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ABSTRACT

We investigate the possibility of gene-
rating fermion masses through radiative
corrections in the well-defined frame-
work of SU(2)L x U(l), No-go theorems,
however, imply a complete " tree-level
description of the spectrum with at
least one electroweak singlet scalar
and suggest therefore the need of new

gauge interactiocons.
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1. -~ INTRODUCTION

In the standard framewcrk cf the electroweak gauge interactions, the
Lagrangian contains two important pieces, namely the gauge and the so-called
Higes sectors. While the first describes the local interactions quite well,
the second provides us with a unique mechanism for mass splitting without, how-

ever, giving any explanation about the fermion mass spectrum and its intriguing
family structure:

Me B . « Mo (1.1)
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We will call this the second hierarchy problem.

The spectrum is therefore the only present open window on the scalar sector
which after all can be congidered as an effective one [see for example the
"extended technicolour™ approach which seems precisely to be ruled out by (l.l)]l).
In this paper, we do not try to understand the spontaneous breaking mechanism
but rather to take off Some informations starting from the assumption that masses
are calculable in a more fundamental theory. At the present stage of our under-
standing of gauge theories, one simple way to ensure calculability is provided

2)

by the so-called natural, zero-order relations (i.e., independent of fres para-
meters of the Lagrangian) which can be simply carried out by imposing new sym-
metries on the SU(2)L x U{1l) dinvariant Lagrangian. We want here toc make a
clear distinction between two orthogonal points of view. The vertical one con-
sists in introducing new (lecal) symmetries in order to link fermions of the

3). In this

case the first (102/10'%) as well as the second hierarchy problems remain

same family: this is the well-known "grand unification approach"

unexplained and we "only" find, for example, the 3U{4) invariant successful
relation mb/mT =1 in the Georgi-Glashow 3U(5} model3). Although this
vertical approach gives rise to spectacular results, it seems more urgent for
us to understand first the structure described by (1.1}, The horizontal point
of view iz therefore more promising since fermions with the same electrical
charge @ are now connected., The basic idea consists indeed in extending at
least a subgroup of the G = U(n)quarkst(n)leptons

flavour L L
metry arising in the gauge sector (n being the number of families) to the

xU(n)g global sym-

full Lagrangian, As indicated by the mass spectrum, this subgroup must by
spontaneously broken. In other words we have to introduce more than one SU(2)L b
x U(1) scalar doublet in order to form a non-trivial representation under

this horizontal group. Moreover only continuous but local, or discrete
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symmetries are allowed if we want to avold dangerous massless scalars*. If for
naturalZJ reasonsS), one family of fermiecns is massless at the tree level.
radiative corrections provide it by definition with some finite mass6) in

naive agreement with the m?/m$+l v o picture suggested by (1.1). In the
local opticn, seif-energy diagrams (Fig. 1) are important but need again

a new scale in order to respect the observed conservation of flaveour in neut-
ral currents, For this reason we will confine ourselves to studying here only
discrete subgroups of GF' In the SU(E)L x U(l) gauge framework, radiative
corrections to a natural relation for masses arise from tadpole-like diagrams

with fermion loops (Fig, 2)7).

Although we are concerned with a simple but non-trivial subgroup of GF’
namely the permutation group Sn’ we would like to stress that the main point
of this paper is not the propesition of an additicnal model with specific dis-
crete symmetries buf rather an analysis of mass calculability in SU(2)L » U{1).
In this well-defined framework we first show the impossibility of generating
some finite mass by radiative correcticns, all the vacua leaving at least a 82
resliduzl symmetry unbroken, The argument based on the powerful Georgi-Pais

8)

theorem™ can be easily extended to any larger horizental group, as far as the

scalar potential does not exhibit so-called "accidental symmetries"z). In

this case indeed, the above guoted theorem does not apply and the criginal
permutation symmetry can be completely broken in a natural way. This possible
loop-hole unfortunately gives rise to an unrealistic mass spectrum, We can
also avoid such a residual discrete symmetry in conflict with experimental data,
by introducing a new scalar representation, singlet under the electroweak gauge

group. This, however, implies a tree level description in which quark masses

can be strongly constrained and mixing angles predicted.

