states we use m-particle states

le(fl’-"7fm):a1(fm)"'aT(fl)wO’ mEN’ fl""’me%’ (16)

where ,, is the Fock vacuum, for which the analog of the formal relation (1.5) is

dAWm(fla ’fm): jzil (‘ 1)m7jfj(t)dtwm—1 (fl’ /J\ fm> ' (17)

Once again matrix elements of stochastic integrals are reduced to Lebesgue
integrals, and the Ito formula (1.3) now follows from the canonical anticommu-
tation relations (CAR). However, the proofs are more cumbersome than in the Bose
case (which could also be developed as in this paper by using m-particle rather than
coherent states) requiring frequent inductions on the particle number m.

We use the theory as in [10] to construct Fermionic unitary processes and
related dilations of completely positive semigroups. While the extension to the
general uniformly continuous completely positive semigroup is technically simpler
than in the Boson case [11] because of the boundedness of Fermion field
operators, it will not be given here.

Other aspects of Fermion stochastic calculus, particularly of the analog of the
classical Brownian motion A(t) + A%(¢), have been extensively developed in [4].
We show that the Ito-Clifford integral of [4] is contained as a special case of our
theory.

We say that denscly defined operators are mutually adjoint if each is contained

n n
in the adjoint of the other. For 1 <k<n, > “means >
j=1 i=1
jEk
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2. Preliminaries

Let 4 be a Hilbert space. The Fermion Fock space over #, the Fock representation
of the CAR over # and the Fock vacuum vector are characterized to within unitary
equivalence as a triple (5, a, y,,) comprising a Hilbert space 5, a conjugate-linear
map g from 4 to the algebra B(+#) of bounded operators on # satisfying

{a(f)a a(g)}:O, {a(f)a aT(g)}=<fa g1, (21)

for all £, g € 4, and a unit vector v, € # such that a( )y, =0 for all f€ 4, and the
set of vectors

lpm(fl’""fm):aT(fm)"'aT(fl)wOa m=051a27"'9f17-"9fm6ﬁ (22)
is total in .

m . i
For f=(f1,..../we X #Aandj=1,...,m we write f/= (fl,.../\...f,,,). Then
=1

for arbitrary m>0, fe X 4, g€ 4,
j=1

AaN= X (1" K Sl 23
We note also that, since ||a'(f)] =1l fll,
10 o fi) | S n 173 (24)

We denote by #°, and #_, respectively, the closed spans of the vectors (2.2)
with m even and odd, respectively, so that thereby o is a Z,-graded Hilbert space,
that is, # is the internal direct sum of even and odd subspaces #, and #_.
Correspondingly, the algebra B(s#) is Z,-graded [5] by the rule that Te B(#) is
even if To#, CoF, and odd if To#, C#~. The parity of vectors and operators is
indicated by the function ¢ which is 0 on even elements and 1 on odd.

Now let #=1I7[0, o). Denote by #, and #' the Hilbert spaces I2[0,¢] and
[*(t, o), by #, and #" their respective Fock spaces and by y,, and vyl their
vacuum vectors. Corresponding to the natural decomposition

A=4OH (2.5)
there is a natural identification [9] # = #,® #" in which

Yo=¥o:®Yo (2.6)
and, for each fe 4 having components f, in 4, and f* in #,
a(f)=a(f)RI+I1®a(f"). 2.7

Here ® denotes the anticommuting tensor product of operators defined as
follows; if S € B(#,), Te B(A#"), v € #,, and ¢ € A" then, assuming T and y have
definite parity

SRTYR¢=(—1YTVSHpRTe. (2.8)
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Wedenote by &, &, and & _ the algebraic spans of the vectors (2.2) in # with m
unrestricted, even and odd, respectively, sothat § =&, +&_,and by &, &,.., &", and
&', the counterparts of these subspaces in & and #”, respectively. Then for =0

5=§t®gt> g+=gt+®(g)t++@@t—®gt~’ éo—zé()H@ém—'*“”@tf@éﬁ’

where @ denotes the algebraic tensor product.
We are concerned with operator-valued processes which live in the tensor
product 4,®.# of s# with a Hilbert space 4, called the initial space. We write

H=5,Q@H, H=hQH, E=4Q6E, E=4,06,.

Thenforeacht>0, # = AQH",E = éi@é’”. We assume that 4, is Z,-graded, with
even and odd subspaces 4, ., and we denote by 0 the parity operator, that is the self-
adjoint unitary operator which is I on 4,, and —I on 4, _. Then # is Z,-graded
by

~

Ty =Bo s QML+ 1o QH_, K=y QA +1y QH, .

We also write

~

&=t @6, +hy ®E_, E_ =1y Q8 +4h-QE.,
‘§t+=éo+®gz+ +%o_@£’t_, éi—zéo+@gt-—+%0*®éﬂt+"

An operator T in /2 with domain &, is said to be even if T&,, CH#,,, and odd if
T&,, CH,+. Every operator T in s with domain & can then be decomposed
uniquely into the sum T=T, + T_ of even and odd parts.

If S is a bounded operator on 5" its ampliation to # = #,® " is the bounded
operator IQS on . If T'is a not necessarily bounded operator in 2 with domain
&, we define its algebraic ampliation to be the operator in # with domain
E=8_ ® 2" which acts on product vectors as T® Ip®@¢=Ty®¢ (p € &, pe A"
(note that I is even). If T'is of definite parity and S € B(s#") is of definite parity, then
as operators on &, @i,

(TRHUGS) =(—1PT*OUQSHTRI). (2.9)

3. Adapted Processes

Definition 3.1. By an adapted process we mean a family F=(F(t): t=0) of
operators in # such that

a) foreach t =0, F(t)is the algebraic ampliation to &,® #" of an operator in 7,
with domain &; B

b) thereis a family F = (F'(¢): t 2 0) also satisfying condition a) such that each
F'(¢) is adjoint to F(t).

