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ABSTRACT

We construct the general dual vertex describing the transition of a Ramond-
fermion into a Neveu-Schwarz meson by the emission of a general excited fermion
state. OQur vertex thus generalizes the previous results of Thorn and Schwarz
and is now put into a relatively compact and manageable form which enables us to
check that certain of the general gauge conditions are correctly converted be-
tween the meson and fermion legs by the vertex. The particular censtruction of
the vertex can be applied to the other older dual theories and leads to some new

insights into them,
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INTRODUCT ION

Apart from the linear trajectories, one of the mest interesting features of

)

1 . . .
the dual resonance models ’ has been the connection with an underlying quark

structure, as indicated by the duality diagrams. This has been particularly empha-

)

sized and exploited by Mandelstam’ . Yet only recently have Ramonda), Neveu and

)} 5)

4 , . . .
Schwarz °, and Thorn shown how to incorporate half-integral spin particles,
whilst retaining, hopefully, the gauge structures which should eliminate the ghosts
due to time components. It is tantalizing to think of the Ramond fermion as a

)

6 . S s . 7 . .
quark or a baryon, but in fact it 1s probably neither ), but just an important

clue on the way to more physically realistic theories.

So far amplitudes describing two interacting fermions have not been conmstruct-—
ed, and it is necessary to do this to see whether the theory has a consistent
physical interpretation [See Schwarzs)]. The necessary building block is the 3-
Reggeon vertex involving two fermions and a meson. This has to be constructed to
satisfy duality and ought to respect the gauge conditions which eliminate the

5)

ghost states. The first steps towards this vertex were made by Thorn and

6 . .
Schwarz ). We carry their procedure a step further by constructing a more general
vertex than theirs and presenting it in a simpler form, which enables us to inves-—

tigate its group transformation and gauge properties.

Another line of thought has motivated us to consider the Ramond theory, apart
from its intrinsic interest. Owing to the underlying group structure, possible
dual theories can be enumerated and classified according to the available represen-
tations of the Mdbius group.

8)

constructed the N-Reggeon vertex, but found that if, in addition to the duality,

For a certain subclass of these possibilities, Corrigan and Montonen ° have
one requires ghost-killing mechanisms of the familiar type, then only two possi-
bilities survive: the ordinary dual resonance theory and the one due to Neveu and
Schwarzg). The latter theory is tantalizingly close to meson réality [and links
up with the Ramond theoryq_s)], but has the unsatisfactory feature that certain
trajectories lie one half unit too high. The problem is to find some latitude in
the group theory which might enable the construction of more realistic theories.
The class of theories for which N-Reggeon vertices could easily be comnstructed had

the characteristic feature that
N
Loy =0,

where L* is the Mdbius "raising operator'. Thus the vacuum state was always
Mobius invariant. This is not the case for the Ramond theery, because there Lt
contains a term y * dT, where ¥ is the usval Dirac gamma matrix which is respon-—
sible for the half-integral spin content of the theory. Thus we are reparding

0)

the Ramond theory as the prototype of a more general class of dual theoryl for

which we wish to construct the vertices.
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The ampiitude for a Ramond fermion emitting mesons involves the non-invariant
vacuum state and our first step in Section 2 is to find a way of overcoming this
difficulty by writing the amplitude in a general Mobius frame of reference. Then
it is easy to write down the duality equation which should determine the required
vertex. These equations are solved in Section 3, the solution involving an expo-
nential of a contour integral. We find that the typical manipulaticns involve
Cauchy's theorem. Anocther technical trick involves the introduction of an auxil-
iary set of oscillators, and this facilitates the investigation of the group
transformation properties of the vertex in Section 4, where we check the desired

transformations with respect to the Virasoro generators L, for N 2 -1. This limi-

N
tation is purely technical since we (and Dr. P. Goddard) have found another method
of proof which extends to all N if only ground state emission is considered. (This
argument is not included in the present paper). The restricted result means that
the Mdbius gauges convert both ways but the higher Virasoro gauges only comvert

from meson lines to fermion lines, but not vice versa.

In Section 5 we see how our form of "3-Reggeon vertex" can be applied to meore

conventional theories and related to familiar results.

In the Appendix we present some general theory which is used in the main part
of this paper and make some comments about redundant dependence of legs in

N-Reggeon vertices on adjacent variables.

THE VERTEX AND ITS DEFINING EQUATIONS

The fundamental constructs 1n the dual theories we shall consider are the

11}

Fubini—Veneziano fields
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and, respectively, the Neveu—Schwarz ° and Ramonda) fields:
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H”%=) - Z[B.ﬂz * 4+ b, 2 ‘] (2.3)
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where ag, bﬁ, d# are the usual annihilation operators. Virasoro

generators Ln
satisfying the algebra

[Ln,Lm] =(-m L o+ 6n+m’0 <, (2.5)

can be constructed out of these fields:

- -1 42 _m ; , o2 . (2.6
L = s g i P ’
b
L - ] . (=)
dz g™ - TR d H@. (2.7)
" 8 T Az W -
d
2 ~t PR 4 Dy
. — o=z 4 L& DE.
L*" T8 § - 2 dz vz - (2.8)

The contours of integration enclose the origin, which is an isolated essential

singularity of the integrand in each case. We take speciai care that the c-number

e in Eq. (2.5} vanishes when n = *1 by redefining

d <0

L

| + (2.9)
. - Zomdyd,

e

The figure % is thus responsible for ensuring that the Mobius algebras are satis—

fied precisely and will be seen to affect the value of the fermion mass.

