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A fermion realization of the nuclear Sp(6,R) model, which complements the tra-
ditional bosonic representation, is developed. A recursive process is presented in
which symplectic matrix elements of arbitrary one-body fermion operators between
states of excitationN\v andN8\v in the same or in different symplectic bands
are related back to valence shell matrix elements, which can be evaluated by stan-
dard shell model techniques. Matrix elements so determined may be used to calcu-
late observables such as electron scattering form factors which carry detailed struc-
tural information on nuclear wave functions. ©1998 American Institute of
Physics.@S0022-2488~98!02110-0#

I. INTRODUCTION

Extensive effort has been devoted to developing the relevant mathematical and comput
tools for a fully microscopic treatment of collective nuclear phenomena. In particular, ever
the noncompact symplectic group in three dimensions, Sp(6,R), was recognized as the appropria
dynamical group for a many-body theory of nuclear collective motion,1–3 it has received carefu
and detailed attention. This group is of special interest because it is also the dynamical gr
the three-dimensional harmonic oscillator and thus it establishes an important link betwe
nuclear shell model and the collective model. Generalized vector coherent state theory and
realizations of the symplectic algebra have been employed to construct the discrete in
dimensional unitary irreducible representations of Sp(6,R).4–13 Methods have been introduced fo
calculating the necessary orthonormalization factors for symplectic basis states and the re
matrix elements of the symplectic generators.7,14–16In addition, a procedure has been develop
for evaluating matrix elements of general two-body interactions of the type used in sta
microscopic treatments of nuclear many-body systems.17–19

Despite practical limitations due to the large sizes of the Hilbert spaces involved, va
applications have proven the symplectic approach to be successful in reproducing col
nuclear properties, such as excitation energies, quadrupole moments, and electromagneti
tion probabilities.20–24 Unfortunately, until now it has not been possible to evaluate matrix
ments of arbitrary one-body operators between symplectic basis states. These matrix elem
of particular interest since they are required for the calculation of observables, such as n
form factors, which carry very detailed structural information on nuclear wave functions. It is
purpose in this article to provide a new, fermionic, realization of the sp(6,R) algebra, which
complements the traditional bosonic representation and leads to a method for determining
elements of a general one-body operator in a Sp(6,R).U(3) basis. Specifically, a recursiv
process is presented in which symplectic matrix elements of arbitrary one-body fermion ope
between states of excitationN\v and N8\v in the same or in different symplectic bands a
related back to valence shell matrix elements, which can be evaluated by standard shell
techniques. The fermionic realization of the symplectic algebra is particularly well suited fo
approach, since the requisite valence shell matrix elements are readily available.25

The article is organized as follows: To establish the notation, in Sec. II we give a
summary of the generators of the symplectic algebra, their bosonic representation, comm
relations, and matrix elements. In Sec. III the symplectic generators are recast in terms of
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onic creation and annihilation operators. The symplectic model space is reviewed in Sec.
Sec. V we present the derivation of the matrix element formula for a general one-body op
acting in the symplectic space. Concluding remarks are given in Sec. VI. The derivations in
III and V make use of both oscillator boson operators and fermion creation and annihi
operators. Phase conventions, conjugation properties, commutation relations, and matrix e
of the former are given in Appendix A, and conjugation properties and commutation relatio
various SU~3!-coupled products of the latter are derived in Appendix B. In addition, Append
provides a compilation of various important SU~3! recoupling rules.

II. GENERATORS OF THE SYMPLECTIC ALGEBRA

The generators of the symplectic algebrasp(6,R) can be realized in terms of bilinear produc
of harmonic oscillator bosons in a Cartesian scheme:26

Ci j 5(
s

S bi
†~s!bj~s!1

1

2
d i j D2

1

A (
s

bi
†~s!(

t
bj~ t !2

1

2
d i j ,

Bi j
† 5

1

2 (
s

bi
†~s!bj

†~s!2
1

2A (
s

bi
†~s!(

t
bj

†~ t !, ~1!