Note that in this definition we are guided by [11] rather than by [10]. F is
clearly also an adapted process called the adjoint process to F. We denote by o/ the
complex linear space of all adapted processes.
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Definition 3.2. We say that the adapted process F is simple if there exists an
increasing sequence t,, r=0,1,2,... with t,=0 and t,—> oo such that
2] r

F= 3% F.xu,.1,. . continuous if for arbitrary ue £, m20, f,, ..., f,, € % the vector-
r=0
valued functions t—F ¥ ()u®y,(f1, ..., f), where F ¥ iseither F or F', are strongly

continuous on [0, o), and locally square integrable if each such function is strongly
measurable and satisfies

§IF* e (s < oo

for all ¢>0.
We denote .7, o7, and L2 . the subspaces of .« of simple, continuous and

loc

locally square integrable processes, respectively. Clearly,
"Q{OD %c g L%oc .
The following proposition is proved exactly as Proposition 3.2 of [10].

Proposition 3.1. Let F e I2,.. Then there exists a sequence F,,n=1,2, ... of simple

loc’

processes such that, for each t>0, ue 4y, m=0, f1,...,fu€#4
1
lim g (F*(s) = Fy (9)u®@yp,(f)[*ds=0.

We say that Fes/ is even (respectively odd) if each F() is the algebraic
ampliation of an even (respectively odd) operator in #, with domain &,. Clearly,
every F e/ is uniquely expressible as the sum F, 4+ F_ of even and odd parts.

Definition 3.3. The annihilation and creation processes are the mutually adjoint
processes A and A defined by

AO=I®a(xo,9), A'O=I1®a'(fo), 120. (3.1)

These processes are clearly odd. Since
[A* ()= A O = H®a* (1. )I* = la* (e, DI = I As.all > =5—1,

it is clear that they are continuous. It follows from (2.1) that for 0<s<t and
arbitrary ¢,, ¢, € H#,

{AT(0)— AN ()¢, (AT — AT (5)¢2>
= — (AW = A())¢1, (A1) — A2 + (5= 1)<P1, 427 - (32)

Let 0<s<t and let F,F' be mutually adjoint operators in s which are
algebraic ampliations to éi@%s of operators in 2, with domain &.. Since A — A}
is bounded and A4,—A, maps &®#* to itself, the products (4f —A))F and
F'(4,— A,) are well defined mutually adjoint operators in #Z with domain 5”,@ H,
which are algebraic ampliations of operators in £ with domain &,
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4. Stochastic Integrals and Ito’s Formula for Simple Processes
Definition 4.1. Let F, G, H € o/, and suppose that

F= ';0 Fifteptrins G= ;o Gty tenyy,  H= Ho Xy b0 )0 (4.1)

T
|
M8

where
O=ty<t; < ... <t,—> 0.
Let M =(M(t): t20) be the family of operators defined inductively by
M(0)=0;

M()=M(t,)+(A'0) - A',)F,
+ Gr(A(t) - A(tr)) + (t - tr)Hr (42)

for t,<t=<t,,,. Then M is called the stochastic integral of (F, G, H) and we write
t
M(t)= [ (dA'F + GdA+ Hds).
[¢]
M is an adapted process whose adjoint M1 is given by
?
M (t)= [ (dA'G'+ F'dA+ H'ds). (4.3)
4]
Clearly, M depends linearly on (F, G, H). We use the differential notation dM
=dA'F + GdA + Hdt to describe the situation that M =(M(z): t 2 0) is an adapted
process satisfying

M(t)=M(0)+ }t" (dA'F + GdA + Hds),
0

where M(0) is the ampliation to 4,& # of an element of B(#,). Note that, if dM
=dA'F + GdA + Hdt, then

AM, =dA'F_+G_dA+H,dt, dM_=dA'F, +G,dA+H_dt; (44)

in particular, if F and G are odd and H is even then their stochastic integral is even.

t
Theorem 4.1. Let F,G,He ./, and M(t)= | (dA'F+GdA+ Hds). Then for
Q

arbitrary u,v e 4o, m,n=20, fi, ..., fr»G1s.--»Gn €4 and t 20,

u®p,(f), MOv®w,(9)>
= J:;{él (= D" 0@y - 1 (f7), F(s0Q,(9)>

+ 3 (~ 1 KB pu), GO0OY,- (6):)

+<u®yp,(f), H (S)v®wn(g)>} ds. 4.5)
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Proof. Assume F, G, H given by (4.1). Equation (4.5) clearly holds for t=0; assume
inductively that it holds for t=t,. Then for t,<t=<t,,, from (4.2)

u®w,(f), (M(1) — M(t)r®y,(g)>
= u®u(f) {(ANO) = AT )F, + G(AW) — A(t)) + (t — t, ) H,}v®p,(9)>
= (A1) — AC))u@pu(f), Fo@p.(9)>
+<u®y,u(f), GLA() — At ®wig)>
+ (1) u®vp,(f), Ho®y,(9)) -
From (2.8) and (2.3),

(A0 = AP /) = I®alt, U@ 1) = 4@l o)
=08 3 (=" P Vm 1 (F)

= é} (— 1)m‘fjﬁ9u®wm_x(ff)-

Similarly,
(A~ AC)OP@= T (~ 1)+ g00@v, 10",

Substituting we find
u@wul(f), (M) — ME)v®v,(9))

= f{fj (= D" I u® W, (), Fo@pa(9)>

t (j=1

+ 3 (1 HKu®py(f): G000, 6)0:)

T+ Cu®alf), Hm@w,,(g»}ds.