Figure 1 depicts a Ramond fermion (solid line) emitting successive mesons
(dashed line):

5 N+l

and the corresponding amplitude is:

— i
w (k) < B u'('):, unfl)l_e—'_} Un () TA> Ul kna) ©(2.10)
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where the emission vertex i1s defined by

"ata _
and I's = ys(=1) ! ", |A) and |B) are excited physical fermion states satis-
fying
Lo - Da) = @+ 13- ey =0 (2.12)
d a _
L, + Ln)|A) =0, n2l (2.13)

and may be also Dirac equation conditions. Note that the ground state fermion

automatically has mass squared -3 as a consequence of Egs. (2,9) and (2.12),

In otrder to understand how to dualize expression (2.10) in order to exhibit
propagators in meson channels, we must first write the expression in an arbitrary

Mobius frame of reference as:

N+

T 1A, G

iro G (k) <3;S__ (L, (=) U, (2.) . Un(Ra)e N 1A7Ufk~*.()2.14)
dvabr. ;Z°1

That this ig indeed Mobius invariant follows from the fact that if 0(y) is the
representative in the combined a,d Fock space of the Mobius transformation

Y(z) = {(az + b)/(cz + d) with ad — bec = 1, then

Oy)UER)O)™" = U(Y) (czd)™ (2.15)

-+ fE)L+ -
O(Y)CQL IAS> = e’ 1A> (cz+d) (2.16)
L7z L ey
<Ble " Tony s <gte " fmuayt @)
2* ryta*

where, in order to prove Egs. (2.16) and (2.17), one uses Egs. (2.12} and (2.13)

for n = 1 {and Lt = L_)J.

The fixing of a Mobius frame is achieved by division by the standard differ-
ential dvabc’ which effectively fixes any three points Z,» 2, Z, at any values.

If one chooses to fix zg = *, z1 = 1, and z

Ny o 0, then the remaining integrations



in expression {2.14) can be evaluated to recover expression {2.10), Notiece that
the states |A) and |B} are not Mobius invariant even if they are ground states,

and need not be, This is the difference with previous theories.
For example, in both the cenventional theory with the Fubini-Veneziano opera-
tor momentum p (which gives zero on {0)), and in the Neveu-Schwarz case (2.7)

+
czL [0y = |0}

in the conventional theory with a c-number momentum T

L] h "+
. -3 Z_Ff_l-,
e 1o> = € T ey

.

is a "coherent state", and this fact has been exploited considerably in the for-
2)

. 1 . .
malism of this theory . On the other hand, in the Ramond case (2.8), it can

be showm that

2 L-: '2(-?) ( ) Y y-da 4%5 it 'f—)(‘i)(_?)‘;mmd:d-ﬁ

c nel -1 AT cal (2 18)

-2 Q%(-ms{)dm, A ..

nz=f

This means that

o Yy * Ll
2ot ZE () veral it 2 (A ey o
S P et 1047
(2.19)

has an extremely complicated structure, owing to the non-commutativity of the Dirac
gamma-matrices. We omit proofs of Eqs. (2.18) and (2.19), because it turns out
that we shall not need these results. Egquation (2.16), which follows from the
group theory and the subsidiary conditions, is the all-important property of these

states. Another important property, following from Eq. (2.16), is

L™ 3L+
< A } T - Ig > T (1—5)'1 <AIR> (2.20)

11'

These states can thus be regarded as generalized coherent states.
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Now we wish to dualize Fig. 1 intc the form in Fig., 2.

—_————
————pa

by the steps in Fig, 3:

—t = ,ﬂ__),__ . AM._i___W_,ﬁM_ = ~h—]- - L

{a) (b)

Fig. 3

That is we want to construct a vertex VA(z) corresponding to the emission of
particle W + 1 in Fig. 2, which maps the b Fock space into the d Fock space and

enjoys the operator relations corresponding to Figs. 3a and 3b.

4
2L Lk

an (-'2) | oq,b) < e ].q) (2-21)

It

and

L) Va (2) Vp (2) U(‘J}/ﬂ 2 4y (2.22)

where U{y) is the vertex for a meson leg emitting a meson. From the work of Neveu

) 5)

L .
and Schwarz and Thorn * we expect it to be

Tey) = k » H(y) ¢ e KO 0 (2.23)

Equation (2.22) corresponds to Fig. 3b and corresponds to the possibility of dual-
izing a fermion line to get a meson line. The quantity £ is a number or operator
to be determined as a sort of duality eigenvalue. Equaticen (2.22) has to be sa-
tisfied whatever state |A) is emitted and therefore has many solutions. Equa-

tion (2.21) is the "boundary condition' which expresses which particular state is
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actually emitted, If we can find VA’ satisfying these conditions, then the ampli-

tude (2.10) or (2.14) can be written in a form corresponding to Fig. 2 as

N

Lo M (k) <BJe . n 4 (2.24)

