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Abstract 

We review the fundamental challenge of fermion Monte Carlo for continuous sys- 
tems, the “sign problem”, We seek that eigenfunction of the many-body Schriidjnger 
equation that is antisymmetric under interchange of the coordinates of pairs of par- 
ticles. We describe methods that depend upon the use of correlated dynamics for 
pairs of correlated walkers that carry opposite signs. There is an algorithmic sym- 
metry between such walkers that must be broken to create a method that is both 
exact and as effective as for symmetric functions, In our new method, it is broken 
by using different “guiding” functions for walkers of opposite signs, and a geometric 
correlation between steps of their walks, With a specific process of cancellation of 
the walkers, overlaps with antisymmetric test functions are preserved. Finally, we 
describe the progress in treating free-fermion systems and a fermion fluid with 14 
3.He atoms, 

1 Introduction 

Monte Carlo methods have provided the most powerfuul numerical tools for 
quantum many-body physics[l,2]. Since they deal effectively with many- di- 
mensional quadrature, they permit a potentially fully-correlated wave function 
or density matrix to be used. In variational Monte Carlo, one introduces trial 
wave functions or density functions with explicitly chosen correlations built in. 
By minimizing some variational functional of these, one can obtain, for exam- 
ple, an optimal energy or free energy within the framework of the given class 
of trial functions, and also an indication whether or not the assumed correla- 
tions are realistic. Treating fermionic systems with explicitly antisymmetrized 
trial functions is usually not di%cult. 
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By contrast, the methods that can, in principle, solve quantum problems ex- 
actly, namely Green’s function Monte Carlo (GFMC), Diffusion Monte Carlo 
(DMC), or Path Integral Monte Carlo (PIMC) depend upon guessed prop- 
erties of the many-body correlation only in their computational efficiency, if 
at all. They are capable of giving, at least for moderate size bosonic systems, 
answers with no uncontrolled approximations. Unfortunately, most interesting 
systems- electronic, 3He, and nut e 1 ar- are made up of fermions, and the exact 
treatment of such systems has been impeded for years by the notorious “sign 
problem.” 

This paper is concerned with the nature of this challenge to computational 
mathematics and physics, and with a new proposal for solving it with which 
we have recently been experimenting, Broadly speaking, the difficulty can be 
characterized in different ways, but the outcome is the exponential decay of 
signal to noise, a kind of statistical instability. Thus, whereas a bosonic calcu- 
lation has a statistical error that decreases asymptotically with computation 
time, t, as l/d, a fermionic calculation naively pursued in the same way will 
exhibit an error that falls as l/log(t). 

One straightforward way of understanding the nature of the difficulty is to 
recall that in GFMC or DMC, the random walks serve to filter out the higher 
energy modes of some trial or initial distribution, so that for very Jarge imag- 
inary time, the probability distribution of the random walkers is given by the 
ground state, which for potentials invariant under particle exchange is also 
the symmetric (bosonic) ground state. 

The essence of GFMC or DMC can be expressed in the following way: One 
constructs a random walk that generates wave functions biased with a “trial” 
or “guiding” function $JG(@, Assuming a basis &(I?), of eigenfunctions of the 
Hamiltonian I?, having eigenvalues I.&, then as a function of imaginary time 
7, the walk generates a density of walkers according to 

f (&T) = ?h@) c ak exp[(& - Ek)+k(@ 
k 

(1) 

where ET is some trial eigenvalue. Asymptotically, f(8,~) is dominated by 
the eigenfunction $0 with smallest eigenvalue Ea. 