Since F(s)=F,, G(s)=G,, H(s)=H, for se(t,,t) the result now follows from the
additivity of the Lebesgue integral. [

Theorem 4.1 implies that the differentials dA', dA, and dt are independent in
that, if dA'F + GdA+ Hdt =0, then F, G, and H may be equated to zero. Indeed, if
the left-hand side of (4.5) vanishes identically in ¢, then, taking (generalized)
derivatives of both sides and picking f and g so that each f(t)=g,(t) =0, we see
that H=0, since the y,(f) and p,(g) corresponding to such f and g are total.
Relaxing separately the conditions f(t)=0, ¢,(t)=0 we see similarly that
F=G=0.

We shall see that Theorem 4.1 remains true for locally square integrable
integrands, as is the following which is then essentially Ito’s formula.

Theorem 4.2. Let F,G,H,F',G',H' € </,

t t
M()= [ (dA'F +GdA+Hds), M'(t)=[(dA'F'+GdA+Hds).
0 (4]
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Assume that M and M’ have definite parity. Then for arbitrary u,ve 4y, m,n=0,

fl, .. "fm’ 915+ Yn € %’ the funCtion on (O’ OO), t— <M(t)u®wm(f)! M/(t)v®lpn(g)>a
is absolutely continuous with derivative

% M@Ou®y,(f), M (Ov@y,(9)>

= 3 (U TGOS - (1), M O0@1,(0)) +(~ 1
MO0 () F (08,0}
+ 3 (<D H DR U@ (), MO0, 16D
+ MUY, G D00@ - (e)on()
+ CHOUD (), MO0®@,(0)> + MOUB (), HO0@,(0))

+LFOu@n(f), F()r@y,(9)> - (4.6)

Proof. Assume F, G, H given by (4.1) and that F’, G’, H' share the same intervals of
constancy. Then, for te(t,,t,, ), writing M(z) in the form (4.2) with a similar
expression for M'(t), we have

MU, MOvOP @Y= 3. 5 B,

where
Po=Mtu®v,(f), ¢1=(A"O)—A'ENFu®v.(f),
¢2 = Gr(A(t) - A(tr))u®IPn(g) s ¢3 = (t - tr)Hru®wm(f)
with analogous definitions ¢y, @7, ¢%, 95. {dq, ¢4 is independent of ¢ so that

d SN —
T b0y =0. @)

Writing M(t,) as the algebraic ampliation of an operator in #, and using (2.9),
(2.8), and (2.3) we have

{do #1> =< M(tJu®pn(f), (A1) = A' (L) Fv@w,(9)>
= (A(O) — AE)IM (. )u@vu(f), Fr@wi(9)>
= (=1’ {M(,) A @al, ))u®@pu(f), Fr®@vp,(9)

= 5 (10 M@ Y1) F@,0)).

which is clearly absolute continuous as a function of ¢ with derivative
d m e o
3 Podo= 2 (— 1P f() (M(E)0u@ W - 1 (f7), Fo®w,(9)>
i=

(= 120 =IF0) (M) 0U® W — 1 (f), F (0@ 1,(9) -
(4.8)

M=

j=1
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Also, from (2.8) and (2.2).
(B0, 927 = <o, Gi(A(t) — AL @WA(9)>

= 3 (~ 10 G000, @) [ a1

and

9> =(1—1) B Ho® 1,0,
so that
& oti>= 3 (=17 00, GOBY,- (900

= 3 (=1 KM@ GO0, (gDa(D), 49
o 5= oy Ho @00 = M@ () HO @ (0)> - (410

By similar arguments to that leading to (4.8) we have

d " :
i {p1,00)= k; (— 1P R u®@, (), M(t)00@w,—1(6°)>g:(t) .
4.11)

Using the commutation relation (3.2), (2.9), (2.8), and (2.2) we have
{¢1, 41> =(A"(O) — AN tNF u@wn(f), (A'0) — At ) Fv@wiu(9)>
= —(A(D) — A Fu®w.(f), (A1) — A(L)Fo®v,(9))

+ (t_ tr) <Fru®wm(f)’ F;U®1Pn(g)>
= — (= 1Y/EIHENCE TQa(y, )t @ Wl f), FI®a(x,, ) v®@w.(9))

+ (=t ) Fu@uu,(f), Fv@y,(g)>
— (= e B (1T 3 (1
j=1 k=1
: jﬁ(Fﬁu@wW (), Fi06@v,—1(d9)

] gt (=) CF @), Fa®u,(0))

It follows, using the fact that F, and M, and similarly F, and M’, have opposite

parities, that
d N )+ O(Fy. “ m=j
E<¢1’¢1>__(_1)6(F) 5(F)j§1(—1)
») <—1>"""{f,~<?) fgc+ | f,-gkm}
L F0u®y— (f7), Fl00®@w, - 1(g") + {Fu®wn(f), Fr@y,(9))

=(=19% 3 (=10
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* <Fr9u®lpm— 1(fj)> (A(t) - A(tr))F;v®IPn(g)>
F(=1P00 3 (=1
k=1

