JOURNAL OF MATHEMATICAL PHYSICS VOLUME 39, NUMBER 10 OCTOBER 1998

Fermion realization of the nuclear Sp (6,R) model

Jutta Escher® and J. P. Draayer
Department of Physics and Astronomy, Louisiana State University,
Baton Rouge, Louisiana 70803-4001

(Received 6 April 1998; accepted for publication 29 May 1998

A fermion realization of the nuclear Spf, model, which complements the tra-
ditional bosonic representation, is developed. A recursive process is presented in
which symplectic matrix elements of arbitrary one-body fermion operators between
states of excitatiolNzZw andN'%w in the same or in different symplectic bands

are related back to valence shell matrix elements, which can be evaluated by stan-
dard shell model techniques. Matrix elements so determined may be used to calcu-
late observables such as electron scattering form factors which carry detailed struc-
tural information on nuclear wave functions. 998 American Institute of
Physics[S0022-24888)02110-7

I. INTRODUCTION

Extensive effort has been devoted to developing the relevant mathematical and computational
tools for a fully microscopic treatment of collective nuclear phenomena. In particular, ever since
the noncompact symplectic group in three dimensions, &)(6&vas recognized as the appropriate
dynamical group for a many-body theory of nuclear collective maticrit has received careful
and detailed attention. This group is of special interest because it is also the dynamical group of
the three-dimensional harmonic oscillator and thus it establishes an important link between the
nuclear shell model and the collective model. Generalized vector coherent state theory and boson
realizations of the symplectic algebra have been employed to construct the discrete infinite-
dimensional unitary irreducible representations of SR{8*Methods have been introduced for
calculating the necessary orthonormalization factors for symplectic basis states and the requisite
matrix elements of the symplectic generat6t$:1°In addition, a procedure has been developed
for evaluating matrix elements of general two-body interactions of the type used in standard
microscopic treatments of nuclear many-body syst&ms.

Despite practical limitations due to the large sizes of the Hilbert spaces involved, various
applications have proven the symplectic approach to be successful in reproducing collective
nuclear properties, such as excitation energies, quadrupole moments, and electromagnetic transi-
tion probabilities?®~2* Unfortunately, until now it has not been possible to evaluate matrix ele-
ments of arbitrary one-body operators between symplectic basis states. These matrix elements are
of particular interest since they are required for the calculation of observables, such as nuclear
form factors, which carry very detailed structural information on nuclear wave functions. It is our
purpose in this article to provide a new, fermionic, realization of the &)(@lgebra, which
complements the traditional bosonic representation and leads to a method for determining matrix
elements of a general one-body operator in a S)(®BU(3) basis. Specifically, a recursive
process is presented in which symplectic matrix elements of arbitrary one-body fermion operators
between states of excitatiddzw andN’'%w in the same or in different symplectic bands are
related back to valence shell matrix elements, which can be evaluated by standard shell model
techniques. The fermionic realization of the symplectic algebra is particularly well suited for this
approach, since the requisite valence shell matrix elements are readily available.

The article is organized as follows: To establish the notation, in Sec. Il we give a brief
summary of the generators of the symplectic algebra, their bosonic representation, commutation
relations, and matrix elements. In Sec. Il the symplectic generators are recast in terms of fermi-
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onic creation and annihilation operators. The symplectic model space is reviewed in Sec. IV. In
Sec. V we present the derivation of the matrix element formula for a general one-body operator
acting in the symplectic space. Concluding remarks are given in Sec. VI. The derivations in Secs.
Il and V make use of both oscillator boson operators and fermion creation and annihilation
operators. Phase conventions, conjugation properties, commutation relations, and matrix elements
of the former are given in Appendix A, and conjugation properties and commutation relations of
various SU3)-coupled products of the latter are derived in Appendix B. In addition, Appendix C
provides a compilation of various important &Y recoupling rules.

II. GENERATORS OF THE SYMPLECTIC ALGEBRA

The generators of the symplectic algeb6,R) can be realized in terms of bilinear products
of harmonic oscillator bosons in a Cartesian schéfe:

Cij=2> | bi(s)bj(s)+ 5 6 2 bl(s)2 bj()— =48,
S S t
L > b-*(s)b-*(s)——1 > bl(s)> bl(1) (1)
24 RS T 2 Bt B

1 1
Bjj=5 2 bi(s)bj(9)~ 55 2 bi(s) 2 by(D),

where the sums run over all particles in the system and the two-bodyAlterms effect the
removal of spurious center-of-mass excitations fromAhgarticle system(Refer to Appendix A

for details on the boson creation and annihilation operatdise commutation relations for the
symplectic algebra in this basis are easily inferred from the commutation relations of its building
blocks and are listed by Hecht.

Making use of the spherical componerit]'%(s) andb{}"(s) of the boson creation and
annihilation operators, the symplectic generators can be written &) 8téducible tensor op-
erators:

Cli'=v23 (b'(e)xBo}i’ - S By,
st

1
2")— 2 {b¥(s)xbT(s)}{20— A ; {bT(s)xbT(1)}{2, (2)

1
= (02) _ = T (02)
=3 {b(s)xb(s)}° WTA Est: {b(s)xb(1)}%?,

3

transforming according to the $8) irreps (\x) =(11), (20), and(02), respectively. The overall
normalization factor is chosen in agreement with the convention used by Roséhdteelsym-
plectic 24  raising and lowering operatora{2” andB{%?), respectively, are related to each other
via Hermitian conjugationB(??=(—1)'""M(A{?)T. Both A{Z”) andB(°? havel =0 and 2 com-
ponents, whereag{t! hasl=1 and 2 components. The relevant commutation relations between
the spherical components of the symplectic raising and lowering operators are given by
Rosensteed’
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[Al(ZO) ,A|(20) ]:[Bl(OZ) ,B|(02) ]: 0,

1My 7" oMy 1My’ 1My

[Biom, -Alzm ]=% V10 >, ((02)11my;(20)1,my|(11)Im)Cig

1My 7" oMy
2 lo+m.
+2/3 (=128, 1,8m,-myHo- ()
Here (—;—|—) denotes a Wigner S@3) coupling coefficient'see Appendix Cand HO=Nb+%,

whereN,=232_,C;; counts the number of harmonic oscillator bosons in the system.
The eight operatoré:f#]” generate thesu(3) subalgebra op(3,R) and are related to the
angular momentum operatot, and the Elliott (algebrai¢ quadrupole operatorQ3,,

= Am/5Z (r2Y ,m(rs) + P2Y,m(Ps)), here given in units of = w=m=1, as follows:

cly’=L

1q g=0,=1

q?

(4)

1
Cgln})z‘/?ng, m=0+1+2.

We can also express the collective quadrupole opei@fq= \/1677/525r§Y2m(F5) as a linear
combination of SWB) irreducible tensor operators:

Q(Z:mz ng""‘/g(A(Z%r?)_" B(Z?T%))' (5
Matrix elements foiC*? in the standard S(3) basis are given 5%°

(O mOCEV )= (= 1)PV2C oA ) Sinr ryape)

1, for u#0

¢= 0, for u=0, ®

2
Co(Ap)= §()\2+)\,u,+,u.2+3)\+3,u,).

The reduced matrix elemefg\’ w')|[|C*Y|||(Aw)) is related to the full S(B) matrix element
via the Wigner—Eckart theorem for $8) (see Appendix € The symbolC,(Au) denotes the
second-order Casimir invariant of &), and the choice of the phase is consistent with that of
reference 29.