In a Monte Carlo calculation of this kind, we (‘project” quantities of iyterest 
by calculating weighted integrals with some trial function, say @T(R). For 
example, to calculate the energy eigenvalue, Eo, we write the Schrodinger 
equation: 

NOW multiply both sides by @T(d), integrate over all 2, and solve for E0 using 
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the property that fi is hermitian. The result is 

For large T, we may replace this by 

(3) 

and finally, folloying the theory of Monte Carlo and given that the de>sity 
of walkers is f(R,r), replace the integrals by a sum over all positions & of 
walkers at large r: 

E. = (5) 

This is very effective for determining Eo of bfsonic systems. Formally, we 
may simply use an antisymmetric function @T(R), relying on the fact that the 
corresponding exact eigenfunction is present in the expansion of f. But the 
variance of these integrals contains the squares of &$~(a) and $T (6)) which 
are symmetric. Thus the signal to noise ratio of these integrals decays expo- 
nentially with time. The usual Monte Carlo strategy of continuing the random 
walk to improve statistics does not work effectively. It could be made to work 
if the growth of the symmetric ground state (and other low-lying states) rel- 
ative to the fermionic state could be controlled. That was the motivation for 
introducing cancellation methods by Arnow et al. [3], but these scale badly 
because, in a small population of walkers, close encounters are rare in many 
dimensions. 

The well known “fixed-node”[4,5] method, in which the random walk is ter- 
minated on the nodes of an antisymmetric trial function @T(Z) provides a 
simple approximate scheme for limiting that growth. It is’ often a very good 
approximation. 

Historically, it seemed surprising that fermionic Monte Carlo would prove 
so difficult, and there have been many attempts to solve it in diverse ways. 
Perhaps a clear understanding of the challenge has never been articulated. 
For that reason, we offer a brief discussion of these issues, phrased as a set of 
answers to the sense that “there ought to be an easy ~a.y out!” 
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One line of thinking has been that fermionic Monte Carlo is exact and easy 
in one spatial dimension: Why should it be hard in many? A straightforward 
answer is that the nodal surfaces are known exactly in one dimension, and 
can be used with the fixed-node method, now no longer an approximation. 
A complementary and more instructive answer is the following. Cancellation 
methods, mentioned above, will work very well if the walkers meet. They are 
guaranteed to do just that in one dimension, but walks’in higher dimensions 
are guaranteed never to meet. We shall return later with a new approach that 
makes cancellation possible for many-body systems. 

In a similar spirit, it has seemed plausible that if the fixed-node approximation 
is easy and often rather accurate, a small improvement ought to be straight- 
forward. This has not been done yet. A plausible reason is that the Pauli 
principle- which demands that the wave function be antisymmetric- provides 
a global constraint on the solution, but the random walks that underlie GFMC 
or DMC are always local, depending only on functions of the immediate posi- 
tion fi to determine the next moves, Clearly some sort of non-local knowledge 
must be used. Even an approximate nodal surface provides global information 
about the solution. Later, we propose the use of correlated walkers to create 
a degree of non-locality. 

Finally, by way of concluding this analysis of the sign problem, we introduce a 
point of view that we have found very helpful in understanding what needs to 
be done, and in determining whether a proposed method will work, namely the 
“plus-minus symmetry”. We introduce explicitly a set of walkers, {&,I?;], 
that respectively add or subtract their contributions Lli statistical expecta- 
tions, such as in Eq. (5). With the use of such signed walkers, that equation 
becomes 

Eo 

Now define a new set of walkers by assigning 

(6) 

i.e. simply exchanging the +, - labels. If the dynamics is unchanged by this 
transformation, then asymptotically there will be as many populations near 
(gz, #;} as there are near (&, fi;}, and the expectations of the sums in 
Eq. (7) will vanish, guaranteeing the unfavorable consequences of the sign 
problem. An effective method must break this plus-minus symmetry. 
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2 Correlated Pairs 

Is is clear that independent walkers cannot break the plus-minus symmetry, 
so that some correlation among walkers is essential. That raises two questions: 
How large a group’of walkers must be correlated? Is it possible to guarantee 
correct results in spite of the correlation? 

In this paper, we consider only correlated pairs, and will demonstrate stable 
results with that limitation. As for the question of correct results, consider 
dynamics of a pair in which the behavior of both walkers is the same as that 
of a single free walker, except when they cancel. The integrals that occur in 
Eq. (6) are linear in the walker density and their expectations are therefore 
unchanged by correlation between walkers. A procedure to insure that the 
expectations will be unaffected by cancellation will be demonstrated below. If 
it is used, then any stable results are also correct [6]. 