AW — AU ) Fu@p,(f), Fiov®@y,-1(g")) g 1)
+ (Fu®@yw,(f), Fu®p,(9))

=(=1%0 3 (= 1" 0
O AN CDE BB, F OO
H(— 1P 3 (— 1y
k=1

(FOu@pu(f), (A'(0) = AT E)F00®, - 1(9")>9:(0)
+{FOu®y.(f), F()r®@v.(9)) - (4.12)

The nilpotency relation a(y, . ;)* =0 shows that {¢,,¢3> vanishes, so that
d
7 {91920 =0, (4.13)

while, writing H; as the algebraic ampliation of an operator in J#, and using (2.9),
(2.8), and (2.3)

{P1 430 =(— 1)"(’“2( 1

Fa® (), B0, (g =1 g1,

so that, since H, and M’ have the same parity
d oo - ,
E<¢1,¢’3>=(—1)‘5‘H”k§1(—1)" Fu®p,(f), H0v®vw,_1(d"))
t
- {f g+(t- t,)gk(t)}

= (Fu@®@p,(f), (A — AN Hp®p,(g)> +(— 1) ;él (=1 *
{Fu®p,(f), ¢ =t ) H00@p, - 1(g°)>9:(2)

= (AT = AT ) Fu®@yu(f), H(Ov@w,(g)> +(— 1)
2 (DT REOUOP(), (— I, (@) (414

Similar arguments show that

d m — _
7 {92900 = ,;1 (=" f(OGO0uB Y, -1 (), M1 0®p(9)>, (4.15)

d N —
7 $241>=0, (4.16)
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d ’
E <¢2a ¢2>

= § (= )" IGO0 -1 (f), GUA®D) — At ®y,(9)>

P
+ 3 (1P KGO ~ A B, GO0, (a0, (17

& Bat= E (P DGOND P (.~ )HO 1 0)
HCGAAD = AL O Y1), H O @0) @1
4 9> = CHOU D), M @01, @19)

& s> = CHOU@ (). (41O~ AT 0®0,(0)>
H=10 3 (=17 D

=@y () F 0@y, (420)

= 3 (1)), COBBY, (Do)
FCHOUD YT, GLAD— ACNBP,6) @21)

L b == ) HA® Y1), H 0@ 0))

+{HOu®,(f), ¢ —t)Hp®v,(9)> - (4.22)

Summing the Eqs. (4.7)(4.22) and recalling (4.2) and the analogous expression for
M(t) establishes (4.6). [

5. Extension to Locally Square Integrable Processes

Equating (F’, G, H') to (F, G, H), v to u, n to m, and g to f in Theorem 4.2 we get
d
S IMOu@v(f)?

=2Re{ 3 (17 DLGOM Py, MOUB1)
= DM@ (), FOu@ (/)]
+ HOUD ), HOUS )| + IF ()1

= ji {IfOPTIMOOUB - 1 (I + | M(Ou@pu(£)17]

+HIGOOURY,—1 ()} + IMOu@pun( /)]
+(m+ DIFOu®p, () + IHOu@p, () (5.1)
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for arbitrary F, G, H e .s/,, where we use the inequality 2Re{¢;, ¢,> < |é, |

+ 4212
Now let F,G,Hel? . By Proposition 3.1 there exist F,,G,, H,¢€ .2,

n=1,2,... such that for arbitrary ue 4, m=0, f,,...,f,€%, and t>0
t
(f){II(F#(S)—F,T*(S))u®wm(f)||2 +(G*(5) = G (sDu®p,( /)]

L +[(H* ()~ Hy (s)u®@pu( )|*}ds — 0. (5.2)
et n

t
MJf)= | (dA'F,+G,dA+H,ds), n=1,2,..., t20.
4]

Theorem 5.1. For arbitrary ue 4y, mz0, Nfl, vers Jm€ 4, and T=0 the sequence
M (Ou®y,(f), n=1,2,... converges in # uniformly for te[0,T] to a limit
independent of the choice of F,,G,, H,e oy, n=1,2, ... satisfying (5.2).

Proof. The proof is by induction on m. When m=0, replacing M by M ,— M, in
(5.1) gives

d
T (M, — Mu®woll> S (M, — M u®wol* + II(F,— F Ju®wol*

+1(H,— H)u®wol?,

whence using the integrating factor e’

I(M,(8) — M0)u®p,|*
= 5) e {I(F () = Fy(sDu@wo | * + | (H () — H (s))u®p, | *}ds

se’ i {I(F ,(8) = F ()u®po|* + | (H ,(s) — H,())u®p, | *}ds

whenever 1 € [0, T']. From this it is clear that the sequence M, (Hu®wpq, n=1,2, ...
is uniformly Cauchy and thus uniformly convergent for ¢t € [0, T].
For general m, from (5.1)

d
77 1M, — M u®vw, (NI

= ji {SOPLIM,~M)Bu®pp— « (f)I* + (M, — M u@p, ()]

+ (G = GOu®pp— 1 (SN} + 1M, — M Ju@w,(/)]1*
+(m+DI(F,— Fu@w,u (N> + [(H,— H)u®p.()]*

t m
Using the integrating factor exp { —t— 3 fj(s)|2ds}, we find
o

Jj=1

(M, (1) — M (0)u@p,( ) ?
cJoof(Eor1)o
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| & 10P 104,60~ M 600000, 1
1G9~ G- 1N+ DI(F 5) ~ F @ NI
I~ B |as