Bi j 5
1

2 (
s

bi~s!bj~s!2
1

2A (
s

bi~s!(
t

bj~ t !,

where the sums run over allA particles in the system and the two-body 1/A terms effect the
removal of spurious center-of-mass excitations from theA-particle system.~Refer to Appendix A
for details on the boson creation and annihilation operators.! The commutation relations for th
symplectic algebra in this basis are easily inferred from the commutation relations of its bu
blocks and are listed by Hecht.13

Making use of the spherical componentsb1q
†(10)(s) and b̃1q

(01)(s) of the boson creation and
annihilation operators, the symplectic generators can be written as SU~3! irreducible tensor op-
erators:
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(
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$b̃~s!3b̃~ t !% lm
~02! ,

transforming according to the SU~3! irreps (lm)5(11), ~20!, and~02!, respectively. The overal
normalization factor is chosen in agreement with the convention used by Rosensteel.27 The sym-
plectic 2\v raising and lowering operators,Alm

(20) andBlm
(02) , respectively, are related to each oth

via Hermitian conjugation:Blm
(02)5(21)l 2m(Al 2m

(20) )†. Both Alm
(20) andBlm

(02) havel 50 and 2 com-
ponents, whereasClm

(11) hasl 51 and 2 components. The relevant commutation relations betw
the spherical components of the symplectic raising and lowering operators are give
Rosensteel:27
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Here ^2;2u2& denotes a Wigner SU~3! coupling coefficient~see Appendix C! andH05N̂b1 3
2,

whereN̂b5( i 51
3 Cii counts the number of harmonic oscillator bosons in the system.

The eight operatorsClm
(11) generate thesu(3) subalgebra ofsp(3,R) and are related to the

angular momentum operatorLq and the Elliott ~algebraic! quadrupole operatorQ2m
a

5A4p/5(s(r s
2Y2m( r̂ s)1ps

2Y2m( p̂s)), here given in units of\5v5m51, as follows:

C1q
~11!5Lq , q50,61

~4!

C2m
~11!5

1

)
Q2m

a , m50,61,62.

We can also express the collective quadrupole operatorQ2m
c 5A16p/5(sr s

2Y2m( r̂ s) as a linear
combination of SU~3! irreducible tensor operators:

Q2m
c 5Q2m

a 1)~A2m
~20!1B2m

~02!!. ~5!

Matrix elements forC(11) in the standard SU~3! basis are given by28,29

^~l8m8!uuuC~11!uuu~lm!&5~21!fA2C2~lm!d~l8m8!~lm! ,

f5H 1, for mÞ0

0, for m50,
~6!

C2~lm!5
2

3
~l21lm1m213l13m!.

The reduced matrix element^(l8m8)uuuC(11)uuu(lm)& is related to the full SU~3! matrix element
via the Wigner–Eckart theorem for SU~3! ~see Appendix C!. The symbolC2(lm) denotes the
second-order Casimir invariant of SU~3!, and the choice of the phase is consistent with tha
reference 29.

Several strategies for calculating matrix elements of the symplectic generatorsA(20) andB(02)

have been explored. A direct way is to use the Sp(6,R) commutation relations to derive recursio
formulas, as shown by Rosensteel.27 Another approach is to start from approximate matrix e
ments and proceed by successive approximations, adjusting the matrix elements until the c
tation relations are precisely satisfied.3 Deenen and Quesne16 have employed a boson mapping
obtain the generator matrix elements, and Castan˜os et al.15 have derived simple analytical func
tions for some special irreps. The most elegant method, outlined by Rowe in reference 7, in
vector-valued coherent state representation theory and evaluates matrix elements of the sym
raising and lowering operators by relating them to the matrix elements of a much simpleu~3!
^Weylalgebra.
1 Jun 2006 to 130.39.180.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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III. FERMION REALIZATION OF THE SYMPLECTIC GENERATORS

In a fermion second quantization formulation, the one-body part ofC(11) takes the form

~7!