The dynamics for which the behavior of one member is still correct are easily 
obtained within the context of DMC. Recall that the “diffusion step” con- 
sists of displacing a walkers by a SN-dimensional vector of Gaussians whose 
components have the same distribution everywhere. If we choose this vector 
for a negative walker to be correlated with that of a positive walker, we can 
preserve the correct “marginal dynamics” for both. A specific prescription is 
given below. 

3 The Stochastic Dynamics 

We apply the general ideas of “mirror potentials” [7], to the positive and neg- 
ative walkers of a pair and introduce the following guiding functions[8]. 

Let Qs(@ be some approximation to the symmetric ground state wave func- 
tion of the system. Let @A(Z) be a trial function for the lowest antisymmetric 
state. The guiding functions are: 

These functions have the following important properties. a) they are both pos- 
itive everywhere; (b) for small values of the parameter c, they are dominated 
by $JS, so that the branching of the two walkers are not very different; (c) each 
is a sum of a symmetric and an antisymmetric term, and the latter changes 
sign with c; (d) an odd permutation P transforms ?+!& as follows: 

&(PA) = ?&(I?). 



To analyze the consequences of cancellation, we start by projecting the average 
future contribution of a walker undergoing diffusion Monte Carlo in which it is 
advanced by Sr using a guiding function @G(P). After a total imaginary time 
r, an eigenfunction &(i)?O) evolves according to 

QG(~o)+~(~o) -+ e (ET-Eqh&#k(i). (10) 
To estimate A(&), the total expected future contribution of a walker currently 
at 80 to an estimator a(@/&(@, use the expansion of a(I! - 2,): 

Then A(&) is obtained from Eq, (11) by multiplying by o(fi)/&(@ and 
integrating over all Z? and over 7 from 0 to 00. The result is 

Diffusion of the walkers are correlated in the following way: 

(12) 

6” contains 3N Gaussian random variables each of mean zero and variance 
8~. oi- is obtained by reflecting d+ in the perpendicular bisector $f the vector 
si+ - &. Then th e overlapping distributions of next positions, R, are added 
algebraically so as to allow positive and negative walkers to cancel. 

G(l?' - 8) = exp[-(iil-ii)2/(2fh)] 
(2nSr)3N/2 

is the probability density that describes diffusion. 

Let 

a+(iilii+), B-(dp) 05) 
denote the branching factors that are applied to a positive and a negative 
walker respectively on arriving at ii. 

Using Eq. (12) and Eq. (14) to calculate the expected future contributions of 
positive and negative walkers arriving at E, we conclude that a positive walker 
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at &!$ will survive and be used as a positive walker in the next time step with 
probability 

P+(l;i,+; I?+, ii-) = max O,l- B-(ii,+@-)G(&$ - ii-)I,+,‘&) 
B+(ii,+l~+)G(@ - ii+)&&) I 

(16) 

In st_an$ard diffusion Monte Carlo, the bran+ching f&tors, @(&!I)?+) and 
B- (RIR-) depend only on the arrival point, R, and are respectively 

B*(@=exp 6 E - {T[T ~$q} (17) 

Branching is carried out for both walkers of a pair. An unpaired walker may 
appear; a simple method of recreating a pair is with probability one half 
generate a partner of opposite sign by interchanging the coordinates of two 
like-spin particles. Half the time the walker is discarded. That this is unbiased 
is justified with the following argument. The’functions a(.@ that interest us 
here are antisymmetric. Hence the coefficients of $k in Eq. (1‘2) vanish except 
for antisymmetric functions, That is, 

Al(d) = -A,(@ ) (18) 

According to Eq. (9), $&(P@ = @c(g), so that 

A(d) = -A@) (19) 

Therefor? the expected future score from a walker at Pd is the negative of 
that at R. In our estimates, however, all future contributions will be sub- 
tracted, so that the net score is doubled by adding the new partner at P&!. 
The factor of two is corrected by creating the pair with probability one half 
as indicated. Along with the fact that random walks are (marginally) correct, 
this treatment of cancellation and repairing guarantees that the expectation 
of future contributions to the numerator and denominator of Eq. (3) are un- 
changed. 