Several strategies for calculating matrix elements of the symplectic genetét8randB(°?
have been explored. A direct way is to use the SR{@&ommutation relations to derive recursion
formulas, as shown by Rosenstéelnother approach is to start from approximate matrix ele-
ments and proceed by successive approximations, adjusting the matrix elements until the commu-
tation relations are precisely satisfie®eenen and Questfehave employed a boson mapping to
obtain the generator matrix elements, and Castan al'® have derived simple analytical func-
tions for some special irreps. The most elegant method, outlined by Rowe in reference 7, involves
vector-valued coherent state representation theory and evaluates matrix elements of the symplectic
raising and lowering operators by relating them to the matrix elements of a much sini@ler
®Weylalgebra.
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lll. FERMION REALIZATION OF THE SYMPLECTIC GENERATORS

In a fermion second quantization formulation, the one-body pa@(dP takes the form

- 1 1
pp’
P pg
T
X8 (,0)im(112)0" A (v ) m! (112)0" 5 7)

wherea’ , anda, are fermion creation and annihilation operattsse Appendix B Note thatb",

b, and C(“) do not act on the spin part of the wave functions; thus one needs to treat these
operators as= o =0 objects, as has been explicitly expressed in the above equation.
Utilizing the symmetry properties of the Clebsch—Gordan an€3sWigner coefficients and

the definition of the proper S@) irreducible tensor operatora(oyr)|,(,mr)(l,z)(,,,,)
=(—1)" "2y e (12)e » WE Obtain

1 1 - 1 1
F(Cls=o =(1—;)ﬁ2 <(vo)§ ’{b*xb}<ﬂ)s=° (v'0)5> Jd(»0) 5
x{a{,012 X (0 (12 L Me=0
1 1
=l1-=|> \/—v(v+1)(v+2)(v+3)
A<= Ng
x{a/ V0)<1/2)><a(0v 1/2)}LM(r 91 (8)

whered(A ) =3(A+1)(u+1)(\+ uw+2) denotes the dimension of the(3uirrep (Aux) and use
has been made of E¢A6), which expresses the triple-reduced matrix element in termsavfd
v’ only (see Appendix A Analogously one derives the fermion realization for the one-body part
of the symplectic raising and lowering operators.

The two-body parts of the symplectic generators can be obtained in the same manner. A
general symmetric two-body operator fdridentical particles,s’= 2§<t: 19(Xs, 05, %, 07), Where
s andt refer to thes-th andt-th particles, respectively, takes the following form in a fermion
second quantized formulation:

E (p1p2|9(X1, 07, %7, 0-2)|p1p2>aplap2ap2api 9
Pl Pl
P21P2

Here|p1p,) denotes the direct product of the single-particle wave functipplsand|p,). For the
cases that are of interest here, the functipfx,,o,%X,,05) can be written as a product
g(1)g(2)=9(x4,07)9(X5,0%), whereg(t), with t=1 or 2, acts solely on the single-particle
wave function with subscrift Thus the two-body part of the symplectic genera@6t) is written
as
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o ~(11)s=0 1 1
-(f(CLMFo)"'_ (Vlo)llml50'1;(1’20)12”12502

\/—A P1P

P2 Pz

4] P2

N 1 1
X{bT ()X B2} a=0| (¥10)im] 5 01:(»10)l5my 5 05

1 !
4 [}

t i
Xa(y,0)1m,(172)0, % (1,0)lymy(112) 0,3 (#)0)ym ) (12)0 ;4 (10} m  (1/2) 0]

= : 1
- (%S 3 dp)(25+1) {(0)X (10} (Ap):| 5 %5 I
()\,.U-,)S’

1
X = S'>

1
x{b*‘(l)xb‘u)}‘“”:"lll{(vm)x(v;0>}<x'#'>;[5 5

IS’ (1D)s
><2 {{al,, 001 % a{r,00 12} M5 X {a 00 )(1/2)><a(0v2>(1/2>}(” S} oo
(10

"1 "2

and analogously fots(ABYS=%) and “(B{335-0). Here use has been made of the symmetry
properties of the Clebsch—Gordan and Wigner coefficients and of the Wigner—Eckart theorem for
both SU2) and SU3). Upon evaluation of the triple-reduced matrix elements {bf(1)
xb(2)}Y, {bT(1)xbT(2)}?9, and{b(1)xb(2)}(°? (see Appendix A we find the following
fermionic expressions for the symplectic genera®fs’, A??, andB(®?, respectively:

citb= (1——>2 \/ V(V+l)(V+2)(V+3){a(1;0)(1/2)><a(OV)(l/Z)}LMO' 0

(v—1,00 (100 (»0) -

1 s \/1 400 v(v' 43254 1) (»"+1,0 (01 (»'0) -
- 2 d(Nw) v(v' +3)(2S+1 ,,
an Sy NatnH (\u) (D () -
AN u") _ _ _
t ~ ~ N _
X{{azyoxl/z)xa(,,/o)(l/z)}o\msx{a<o,p—1)(1/2)><a(o,yf+1)(1/2)}(“ MISHeZS, (11

(20)_< )2 \/ (v+1)(v+2)(v+3)(v+ A, 1 2,012 X Bon (12 Mez0

(»=1,0 (10 (»0) -
(»'=1,0 (10 (»'0) -
2 \/ dAp)vv'(25+1) (Nu') (200 (Aw) —

(ML)()\’/«L') _ _ _

1
C4A

T t A)Sye [ 3 = (20)
x{al0)w2 X012 X{@0,- 112X A0, -1} * N Fiaeze, (12

and
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(1——>2 \/ (v+1)(v+2)(v+3) (v +A{al,0, 02X 0w+ 2112} Mot

(»+1,0 (0 (»0) -

! > \/ )(v+3)( 3)(25+1) (1O (0D (70 =
- d(\ v+ v+ +
4A e H (\'w') (02 (Aw) -
(}\p, — _ _
X{{a(yo (1/2)><a(y 0 (1/2)} M) ><{a(o V+1)(1/2)><a(o y'+1)(1/2)}(” A)Sy 0270, (13

Making use of the properties of the coupling coefficients and of the Hermitian conjugation
properties of the generators, one can verify tBf2)=(—1)-"M(A®9),)T holds, as expected.
This relation serves as a stringent test for the fermionic expressioAS%fand B(%2),

IV. SYMPLECTIC MODEL SPACE

A basis for the Hilbert space is generated by applying symmetrically coupled products of the
2hw raising operatorA®9 with itself to the usual B shell-model states. Thes@ starting
configurations are labeled by the Elliott @Y quantum numbersi(, x,)3%** and byN,, the
eigenvalue of the oscillator boson number operator which takes the minimum value consistent
with the Pauli Exclusion Principle. The product bf/2 raising tensordA®®, each of which
promotes a particle from a given shell into a higher-lying shéllv2above, generatell 7w
excitations for each starting irreN,(A,1,). Each such product operat@P::()‘””"), labeled

according to its S(B) content, {,u,), is then coupled withN,(\ ,u,)) to good SU3) sym-
metry p(A ,1,,), With p denoting the multiplicity of the couplingh\(,u,,) X (A o) -

It will be convenient to use the general shorthand notafigrfpr a W(3) or SU3) represen-
tation label, andr for an appropriate set of (3) subgroup labels. We thus introduce, following the
notation of Hecht?

I'y=[010203]=Ny (A spt5) =Ny(01— 02,02~ 03),
I'n»=[ninzn3]=N, (A yun) =Np(ng—ny,n;—ng), (14
FwE[wlewB]ENw()\wlu“w): Nw(wl_ C!)2,(1)2_(1)3),

where (\u) are SU3) labels and theN,=o;+ 0,+ 03, N,=n;+n,+n;3, andN,=w;+ w,
+ w3 give the number of squares in th€3) Young tableaux. With this convention, the product
operators, which are defined recursively, can be written as

PUAR = 3 (200 BiT | Tran) X (L0 AR 1 (AR, (19

n'bap’

with A9 adding a 2w excitation to theN,,, excitation (N, =n;+n,+nj) that is created by the
action of the operatow)r n'(A(ZO)) and the factor

XIn(T )= (nanangf|]. 22| [Iningn; (16

n;+ny+ns

is required to properly normalize the raising polynomidits details see reference BZhen; in

the above equation denote the number of oscillator bosons intinelirection, and we havhl,

=N, +2. The operatorZ? is a generator of thei(3)®Weyl algebra; the evaluation of its

matrix elements and its relation to the symplectic genertt® are discussed in references 33, 7.
We thus obtain a basis of SpRj, states that are reduced according to the subgroup chain

SpP3R) O U(3) D SO3) O Sq2)

r, T, T, x L M. 17
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For each Bw SU(3) starting irrepl’ ,=N,(\, ) a basis for a symplectic representation is given
by states of the form

| O[T, Lol e, )= 2 (Foan T pan) , 7 AP a,), (19

where N,/2=0,1,2,.., counts the number of boson excitatiom,=N,+N,, (A u,) ranges

over the setQ={(n;—n,,n,—n3z)|n;=n,=n3=0;N,=n;+n,+nz;n;,n,,ng even integers

pI',, includes all SU3) irreps resulting from the coupling, XTI, , anda,= LM denotes quan-

tum numbers associated with the group chaif@U0SO(3)D>SO(2). Alternatively, one can also
choose subgroup labelsa,=¢AM,, which are associated with the chain
SU3)DSU(2)xU(1)DSO(2). The states of the Sp) D SU(3) basis are thus labeled by three
types of U3) quantum numberst' ;=N (\,u,), the symplectic bandhead or SHR3,lowest
weight U3) symmetry, which specifies the SpR3, irreducible representatiod; ,=N,(A un),

the U3) symmetry of the raising polynomial; add,=N_(\ ,x,), the U3) symmetry of the final

state. Any given symplectic representation spligé\ ,u.) is infinite dimensional, sincél,/2,

the number of boson excitations, can take any positive integer value. In practical applications, one
must therefore either truncate the symplectic Hilbert space, or restrict oneself to interactions and
observables for which the matrix elements depend solely on the symplectic irrep and can be
calculated analytically.