Despite the fact that these results appear more modest than ocur previcus
scenario, we would like to emphasize that the necessity for singlet scalars
suggests in itself the presence of new gauge interactions and moreover, is in
apparent conflict with a dynamical breaking picture in absence of right-handed

neutrinos.

*
A broken continuous global sym%§try also needs a large scale in order to make
the Goldstone bosons invisible ',
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2. - READIATIVE CORRECTIONS TOWARDS THE HIERARCHY PROBLEM

In the standard medel, a flavour symmetry GF arises from the gauge sector,
expressing the fact that fermions with the same electroweak quantum numbers are
not distinguished by gauge interactions:

varks 1 ~Y Reptons -1
G Ucm;q X UU\‘\)RG x UtM)R3 x Utm) o Ulmﬂ (2.1)

The observed non~degenerated mass spectrum is therefore entirely related to an
explicit breaking of GF by the 3n? Yukawa couplings. However, if we want to
say something about the fermicn masses, we have to extend some subgroup of GF
to the complete Lagrangian in order to relate these free parameters. The
purpcse of this paper consists in restricting ourselves to the simplest but
large enough Sn permutation subgroup such that fermions transform like the
n-dimensional reducible representation. In order to avoid (n-l) degenerated
eigenvalues for each fermion mass matrix, we straightforwardly extend the

family structure to the scalar sector by taking n doublets ¢i of spin O

fleldsg)
10),

In this now well-defined framework, we can write the non-gauge inter-

actions

IT‘AQZQWA = & YLL 4’1 krJ‘R £ b T (b"*( Y3+ X (2.2)
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a summation on all permutations with 1 £ j # k # ¢ being understood (this

in particular implies F = 0 for n = 3). As already explained, we are inter-
ested in the possibility of implementing zero-order massless fermions in a

2)

technically natural way From (2,2) and (2.3}, this constraint uniquely fixes

the number of gererations as well as the vacuum expectation values (v.e.v.),
namely: m =z 3

<hy = -<¢y <y =0 (2.4)



A

In this particular case indeed, the first generation of fermions is massless

at the tree level:

m Mld. - MQ z O (2.5)

u_:
independently of the bare parameters of the Lagrangian,

Unfortunately, a careful calculation of the radiative correcticns to the
various v.e.v. at the one-lcop level shows that (2.5) remzins unchanged. This
result can be easily explained and furthermore extended to all orders in per-
turbation expansion thanks to the well-known Georgi-Pais theoremS). This
indeed claims that radiative corrections to the zero-order v.e.,v. leave

the same subgroup of the original Lagrangian unbroken:

U‘a<¢a> = <¢'L)
L(ud) - L)

Since the Lagrangian is here obviously invariant under the unbroken transfor-

= U‘é S<¢A> = 8<¢{> {(2.6)

mation
4% o | o 4,
$, — 0 ) 4,
¢5 o o . @3 (2.7

the first generaticn of quarks and leptons remains massless to all orders in

perturbation expansion.

A simple way to avoid this very limitative theorem consists in looking for
models where the scalar potential possesses a so-called natural accidental
) such that

Loctonticd (AD) = L ket (¢)

symmetry A2

(2.8)
wnile & (A¢) £ L)
In the framework of the electroweak model, we can only have
2.
Lodawa (AE) 7 L0 (4) (2.9)

since the gauge interaction sector of the scalars is invariant under unitary
transformations. Radiative corrections due to the scalar-fermion couplings
(Fig. 2) will then break this accidental symmetry, providing us with non-trivial

modifications for the various v.e.v.:
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4 discrete accidental symmetry can be implemented with again three families

$<y # S<aD (2.10}

since then the scalar potential (2,3) is already obtained by only imposing the

%
discrete d3 group of cyclic permutations on the Lagrangian . We have seen

that the minimum defined by (2.4) is invariant under a reflexion transformation

(2.7) which, however, does not belong to d Consequently, a one-loop contri-

3.
bution of the d3 invariant Yukawa couplings through the tadpcle-like diagrams
breaks the S. accidental symmetry. Unfortunately [ contains now &

3 Yukawa
few more free parameters such that additional discrete symmetries are needed in

order to keep one vanishing eigenvalue for each mass matrix at the tree level,
The Georgi-Pais theorem also applies on these new symmetries in such a way that

again (2.5) remaing exact to all corders in perturbation expansion.