— b T Uy R0 U @OV, Bam) Wey, Bin ). Uy 2016 2
albe ?6‘

l f\f!u-n)

Notice that the integration variables zg, Z1, «.. 2y are always ordered around the
Koba-Nielsen circle in their numbered order so that there is never amny possibili-

ties of oincidi ith z, to .
Zyyy cOIDC ding w i+l Zy

In order to simplify the subsequent discussion we shall make an assumption
(which will be removed at the end of the paper) namely that |A> consists of the
"a'" vacuum times a state ]Ad> in the "d" Fock space. Then we ekpect VA(Z) to fac-
torize into

-ik:Q(z) | zk2f2

VA(Z) = WA(Z) e (2.25)

vhere WA(z) is independent of "a" oscillators and maps the "b' Foek space into the

"d" Fock space, and will satisfy
Wga (2) H’"(‘s)ﬁ= PPta) 7 Wy (2) (2.26)

and
L] 2) Ob) = < IAJ> ( .27

It is convenient to “'renormalize” Hu(y) by defining

H¥(s) = oV Yg H (y)

s s .. . . 16 '
The significance of this is that on the unit circle y = et » we have formally

{!/-\1"'((“5")J ﬂ”(e‘e')ﬁ : 4w 4”75 (s.0) = {j““(cie),!"'(c"e')ﬁ (2.28)

and that ﬁu, unlike HU anticommutes with Fu (if the b and d's relatively anti-

commute). Then Eq. (2.26) becomes

Wy (2) ?1"(3) = A 07y) Wy =) (2.29)
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and, we see, applying W,(z) to Eq. (2.28) by using Eq. (2.29) that 2% =1, so that

our "eigenvalue'" is determined.

If the solution to Eqs. (2.26) and (2.27) is unique we find, considering

these equations in twe Mobius frames related by y(z), that

O4 (Y) Wa() O, (v)" - W, (r(2) /(_C'—“"d) 2¢y (2.30)

where L, VAa> =¢Ca ,Ad>

and —%Mi-*cd =1 from Eq. (2.12). If in Eq. (2.16) O(y) is replaced by Od(Y)
- -2
then (cz + d) ¢ ig replaced by (cz + d) ed,

Later on when WA(Z) is constructed we shall take pains to verify expres-—
sion (2.30) explicitly, since we need it to get the correct Mobius gauge proper-

ties.

Because of Eq. (2.18) we can expect that the right-hand side of Eq. (2.27) is

very complicated, We can therefore simplify this condition by writing

+ ~

Wa(2) = c254 woiw (2.31)

so that ﬁA(z) satisfies, instead of Eqgs. (2.27) and (2.29),

wa (2)ion> = 1AL €2.32)

Af-\ Ly - ~a
w, (@) H v _ [71s-2) W (2) (2.33)
g Vo2

where we have used the known Mobius transformation properties of T, In the next

gection we shall construct a WA(z) satisfying these equations.

As explained in the Appendix, we are now in a pesition to write down the

amplitude corresponding to Fig. 4.



Fig, &

The integrand is the same 23 that in expression (2.14), but the integration vari-
ables are held in a different order, namely in the same cyelic order as inm Fig. 4.

Thus if we now take the Mobius frame in which zg = «, z; = 1, z

’ = 0, we have

N

A A -+
Tilk,) <8 IU.(!)E}: U;(r)%—'_} Va(')zf_, Ua',(!)t—:_—r co U (DR B 1)

L*‘fKI\.l-n)

It is understood that the appropriate propagators appear on the appropriate lines.

CONSTRUCTION OF THE VERTEX

Qur main result is that the Fubini-Veneziano vertex WA(z) for converting a

fermion line into a meson line, by emitting a Fermi occupation number state |A),

is given by Eqs. (2.25) and (2.31) in terms of

~— I:(?J +t if(é)
W, (2)= <owlc fobe AL (3.1)

where

A
T(2)= de  [(x-2) H W
& J-;z— Jx (3.2)

LN ”
Tee) = dx H (x-¢) H (3.3)
&rre = E

In each of these integrals I(z) and J{g) the contour of integration encircles
the isolated singularity of the integrand at the origin in a positive sense, but
excludes the other singulavrities Ea branch point at x = z in I(z) and an isolated

essential singularity at € in J(E)].
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The dashes indicate an auxiliary set of oscillators b; similar to the bn’
but anticommuting with these and the d[1 (just as the bn anticommute with the dn).
The oscillators play a purely internal role, since their vacuum expectation value
is taken., As will be seen later the introduction of these oscillators is a con-
venient device to achlieve a generalized sort of normal ordering in the d oscil-
lators. We shall also see that ﬁA(z) is in fact independent ¢f the € which can
be thought of as small, but non-zero, so that the contour described above is well

defined.