The states of Equatiofil8) are eigenstates of the harmonic oscillator Hamiltonidg,®)
=Eo|®), with eigenvaluesE,=(N,+ 3)%w. Two such states with different (8) contentI’,,
=N,(\,u,) are orthogonal, whereas two states with identicé3)dymmetryl’,, but different
pl'n=pNp(Apan) quantum numbers, are generally not orthogonal. The std®@s,I", ol ,@,,))
of Equation(18) can be related to the orthonormal basis stated”.pT",a,) of the unitary
irreducible representation of SpR3, by

|®[r0rnipirwaw]>=; (AT To)lr, oo Ul npil 0o (19

Here|T',I'pl,,), Without the letterd stands for the orthonormal basis states, and the symbol
[Z (T, ’Fw)]nipi nip; denotes the matrix elements.af’, the positive Hermitian square root of the

overlap matrix %2, which has matrix elements

['%)Z(Favrw)]rn E<®[F0Fn’plrwa’w]|(I)[F0'anrwaw]>- (20)

p"\Thp
The matrix.7% 2 is diagonal inl’, andI",, and independent of (3) subgroup labelsr,,, and its
rows and columns are labeled By, and p. Due to the smallness of the off-diagonal matrix
elements of%? the orthonormal basis states in Equati@8) can also be tagged by those labels
l"nipi which correspond to the dominant valuedgfp in these states. The method for calculating
the matrix elements ofZ2, and therefore of’%, is given in reference 7. An approximation
formula for the matrix elements 0# has been worked out by Hectit.

V. MATRIX ELEMENTS OF ARBITRARY ONE-BODY OPERATORS

In this section we derive a recursion formula in which symplectic matrix elements of arbitrary
one-body operators between states of excitatilqghw and anﬁw in the same or in different
symplectic bands are related back to valence shell matrix elements, which can be evaluated by
standard shell model techniques. The derivation of the desired recursion formula makes use of the
fact that the symplectic basis states are constructed by applying polynd}’?ﬁﬁw(zo)) of sym-

metrically coupled products of the symplectic raising operafé? with itself to Ghw shell model
configurationsT ,a,). (As before, we will denote the orthonormal basis stateH Ry ol ,@,,),
without the letter®.) Using Equations(18) and (15) and the definition of the S@3) Racah
coefficientsU (see Appendix @ we can now express a symplectic basis st ,I",pI",@,,])
of excitationN,%w in terms of basis statesp[I',I',/p'T, a, 1) of excitation N, %@ with
N =Np—2:
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|q)[ra'rnprwaw]>: E U[(ZO)Fn’FwFa'vrnfprw’pL]
Tp'T Bay

X((200B;T | T e yX"0(T )AL D[T  Typ Ty, 1), (2D)

[This can be proved by decoupling the raising polynorﬁ?gal‘(A(zo)) from the lowest weight state
IT ,a,), inserting the definition QWI;”(A(ZO)) given in Equation(15), coupling the raising poly-

nomial;/?)l;')(A(zo)) to |, a,), and making use of the propert€22 of the SU3) Racah coeffi-

cientU.] An analogous expression can be obtained for the bra 8&t€ ,I",pI" ,«,]|.
The task at hand is to evaluate matrix elements of arbitrary one-body operators. Since any
one-body operator can be expanded in terms of the fermion unit oper@ag;/g)(l,z)

X0, 12} a5 DY employing the formalism of second quantization and3Wecoupling tech-
nigues, it suffices to evaluate the following matrix element:

<F02Fn2p2rw2aw2; SZEZHaIyXAén'}l(;gJFalrnlplrwlawl; S121>' (22)

Here we have introduced a simplified, but unambiguous, notation for the fermion creation and
annihilation _operatorwzno)(l,z)aa;, A0y (12— 8y and$;3; andS,%, denote the spin and
spin projection of the ket and bra states, respectively. We need only consider the case of
=7', since the matrix element c{fa;xa,?,}gg for n<#’ celn be obtained through complex
conjugation from the matrix element {)a;,xa”}gfz, wherel'=(uM) is the irrep conjugate to
I'=(\u) and a= «l(—m) for = «Im.

Using the 7Z-matrix and applying the step-down procedure outlined above to the ket state
|®[T ol ,e,]), the matrix element can be written as

<F02Fn2p2rw2aw2; 5222|{a1;]xan’}£§|F(rlrﬁlﬁlrwlawl; Sl2 1>

= 2 (7T Lo )Ir 5y

I‘nlpl

X(T g, T p2l 0, @0y S22 o{a] X, 18| BT T pal @, 1:S1 1)

= 2 (7T Lo )Ir 5y i

I‘nlpl

X 2 ULROTHE,, LT - pal yppr-1X ()

I, Thp;
) nlpl

X E ['%(Fallrwi)]rﬁii)i,rnipi G’wE’Bl <(20)Bl;rwiawi|rwlaw2>

’
Fnipl

X(T gL n,p2l 0, @0, i S22 ol{a] X2, FSARIT o Toipil @i $130) e (23)

Note that the symplectic raising and lowering operators do not act on the spin part of the wave
functions.

We now consider the term in parentheses and express the opmémanr}ggA%io) as
t T ATSA(20_ A0t T TS toZ TS A(20
{a)xa, b sAR = AR {al X, s +[{ah X, 1S AR (24)

Recalling that the fermion realization 8?9 is given by Equatior(12), we obtain
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tw=A I'S A (20) _ A(20) tw=a I's
{anxarj’}azA,(Bl)_Agl){anxan’}QE

1 1 ~ ~ (20
+ 1_K>Ey D+ 2)(r+3)(r+d){a)xa, s fal X3, 5]

(v—1,0 (100 (v0) -—

d(T') ) , (»-1,0 (100 (v»'0) -
EIZS, \/ vy’ (28 +1) r, 20 T, -
Iy _ . o
x[{alxa, 113 {{alxal }TeS' x (3, 1 x@, _}T+8} 295507, (25)

Therefore, the expression in the parentheses of Equé2i®nis comprised of three termg:--}

=C;+(1—-1/A)C,+ (1/4A)C3, whereA denotes the number of nucleons in the system. The first
of these is given by

Ci= > ((20B1:T e, [Tw @0,
awiﬂl

><<F02Fn2pzrw2aw2;8222|A(3210){a:r7><5.7]r}1;§|Fglrnipir (@, S 3). (26)

To evaluateC,, we insert a complete set of states:

1: z |Fa.rrrnrrp”rwna’wu ;S”E”)(Fo.rrl_‘nnp"rwualwn ;S”2”| y (27)
Fo_rrrnrrp//
rw//(lwr/S”E”

betweenA?? and{a]xa, };$ and make use of the following relation:

<F02Fn2p2rw2aw2;8222|A(B210)|FU”Fn”p"Fw"aw” ;S’,2/,>
= 5FU”F025Nn,,N2_253,,3252u22<f‘02f nszszawz; 8222|A,(8210)| FUZF ””P"I‘wuawu ,822 2> )

(28)