<exp {E <j§1 |02+ 1) dt}

] & 10PI08,0 - M©0©p,- (1
H(GH(9) = GNP (/I +(m+ DIF ) ~ F M@yl )]
I~ B [is

Making the inductive assumption that each M, (s)0u®v,,_(f%), n=1,2,... is
uniformly convergent hence uniformly Cauchy for s € [0, T'], recalling that each f;
issquare integrable, and using (5.2) we conclude that M (0)0u®y, (), n=1,2, ...1s
uniformly Cauchy hence uniformly convergent for ¢ € [0, T]. A similar inductive
argument shows that the limit does not depend on choice of (F,, G,, H,),n=1,2, ...
satisfying (5.2). O

The operator M(¢) defined on & by
M@u®@p,(f) = lim M, (u®@p.(f)

extends uniquely as an algebraic ampliation to &,® #"; we denote the extension
also by M(t). Then M =(M(t): t=0) is an adapted process called the stochastic
integral of the locally square integrable processes (F, G, H), and denoted by
t
M(@)= [ (dA'F+GdA+Hds), t=0.
0
The adjoint process M'(¢) is given by
t
M (t)= [ (dATG' + F'dA+ H'ds), t=0.
0
In view of the uniformity of the convergence in Theorem 5.1, the integrated
t m
form <using the integrating factor exp { —f ( > S+ 1) ds}) of (5.1), namely
o\j=1
IM(Ou®p.()?

TR
[ i {Ifj(s)|2||M(S)9u(>9wm—1(f")||2 + |lG(s)0u®1pm_1(ff)||2}

+(m+ DIF(u®@p,()HI*+ IIH(S)u®wm(f)HZ] ds (5.3)
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remain valid in the transition from simple to locally square integrable integrands,
as does the corresponding estimate,

(M) — M) /)]
< Jexp (f 3 1o+ 1) da}

T j=

' in {If@PIM(2) = M($)0u@w, - 1 (I + [ G()0u@w, - . (NI}

+(m+ DIF@Qu@yp.()I*+ I)H(T)u®wm(f)||2] dr,

got by replacing (F, G, H) by (F (s, oy Gs, ooy HX[s, o)) i1 (5.3). From this it follows
that the stochastic integral M(r) is a continuous process; in particular, the
functions t—»>M()u®wy,(f) are bounded on finite intervals. From this it follows
that we may pass to the limit of simple approximations in (4.5) and the integrated
form of (4.6) to obtain that Theorem 4.1 and 4.2 hold for integrands F, G, He I3,

We denote by .# the set of all adapted processes M satisfying dM =dA'F
+ Gd A+ Hdt for locally square-integrable F, G, and H, with the further property
that for each t=0, M(¢), F(t), G(t), and H(t) are bounded operators, and

OiugtmaX{HM(S)ll, IEO N, 166, 1H @)} <00
Theorem 6.3 below shows that .# is far from empty.
Theorem 5.2. .# is a *-algebra under pointwise operator multiplication and the
involution M— M". Furthermore, for M, M, € 4,

dM M,)=dM; -M,+M,-dM,+dM,-dM,, (54

where, assuming that dM ;=dA'F;+ G, dA+ H dt and that M|, M, are of definite
parity,

AM - M, =dA'F M, +(—1Y’M)G, M,dA+ H,M,dt, (5.5)
M, - dM,=(—1YM4A"M F,+ M,G,dA+ M, H,dt, (5.6)
dM,-dM,=G,F,dt. (5.7)

Proof. The uniform boundedness of M, F;, G;, and H; shows that the integrands
on the right-hand side of (5.5) and (5.6) are locally square integrable so that the
corresponding stochastic integrals are well defined. Equation (5.4) now follows by
combining (4.5) with (4.6), in which we set M=M}, M'=M,. O

Theorem 5.2 is the rigorous justification of the Ito product formula (1.3) [3].

Just as the classical stochastic integral against Brownian motion is contained
as a special case of the Boson stochastic calculus of [10], an Ito-Clifford stochastic
integral [4] can be obtained from that developed here as follows.

We take 4,=C so that ## =#. Equipped with the tracial state

o(T) = <o, Tipo ,
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the von Neumann algebra % generated by the operators
P(f)=a(f)+a'(f), [feL’[0, )

is a probability gauge space [12]. The map T— Ty, from % to s extends uniquely
to a Hilbert space isomorphism D, the duality transformation of [13], from (%)
onto . ¥ is generated by the operators ¥(t) = AT(t) + A(t), t = 0. We denote by %,
the von Neumann subalgebra generated by the ¥(s), 0<s<¢; then D maps I*(%,)
onto #,Qy%, where v} is the vacuum in #*. We write | |, for the norm in LX(%)
and use the traciality of the state @ to obtain the estimate

|GF|3=w(F*G*GF)=o(FF*G*G) < |F|*|G|3, (5.8)
valid for F e ¥, G e [*(%).

Theorem 5.3. Let F:[0, c0)—I*(%) be measurable and such that, for each t=0,
t i
VIIF(s)|3ds < oo and F(t)e I*(%,), so that [4] the Ito-Clifford integral § F(s)d¥P(s)
0 0

exists. Then F is locally square integrable and, denoting its even and odd parts by F ,
we have

iF(s)d'I’(s)z i(dA*(F+ —F_)+(F.+F_)dA)

as operators with domain &,Q #".