Our procedure will be to solve Eqs, {2.32) and (2.33) with the trial expres-

sion

AT(z) -\-)p_y(e)
X(z)= <owle | Ot Ay SR

1f, in addition, the exponential can be normal ordered in the d and b’ oscillators

to give a non—~singular expression, then we find that

A= L, wo==xi,

as quoted in Eqg. (3.1). Normal ordering of the exponential with respect to the
b oscillators is unnecessary since by the residue theorem the contour integral
eliminates the positive powers of x occuring in H(x)/vx and hence all the "b+'s"
occurring in the exponent. In view of this, expression (3.4} automatically satis-
fies the "boundary condition'' (2.32} and we need only study the "duality equa-

tion" (2.33) by means of the identity

Ol Tapd A
X(2) H.y) = <O ]E’.’\hﬁu Hotad o 4
) w5 e fa?

= Oy Ii*:‘*____»('ﬂ + [7\“_“ T, Butw] o L[a74,3, [A1407, f'»ful] 3.3
‘i—g /4 } 1——_‘3—] 2[ .*/‘ ) ]: /M —*r? ]

H_J: +/M )
v Y e T

We shall evaluate the first commutators

\:I(z)) Hyf‘a)] - IL(9-2) (3.6)

' To-%
-~ -4
[Tcey Hul®] . Hile-o
vy VT a-< (3.7)

and we find that the second and therefore subsequent commutators vanish.



_11_

~t
Oniy H (y) fails to commute with I(z}, and so Eq. {3.6) follows by the resi-

due thecrem, if we choose the contour of integration to enclose y and use the com-—

mutator
A A+
{*#(ﬁ) Hp(ﬁ}: 29 .. i€ Iyl =<Ix} -9
\E"3 Ty - ’

Equation (3.7) follows similarly. Equations (3.6) and {3.7) can be continued to
all values of y, To evaluate the second commutator we need [I(z), T;(y—z)ffy—z]
and we must split ['(y-z) into parts Y + 1% and I~ (involving powers of z > 0 and

< 0, respectively) so that we can use the commutators

{ ):,. (JI)) PP4(IL) "'P:(Jt)j = 2 QA X, e

BESTE N E N
?l__'r‘l.
: - (3.9)
{ ];" (I')” Fv (11]} 23#» e
_— oy, )< lxg |
to see that ALY ’
[I(:) F(:j?)**F (32] 2 -2 ;‘1()
—_— N
PPy @ m Or-g) ¥
providing ly-2/ < fx-=2|
and _
[](2), ]_‘y (y-2) _ _§a¢ 2 (x-2 g )
S —— - - L
1} -2 “rre Yx-29-7) (4-3)

providing lx-%2!< ly-32)

In either case, in order to satisfy the inequalities for all x on the contour
of integration, the point y must lie ocutside the contour in both cases, that is in

the shaded regions illustrated in Fig. 5 in the respective cases,.

.‘l -/
- /
4 S /

Y — / —
/ |

4

,/
/// -

/:

Fig. 5



_12-

When we continue the last two equations into a common region of y, so that
we can add them together, vy must still lie cutside the contour of integration in’
each case. Then we get a cancellation and the commutator [I(z), Q(y—z)j vanishes,

Similarly [J(E), ﬁL(y-e)] is zero and we have now deduced that

X(z)l—ll'a) <Ow\{ p(.,, Rph 2) [_‘,;(5_6, AT@uTE)  (3.10)
g Tom L e S lov A

Before showing that for a suitable choice of U, the first and third terms,
involving B and H' will cancel, we now examine the conditions under which
exp [RI(Z) + UJ(E)] can be rearranged into a form which leoks finite and in which
the d dT operators are normal ordered. Corresponding to the splittings of T and

B we split
T@)=T%e) +1%)+T (=) © )= THe) + T¢)

and we have formally that

AT (R)+p TCe) AT X2 epTe) AT =) LIT@) +p T )
€ N < c :
. (3.11)
~E[AT @ p IME), AT @) 4y TCET)
- €

and the question is whether the exponent of the final factor is finite. Accord-

ing to Eqs. (3.8) and (3.9) it can be evaluated as

-,
§ i< [1 a-2 ___'._ - »* 1A {x) - H (y) (3.12)
ame fm- (w2 9-2 -2 | T =y

and we can only define the contours to enclose 0 and exclude z if the square bracket

is regular at x = y, which appears to be a pole unless

AMeut=0. (3.13).

We shall, therefore, require this condition. Notice that when we take vacuum
expectation values of expression (3.11) with respect to the b’ Fock space, Ji(e)
disappears and the only remnant of the b’ oscillators is the second term in the
square brackets of expression (3.12) and this is independent of £, as claimed

earlier.
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Finally, we want to get the desired cancellation of the f and B' terms in
Eq. (3.10). 1In fact, proceeding along the lines of the previous arguments we can

show that, for any U,

A 7 :
-+
B, (y-¢€} }4'3 (e} ’g-— (9) 2 IO
— ¢ low> = T e o 3414
Tose = TTON
This leads to the desired cancellation providing w? = -1, Putting this together

with Eqs. (3.13) and (3.10) we have indeed put X (3.4) into the form (3.1) and
verified Egs. {2.32) and (2.33).