wherear
† andar are fermion creation and annihilation operators~see Appendix B!. Note thatb†,

b̃, and CLM
(11) do not act on the spin part of the wave functions; thus one needs to treat

operators ass5s50 objects, as has been explicitly expressed in the above equation.
Utilizing the symmetry properties of the Clebsch–Gordan and SU~3! Wigner coefficients and

the definition of the proper SU~3! irreducible tensor operatorã(0n8) l 8(2m8)(1/2)(2s8)

[(21)n81 l 82m811/22s8a(n80)l 8m8(1/2)s8 , we obtain

F ~CLMs50
~11!s50!5S 12

1

AD&(
nn8

K ~n0!
1

2UUU$b†3b̃%~11!s50UUU~n80!
1

2LAd~n0!
1

2

3$a~n0!~1/2!
† 3ã~0n8!~1/2!%LMs50

~11!s50

5S 12
1

AD(
n
A1

6
n~n11!~n12!~n13!

3$a~n0!~1/2!
† 3ã~0n!~1/2!%LMs50

~11!s50 , ~8!

whered(lm)5 1
2(l11)(m11)(l1m12) denotes the dimension of the su~3! irrep ~lm! and use

has been made of Eq.~A6!, which expresses the triple-reduced matrix element in terms ofn and
n8 only ~see Appendix A!. Analogously one derives the fermion realization for the one-body
of the symplectic raising and lowering operators.

The two-body parts of the symplectic generators can be obtained in the same man
general symmetric two-body operator forA identical particles,G 5(s,t51

A g(xs ,ss ,xt ,st), where
s and t refer to thes-th and t-th particles, respectively, takes the following form in a fermi
second quantized formulation:

G 5
1

4 (
r1 ,r18

r2 ,r28

^r1r2ug~x1 ,s1 ,x2 ,s2!ur18r28&ar1

† ar2

† ar
28
ar

18
. ~9!

Hereur1r2& denotes the direct product of the single-particle wave functionsur1& andur2&. For the
cases that are of interest here, the functiong(x1 ,s1 ,x2 ,s2) can be written as a produc
g(1)g(2)[g(x1 ,s1)g(x2 ,s2), where g(t), with t51 or 2, acts solely on the single-partic
wave function with subscriptt. Thus the two-body part of the symplectic generatorC(11) is written
as
1 Jun 2006 to 130.39.180.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~10!

and analogously forG (ALMs50
(20)s50) and G (BLMs50

(02)s50). Here use has been made of the symme
properties of the Clebsch–Gordan and Wigner coefficients and of the Wigner–Eckart theor
both SU~2! and SU~3!. Upon evaluation of the triple-reduced matrix elements of$b†(1)
3b̃(2)%(11), $b†(1)3b†(2)% (20), and$b̃(1)3b̃(2)% (02) ~see Appendix A!, we find the following
fermionic expressions for the symplectic generatorsC(11), A(20), andB(02), respectively:
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and
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† 3ã~0,n12!~1/2!%LMs50
~02!s50

2
1

4A (
nn8S

~lm!~l8m8!

A 1

12
d~lm!~n13!~n813!~2S11!5

~n11,0! ~01! ~n0! 2

~n811,0! ~01! ~n80! 2

~l8m8! ~02! ~lm! 2

2 2 2
6

3$$a~n0!~1/2!
† 3a

~n80!~1/2!

†
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Making use of the properties of the coupling coefficients and of the Hermitian conjug
properties of the generators, one can verify thatBLM

(02)5(21)L2M(AL2M
(20) )† holds, as expected

This relation serves as a stringent test for the fermionic expressions ofA(20) andB(02).

IV. SYMPLECTIC MODEL SPACE

A basis for the Hilbert space is generated by applying symmetrically coupled products
2\v raising operatorA(20) with itself to the usual 0\v shell-model states. The 0\v starting
configurations are labeled by the Elliott SU~3! quantum numbers (lsms)30,31 and by Ns , the
eigenvalue of the oscillator boson number operator which takes the minimum value con
with the Pauli Exclusion Principle. The product ofNn/2 raising tensorsA(20), each of which
promotes a particle from a given shell into a higher-lying shell 2\v above, generatesNn\v
excitations for each starting irrepNs(lsms). Each such product operatorP an

Nn(lnmn) , labeled

according to its SU~3! content, (lnmn), is then coupled withuNs(lsms)& to good SU~3! sym-
metry r(lvmv), with r denoting the multiplicity of the coupling (lnmn)3(lsms).