We can also have a continuous accidental symmetry associated to some flat
direction in the classical potential, such that the v.e.v, are only deter-
mined by radiative corrections. As local curvature corresponds to scalar mass,
a zero-order massless scalar can be used to detect such a phenomenon,

For n = 3, we find [see (A.6) and (A.7)] three independent sets of
10)

v.e.V, given respectively by

Ch > = by = Kdy (2.11a)
Chy = <d> Ly {2.11b)
<hy = - by <o (2.11c)

Only the two last solutions present two neutral massless scalars in addition

to the unphysical Goldstone bosons if

4A -2(C+T)-E +E +E +E =0 (2.12)

* 0]
 “This is no more true for n = 4 where the following quadratic terms
+ + 4+ 4
AR R SR R YK S WS
+
SO, Gy Pt Bhe.

are allowed by the d4 invariance,
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This can be understood by choosing a more suitable basis for the scalap doublets,

namely:
M, '/G. -}E ° <ba
Moo= |k ' v ¢
5 hg 5 5 ¢3 )

where M =z (g;) and S transform respectively like the mixed and symmetric
irreducible representations of S.. The ten invariants of the potential become

3
in this new basis:

S's . 9 (s's), S A*

-‘./‘f _’: + 4 ’
MIM (ST Y 5
(M*5) (M1 S)+he. (MY M) (M'S+MS?) (2.14)
with the decomposition
—t — . . -
MeM.: Yo Ae M
The coupling constant in front of the last invariant is proportional to the left-

handed side of (2.12) which means that this accidenta? symmetry naturally

arises if we impose an additional discrete symmetry:

— —

M — - M
or 5-— -5

(2.15)

ocn the complete Lagrangian. In each case indeed we see that the nine remaining
terms in (2.14) are now invariant under a global two dimensional rotation:

(P1,\ con = - Menoal ™,
——
M,/ (Acma (o o )(I"l ) (2.16)

A

which is only left unbroken by the 83 symmetric v.e.v, (2,1la}. As already
mentioned, in order to pick out the true vacuum we have now to considep radiative

corrections coming from the Yukawa couplings defined in this new basis:

Q, E;L S 5, ¢+ 2(FﬁL"F%)-§%R t 9, F:L‘F%R 5
+ g, MM S+ 9 5 MM (5.17)

Sc, we conclude that only the S -+ -S transformation still allows an explicit

breaking of the rotational symmetry by the Yukawa sector. If we parametrize
the wv.e.v. as follows:

WIBR N R BB A e e b
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My = b samd wn t
(5% =¥ tond (2,18)

#
the t angle will be fixed by the extremal condition (B.6) namely

2 sv(r,5,t) =o (2.19)
~ot

where &V 1is the effective potentiallz) given in Appendix B. Since in our case
the gauge sector as well as the potential are t-independent, (2.19) implies

the following constraint on t:

D Te mie) b mie) =0 (2.20)
ot

where m is the fermion mass matrix

a, <M %1<M,> %JM-‘?
m = %1<H'> - Q, <My G <My

%5 <MD %s <My O (2.21)

with eigenvalues m. Since % mi and I m: are t - independent, the
constraint (2,20) simply becomes

z ('GD”"; ) m- Iam® -o (2.22)
Mmoot " m

A first set of soluticns is defined by

b= p (p : integer) {2,23)
o

and corresponds to the already known S, symmetric minima (2,11b) and (2.1lc)

2 .
for respectively p even and odd. In addition we find a new type of vacuum

solution for

e e e e e el o i an - e - ek A A ot 8 . e o e e s . . o Bt

%

The authors of Ref. 11} derived tree level masg relations as well as mixing
angles for the special values t = O, 7/4. We will, however, show that the
latter solution is not a natural extremum of the potential.
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&
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2

o s Z%;

<
n

such that the original S invariant group is now completely broken. This

provides us with an exampie where an accidental symmetry generates new

extremal solutions which are functions of the Yukawa couplings. It is there-
fore possible to spontaneously break all the discrete symmetries in the frame—
work of permutation groups, Unfortunately in the above case the new vacuum
picked out by radiative corrections implies an unrealistic mass spectrum since
we predict now two non-vanishing, degenerated masses for each charge sector,
This is due to an unbroken discrete subgroup of the S0(2) accidental rotation

in {2.22), namely

E—s t 4+ 2K (2.25)
ol
So we can already conclude that the most general potentiazl invariant undep
Sn does not give rise to any calculable fermion mass, since the possible loop-
holes to the Georgi-Pais theorem provided by accidental symmetries are useless

in the present context.