F Te 2
nbatby by)

Notice that since Ts(—1)22=1(b commtes with I{z) and J{g),

Eq. (2.33) can be written as

o -~
s 2 N
NA(?) t{; H M(‘j) (_[) Ry | it - r’"(._i..?) ['\: Wg(?)
5 5=

which leads to Eqs. (2.26) and (2.22) with B = ivZ(-1) n=l .

PROPERTIES OF THE VERTEX OPERATOR ﬁA(z)

According to Egs. (3.1) and (3.11) we can write our vertex operator in a

form in which the b’ oscillators are eliminated

~ T')+T%2)  Ive) E®)
W, (2) = <osl€ e e 184S

where E(z) denotes the expression (3.12). All the terms in the exponents are

integrals which can be explicitly evaluated by the residue theorem:

0
+ .- P"l‘ B M-~ —v,
T "(2) Ys Z=o d . ( z) (’nm )L.M o
. m = - g
T®(2) - -~ = -3 N -4 )
T ° (2 = Ve MZ-D( z) (M L’h;— .1
b M Tt o o4 \
T (2) - -Vs 2 e (-3 ()bl
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where the matrix Anm has been explicitly antisymmetrized and is defined by the

equation
E? ~ oy ! -2 -2
M,y 2 * ‘3*1) r-E &]_?
Because

L'
i Zr A= L . _f_j d §
-1 9-2 P Ny (9- §)¥

and because the latter can be expanded in powers of x and v and integrated term

by term, we soon find that

] m-m -h=Mm-1 oz ""1)

Nt |

Notice how similar this is to the coefficient of dI d;‘in expression (2.18) (but
not the same). We can now compare our vertex with the results of previous authors
whe were cencerned with the case with ]Ad) = |0d). Then I disappears and we have

6)

an expression Wg(z) like Schwarz' {but not the same, since his was a different

quantity).

~ + .
if we consider (0d|wg(z) = (Od|wn(z), I also disappears and we are left
with precisely Thorn's expressions), describing the coupling of a meson Reggeomn

to fermion antifermion ground states.
+

We have seen that eZL and W(z) are both finite when written in normal order-
ed form, This means that they are "good" operators in the sense that their matrix
elements between occupation number states are finite. This need not be true of
the product of the two operators, and as we shall now see, there is indeed a prob-

lem. For, consider

- -+
_myLt ~ Ip) +3€) (z-mL
c(z W W, ) = <Cuwy i€ € owhed .2

As we take the limit n =+ 0 to get WA(z) we see that the integral I{n) in Eg. (3.3)
ig singular, since its contour of integration becomes pinched between the essen-—
tial singularities at O and n. This is related to the fact that the coefficients

+ - . .
I, In, and I (4.1) diverge as 2z + 0, Thus, properly speaking WA(Z) does not
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exist as an operator and this 1s not surprising perhaps since, according tao
Eq. (2.29), it does the peculiar job of converting integral powers of y into }

integral powers,

In the applications we must remember that we do not take general matrix ele-

ments of WA(Z) but matrix elements between physical states. Then we get sensible
- + - ~ .

results since the L can be absorbed on the left, leaving WA(Z), which as we have

seen, has finite matrix elements. For example,

Cehys IT702) Wy (Z2) = < phys I07(Z-7) W (2.)

since the L has been taken through '(z;) and vanishes when acting on the physi-
cal state on the left. Since U is linear in annihilation and creation operators
(phys|T(21—zg) is a linear combination of occupation number states, Notice that
it would not be correct to omit the eZL+ and work with W rather than W from the

beginning.

According to the way 1t was constructed WA(z) should have straightforward
Mobius transformation properties (2.30). In addition, we would like it to have

simple transformation properties with respect to the Virasoro generators of the

type:

b
Ll W,i=) - Wa2)l. =2 n“di?. Wal2) +cqtnn)2" Wa(2)s.5)

So far as the manipulations of Section 3 were concerned the state iAd) could
be any oceupation number state in the fermion Fock space. In effect this means
that we have really calculated the 3-Reggeon vertex for a fermion emitting a meson.
In order to prove an equation like that above (4.3), we shall have further to as-—
sume that |Ad) is a physical state in the sense that

L d

1

la,> = © vy f

(4.4)
L: 1Aa> = Cq 1AL

where €4 is a number (e.g. 4 for the fermion vacuum state).

Since WA(Z) is not really meaningful, as we have discussed above, the above

equation is not meaningful either, and so we shall in fact work with the corres-
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+
Pt -
ponding equation for WA(Z)' It is not difficult to prove, considering e 2L
+
Ln eZL , that
+ + +
Z L ZzL7 C_mxl =L
n-5 /fnsi - 4
Ly, € ~ Ls==2 2
" < é z (S-H) s =t 4.5)

at least for n > -1. Combining this with Eq. (4.3) we find that ﬁ;(z) must satis-—

fy

- n-s h-H) L==f w (2) ~ Vh\; (?)Lb -2"(2°‘ + 4 ( )%B(?)
Zz 27 s Wa A hoT e A VAN

531
Szo

and this is the equation we shall prove at least for n > —1.