It will be convenient to use the general shorthand notation,G, for a U~3! or SU~3! represen-
tation label, anda for an appropriate set of U~3! subgroup labels. We thus introduce, following th
notation of Hecht,32

Gs[@s1s2s3#[Ns~lsms!5Ns~s12s2 ,s22s3!,

Gn[@n1n2n3#[Nn~lnmn!5Nn~n12n2 ,n22n3!, ~14!

Gv[@v1v2v3#[Nv~lvmv!5Nv~v12v2 ,v22v3!,

where ~lm! are SU~3! labels and theNs5s11s21s3 , Nn5n11n21n3 , and Nv5v11v2

1v3 give the number of squares in the U~3! Young tableaux. With this convention, the produ
operators, which are defined recursively, can be written as

P an

Gn~A~20!!5 (
Gn8ban8

^~20!b;Gn8an8uGnan&X
Gn~Gn8!Ab

~20!
P an8

Gn8~A~20!!, ~15!

with A(20) adding a 2\v excitation to theNn8 excitation (Nn85n181n281n38) that is created by the
action of the operatorP an8

Gn8(A(20)); and the factor

XGn~Gn8!5
1

n11n21n3
~n1n2n3uuuA ~20!uuun18n28n38! ~16!

is required to properly normalize the raising polynomials~for details see reference 32!. Theni in
the above equation denote the number of oscillator bosons in thei -th direction, and we haveNn

5Nn812. The operatorA (20) is a generator of theu(3)^ Weyl algebra; the evaluation of its
matrix elements and its relation to the symplectic generatorA(20) are discussed in references 33,

We thus obtain a basis of Sp(3,R) states that are reduced according to the subgroup cha

Sp~3,R! . U~3! . SO~3! . SO~2!

Gs Gnr Gv k L M .
~17!
1 Jun 2006 to 130.39.180.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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For each 0\v SU~3! starting irrepGs5Ns(lsms) a basis for a symplectic representation is giv
by states of the form

uF@GsGnrGvav#&[ (
anas

^Gnan ;GsasuGvav&rP an

Gn~A~20!!uGsas&, ~18!

where Nn/250,1,2,..., counts the number of boson excitations,Nv5Ns1Nn , (lnmn) ranges
over the setV5$(n12n2 ,n22n3)un1>n2>n3>0;Nn5n11n21n3 ;n1 ,n2 ,n3 even integers%,
rGv includes all SU~3! irreps resulting from the couplingGn3Gs , andav5kLM denotes quan-
tum numbers associated with the group chain SU~3!.SO~3!.SO~2!. Alternatively, one can also
choose subgroup labels av5«LML , which are associated with the cha
SU~3!.SU~2!3U~1!.SO~2!. The states of the Sp(3,R).SU(3) basis are thus labeled by thre
types of U~3! quantum numbers:Gs5Ns(lsms), the symplectic bandhead or Sp(3,R) lowest
weight U~3! symmetry, which specifies the Sp(3,R) irreducible representation;Gn5Nn(lnmn),
the U~3! symmetry of the raising polynomial; andGv5Nv(lvmv), the U~3! symmetry of the final
state. Any given symplectic representation spaceNs(lsms) is infinite dimensional, sinceNn/2,
the number of boson excitations, can take any positive integer value. In practical application
must therefore either truncate the symplectic Hilbert space, or restrict oneself to interactio
observables for which the matrix elements depend solely on the symplectic irrep and c
calculated analytically.