The delta functions in this expression reflect the fact that the symplectic genéfddonly
connects states within a symplectic irrep which have the same spin and diffeidoyn2heir
excitation. Note that these delta functions significantly restrict the sum over
Tl p'T e nS'2" of the complete set of states. Only states which are constructed from the

lowest weight irrepl” ,»=T',,, by applying a raising polynomlaV "(A9) which is character-
ized by T,=(nj,ny,n% with Np=nj+nj+nj=n{®+ n(2)+ n{’)—2 [where T,

=(n?,n® n®)] can yield nonvanishing contributions. Employing tlgeneralizeg Wigner—
Eckart theorem, and making use of the symmetry properties of tti@) 8oupling and recoupling
coefficients, we obtain the following expression foy:
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Cr=(—1) 0T, / dTs,)
! d(20)d(T)

X 2 AT N, T pol 0, Soll[AZ||T T g T S2)

Fnrrp"err

sz <F02Fn”p”rw” ;SZH|{ai;><’én’}rs|||F0'1Fnipjll.rwi;sl>p3
3

X2 @, [T Tl 10, [T T T
P4P5

X2 UIT 4, Tl 0, Ui (200 Tpspel(T s, i Ta| Ty, a0,),(S131S2(S,35),
Pe6

(29
where we have introduced the abbreviation1()'i=(—1)®"#) for T';=(\; ;).
The matrix element of the second term in Equati@b) takes the form

1
Co=2 \ (D +2)(r+3)(r+4) X ((2081:T a0l @0,)
v awiﬁl
X(T g, U p2l 1,0, S22l [ {8 X8, 1ol @l 2} A s 1T o T pil ) @i Si21),
(30)

and can be evaluated by using the commutator of EquaB@) (see Appendix B The delta
functions in EquatiorfB8) restrict the sum over to two terms only: one term with= 7 and one

with v= 7' —2. Again making use of the Wigner—Eckart theorem and the symmetry properties of
the coupling coefficients, we obtain

C:_(_l)F E( _|_1)( _|_2) M
2 N2 TR d(M)d(T,;)

X, (=1 Jd(T")U[(20)(70)T" (07" );(n+2,0T]

T

X ; <F02rn2p2rw2;82| | |{a;+2><57]’}rﬂs| ||F01Fn1pirwi;sl>p3
3

X2 UIT I 0, (01T ojpa-T - pal(To,auy Tall o),

X($121SE|$;% )

7,+77’7F\/1 P ’ ’ 4 \/Ta}l)
+(~1) 287 TV DD N Goear,

X 2, Vd(T")U[T (7'0)I"(0,7" = 2);(70)(20)]

rr

X2 (L, Lngpal’a, Soll{a) X3y - ST o, Togpil S0,
3

X3 UL 00T, (20T o5 T pal(T o, Tall a0, ($131S3],55). (D)
P4

Note that the sum oveF” is restricted by coupling requirementg{2,0)X(0%')—TI", (20)
XI'—=TI", andl“wi><l“”—>l“w2 in the first term and 0)x(0,' —2)—I"", I'x(20)—I"", and

Fwix 1“”—>I‘w2 in the second term.

The matrix element of the third term in Equati@@5) originates from the two-body center-
of-mass correction in the fermion realization A% [Equation(13)] and can be evaluated once
the commutator,
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T IS To ot TS « 15 - T'pS'1(20)s=0
[{ar;xan’}azﬂ {aVXaV'} & ><{allflxav’*l} b },Bltr=0 ' (32)

is worked out. Upon doing so and employing the Wigner—Eckart theorem, recoupling coefficients,
their symmetry and orthogonalization properties, it turns out twhile the commutator is non-
zero the contribution to the matrix element of Equati(®2) vanishes identicallyC;=0.

We can now combine Equatiorig3), (29), (31), apply the Wigner—Eckart theorem to the
matrix element under consideration, and utilize the orthonormality of the Clebsch—Gordan and
Wigner coupling coefficients to obtain the final expression, a recursion formula for triple-reduced

matrix elements of the one-body unit operataf xa,, } 13 :

. t = . .
<Fa2Fn2P2Fw2: S| |{a<770)<1/2) X a(on')(l/z)}rs| | |F01Fnlplrwl! 31>p

= 2 [Z Mo L) 5y i

I‘nlpl

X 2 ULROTHT, T - palyp X m(Ts)
Thpil

o'
1

X 2 [T L) e o Fyol

FniPi
dary,,)

— )+, * Ty, 1
x{( Y NV 6d()

X 2 VAT (T g, T pal i Sol ATy T ip Ty S5)

Fnﬂp”FwH

sz <F(J'2Fn”p”1_‘w";SZ|||{aI;XE77’}FS|||F01Fnipirwi;sl>p3
3
X > q>pgp4[rw,,f;rwi]cbws[rwifw,, ;'f]U[rwsz,,rwlrwi;(zoLjpsp]
Paps
L 1 " [(7+1)(g+2) [d(T,)
“\1ma) D 2d(T) d(T,,;)

X2, (—1)M"\d(T")U[(20)(70)T"(07");(n+2,0T]

I

X2 (L, Lol i Solll{a) . 2% @, ) " SIIT o, Farpil i S1), g
P3

XUT,,I"T,, (205T ps- T p]

1 o =D (p+1)(n +2) (AT,
17)“”"” F\/ 24d(70) Var,,)

X 2, Nd(T")U[T (7' 0)T"(0,7" = 2);(70)(20)]

FI/

+

X E <F0'2Fn2p2rw2;82|||{a17.]><57)’*2}rns ||F01Fnipirwi;sl>p3
P3
XU[szfwrwl(Zo);FwiPBFp]] ' (33)
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To evaluate this expression, a series of ingredients are necessary: First, numeric values for the
SU(3) Racah coefficients U[F1F2FF3;F12p12p12’3F23p23p1’23] and (Dpp/[l_'ll—‘z;l—‘:;]
=Z[T'1(00)'3I'5;T"1_pI's_p'] are required. These may be calculated with a computer code
published by Akiyama and Draay& Second, matrix elements of the symplectic raising operator
A9 and of the %-matrix, which effects the orthonormalization of the symplectic basis states, are
needed. Both types can be obtained from the matrix elementsZ&f), a generator of the
u(3)®Weyl algebra, as is outlined in Reference 7. Third, matrix elements of the form
(ngl“nup”l“wn :Szl|I{ai,xan’}rs|”Falrnipirwi;sﬁps between states of excitatiow,» and N“i

are requisite ingredients. Heh¢,» =N, —2 as a result of the delta functioﬁNn,,,an,z, intro-

duced through the symplectic generatdf® [see also Equatiof28)], and Nni:Nnn—(n— 7")

=Nj,—2. Furthermore, one needs values for the matrix elements of the open{atb@

X3, L5 and{al X3,/ _,}",5 between the original bra state of excitathip, and ket states with
Nni:an_(ﬂ_ 1;’+2)=N;11—2. Thus the desired matrix element is expressed in terms of
known quantities and unit matrix elements involving states of lower excitation. Hence, through
repeated application of this recursive process matrix elements of arbitrary one-body operators
between symplectic basis states may be related back to valence shell matrix elements, which in
turn can be evaluated by means of standard shell model techniques. A user-friendly computer
code, which calculates the latter, has been published by Bahri and Df3ayer.

The above formula has been derived for fermionic unit operators of the {fafma,,/ 2
with »= »’. The recursive process also covers the egse;’, since the following relation holds:

(T gL n,p2l 0, Soll{al X3, Y S|I[Ty T palu iS1),

(L Tu TS, [d(T,) [25,+1
d(r,,) V2S,+1

. t E AT .
X <Folrnlplrwllsl| | |{a,7' X aﬂ}FS' | |1—‘1721—‘r‘|2p21-‘a)2!SZ>:)c . (34)

A stringent test of Equatiori33) is given by the following: One can evaluate the matrix
element

(T g, ln,p2l Sl {2l X3, Y ST, T palw Sty (35

by stepping down on the bra-side, and proceeding analogously to the derivation given above. The
result is a recursion formula analogous to Equat{88). Alternatively, using relation(34) in
conjunction with Equatior(33) yields an expression for the matrix element of Equaf®®) which

exactly equals the formula that is obtained by stepping down on the ket-side. Another test was
carried out by encoding the recursion formula and using the one-body matrix elements so obtained
to calculate expectation values of the particle number oper:atand the symplectic raising and
lowering operator&\(?® andB(®?, as well as the expectation values@f? for the valence shell.