Note that for n > -1 this equation (4.6) reduces to a trivial identity if we
let it act on the meson vacuum state and use the boundary condition (2.32), since

we get

N~
s zgh-s (;\:; L_j FALS = i () 1855

L=n

which is correct by Eq. (4.4). This illustrates the relevance of the conditions
{4.4).

Using Eqs. (3.2), (3.3) and the commutators
b n Ho(
L H,. 1y} - 4 (‘j £ 1 M-+t ) oy
h -
3 Vo "i‘j 2 \(_{_3'
and a similar one with T replacing H, we can easily find that

S e (Md el 1@ -0

5=t

[5 ":'w(f:)f:f—r!_: ,]'(e)] = O

e

since on evaluation we obtain integrals of total derivatives about closed paths.
The 8 = =1 term is not really wanted in the above equation soc that we calculate

separately that

— d I3
d =2

[Ld ) I (2)]
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Putting together these equations we have

N-3S b’ b T(z)+ 3@
_go Z N’”}L + Z c” (N-H)}_r +Ln, € J

L1
L

N o4 T )4 T )
- __'2 d ]

-, C (4.7}

. g N A eI(:)-fl_J(e)

If we now take matrix elements of this with respect to the states (0, , O ]
and ]Ob' Ad) and use Eqs. (4.4) and

b -
L, loywy =0 r> -

we find the desired equation (4.6) except for an extra term

Tia)y+u Jce)

b i - N3 b!
(Obb? | [!—N +2 e” S(.SM)LS ]C log: Bgs (4.8)

S?-——l

This is precisely analogous to the unwanted extra terms in Eq. (3.10} and we
shall now show that they will cancel for the same reason.
which contribute to Eq, {(4.8) are those quadratiec in "

tion operators). Thus what we need to show is that

A —
<ob,}{§ az 2V H (wi +2 e ;:;); s-ni_’_l‘ PRt (x}}
z d2 VI g, _Gc_'" Ax X

The parts of the L

(i.e. containing no crea-

a1y
€ [ Obr>

i

<Ok’ | é dz z V™" N4 AT, PNle-e d ﬁt(z-e)‘sfr‘ﬁ(")
' = °’?- = V2-¢ dz e

and this is indeed zero by Eq. (3.14) (since i? = -1).

This completes the proof of Eq. (4.6) and hence for Eq. (4.3) for n 2 -1.

This includes the Mobius invariance which involves n

= -1, 0 and 1., As mentioned
earlier it seems that a different method is needed to extend the argument to
N < -1,
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APPLICATTON OF THE FORMALISM TO COTHER THEORIES

We have now presented the fermion vertex and its main properties. It has
some weird features, for example the auxiliary oscillators and the singularities
discussed above, We now want to see to what extent the features depend upon the
presence of fermions and to what extent they are general features of dual theories.
We shall do this by applying the formalism developed in this paper to more fami-
liar theories and shall, as a by-product, gain some new insight into these older

theories.

Let us suppose that the fermion lines are replaced by Neveu-Schwarz meson
lines, sc that the vertex now describes the emission of a meson with occupation
number state |B”) by a meson (that it is almost a 3-meson-Reggeon vertex)., To

"
do this we replace ™ (x) by i (x), depending on a third set of oscillators b”

and all our previous arguments still apply. Thus the Fubini-Venezlano vertex
for the process in Fig. 6 1s b7 g7
3
b” b
-— 4
! 2
Fig. b
’ . p
=17 T =)+« Te)
" {5.1)
< <O Oy |l e IB” o>

where I" and J" are I and J [Eqs. {3.2) and (3.3)] with ' replaced by Y, Now

when we rearrange so as to normal order the b” we see that

[ I"* 23" 1743 ] =0

¥
since the H'B’ anticommutator cancels with the H"B” anticommutator completely,
and not just in the singular part as happened in expression (3.12). The effect
of the auxiliary b’ oscillators is simply to normal order with respect to the b”

oscillators and the vertex (5.1) can therefore simply be written as

z LY. T'(2)
e <Op] . € - (5.2)

in which the normal ordering refers to the b” oscillators and the b’ auxiliary

oscillators have disappeared. This is why we regarded the auxiliary oseillators
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as a trick tec provide a generalized sort of normal ordering. The interested
reader who is sufficiently careful with contour integrals can evaluate expres-
sion (5.2) in the case where

+ 4

18" % e b, 100

it

by use of the techniques of Section 3 and obtain

* 4 +
4 ~-2b -k -
CHT k. H (2)
K V<ole 10,,5 - <gle topny 2
b &?
= =
+
-=b'"b
< | o k. H @
. F i -
—_ O € ’ L' > Tz
N . \
as it should be for a Neveu-Schwarz pion ). Notice that now I”+(O) exists and
is simply y
l*.
-+ "4 (o) = - =b L
while 1] -+
I {c) = ~= b {1.... b
where Tnmxm = 1/x" and so Tnm is the familiar non—existent matrix which always
1 .. . . ,
comes into N-Reggeon vertices 3). This is the effect of the pinch singularity

(4.2) poted earlier., Let us now consider the formal expression

T e
<C)b,‘ e . (5.3)

348)

. . . LTI 1 .
In view of the above remarks it is the Mobius 3-vertex evaluated in the