The states of Equation~18! are eigenstates of the harmonic oscillator Hamiltonian,H0uF&
5E0uF&, with eigenvaluesE05(Nv1 3

2)\v. Two such states with different U~3! contentGv

5Nv(lvmv) are orthogonal, whereas two states with identical U~3! symmetryGv , but different
rGn5rNn(lnmn) quantum numbers, are generally not orthogonal. The statesuF(GsGnrGvav)&
of Equation ~18! can be related to the orthonormal basis statesuGsGnrGvav& of the unitary
irreducible representation of Sp(3,R), by

uF@GsGni
r iGvav#&5(

j
@K ~Gs ,Gv!#Gni

r i ,Gnj
r j

uGsGnj
r jGvav&. ~19!

HereuGsGnrGvav&, without the letterF stands for the orthonormal basis states, and the sym
@K (Gs ,Gv)#nir i ,njr j

denotes the matrix elements ofK , the positive Hermitian square root of th

overlap matrixK 2, which has matrix elements

@K 2~Gs ,Gv!#Gn8r8,Gnr[^F@GsGn8r8Gvav#uF@GsGnrGvav#&. ~20!

The matrixK 2 is diagonal inGs andGv and independent of U~3! subgroup labelsav , and its
rows and columns are labeled byGn and r. Due to the smallness of the off-diagonal matr
elements ofK 2 the orthonormal basis states in Equation~19! can also be tagged by those labe
Gni

r i which correspond to the dominant values ofGnr in these states. The method for calculati
the matrix elements ofK 2, and therefore ofK , is given in reference 7. An approximatio
formula for the matrix elements ofK has been worked out by Hecht.32

V. MATRIX ELEMENTS OF ARBITRARY ONE-BODY OPERATORS

In this section we derive a recursion formula in which symplectic matrix elements of arbi
one-body operators between states of excitationNn1

\v and Nn2
\v in the same or in different

symplectic bands are related back to valence shell matrix elements, which can be evalua
standard shell model techniques. The derivation of the desired recursion formula makes us
fact that the symplectic basis states are constructed by applying polynomialsP an

Gn(A(20)) of sym-

metrically coupled products of the symplectic raising operatorA(20) with itself to 0\v shell model
configurationsuGsas&. ~As before, we will denote the orthonormal basis states byuGsGnrGvav&,
without the letterF.! Using Equations~18! and ~15! and the definition of the SU~3! Racah
coefficientsU ~see Appendix C!, we can now express a symplectic basis stateuF@GsGnrGvav#&
of excitation Nn\v in terms of basis statesuF@GsGn8r8Gv8av8#& of excitation Nn8\v with
Nn85Nn22:
1 Jun 2006 to 130.39.180.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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uF@GsGnrGvav#&5 (
Gn8r8Gv8bav8

U@~20!Gn8GvGs ;Gn2rGv8r28 #

3^~20!b;Gv8av8uGvav&XGn~Gn8!Ab
~20!uF@GsGn8r8Gv8av8#&. ~21!

@This can be proved by decoupling the raising polynomialP an

Gn(A(20)) from the lowest weight state

uGsas&, inserting the definition ofP an

Gn(A(20)) given in Equation~15!, coupling the raising poly-

nomial P
a

n8

Gn8(A(20)) to uGsas&, and making use of the property~C22! of the SU~3! Racah coeffi-

cient U.# An analogous expression can be obtained for the bra state^F@GsGnrGvav#u.
The task at hand is to evaluate matrix elements of arbitrary one-body operators. Sinc

one-body operator can be expanded in terms of the fermion unit operators$a(h0)(1/2)
†

3ã(0h8)(1/2)%aS
GS by employing the formalism of second quantization and SU~3! recoupling tech-

niques, it suffices to evaluate the following matrix element:

^Gs2
Gn2

r2Gv2
av2

;S2S2u$ah
†3ãh8%aS

GSuGs1
Gn1

r1Gv1
av1

;S1S1&. ~22!