For A—, perfect agreement with the matrix elementsA®t® andB(®? as evaluated by means

of a code that is based on the vector coherent state method outlined in reference 7 was obtained,

as well as agreement with the matrix elementfNo&and C*Y), which can be evaluated analyti-
cally.

VI. CONCLUDING REMARKS

We have introduced a fermion realization of the SR(6algebra. Specifically, we expressed
the symplectic generators in terms of fermion creation and annihilation operators in a
Sp(6R) D U(3)D>SQ(3) basis. The new formalism was employed to derive a recursive process for
calculating matrix elements of arbitrary one-body operators. The resulting formula requires as
input SU3) coupling coefficients, matrix elements of symplectic generators, and valence shell
matrix elements of one-body unit operators. These ingredients may be calculated using published
computer codes; references for those were given. The new formalism allows for the evaluation of
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physical observables in the nuclear S)6model which until now were only available, if at all,
as an approximation to the exact result. First applications include symplectic calculations of
longitudinal and transverse nuclear form factbrashich can be compared to those extracted from
experiments.

One can also employ the recursion formula of Equa(8) to derive a recursion relation for
A9 for the special case of a large number of nucleons in the sysfemo{). Upon doing so,
and comparing the result to the formula that was derived by Rosensteel using a step-down pro-
cedure analogous to the one outlined ab@uee find that exact agreement requires the following
relations to hold:

(7+3)(7+4)U[(02)(7+2,0(22)(07);(70)(20)]

=(7=1)7U[(20)(7—2,0(22)(07);(%0)(02)], (36)
(7+3)(7+4)U[(02)(7+2,0(11)(07);(70)(20)]
— (7= 1) 7U[(20)(7—2,0(11)(07);(%0)(02)]= V105(7+3), 37

U[(02)(7+2,0(00)(07);(70)(20)]=U[(20)(7—2,0(00)(07);(70)(02)]=1. (38

While Equation(38) was known previously® the other two relations, Equati@B6) and Equation
(37), are new and may prove valuable for analytic work that involve$3gBacah coefficients.
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APPENDIX A: BOSON CREATION AND ANNIHILATION OPERATORS

Given positionx;(s) and momentunp;(s) coordinates of thes-th particle (i=1,2,3 ands
=1,...A), one-body operatorbiT(s) and b;(s), which create and annihilate, respectively, one
oscillator quantum in thé-th direction of thes-th particle, can be defined as follows:

1

b; (S)—‘/i(X.(s) ipi(s)),
(A1)

bi(S)E%(Xi(S)_Hpi(S))-

These operators are related to each other by Hermitian conjudr{®n= (b;r(s))T and satisfy the
standard boson commutation relations:

[bi(s),b]()]= 85i; , A2)
[b{(s),b](t)]=[bi(s),b;(1)]=0.

They may also be viewed as the components of3sireducible tensor operatoris (" andb{?"

iq
(g=0,%x1), transforming according to thexf¢)=(10) and §u)=(01) SU3) irreps, respec-
tively:
bTQO)EIi(thibT) bl10=p! (A3)
1,+1 3 1 2/ 1,0 )
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and
1
b =F—(b;xiby), b%'=bs, A4
1,+1 +‘/2( 1 2) 1,0 3 (A4)

where the subscript (4) denotes the angular momentum charadter1l; q=0,+1) of the
spherical components of the boson creation and annihilation operators. For the sake of simplicity
the angular momentum lablet 1 and the particle indeg will be suppressed from here on, except
where needed to avoid ambiguities. The operagfs” andb{™ satisfy the conjugation relation
b{P=(-1)%(b™ (%), and their commutator is given tBBgO”,b;ﬁlo)]:(—1)q5q(,q,). Matrix
elements of the boson creation and annihilation operators take a very simple form in the standard
SU(3) basis:

{(70)S]|[bTOs=0| | (A ) Sy =((N +1,u) S| [|bT1O5=0||| (- 1,00S") = \/;50\#)(77—1,0)533 ,
5 ~ - (A5)
() S||[BOVs=0Y||(50)S"y = ((7—1,00S/| DLVl |(A+1,1)S") = V1 + 28, 1) p-1.0Fss -

The b{*® andb{™ are scalars in spin space, as has been noted explicitly in Equaon[For
the definition of the triple-reduced matrix element and the relevant phase conventions refer to
Appendix C]

Since the creation and annihilation operatb{$'” andb{® are SU3) irreducible tensor
operators, two or more of them may be coupled to form new3pténsors. Matrix elements of
such tensor products can be evaluated with the help ¢83@duction rules as given in Appendix
C. A relevant example is the matrix element of the one-body operdtr1s=0

X p(0Ds=01(11S=0 " eyaluated between two single-particle states,

((40) 3 ||| {11050 (OV=0) 105-0] (1 0) 3
11
= Eg cI91][(10)(01);(11)]U[(1/’0)(01)(1/0)(10);(>\",LL")(11)]U(§OEO;S”O)
()\HMU)/

X((v0) 3 [[[BTHOSO |1 S N 1) S'[[[BVS=Y[[ (+70) 3)

= \/gv(v+3)5w,, (AB)

where U[---] and ®[---] are Racah recoupling coefficientsee Appendix € For the tensor
product of two raisinglowering operators, acting on a single-particle state, one may proceed
analogously to obtain

((v0) 3|[|{pTA0s=0x pT(10s=0 (20S=0|||(1,/ 0) F) = \u(v—1) 5, 42,
((v0)3]|[{bOVs=0xp(ONs=04(025=0| || 0) 1= (v +3)(v+4)35, ,+2.

Matrix elements of a S(B)-coupled tensor product of two boson operators, acting on a
two-particle state, can be evaluated using Millener's reductior’ figee also Appendix \CFor
the product of a creation and an annihilation operator, coupledl &9 € (11), this method yields

(A7)

({(110) X (720} (Apw); {3 X 3}SI[[{bT9°(2) xB®(2) 1|
X{(V0)X (O} )i (3x B
(=10 (10 (10) -
(v,+1,00 (01) (v,0) -
) ) 1) Ow - [

(A8)

= Vr1(v2+3) 6556,

V1
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whereas for two creation operators, coupled xa)=(20), we obtain
({(#10)X (v20)}(A ) {2 28| [{bTH7°(1) X bTEY0(2)} 20

X{(v10)X (v50)}(N' u")3{5 X 3}S")

(v1-1,0 (100 (»,0) -
(r2—1,0) (10 (v0) -
\'w) (20 (Ap) |7

=V V1V25SS 5111,1/17151/&,1/271 (Ag)

and for two annihilation operators we find

({(#20) X (v20)}(A )1 {3 3] |[{B V(1) XD PV 2)} 2O [[{ (70) X (50)}(\ " " ):{3X 3}S')
(v1+10 (01 (v,0) -
(v,+1,00 (01) (v,0) —
() (02 (p) — [

= \/(V1+3)(V2+3)5SS 6V]/.,V1+15Vé,v2+1

(A10)

whereb'(t) andb(t) (t=1,2 herg act only on that part of the wave function which refers to
particlet.
APPENDIX B: FERMION SECOND QUANTIZATION

A general one-body operator that acts symmetrically on a systefidéntical particles is
given by

T=> f(rs,00), (B1)

wherer and o represent the position and sgior spin—isospipcoordinates, respectively, of the
s-th particle. In a fermion second quantization formulation this one-body operator takes the form

7=2 (p'lt(r,0)|p)a a,, (B2)

’
p.p

wherep labels the available single-particle states anﬁdand a, are single-particle creation and
annihilation operators that satisfy the usual fermion anti-commutation relations:

Ty
{a, ,ap,}— By pt
_gat At B3)
{a,.a,}={a,,a,}=0.