Proof. Suppose first that F is $-valued and simple, say F = Z F o1, ., Where
O=to<ty< ... <t, —> 0. Then [4]

| Fd¥()

= ¥ (P50 =¥+ FFO D). L<iSh.,

= 3 (Fp b Fy (AT~ A(0)+ Al ) = A()
+(F, 4 +F, )(AT(O—AN(t,) + A() - A1)

= é“o {(AMt )= ATV F e —F; )+ (Fje +F; ) (At41) — A))}
AT — AN Fyy —Fy )+ (F g+ Fy ) (Al ) — A()

— [ {dANF , —F )+ (F, +F_)d4}.
0

More generally, if F satisfies the hypothesis of the theorem there exists a sequence
F p=1,2,... of simple ‘gvalued processes such that, for each ¢=0,

f | F(s)— F (s)lI3ds — 0; then f F(s)d¥(s)= hm f F (s)d¥(s), where the limit is in
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the norm of L*(%,). (In [4] the F, are L*(%)-valued, rather than %-valued, however,

using the density of each €, in L {((6,) it can be seen that there is no loss of generality

in our stronger assumption) The theorem now follows from the inequality

1Gwn(fi - )l S PyIIGll2, (5:9)

where P,,is a polynomial in the [ f}, fi >}, j, k=1, ..., mvalid for arbitrary G € I*(%),
which will now be proved by induction on m. When m=0, |Gy,| =G|, by
definition of || ||,. More generally,

1GYu(f1s s Sl =1Ga' (f)a' (frn=1) - a*(fDwo
< 16@'(f) + alfu))wm- 1 (SN + 1 Ga(F)a (fu- 1) - a"(f)wol

<16 ) + Do I+ S, [ D) 1G]

Inequality (5.9) now follows from the inductive hypothesis, together with the
inequality (5.8) in which we take F=d'(f,)+a(f,). [

6. Stochastic Evolutions

Let L, j=1,2,3 be bounded operators on the initial space 4, and denote by L
j=1,2,3 their ampliations to /. Assume L,, L, odd and L, even. Set

szax{“l‘_]”’ ]= 1’ 29 3} .
We show that the stochastic differential equation
dU=dA'UL +U(L,dA+Ldt), U@O)=1I (6.1)

has a unique solution.
We establish existence iteratively, defining processes U, p=0, 1,2, ... induc-
tively by
Uo(t) = I )
¢ - N - (6.2)
U()=1+[(dA"U,_ L +U,_(L,dA+ Lsdr)).
0

Clearly, U,eLi,. Assume U,_, €L}, Then the processes t—U,_ 1(t)ij are
strongly measurable, moreover, for arbitrary ue 4y, m=0, fi, ..., f,€ 4, and t>0

10, L@ a5 = § 10, (OLu@wn(Hlds,
10U, L) w5 = [ 1BV} (@ vpa)Ids

gczg') 1UL- (S u@yal(£)ds,

so that these processes are locally square integrable. But then their stochastic
integral exists and is likewise locally square integrable. Thus U , is well defined for
all p.
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Clearly, each U, is even. Also
Ui(n=I,

o(t) . ) ) 63)

Ulm=I+ (f) (dATLYUT ., + LYUL_ dA+ LLUS _ (ds).

Theorem 6.1. For arbitrary p>0, m=20, uc4,, fi,...,fm€ 4, and t>0,
U= Uy 1@)u@waNHI?

<o) tep{i+ | S 1} rcramear e £ 148, 64

Proof. We give the proof for U, that for U] being similarly based on the iteration
(6.3). The proof is by induction on m. From the estimate (5.1) we have

d
2 U= U Ju®p( NI

= ji {HOPIIU, = U, Qu@pu(HI? + (U~ U, - )0u@pm— (/)]
(U, -1 = U,y )Ly 0u@wp— 1 (S} 41U, = U, Ju®p,n( I
+m+DIU,-1 = U, )Liu®@wu( NN+ 1Up-1 = Uy - ) Lyu@wu( ).

t m
Using the integrating factor exp{ —t—{ 3] fjlz} we obtain
0j=1

”(Up(t) - Up~ 1(t))u®wm(f)“2
= j)exp {t—s-l— i 'i |fj|2}

'Li IFS)PIU ) = Uy 1 (9)0u@ 1y ()12

+ 31Uy 9= Uy (L@ ()
e+ DU, 1)~ U, - L@, (NI

HIU -1~ Uy s L@ I |5 6
When m=0, (6.5) becomes
(U ()= U, -1 ()u@wo1*
= ie’_s{ll(Up-l(S)— Uy 2())Lsu@,
(U, - 1(8) = U, - ()Lsu®, | *}ds,
whence we obtain by repetition that

MU= U, 1()u@pol* < (p1) '¢'t72°C>?|lu]|?,
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so that (6.4) holds in this case. More generally, making the inductive assumption
that

IU ) = Up— 1 (sN0u@wn— 1 ()11

=(p!) " 'exp {S+ { Z(j)ifk|2} SPCPQmy " Huf?exp X204,
0 k=1 k=1
we see that the first term on the right of (6.5) is bounded above by
m t m t t
.Zl exp {t+ g ka’) |ﬁc|2} iexp {f Ifjlz} | fi()Pstds(pt) = C??
j= = s
'(2m)”+'"_1||u||2€ka§1”)llﬁc||2-
Since, integrating by parts,
t t t t
gexp {sf [fjlz} | f{s)|2sPds = g exp {{ Ifjlz} ps? T ds— P
T
sexp[lfi*t7;
this is in turn bounded above by
t m m
meXP{HI 2 lfjlz}t"(p!)*1C2"(2M)"+'””1llu||26Xp > 502
0j=1 j=1
Similarly, the second term on the right of (6.5) is bounded above by
m t om L t
2. exp {H— { Z(J)lfklz} [ exp {f If,-lz} P lds((p—-1)H e
=1 0 k=1 0 s
-@mP 2| Lybul* exp 37| £ill?
k=1
t m
gmexp{t-kj~ > Ifjlz} P(p)~1C*
0j=1