Neveu-Schwarz representation in which

Yiz () =2 , 713 (2)=2  Yaa (@) = /2 (5.4)

and in which the oscillators of legs 1 and 3 are identified., Notice that

Eqs. (5.4) are symmetric¢ under the interchange of 2 and 3, Thus, if instead, we
identified the oscillators of legs 1 and 2 and called them b, and left the oscil-
lator of leg 3 as b?!, which is distinct, as indicated in Fig, 7, then the fol-

lowing would be the same mathematical object as expression (5.3)

IT(o)

-

<< Cbli ’ P =l
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If we were now to congtruct the same mathematical objeet with "a'f rather

than "b" oscillators, so as to get conventional dual theory we would replace

<Ob/}’% <OQ’F

T (o) —-3- —2_’”_ §d£ QC::)-P’I'R)

where Q{x) and P’ (x) are the fields (2.1) and {2.2) formed with a and a’ osecil-
lators, respectively. The integration contour formally includes the singularity
of P! and excludes that of Q, in accordance with thé procedure described pre—
viously. Notice that this exponent is the one given by the Ramond correspondence

13)

principle
Cipa = i <P><@>> -<<PQY

The object constructed is the Mobius 3-vertex13) given by Eqs. (5.4) with oscil-

lators on legs 1 and 2 identified,

14

Now let us comment that the Sciuteo vertex ) is the Mobius 3-vertex with
J13 (1) = antw . /-a
X}z_ (]) = Ih) = X
'}*31 (») - 2ty =- /A

and hence is

— ey /
20t conl: e 2W<§__=L_ O(‘)P(‘);_fz_rc“’

| <o, | & § 2 06 ) P,
.- - ot e ) o,

and this is the form first found by Della Selva and Saitols). thice that the

contour of integration is now well defined.

. It also follows that the Fubini-Veneziano vertex for the emission of a
state edlk.q[w) on leg 3 is
' ' o,
K ket O QU)PH 2l -cwe
Va (B)=Z <oule : = e e (V>
A = o/ c .

-

_t e 7/ - ’
2 v e & @OR)P) -k
= ZKA<oa'[€ “ie m({“ i€ 1o

(5.5)
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on absorbing the L in (0 ,] and making a change of variables. If [§) =
J(a )[0), where T denotes some polynomial we can evaluate Eq. (5.5) to give
A -t k- Q)
- - LV
V(22 = 2 e Pl ¢ Q(z))

: "t dz"

as expected. Using the methods of the previous section we could prove that

' N+
T_L-M) V—p(a)] = Z S':Z\/.P [2) + c_v,(n-u)z“ Vel2) 5.8
providing

- f ’

-..L k-‘z/ —< k"“ (5 7)

Ly e (YyD=0 mnxy , Ow-c¢)6' (¥>=0
Once again our argument would only be valid for N z -1, but our result could im—
mediately be extended to all N by virtue of the complex conjugation symmetry of
the vertex V¢(z) (which is not valid for the fermion vertex). Notice that we
. . . .1 .

have a natural converse to the theorem of D1 Vecchia and Fubini 6), who, given

a vertex satisfying Eq. (5.6), construct 2 state |} satisfying Eqs. (5.7).

It is now clear that the most general wvertex VA(z) for emitting a fermion
state e_lk-qlA}, with A a state in the combined a,d Fock space, as sought in

Section 2, is
+*
KA Zhd ke’ Tce) L L= ph
VA('-Z) =2 "‘e “oroy Od!'cgkce T(2)+< ):c z"T§’,T_‘GJ(lH)P{’2

___“' k.e)
e 6 Pag> (5.8)

and that if |A) satisfies Fgqs. (2.12) and (2.13),
d a : :
L5+ LV - Vo (L +L0)= 2" [Z 2 Vatz) (V@] 6.9

at least for N > -1. From this we deduce that if

WN=LD_LN_1

is the Nth Virasorc gauge operator acting to the right, then

(W W VAG) =V ()W 4w ) = =N V()
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for all ¥ = 1. On the other hand, because of the restriction N 2 -1 on LN the
+ .
only result for the gauge operators Wq acting to the left concerns the value

N =1:
(\/\/: ++ W: +) VA(')‘ Vg('_)(w;++ W:? = N Vat) (5.10)

Thus there are nc spurious states in a fermion leg coupled to a system consisting
of one physical fermion together with M physical mesons but as far as our results
go, there may be states spurious with respect to the higher (N > 1) gauges in a
mescen leg coupled to a system consisting of two physical fermions together with

an indefinite number of physical mesons.

As mentioned in the imtroduction we and Dr. P. Goddard have found separate
proofs of Eq. (5.9) and hence (5.10) valid for all appropriate N in the special
case that the vertex describes fermion ground state emission. The result is not
proved here but it leads us to believe that our inability to prove the full re-
sult is due to technical difficulties. Because of the results we do have we be-
lieve that our vertex provides the best candidate so far for constructing ampli-
tudes with two fermion lines e.g. that corresponding to the process showm in

Fig., §

Fig. 8

but we cannot be totally sure that there are no spurious states propagating in
the meson lines joining the two fermion lines until we have extended the proof
of Eq. (5.9) to account for all N and A, and, what is a more serious problem,
until we have understood how the so-called "G-gauges' behave with respect to cur

1'?)
vertex .