For fermions in a harmonic oscillator potential, stands for a set of quantum numbess

=ylm3c or p=r7l %jmj, depending on whether the states are characterized by an LS- or

jj -coupling scheme, respectively. Hepgs the principal quantum numbémajor oscillator shell

of the single-particle levelt, 3, andj label the orbital, spin, and total angular momenta with

projectionsm, o, andm;, respectively(In a spin—isospin formalism, one has- plmso37 or

p=1l %jmj%f, respectively, where the additionaldenotes the isospin quantum number with

projectionr.) For the present purposes it is most convenient to use the LS-coupling scheme.
Since the single-particle harmonic oscillator wave functi¢w‘sr,n%o>=af7lm(l,2)o| _), where

| _) denotes the particle vacuum, transform irreducibly under a set of physically relevédt SU

and SU2) symmetry group operations, the fermion creation opera;qg(l,z)g is a double irre-

ducible tensor operator of rank fu)=(70) in SW3), which labels its orbital charactdwith
subgroup labels andm), and of ranks= % in SU(2) for the spin par{with subgroup labet) and
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should be written aa{no),m(l,z)g. Sincea,= (a;)’r is not a proper irreducible tensor operator with
respect to the above group transformations, it is advantageous to dag‘mlgm(l,z)g
=(—1)7*mr A2 g o —myw2) -« Which is a proper irreducible tensor operator of rank
(A ) =(07%) in SU(3) and ranks=% in (spin)SU(2).

It thus becomes possible to construct tensor products from the fermion creation and annihi-
lation operators, such as

{aﬁnlowa Xa(%yu/zﬁ?i’ﬁ% = 2 {(mO0)ay;(07y) el (M) kLM)

1 1 T =
X(301302S2)a(, 0)a,(120,8(0ny) ay(112)05 (B4)

which moves a particle from thg,-th major oscillator shell to they;-th shell. The possiblé\w)
values are given by the coupling rule{0) X (07,) = @L“L”é”l””)(nl—k, 7,—K) (see reference 38
and ¢; is an abbreviation for the set of possible subgroup labgisk;l;m;, wherex;=1 must
hold here. The total intrinsic spiB can take the values 0 or 1 with projecti@=0 or =0,

+ 1, respectively. The produ¢ty, o)1z} a(,.0) w2} AHS . ON the other hand, creates a pair of
fermions with one particle in the;-th shell and one in they,-th shell, and the pair is coupled to
(A ) e{(nlo)x(n20)}={@g‘;”(§"1"’2>(7;1+ 7—2kk)! and S=0 or 1. Similarly, the product
{20092 X Aoyt as annihilates a SUB)-coupled pair of fermions with one particle in the
n1-th shell, one in thep,-th shell, (\ w) € {(07;) X (072)} ={@ ™" (k, m+ 7,—2K)}, and S
=0 or 1. One can furthermore construct a (SUirreducible tensor which destroys a pair of
fermions in a particular S(3)-coupled configuration, and creates a new pair configuration:

T T \ S = = N (Au)S
{{a(nlo)(l/z)xa(n20)<1/2)}( 1) 1X{a(0vl)(1/2)xa(Ovz)(IIZ)}( 21252} PANAY

= > ((Nqpp) ags(Nopa) agl (M) @) ($121$,2,|S2)

A Ap2142
t t (\s1)Sty% ~ (\2i2)Sz
X{a(nlo)(lIZ)Xa(7720)(1/2)}a11211 1{a(0v1>(1/2)><a(0v2>(1/2)}a22222 ' (BS)

wherep denotes the multiplicity ofAw) in the coupling §11) X (A ou2) — (A ).
The Hermitian adjoint of the above products are given by

- L+M+3got 3 NS
(=172 mrbrMy {a(nzo)(l/z)xa(Onl)(1/2)}£<ﬁﬁf)MfE'

(B6)

~ MS
012 X a(Onl)(1/2)}£<lt— M-3 1

T = Au)SNT
({a<n10)<1/2)><a<07,2><1/2>}5¢’ﬁ/)|2) =
Au)SNT —nyi—no—L+M—-1 A
W)= (m )TN

T T
({205,012 X 8,012} ¢

and

T T N S 2 A N Aw) Syt
({H{aly,00w2 XAl p0 w2t M VSX {00, 172 X B(ony 112} 22 225

=(- 1)V1+Vz* 71— 7t (Nt + (Mot o)+ (N p) —L+M+X
X2 (= 1) @ [(Npp) (Napaa)i (M)
P

t T A ~ = AD)S(1p (uN)S
><{{a(u20)(1/2)><a(ulo)(l/z)}‘w2 2)SZ><{<5‘(07;2)(1/2)><""(0771)(1/2)}“” Ve BN, (B7)

where the phase matri® is a special case of the recoupling coefficiefit ® /[ (\qu1)

X(Nape2); (M) 1= ZL (N 1121) (00) A ) (N 222) s (N 1pe1) - p(A2e2) —p' ], @and can be evaluated with
available computer codésee also Appendix ICThe symbolp;,., denotes the maximum multi-

plicity in the coupling s\ ;) X (mah1)— (u\), andp’ takes on values 1,2, ,p; .-
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The following commutation relations, which are required for the derivation of the fermionic
expressions for the symplectic generators, can be derived by making use of the commutation rules
of the uncoupled componertsee EquatioriB3)] and SUY3) coupling and recoupling techniques.

For clarity we abbreviateX;«;) with the symboll';, (—1)'i=(—1)""#, andS=2S+1:
[{alxa, 53 131 ' {a)xa, }FZS2

1

- 1)"”% élé2<51215222|50>[ i

S

,g’) =
NI 2
-

x[—&n,y(—l)‘”l an OE{ a8, } e
X 2, (Tyay:T a5/ T @) U[T1(v0)T(0v');(70) - _T,_p]
P

d(T,) -
(—1)S1tST T Al's
I MR Ve DR W

XEp: (Tpap;Tyaq|Ta) U[T 5 nO)F(On’);(vO)Flp]J , (B8)
and

[{a ><a Y 151 {a Xa, }FZSZ

=(—1)7tr T2

T < 22 : 2 S
0);,: 3152<52225121|30'>[S S %}

[ ( 1)S+Sl Flz {a XaT FS
x; (T2az:T1a3|T @) ,U[T2( 7' 0)T(70);(v0) - _T'1_p]

+8,,(— 1)SE {alxal s E (Tpap;T1a|Ta) U[To(70)T(7'0);(v0) T4 plt,

(B9)
and

[{a,x3, } 131 ' {alx3, }Fzsz

N
N[

. Sy
=- 2 S1Sx(S121S,3,[s0)
So S SZ

Nl

d('y)

s (= 7' +9-T1+s ~ A
x‘é,, (—1) a0y & Br<arts

X 2 (T1a1;T2a,|T ) U[T 1(5'0)T(0v');(07) - _T,_p]
p
d(Ir'y) ~ ~
+8,,(—1)%175 /d(o;,) % {a, xa, L3

x 2, (Tyay;T a5/ T ey, UIT1(70)T(0v");(07')__T,_p]}, (B10)
p
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where d(I')=d(Au)=3(A+1)(u+1)(A\+u+2) is the dimension of the SB) irrep T
=(Au).

In order to derive the recursion relatigB83), it is furthermore necessary to evaluate the
commutator of the two-body operaton{{a’ranr WS {a xa ,}FZSZ}P3F3S3 with {a'
Xa, } FaSe Wherep3 denotes the multiplicity of"; in the couplingl’; XT'»,—1I"3. We obtain the
followmg expressmn.

[{{a}xa),}*%x{a,xa,} 2%}/ (a] X3, } /]

d(I'")d(I'3)
-2 X (~phlethet d((fd((ri)E [ ToT4i 10, [Tl ]

I'p psl'sag [N

X Z (Fzas ir4a4|rsa5>;U[F3F2F5FiF1P3P5F4PHZ’]
p

NI

s 85 54 S

o : 2| (S S Ss
X 2 (_1)Sl+S4_SS+5828384S<83238424|8525>[S ][ . ]

o d(I',) r
T +7-Tp+S, IS, I'sy p5l'555
x[a‘,,y( 1) 007 {{al ><a MiSix{a xa, ) }’;5 s
XU[T,(7'0)I'(0v");(07) - _T'4_p]

d(T'y)
d(or’

+5., {{a xa! %1% {3, xa, }FS}PSFSSSU[FZ(TO)F(ov');(oT')__n_p]}

o [d(Ty)
NP e E<1“4a4,Fgaalrsas>,,u[F4F1P5F2,rpp5r3p3p]

Ip psl'sag

I 3 Si(s s S
XS%EES(—]-)82S4+35+5515354S<54245323|5525>{S S %]{S; s, Sz]

><{ Sy (= 1) {{a] @]} "% {3, X2, } 22} S SUT (7' 0)T (50);(10) - Ty p]
+8,,(~D%{falxa) }ox(a,xa,} 2%} S S SUT 4(n0) T n'0>;<vo>,,rlfp]}.