It is, however, possible to introduce a new type of minimum by imposing the

invariance of the potential under some additiocnal phase transformations. Only

the v and censequently the E E and E self-interacting couplings in

it T2 3
(2.7) can be naturally forbidden if we want to avoid an accidental continuous
symmetry, namely ¢j > etV] ¢j which would indeed imply very light scalars

without solving the hierarchy problem., The new minimum appearing then is

defiined by
<y 2 T S | (2.26)
V2
and leaves a S residual symmetry unbroken.

n~1

I I LT R PR URBIREL ML TR R RS D R Ve e g e e R a0 W e 1 A s B N L R
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4t the fermion mass matrix level, n - 2 degenerated eigenvalues are
found, displaying once more the three generations case. There are in fact two

independent ways to implement (2.26) with discrete phase transformations:

&, - o o o

& =l o 1 o ¢, (2.272)
¢3 o ) ' ¢3 + permutations
d, e3 o o ¢

Ly
¢: ] o e? o ¢’1 (2,27b)
4, e © ! &, /+ permutations

These additional symmetries also forbid respectively EQ and D couplings
in {2.3). However, from the Georgi-Pais theorem we again assert that radiative
corrections will leave (2.26) unchanged. This result will a fortiori remsin

true for any larger discrete subgroup of GF as far as only scalar doublets are

concerned,

We can of course consider new electroweak representations for the scalar
fields. If they couple to the previous doublets in a non-trivial way, the
very strong constraintle) on the aliowed minima of the potential can be avoided
without introducing new Yukawa parameters, We {ind therefore interesting to

investigate in detail the implications of such new scalars on the fermion masses,

3. - A NATURAL MODEL FOR THREE GENERATICONS

We consider here the most sconomic sclution with only one electroweak
*
singlet ¢O such that the so-called weak isospin relation will be preserved.

The following discrete symmetries:

;2_’53
o, — €’
3

L

4% —* € 3 ¢o

) \ =1,3,3
% 3 (3.1)

together with the cyclic d3 group allow then one non-trivial coupling between
the doublets and this singlet, namely

*
The needlgg an extra gauge singlet scalar has already been stressed by
D. Wyler in the ceontext of a specific model.
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SO0, 4l g, » &) 00+ he ]

<

(3.2)

if we impose for simplicity invariance under ¢O > —@O. As shown in Appendix C,

this coupling is crucial for our purpose although it implies <¢i> 20 and

consequently a mass spectrum now completely described at the tree level.

More-
over, we find that a CP viclating vacuum characterized by
. LA
<c1>3> = Ty oet™y (3.3)
V2

is needed in order to avoid an unwanted residual 52 symmetry in trouble with

experimental information (b-decay).

If we impose (3.1) and simultaneous phase transformationsla) on the electro-

weak quark multiplets:

o

o

L W
", -5
=] <
da L dé L
o U.°
uba da
{.3_?3 °
a° —— 23 d. (3.4)
da 34
the mass matrix for the up and down quarks are respectively given by:
acdy b«dy" by
I b, <" a g by
b (450 by b addyy (3.5a)
o’ (&> €, <Py €, <3,>
4 ,
| g - €, <> Q<P e, <4y
e, <& e, <P Q2 <Py
: 2 > (3.5b)
We consider a hierarchy in the v.e.v. namely
N &N, K Ay

M1 1L o UREUMPL |1 B R AR FPIRR R Il 7 b aome + S pn e i aww MR h Wk la] eye e mern e e
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which is natural only in a finite but continuous domain of the scalar coupling

parameters. The first matrix possesses then interesting eigenvalues:

2, 1% SR)(142R) 172
m, o~ o {eer]rp o mARR) |)+[: i

Y Yo
Mo o~ o [URAP[ R

1 s
my o~ o[ )t {3.7)
with
rz a2
bth,
Rz avs -y, ¢ Ko<
Yi+2

For the down quark mass matrix we find in the limit v, + O:

" BRI
4 g o
L)
My o~ Lo, (A48 ]
\ES Qi
mb ~t ‘__.L. a' "y3 (3.8)
R
if e ~e, ze

Q AT, > ed,

We can therefore estimate the unitary matrices which define the physical

states in terms of the weak ones:

[£Y - “w

[ = UL ] ‘—-o)

k ' ke
LR

LR

d ; (9 (3.9)

A = k)na a°

b/ 1k ' be LR
Since the SU{2)L « U{1) models contain cnly left-handed currents, we only .
consider the matrices Uu’d which diagonalize the Hermitean matrices Mu’dMu’d .

L

The Kobayashi-Maskawa (K.M.) mixing matrixls}

is indeed defined by

k., = OV (3.10)
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and conventionally parametrized as follows:

CI GO Sy Ny
b -3
-5y €, ¢ _Js‘a}e c.czba-h:icae
. (3.11
N3 Y )
~-AA, CohyCy sl hye Cdyn, - €00
where ¢, = cosei, s; = sinei. A non-vanishing § implies a CP violating
phase due here to the complex v.e.v. (we consider only real coupling constants),

As shown in Appendix C, in this specific model, the extremal conditions cn the

potential provide us with phases which give rise to a very small & parameter:

$ o~ (3.12)
2

As far as the angles are concerned we find from (3.10)

1 e e
al A, CUTy
—~ _eds A R
I KLI NG e
g (R ) -RT2 -4 (3.13)
o Ty ATy,

such that a direct comparison with (3.11) implies the following relations:

B, ~ e
0T,

%, ~ - Sr (R4 a2y
Ty Ay

IR AR (3.14)

If we now assume for simplicity that the lepton mass matrix is (nearly)
diagonal, namely

fff =

nnr Ty
i ~ l\_’:“‘_ {3.15)
T 3
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We find very interesting relations between mass ratios

Mo ¥ i+aR mgy

e TR iy

™Me . Vi-RY Mp

my fma

f_"_‘f\__,, ~ ﬁﬂﬁ (3.16)
my, o

while the mixing angles are now given by

B, ~ - MF (Rs M)

By~ (Tr) (3.17)

Moreover, the parameter R 1is strongly constrained by the experimental limit

on the B- meson time-=life

,t“? < et
& £ L4 1o A (3.18}
Indeed, assuming a spectator modelle) for this decay, we find
Hl, 13
Ty o~ f; 0 A (3.19)

which implies another bound on R, namely

035 ¢ R < (3.20)

From (3,16) and {3.19) we deduce respeciively a lower bound for the t-quark
mass and the B-meson time-life

my > 26 M

T > SlodgA, (3.21)

This model therefore provides us with & nice description of the present situ-
atiocn for masses and angles. The CP problem remains, however, an open questiocn
since the contribution of the K.M. mixing matrix to the e parameter for the

k% - §° system is found to be of the order of 100 from (3.12) and {3.14).
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Consequently in this model the CP wviolaticn must be carried by neutral scalars

in flaveour-changing processeslT). We just want to stress that the problen

pointed out by Branco and SandalS) concerning the need of too heavy scalars
spoiling the possibility for a perturbative expansion does not arise here because
the singlet scalar can have a large v.e.v., (C.§) since it deccuples from the

gauge sector,

4, - COMMENTS AND CONCLUSION

Instead of (3.4) we can impoze the following discrete transformations

W’ W
& ci".
da L a L
o Ly
3
uéﬂ —_— Q2 LLBR
do - %"3 a°
. — e .
R f
8 9 (4.1)
such that the mass matrices become now
* x LS
achy  boiby> b, <b,>
L'y * E] >
M™ . b, <4p o <S> b, (&>
» * *
b, <> b, <4 a <Py
(4.2)

ol gy b/ (4> LARE N

M. b, <d> o b, (>

’

b, <> by (b o’ Ly

These mass matrices are interesting in the sense that we have no CP violation

at all in the gauge sector, for any v.e.v., because the phases can be absorbed
*

in the right-handed sector. Moreover, if we again assume (3.6) then the second

hierarchy problem is "transposed" in the scalar sector [see (3.7)]:

¥
In the framework of SU(2}y x SU(2)z x U{l) gauge models, this ensures a
small e'/e ratiol9), Note also that (4.2) implies arg det MMd = 0, such

that the strong CP violating angle Oqcp Vanishes at the tree level.