@my 2 ulexp 3 1412
Thus (6.5) gives
V)= U O oI
<) exp {t+ I ¥ |f,-|2} rﬂc“nuuzexp{ ) MHZ}

j=1

m(Qm)P L 2mP ) 4 iexp {t—s-l— i Zl |fjl2}

L+ DI, 1(8) = U, - o)L u®@pu( )
1 (Up- 1 ()= U, 2(s)Lsu®@p, () 1ds. (6.6)
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We now establish (6.4) by induction on p, noting that when p=1,
I(U(6) = U, - 1 ()@ £)II?
= i (dA'L, + L,dA+ Lydu®v, ()|
= | AM(OL,u®@yu(f) — AD L ®@pou(f) + tL3u®@ ()1
<30+ A)CHullpn(H1
<op{i+ ] £ pficianoriuren £ 140

using (2.4), together with the inequality | A*(z)||2 <t. Thus (6.4) holds in this case.
Making the inductive assumption in (6.6) that

I(Up—1(5) = U, 2(NLu®@wu( NI
g((p—-l)!)_lexp{s+ | i Ifjlz}sp‘lczl’_z(2m+2)”_1+"’
0 j=1
: HLjullzexpj;1 1512,
and using the inequality
m((zm)p+m—1+(2m)p+m—2)+(2m+2)p—1+m§(2m+2)p+m
establishes (6.4) in all generality,. O

From the estimate (6.4) it is clear that

U(Ou@wn(f)=lm U, (u@w,(f)

—u®pn()+ T U0 -V, sOu@v,lf)  (67)

exists and defines an even adapted process U. Moreover, the convergence is
uniform for ¢ in finite intervals enabling us to take strong limits on vectors of form
u®p,,(f) on both sides of (6.2) to conclude that U satisfies (6.1).

Theorem 6.2. The solution U of (6.1) is unique.

Proof. It suffices to show that the only solution of (6.1) with the initial condition
replaced by U(0)=0is U(t)=0. Since if U satisfies this equation, so do its even and
odd parts and we may assume that U is of definite parity. Then from the estimate
(5.1), for arbitrary ue 4y, m20, f,,...,fu€ 4,

d
7 1V @u®w,(NI*

= ,én:l {IHOPLIUO0@ Y- s (f)? + U@ pu()I*]

+ U@ L0u®y,,— 1 (f)I1%}
+1U@Ou@pu()N*+ (m+ DI UL u®@p (NI + U Lu@pa (1)
(6.8)
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We prove that U(H)u®y,,(f)=0 by induction on m. When m=0 (6.8) becomes
d
7 U@u®wol* 2 [UMu@po(N)1? + [UOLu®wo(N + UG Lu®ypo( NI,

whence we obtain, recalling that U(0)=0 and using the integrating factor e 7,

IU@u@p,l* = 5) e {IUGLu@yol* + | U Lu®@wo *}ds.  (6.9)

Since U is a stochastic integral, s— U(s)Lu®1, is continuous and hence bounded
on [0, t] for each u € 4,. Hence by the principle of uniform boundedness there exists
M ;>0 such that, for all se[0,]

I U(S)Lj“®IP0”2§Mj““”2 .

Iteration of the estimate (6.9) now shows that [|[U(f)Lu®1p,|*=0. Making the
inductive assumption that each |U()v®wy,,_,(g)|| =0, we have from (6.8) that

&) ueup, IS {z O+ 1} [UOu@v(NI?

+(m+DIUOLu@y,(HI* + 1UOLu@pu(NI-

t m
Using the integrating factor exp{ —t—§ X If }, we obtain
0j

=1

IUOu@wn(HII* < IGXp {t—ﬁ- J Z lflz}

A+ DIUELu®@pu(NI? + | UG Lsu®@pn( ) }ds.

A similar argument to that of the case m =0 now gives that || U())u®y,(f)|*=0as
required. [

We now find necessary conditions on (Ly, L,, L3) for the solution U of (6.1) to
be unitary. Since if this is so, U, UL,, UL,, UL, are uniformly bounded on finite
intervals, we can use Theorem 5.2 to write

0=d(U'U)=dU"- U+ U'-dU+4dU"-dU
=dA'LIUNU + LUt UdA+ LUt Udt +dATUTUL,
+U'UL,dA+ UtULdt + LYUTUL dt .
Since UtU =1 this gives, on equating to zero coefficients of the differentials,
Li+L,=0, Li+L,+LiL,=0.
Hence for unitarity of U it is necessary that
(Ly, Ly, Ly)=(L, — LY, iH—%L'L), (6.10)

where Le B(#4,)is arbitrary and H € B(4,) is self-adjoint. Theorem 6.3 below shows
that this condition is also sufficient.
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For a triple of form (6.10) we denote by £, ¥’ the operators on the Banach
space B(#4,),

PL(X)=i[H, X]—4(L'LX —2L'0X0L+ XL'L),

£(X)=—i[H,X]—+(L'LX —2L'0X6L+ XL'L). (6.11)

Theorem 6.3. A necessary and sufficient condition that the solution U of (6.1) be
unitary is that (L, L,, L;) be of the form (6.10).