(B11)

APPENDIX C: SU(3) COUPLING AND RECOUPLING RULES

The work presented here makes extensive use @2)Sahd SU3) coupling techniques and
the (generalizedd Wigner—Eckart theorem. The relevant definitions of theBWdoupling coeffi-
cients, along with their phase and normalization conventions, can be found in most textbooks on
guantum mechanics. Analytic expressions and numerical values for special cases of these coeffi-
cients, as well as useful relations between different coupling coefficients, are compiled in various
monographs on angular momentum theory, as for instance in reference 39. In contrast, analogous
results for the S(B) case required here are distributed over about a dozen different articles. For
the convenience of the reader and as a practical reference for future analytical and numeric work
in this field, we list the basic definitions and relations in this appendix. We also point the reader to
sources of additional information and to publicly available computer codes. Specifically, we con-
sider the coupling of two, three, and four irreducible(S\trepresentations and give the Wigner—
Eckart theorem for S(B). The results presented here are primarily taken from publications by

Downloaded 21 Jun 2006 to 130.39.180.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 39, No. 10, October 1998 J. Escher and J. P. Draayer 5141

Hechtet al,?83640-42Draayeret al,3***-*°0'Reilly,® Millener,*” and Vergadoé® Several new
relations are included as well. The phase conventions used here are those employed in reference
44.

1. SU(3) Wigner coefficients: Coupling of two SU  (3) irreps

If « represents a set of labels used to distinguish orthonormal basis states within a given
irreducible SU3) representatiol’ = (A i), the Wigner coefficientél"; o, ;F2a2|ra>p are defined
as the elements of a unitary transformation between coupled and uncoupled orthonormal irreps of
SU(3) in the a-schemée

Ta),= > (T1a1;Ta0|T @) |T1a1)|Tras), (Cy

a1a2

and the inverse transformation is given by

|r1011>|r2012>=§F: <F1a1?F2a2|Fa>p|Fa>p- (C2
pla

Here a=eAM, for the SU3)DSU(2)®U(1) (canonical group chain anda=«Im for the
SU(3)DSO(3) reduction. The subgroup chains impose certain restrictions on the above couplings,
for example,e=e;+ €, My=M, +M, , and A=A;+A,,...|A;— A, must hold for the
canonical group chain, and the usual angular momentum coupling tatég:t1,,....[I1—15,
andm=m, +m, apply for the chain containing S8). The conjugates of the relevant 8Ybasis
states are given

ITa)*=(-1)%|Ta), (C3

wherel = (1)) is the conjugate irrep t6= (A u), anda andy; depend on the selected subgroup
chain?’

_ 1 1
for a=eAM,, one hasa=(—€)A(—M,) and Xi=§()\i—Mi)—g€i—MAii

_ (CH
for a=«klm one hasa=«l(—m) and x;=(\;j— ;i) +1;—m;.

The outer multiplicity labelp=1,2,..,pmax iS used to distinguish multiple occurrences of a
givenI in the direct product’'{ XT',: p=1,2,..,pmax, Wherepmnadenotes the number of possible
couplingsI'; XT',, and the possibld’ irreps in the product can be obtained by coupling the
appropriate Young diagran{8.O’Reilly*® determines a closed formula for the decomposition of
the outer productg,q) X (r,s) of finite-dimensional irreps of S(3) for arbitrary positive integers
p, g, r, ands:

min(q‘r+5)min(s,p,r+s— k)  min(p—j+k,r)
(r,s)X(p,q)= & S @ (r+p—j—2i+tk,s+q+i—j—2k),
k=0 j=0 i=maxo,j-s+k)
(CH)

and furthermore derives necessary and sufficient conditions for(8) $itep (m,n) to appear as
summand in the product (s) X (p,q).
Draayer and Akiyanf# give a prescription for the unique determination, including the phases,
of all SU(3)DSU(2)®U(1) Wigner coefficients and derive their relevant conjugation and symme-
try properties. Since the §8)DSO(3) reduction is related to the $B)DSU(2)®@U(1) reduction
via the coefficients of the transformation between dhexIm and thea=eAM , schemeé**®it
suffices to determine the conjugation relationship and symmetry properties for the
SU3)DSU(2)®U(1) chain only. The corresponding $8)DSQ(3) results follow then from the
known relationships among the transformation brackets between the two schemes. These relations
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are given in reference 44 and a computer code which allows for a numerical determination of
SU(3)DSU(2)®U(1) and SUI3)DSQO(3) Wigner coefficients, as well as $8) Racah coefficients,
is published in reference 34. Analytic expressions for Wigner coefficients which are of particular
interest inp-shell andds-shell nuclear shell-model calculations are tabulated in reference 28 for
the canonical subgroup chain and in references 46, 41 for tt§8)S8Q(3) chain.

The most important of the symmetry relations of the(3WVigner coefficients is the one that
involves a X- 3 interchange of the quantum labels:

. dim(T'3) ~
(Tiaq;Ta,|T3ag),=(—1)¢"X2 dim(T,) (Taz;Ta,/Tay),, (Co)
where o= (N 1+ uq) +(No+po) — (N3t p3). The dirrlension of the S@) irrep I is given by
dim()=dim(\x)=2(A+1)(w+1)(A\+x+2), anda; andy; are as defined in EquatiqT4).
The 12 interchange is more complicated:

<F1a1;rza2|r3a3>pzz q)pp’[l—‘l!FZ;F3]<F2a2;Flal|r3a3>p’ ) (C7)
p

since it requires a phase matidx, which is a special case of the recoupling coefficiénthat
occurs in the coupling of three $8) irreps:

D@ [T1,T2:T3]=Z[T'1(00) 315311 pI'o—p']. (C8

If the SU(3) couplingl’; X I',— I3 is unique, that is, whep,,,,=1, the matrix reduces to a simple
phase factor:®[I';,I'5;T3]=(—1)¢=(—1)"1*""2"Ts where 21)li=(—1)\"# for T
=(Nipmi)- _

Another set of useful relations involves the conjugate iffep(u\) of I'=(\w); for the
canonical group chaiff:

<Fla1;F2a2|F3a3>p= ( - 1)‘P+pmax*p<rla1;F2a2|r3;3>p (Cg)
(Flal;F2a2|F3a3>p=(— 1)<P+Pmax_0+|1+|2_|3<f‘1;1;’f‘2;2|’1:3;3>p . (C].O)

With the phase and normalization conventions of reference 44, one obtains the following
orthonormality relations for the Wigner $8) coupling coefficients:

> (T1a1;Ta0|T @) (Traq;T a0/ @) = 6p 16,1, (C11
ajap

and
;‘Ja (Fiag;Toan|la) (Trar:Toas| T a),= 6,4, a1 Sayal (C12

It is possible to factor out the dependence of the above(3ELE0O3) and
SU)DSU(2)®U(1) Wigner coupling coefficients on thd or M 4, subgroup labels, respectively,
by defining so-called double-barred or “reduced” &Jcoupling coefficients:

<r1Klllm1 ;szzlzmzlfklm)p=(lelll ;F2K212||Fkl)p(llml ,lzm2l1m> » (013)

reduced Wigner coefficient geometric part

for a=«Im, and
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(T1e,A My ;Tr6,AM s [T eAM ), =(T 1€1A ;T 262A0|T3€A) (A My L AMy [AM ),

reduced Wigner coefficient geometric part

(C19

for a=€eAM, . The “geometric” part(--|-) is simply a SW2) Clebsch—Gordan coefficient. From

the unitarity of the full SW3) Wigner and the ordinary S@) Clebsch—Gordan coefficients it
follows that the double-bar coefficients are also unitary. With the phase convention introduced by
Draayer and Akiyant4 they become real, and therefore orthogonal.