The most important result in these calculations is the energy. We use the 
estimator of Eq. (6). The denominator D in that quotient is our best indicator 
of stability. If the plus-minus symmetry is not broken, one expects D to decay 
to zero in an imaginary time of order rc = ~/(EA - Es) where EA and ES 
are the antisymmetric symmetric energies respectively. By contrast a stable 
method will show D growing linearly with imaginary time, 

We experimented first with free fermions, a stringent, test of our method. We 
assume ti = m = 1, and a density p = 0.5 The exact fermionic ground state 
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N E a(E) T(m) a2(E)*T/N3 Eez 

7 2.900 0.004 7822 0.00036 2.912712 

19 2.792 0.020 24346 0.00142 2.757454 

27 3.131 0.050 25488 0.00323 2.763316 

Table 1 
Energies, errors and time scaling for a periodic system of N free fermions. T is the 
total CPU time (in minutes) of the runs performed. The exact analytic result I& 
is reported for comparison. 

is a determinant of plane waves; the lowest symmetric state is constant. We 
chose the guiding function to be: 

(20) 

where (PA is a Slater determinant of one body functions xf of the following 
form: 

x$ = exp iiF. 
[ ( 

r’i + AB c q+ij)r’ij 
j#i 11 (21) 

The nodal structure of this departs from the exact depending on the parameter 
AB, In table I we report the results obtained from variational calculations and 
DMC-fixed-node for periodic systems of 7, 19, and 27 zzticles respectively. 

In Table I we show the results for a system of N free fermions, with N = 
7,14,27. We report the energy per particle computed with the algorithm de- 
scribed above, the estimated errors, and an estimate of the MC computational 
complexity. As can be seen, in the N = 7 case the result is lower than the 
exact value, while in the N = 19 and N = 27 the energy is biased toward 
higher values. We remark that these calculations have been performed with 
a strictly fixed population of 50 walkers. Indications from numerical experi- 
ments with a larger number of walkers are that the bias is strongly reduced. 
We will perform a systematic study of the dependence of the energy on the 
number of walkers. The computational complexity appear to grow faster than 
the N3 which is expected from the computation of the Slater determinants 
alone. Within the present uncertainties our estimates are compatible with a 
power law with an exponent N 4.5. A sharper analysis of the scaling is also 
under way. We have also applied this algorithm to a system of 14 3He atoms in 
a periodic box at equilibrium density. With interatomic potentials, the wave 
function must include a Jastrow factor: 
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Fig. 1. a) Cumulative value of the denominator D and b) cumulative value of the 
energy per particle in a system of 14 3He atoms with periodic boundary conditions 
at equilibrium density. 

The+function PA is the same as for free fermions, while ‘ps has the form 
cpsw = rIi<j exp[- (b/~i~)~]. Now the units of length are A, while the energies 
are expressed in Kelvins. The density at which we performed our calculations 
is p = 0.0216A-3. Th e value of c is 0.02. In Fig. la we plot the cumulative value 
of D. As can be seen, we have a very stable result, Fig, lb shows the cumulative 
eigenvalue; the final average is Ee = -2.25 f 0.03K. Neither extrapolation in 
imaginary time nor a check of the dependence on the number of walkers has 
been done yet. Thus the eigenvalue, though reasonable, is not yet definitive. 
We believe that neither the presence of realistic interatomic potentials nor 
many-body correlations alter the fundamental stability of the method. 

4 Conclusions 

We have proposed an approach to the Monte Carlo treatment of many-fermion 
systems in which different guiding functions for positive and negative walkers 
are used. A geometric correlation of the diffusive steps of the walks combines 
with the effect of the importance sampling to give random walks that exhibit 
statistical stability to very long imaginary times. This geometrical correlation 
is able to guide walkers together even in the configuration space of many 
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particles, a necessary property of an effective algorithm. The method has been 
successful with systems of as may as 27 fully polarized free fermions as well as 
a system of 14 atoms of 3He with realistic potentials. In principle the correct 
dynamics for each walker plus correct form of the probability of cancellation 
of opposite walkers guarantees unbiased results. These experimental results 
suffer from known biases: The first versions of our programs do not carry out 
the exact sampling required. It seems clear, however, that an important step 
forward has been taken toward our goal of an exact method for many-fermion 
calculations. 
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