Let us recall that the "full™ 3-Reggeon vertex is obtained from the Mobius
3-vertex given by Eq. (5.4) by adjoining to legs 1, 2 and 3 the operator factors
X,, Y, and Y; {(in the notation of Refs. 13 and 18). We therefore expect that the
"fu11" 3-Reggeon vertex for two fermions and a meson is the usual "a" oscillator
3-Reggeon vertex times an expression involving b and d cscillators:

Trn)+t 30€) b 4
T | de <Qbf Ob ,C '}) 10b’> Ya y3

L
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APPENDIX

_ This Appendix concerns generalizations of the arguments .of Section 2 which

_we think. reveal important structural features of dual theories:
Suppose we have vertex type operators Vi(éi) with Mobius transformation pro-

perties

O Vi (Z) o)™ = vi(y@)) Jezva) ™

The V. could stand for many possible objects: e_lQ(zi)'k : fzi, Hu(zi)ffzi or
Tu(zi)f/E; for example. Then since

(ZE2)VE(ZS) = vO) Je-oeal ™

where & and R can be any numbers, we find for a product of such vertices that

oy t
(mf‘ég‘ )v' (2,) Vs (22)-- VN{E.,)(:‘:’ ﬁc: 2'~)= Vi) Ra W (DB )l 4,

where

P odi A ¥ = B A
L';-i-l' h o0 [= T al;qrﬁi“ et (A.2)

. =2ec: .
and we have omitted the c-number factors (cz + d) 1 which are not relevant to

the points we want to make.

If the variables z; ... Zy are ordered consecutiveiy on the Koba-Nielsen

circle the products in expression (A.l) can be associated with the multiperipheral

configuration in Fig. Al

J Ry B R

If we choose each a, = o and each Bi = with @ and B the Koba—Nielsen vari-

ables of the end particles on Fig. A1, then we find that P. is the expected

1,1i+1
"untwisted" propagator
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i

LO
('xe,g.” )

Pl £t

where

o (s

u

(?L-w,{g,z;,af)

is the Chan variable for the internal line joining external lines i and i+1. So we
have found the relation between the Fubini-Veneziano form and the old-fashioned

multiperipheral operator formalism,

If now we consider an ordering of Koba-Nielsen variables on the circle appro-

priate to the semiperipheral diagram (i.e. z1 ... z_,

n? ZNer e zn+1) in Fig. A2,

—— |

| | £

n<+t

Fig. A2

2 =]

we see from the previous results that in order to get the correct propagator

L ; . .
TP % on the untwisted limes i =1 ... n-1; n+ 1 ... N -1, we must choose
»

of; = oL f!;:'z,..r. T

oli::?.... )GL-"F L= naf., N

This determines

P"‘;"‘*' B ( :‘3 e )( 2.

{“w (3) “O(9)

. . . . 12) . .
which is the conventional twisted propagator ) in terms of the appropriate Chan

n+1)' Since typically [V(z Y, V(z +1)] =0z # z

the twisted llne duality relation is trivial.

variable y = (z » Oy B, 2 +1

The conclusion of our argument is that products of Fubini-Venezianc vertices
describe both twisted or untwisted configurations, the particular configuration
being determined by the ordering of the integration variables z; on the Koba-
Nielsen circle. This result is implied by the literature but we wanted to spell

it out since we have used it in the text of this paper.
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If we take matrix elements of Eq, (A.,1) with respect to physical states

<Pu| and |PN+1>’ we see that in the general Mobius frame the (N+1) state is de-

fined by
o o |
) | PN+!> (A.3)
oA PN‘ Zn
where Qs BN’ zy are the Koba—-Nielsen variables of respectively the next leg in

a clockwise sense, the leg itself, and the next leg in an anticlockwise sense,

Thus the operator in expression {A.3) is like that normally associated with the

13)

18
leg of an N-Reggeon vertex °’ . Because of the lemma:

®© o ) ,C?L+ @) gyt
vy e [(7;8 R

we see that due to the physical state and mass shell conditions (2.12) and (2.13)

the expression (A.3) reduces to

Auvla S (:N_)@h,)(,sm_u”)

[ p (A.4)
v (2 N —ot N)

This is important for several reasons:

i) It leads to an alternative derivation of our general Mohius form (2.14)
used in the text.
.. ‘e . 13,18
ii) It clarifies a peculiar feature of the W-Reggeon '’ ) vertex: that the
operator asscciated with a particular leg should depend also on the variables
of the adjacent legs as well as the leg itself. We now see that this un-
wanted extra dependence simplifies when a physical mass shell state is ad-
joined,
Finally notice that in order to have a cyclically symmetric formalism like
that usually applied to mesons one would want
Zaw L F
V v+ (135»+\)| 6D = < 1P r™
(another example of the boundary condition used in this paper). The reader can

easily verify examples of this

-.l.

L +

e - M () | 6> ‘=E’—2 l’k-]o,_-,’b)
53
- k@) 21_:: e

C e DJjzley =€ e I oS
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