2. SU(3) Racah coefficients: Coupling of three SU  (3) irreps

Coupling of three S(B) irrepsI'y, I',, andI'; to a given resulting S(3) irrep I' can be
accomplished in three different ways, depending on the order of the coufilifd’,®I',}®I';
=T, or(ii) [1®{I',®I'3}—T, or (i) {I'y,@';}',—T'. The transformation from one coupling
order to another requires the introduction of a so-calledg3%Bacah or 62\ ) coefficient. More
specifically, recoupling from schent® to (ii) involves a unitary transformation with coefficients
U[T1ToIT 35T 19p10010 A 2302301 23] (see reference 28

[{{T X T }P1e 12 T g} 12y

= 2 UITAToI T T 1piop1od a0 ol (T {Tox Tapad w0,
To3p1,29023

(C19

and the inverse transformation is given*by

|{F1>< {T', X F3}P23F23}21,23T>

= 2 U[F1F2FF3§r12P12P12,3F23P2301,23]|{{F1><Fz}plzrlzxrs}ilz'§>-
T12p12012,3

(C16

The notation is a straightforward generalization of that introduced by Rafmtthe 6 symbols
of SU(2). Whenever a coupling is multiplicity-free, the associageldbel may be omitted, pro-
vided the notation remains unambiguous.

Similarly, the transformation from schenfig to schemdiii) requires a transformation coef-
ficient Z[ ', I'T' 3,1 10010012 A 13013013 2] Which is defined throughf

[{{T X T ppprd 12 g} Pa2dy

= > Z[rzrlrra?F12912P12,3r13P13013,ﬂ|{{F1XF3}pl3F13><r2}213’2r>-
I130130132

(C17

The U- and Z-functions depend only on the $8) representations involved in the coupling and
not on the specific subgroup chain chosen to specify the states. Most of {3 1®doupling
coefficients needed fats-shell nuclear shell model calculations have been tabulated by Hfecht,
and a computer code that evaluates(§URacah coefficients for arbitrary couplings and multi-
plicity was developed by Akiyama and Draay&rSpecial cases and symmetry properties of the
SU(3) coefficients can be found in reference 36. Most notably, ondJfas]=1 whenevet; or

I', or '3 or I'=(00), and

~ d(I’
U[T,T o0 05T 15pp ' (00) - _]=(—1) 1+ 12 Taag, % (C18
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Under conjugation the S(3) Racah coefficients exhibit the following symmetry:

ULT I 55T 10012012, 3 2302301 23l
=(- 1)plm;&"12+P1m2é§*”12.3+ﬂr2n3ax* P23t Py 35 P129 [T 0ol TgiT 12100108 2302301 23

(C19
Z[T T3 19p12p12,d 13013013,2]

=(—-1 PTzaX_P12+PT2a§_P12 3+PT3ax—913+Pr1n3a§—P13 7 f‘ f‘ f‘f‘ f‘ T
=( ) ' ' ' Z[T,I T g; 12P12912,3F13013pl3,ﬂ-

A straightforward generalization of the relations between2$Winitary recoupling coeffi-
cients and S(2) Wigner coefficients leads to the corresponding relationships betwe¢8) SU
unitary (Racah recoupling and S{B) Wigner coefficients.

U[TI,IT 5 ;F12P12P12,3r23P23P1,23]

= > <Flal;F2a2|F12a12>p12<F12a12;F3a3|Fa>p12’3

@ apa3a2003
X(Taaz:U3as| T oaazg),, (T1an Tosadla),, (C20
for ai==6ﬂ\ih4i or ai==Kﬂin}.
The Z- and U-coefficients are related to each other as follows:
Z[T I T 5,1 10010012 3 13013013 2
= > U[FlrzrrsiF12P12P12,3F23P23P1,23]2 (I)ngpés[rzir?:;rz:i]
Toap2301,23 Py
XU[T4I'3I'T 5T 13013013 A 2302301 23l (C21

with the geometrical phas@ ,,, as defined in EquatiofC8). Further useful relations for thig-
andZ-recoupling coefficients are given in reference 28, for thé33DSU(2)®U(1) chain, and in
references 46, 37, for the $8)DSO(3) chain. The following one, which holds for both cases, is
especially important:

> <F1a1iF236323|F04>p1,23U[F1F2FF3;F12P12P12,3r23P23P1,23]

P1,23

= 2 (T, §F3a3|F23a23>p23(F101 ;F2a2|F12a12>p12<F12a12;F3a3|ra>p12'3'

aa3a;12

(C22)

A similar relation is given by Millener for th&-coefficient’’

3. SU(3) 9-(A\pw) coefficients: Coupling of four SU  (3) irreps

If the coupling of four SW3) irrepsT’y, I',, I'3 andI', is required, the resulting irrep may
be constructed in three different way8) {I'1®I',}@{l'3@T'y}—I", or (i) {I'1@'3}e{T,
QI'y}—T, or (i) {I'1@'}{,®I's}—TI". In analogy to the S(2) Jahn—Hope symbol it is
possible to define a unitary $8) or 9{Au) symbol, which effects the transformation from one
coupling order to another. In particular, for the transition from schéint® (ii) one define¥
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r, T, NP} P12
s Ty T3 pa

[y X TP 125 [T X T\ paal 3 P12.3d 'y —
H{ ' 2 s + }a > P13l 13024 24P 13,24 I3 T r P13,.24

P13 P24 P12;34
X[{{'1 X T g}P1a 13 {T', F4}924F24}213,2I>.
(C23

Similarly, one obtains for the transformation from schefmeo (iii ),
[{{T' 1 X T p}P1a 12 {T 5% I‘4}P34F34}212,3I>

r, r, 'y P12

P14l 14p23 ' 23014,23 Py Tos r P14,.23

P14 P23 P1234

X2 @, (T3, T 4T s [{{T X T P 1ax {T, X T g}radzg 1428y - (C24)

P34

The unitary 9\u) symbols can be expressed as a sum ove3sWigner coupling coeffi-
cients:

s Ty T3 pa
Fig Ty T P13,24
P13 P2a P12,34
=2 <Flal;F2a2|F12a12>p12<F3a3;F4a4|F34a34>p34<F13a13;F24a24|ra>pl324
@i ik !
X<Flal;r3a3|F13a13>p13<F2a2;F4a4|r24a24>p24<F12a12;F34a34|ra>p12'34’

(C29
or in terms of the Raca andU coefficients defined abové,

r, T, P} P12

I3 Tos r P13,24
P13 P24 P1234

= 2 UL 130T 43T 0p13 2004l 24024013 24 Z[ T 21 1T gl 35T 19012012 A 13013013 2

Lop13poar12,3

XU 5T, ?F0P12,3P04F34P34P12,34]- (C26)

Various symmetry relations and special cases of tkie-coefficients can be found in references
40, 36, and a computer code which provides numerical values for these recoupling coefficients is

publicly available®*
4. Matrix elements and the Wigner—Eckart theorem for SU  (3)

The Wigner—Eckart theorem for the group @Vyields SU2)-reduced(double-bay matrix
elements of an S@) irreducible tensor operator. Analogously, the generalized Wigner—Eckart
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theorem allows one to express matrix elements of33ureducible tensor operators as a sum over
p of the product of go-dependent generalized reduced matrix element multiplied by the corre-
sponding Wigner coefficierit

(Taas|T292|T gy = D) (Tyay ;T oao|Tgarg) (Tl TT2)|[Ty), (C27
p

Note that the triple-bar matrix element is independent of the chosen subgroup chain.
In analogy to the well-known reduction rules for &Y°° one can derive expressions for the
triple-bar matrix elements of a §8)-coupled tensor product acting on a one-component system:

(PI{T i3, = 2 (T[T, (P lIT),

p1pol”

X Z @i [T112: T3 ]ULT 'ToI'T 1T pap1l3pap]. (C28)

P3

Often one has to consider a quantum-mechanical system which consists of two subsystems, 1 and
2 (for example, protons and neutrgnReduced matrix elements for the irreducible tensor product

of two operatorsR!r(1) and S's(2), which depend only on variables of the first and second
subsystem, respectively, may be evaluated with the help of the following expression:

({T1xTapl [[{RT (1) x S'(2)} | [{T X T3}p T );

Fi Iy T'y pg

I; I's Ty po
=>4 ~ t(TallIR" (DT, (Tol||S(2)[]|T'5),,.  (C29
ez |7 Ty T p ! 2

!
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