Proof. For the sufficiency we first prove that if (6.10) holds, U is isometric. From
(4.6) we have, for arbitrary u,ve 4y, m,n20, f1, ..., fusG1s .o »Gu €4

d
Et <UTu®lem(f)’ UTU@wn(g)> =0 p

and since UT(0)=1 it follows that U? is isometric. To show that U is also isometric
we again use (4.6) to write

% <U®u@p,(f), Uv®y,(9)>

= 3 (~ 1 T = UOL @, (1), Ur®p,(a))
+ VOB, (), UOLI®Y,(0)))
+ 2 (=1 HUOLU® (). UO0®Y, 16

~UOu@Yu(f), UL 0@y - 1(g°)>}91(2)
+<U@GH 3L Lu®yp,( /), Uw@y.(9)>
+U@Ou®p,(f), U(t) (H~3 L Lo ®,(9)>
+U@OLu®p.(f), UOLv®w,(9)> -

Hence the bounded operators K, ,(f, g; t) defined on %, by
K, Ko o 95 )0 = KU Ou@pn(f), U @vp,(9)>

satisfy the system of (weak sense) ordinary differential equations
d m — .
EEKm,n(fa g; t)= 0 .21 (_ l)m jL(t) [Km—~ l,n(fj> g; t): L]

e

+ 0 kgl (_ l)n_k[LT: Km,n— 1(f’ gka t)]gk(t) + =g,(lgm,n(fa ga t))
(6.12)
with the initial condition [which follows from U(0)=1]

Kol f595 0) =<0 ) wal @) - (6.13)
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We prove by induction on N=m+nthat K,, ,(f,g; t) isequal to its initial value for
all r>0. When N =0 so that m=n=0, (6.12) becomes

d ,

d‘tKo,ozg (Ko,o)-

Since .#’ is bounded the solution with the given initial condition is unique; since
Z'(I)=0, this solution is K, o(t) =K, o(0)=1I. Making the inductive assumption
that K,,_ 1 .(f7,g; t), Kyn..—1(f, g"*; t) are identically equal to their initial values
given by (6.13), we have from (6.12) that

O K5 0= 2 (R 5.

Hence by the reasoning of the case N =0, K,, ,(f, g; t)is also identically equal to its
initial value (6.13). But then from the definition of K, (f,g;t) we see that
UBu@yp,(f), Uv®wp,(g9)> is also identically equal to its initial value
Lu@y (), v&®p,(g)>, and so U(r) is isometric as required. [

7. Applications

Let U be the unitary solution of the stochastic differential equation dU
=dA'UI-UL'dA+ UGH—1L'L)dt, U©)=1, where L, He B(#4,) and H=H".
For each X e B(%4,) defines the process (X(£):t=0) by X(©)=UOXRIU@)".
Applying Theorem 5.2 to the processes UX®1I and U, if X is of definite parity
we find

dX =dANULX®IUT —(—1)OUXLRIUY)
H(—(—=1D)OULXRIUT+ UXLI®IUYdA
+UG[H, X]1-3LLX + L'OXO0L—3XL'L)®IU'dt
=dAYLX —(— 1)P?OXLY +(XL' — (= P®PLIX)YdA+ L (X)dt
with & given by (6.11). When X is a Fermion annihilation operator a satisfying
{a,a"} =1, X is a Fermion diffusion in the sense of [3]. _
We define the vacuum conditional expectation IE,: B(#)— B(4,) by
(u, By[J]0) = u® P, JoQ W,  [JeB(#H), u,ve 4],
and define families of operators (7;: t=0) on 4, and (7,: t=0) on B(#4,) by
T=E,[UD], J(X)=E[X(®)] [XeB(4)].

Theorem 7.1. ) (T;: t = 0)is a uniformly continuous contraction semigroup on 4, with
infinitesimal generator

d ) 11t

7 Hh=o=iH —2L'L.

b) (7,:t=0) is a uniformly continuous semigroup of completely positive maps on
B(4,) with infinitesimal generator & given by (6.11).
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Proof. a) T, is clearly a contraction. By Theorem 4.1 with m=n=0, for u,v € 4,,
t
u, (T,—Ipwy= £<u®1Po, U(s)(iH =3 L' Lyv®@w, yds
t
= [ {u, TGH—3L'L)v)ds,
4]

whence
T, =exp(t(iH —3L'L)).

b) 7,is completely positive being the composition of an ampliation, a unitary
conjugation and a conditional expectation, cach of which is completely positive.
For u,ve 4,, X € B(4,) of definite parity, we have

Cuy (TUX) — X)) = (u®po, (UOXRIUT () — X R Do®@wo )
= U@y, X®IUT(t)U®1Po> — U@y, X®IU®1P0> .

Since
AX®IUN = —(—1)°PJATXLU+ XL'UTdAT— X ((H + 3 L1L)U'de,
we have, applying Theorem 4.2 with m=n=0 to U’ and X®IU"'

(U (T X) = X)vp = i {u, T(L(X))ds

with & given by (6.11), whence b) follows. [

As in the Boson case perturbation of these semigroups leads to noncommuta-
tive Feynman-Kac formulae, in the case [2] of (T;: t=0) of the type of [8] and in
particular including a Fermion Feynman-Kac formula of the type of [9], and in
the case of (7, :t = 0) of the type of [1]. The construction of a Fermion stochastic
dilation of an arbitrary uniformly continuous completely positive semigroup
similar to that of the Boson case [11] is evidently possible. Details will be
published elsewhere.

Both authors acknowledge many useful discussions with K.R. Parthasarathy. We are
grateful to the referee for correcting a number ofinaccuracies and suggesting several clarifications.
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