T T TR T T B R L T e
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e ” A < | (4.3)

My i
If we extend (4.1) to the leptonic sector in order to obtain the same type of

of matrix, the Yukawa interaction is then invariant under a global U{l):

R
$. — ¢ ¢3

? ¥
o v by o
W e ¥
R IR
o LY
d° , e *4°
oR ar
{4.4)
which can be gauged since it is anomaly-free,
20)

This, of course, put us on the track of the horizontal interactions y
where we need 8U(2) x U(1l) scalar singlets with rather large v.e.v.

in order to provide the new gauge bosons with a large mass.

In conclusion we have shown that in the framework of electroweak SU(2) x
x U(l) gauge theories, fermion masses are not calculable owing to the Georgi-
Pais theorem which strongly constrained so-called natural models with residual
unbroken global symmetries. Accidental symmetries, although providing a pos-
sible loop-hole, do not seem to avoid this negative result. The introduction
of at least one weak singlet scalar implies a tree level description of the
mass spectrum., This new field calls for right-handed, neutrino-like particles
in order to keep the possibility of a dynamical breaking by some condensates,
as well as for new (horizontal) gauge interactions*. We want, however, to stress
that our analysis is essentially based on naturalness which provides a way to
calculate finite physical quantities. A new door seems now open on this problem
by supersymmetry. Indeed, just as the introduction of relativistic quantum
mechanics weakened the singularity of the electromagnetic mass for the classical
electronzl}, the introduction of {(global) supersymmetry low energy theories
leads to a cancellation of the quadratic divergences in fermion (and gauge
boson) masses22} carried by the scalar bosons needed at the present time.ze)

Moreover, as long as supersymmetry is unbroken, masses are unrencrmalized , a

fact which of course upsets ocur previous approach.

- —— - Y — —— - o o —— -

%

In fact, for SU(n)y horizental gauge groups (n>2) right-handed neutrinos
are needed in order to fulfil the anomaly constraints [see T. Yznagida Ref. 20)
for n = 3]. '
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APPENDIX A - EXTREMAL SOLUTIONS IN THE 3U(2), x U(l) x 5, MCDEL

L 3

If we denote the Q and CP comserving v.e.v, of the scalar doub-
lets by

<d.y - v (0 ) (A.1)
7\

the value of the potential (2,3) at the minimum is given by

\¢/£‘517 = - } z nff + 8 £ s + A2 48
E & '-'*é b, P
S’ Z_ ,\5'2‘,\’__1 + E_. i N_;'Sﬂr' + E 2‘ AYLIL/J"AT (A.2)
+¢, F ARPY P ;46 3 p c;é;& by &

with
'z c+C+D
BE= E,«E +E,

In order to find all the possible extremal solutions, we just mimic Derman's

approachlo):
7oV _ov Ay ) VS, Ty) =0
o (OnTy
QY QY L (v Ve, s 0 (A.3)
(o5, €L L
with

-

Viwe, w5 575 ) = Vg, 5:;94)

If v, # Vs and v2 £ v we consider the equation

1 3?
NV (S, S, V{JzJ,«T,’.,\T.):o (A.4)
which implies the interesting relation

(4A-2C LB +E ) (S, 1Ay ¢5)(V,.v3) = © (4.5)

From this we conclude that only three natural and independent solutions are

allowed, namely:

A, 4, A3, =0 (A.6)
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The last one reduces to

Nz -2 and V3 =0

1

(A.7)
by using the additional constraint given by 1 BV/avi = 0 and implies in this
1
case, vlv2v3 = 0. It is, however, worth noting that for
4A-2¢ -E,+E -0 {(4.8)

the wv,e.v. vy are undetermined at the tree level, a typical signal of a con-

tinuous accidental symmetry [see Eg. (2.12)].
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APPENDIX B - EFFECTIVE POTENTIAL AND CONTINUQUS ACCIDENTAL SYMMETRY

6)

We briefly review ' here the way radiative corrections pick out the true
vacuum in presence of an accidental symmetry. Let V{¢) be a scalar potential

whose local minimum is defined by the extremal conditions

-
Y [ ¢hraF) -0 (B.1)
o,

In the Landau gauge, the one-loop radiative corrections to thé v.e.v, can be

computed just by analyzing the effective potential (V + §V)(¢) where

DVI(T )=

Gurct

(2T )A“&m)f f T MRt a Tem B (Be2)

with pz, M2 and m2 respectively the squared mass matrices for the gauge
bosons, scalars and fermions. The new, slightly shifted vacuum is indeed

fixed by the following extremal conditions:

= R =0 {B.3)
¢ L { )
A straightforward expansion implies

oSV (~) = - My S, (B.4)

Codl :
where Mij =) B2V/(B¢i8¢j) {3) iz a component of the squared mass matrix for
the scalars, If {(B,1) is now -invariant under some continucus (local or global)
transformations whose infinitesimal generators are eu, we find again by an

expansicn
My ®us); -0 (B.5)

which is the mathematical expressicn of the Goldstone theorem, From (B.4)

and (B.5) we finally find the necessary additicnal contraints

MO8V 5y Quw). = o© (B.6)
o Py ) .

which allow a first order determinaticn of the true vacuum in the presence of an

accidental symmetry.
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APPENDIX C - EXTREMAL SOLUTIONS IN THE SU(2)L x U{l) x d3 MODEL WITH A
SINGLET SCALAR.

The most general scalar potential compatible with (3,1) is
Vi 3 e e) HALRTR)T - cde)i9] 8)
FCLT R &)+ B 7 0)(d ) ¢ Be]
SN B h, A4+ B (A ) dl b,

+ S ‘IL¢|+¢1 + ¢:‘ ¢3 + d,; 4’.)4’: + R.f. & (C.1)
We note the various v,.,e,v. as follows:
(s}
.0 = b .
4’() 2 (—\T'e_‘da)
&
soete (c.2)
é ) - _|.. e .
¢o ri- o

where o = 04 =Gy and o = a2—a3 are the relative phases.

The extremal con-
ditions on these phases imply three independent equations

Vo i T_oa pim X2 Be TS o i (X-7) 48y a0m (7102) 4.5, pim (X-2)
25 A
S atnZ o s X2 Be W nin (%) Ly nim (CTez )r 28, piminez)
Y "‘To‘
{C.3)
Ay A, P T I\TQATB N Z +’\5‘,r‘\3'3 A X = D
with
X 2 2dg+ Liol’
T = 2y, _ ol
Z =z 2dgy_ o’
(C.4)
The set of CP invariant solutions defined by
C.
X, T2 - o,x (C.5)

forbids non=degenerated v.e.,v..

So, if we want to solve the second hierarchy
preblem in this framework we must take a

CP vieclating vacuum solution,

Let
us consider f{or example the case

I R R T I T L A L L UL AL

L TR I P T e STy
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X=7T #Z (C.6)
which gives rise from (C.3) to two independent equations
1
A (At ) nX Ay I = -2 3 ar,
E,
M, (A ATy ) AmX Ay Uy AlmZ = O (C.7)

We stress here the crucial role played by the S

coupling constant in the
scalar potential since a vanishing S would imply {C.5).

<< v, <<V

Assuming v
2 3!

<<
1
(3.6), we find, from {C.4), (C.6) and {(C.7), the phases

d ~ L{T+ §)
6 ATy
R S L
3 ~
Ao ~ LT+ B
3 2
if

(C.8)

3 E
A'ro —-“ /\Tj_ J‘S (Cng)
a5
We therefore conclude that the CP violating phase appearing in the E.M.
mixing matrix {3.10) is of the order of the small ratio vlfvz, while the
v.e.v. of the singlet can be large.
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FIGURE CAPTIONS

Fig. 1 A self-energy diagram with a fermiocn mass inserticn;

the wavy line refers to horizontal gauge fields.

Fig. 2 A typical tadpole-like diagram with fermion mass insertions;
the dashed liné pefers to scalar fields.
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