Here we have introduced a simplified, but unambiguous, notation for the fermion creatio
annihilation operators:a(h0)(1/2)

† →ah
† , ã(0h)(1/2)→ãh , and S1S1 and S2S2 denote the spin and

spin projection of the ket and bra states, respectively. We need only consider the caseh
>h8, since the matrix element of$ah

†3ãh8%aS
GS for h,h8 can be obtained through comple

conjugation from the matrix element of$ah8
†

3ãh%ā2S
G̃S , whereG̃5~ml! is the irrep conjugate to

G5(lm) and ā5k l (2m) for a5k lm.
Using theK -matrix and applying the step-down procedure outlined above to the ket

uF@GsGnrGvav#&, the matrix element can be written as

^Gs2
Gn2

r2Gv2
av2

;S2S2u$ah
†3ãh8%aS

GSuGs1
G n̂1

r̂1Gv1
av1

;S1S1&

5 (
Gn1

r1

@K 21~Gs1
,Gv1

!#G n̂1
r̂1 ,Gn1

r1

3^Gs2
Gn2

r2Gv2
av2

;S2S2u$ah
†3ãh8%aS

GSuF@Gs1
Gn1

r1Gv1
av1

#;S1S1&

5 (
Gn1

r1

@K 21~Gs1
,Gv1

!#G n̂1
r̂1 ,Gn1

r1

3 (
Gv18

G n̂18
r̂18

U@~20!G n̂
18
Gv1

Gs1
;Gn12r1Gv

18
r̂128 #XGn1~G n̂

18
!

3 (
Gn18

r18
@K ~Gs1

,Gv
18
!#G n̂18

r̂
18 ,Gn18

r
18H (

av18
b1

^~20!b1 ;Gv
18
av

18
uGv1

av2
&

3^Gs2
Gn2

r2Gv2
av2

;S2S2u$ah
†3ãh8%aS

GSAb1

~20!uGs1
Gn

18
r18Gv

18
av

18
;S1S1&J . ~23!

Note that the symplectic raising and lowering operators do not act on the spin part of the
functions.

We now consider the term in parentheses and express the operator$ah
†3ãh8%aS

GSAb1

(20) as

$ah
†3ãh8%aS

GSAb1

~20!5Ab1

~20!$ah
†3ãh8%aS

GS1@$ah
†3ãh8%aS

GS ,Ab1

~20!#. ~24!

Recalling that the fermion realization ofA(20) is given by Equation~12!, we obtain
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$ah
†3ãh8%aS

GSAb1

~20!5Ab1

~20!$ah
†3ãh8%aS

GS

1S 12
1

AD(
n
A 1

12
~n11!~n12!~n13!~n14!@$ah

†3ãh8%aS
GS ,$an12

† 3ãn%b1s50
~20!s50#

2
1

4A (
nn8S8
GaGb

Ad~Ga!

12
nn8~2S811!5

~n21,0! ~10! ~n0! 2

~n821,0! ~10! ~n80! 2

Gb ~20! Ga 2

2 2 2
6

3@$ah
†3ãh8%aS

GS ,$$an
†3an8

† %GaS83$ãn213ãn821%
G̃bS8%b1s50

~20!s50#. ~25!

Therefore, the expression in the parentheses of Equation~23! is comprised of three terms:$¯%
5C11(121/A)C21(1/4A)C3 , whereA denotes the number of nucleons in the system. The
of these is given by

C1[ (
av18

b1

^~20!b1 ;Gv
18
av1

8 uGv1
av1

&

3^Gs2
Gn2

r2Gv2
av2

;S2S2uAb1

~20!$ah
†3ãh8%aS

GSuGs1
Gn

18
r18Gv

18
av

18
;S1S1&. ~26!

To evaluateC1 , we insert a complete set of states:

15 (
Gs9Gn9r9

Gv9av9S9S9

uGs9Gn9r9Gv9av9 ;S9S9&^Gs9Gn9r9Gv9av9 ;S9S9u, ~27!

betweenAb1

(20) and$ah
†3ãh8%aS

GS and make use of the following relation:

^Gs2
Gn2

r2Gv2
av2

;S2S2uAb1

~20!uGs9Gn9r9Gv9av9 ;S9S9&

5dGs9Gs2
dNn9N222dS9S2

dS9S2
^Gs2

Gn2
r2Gv2

av2
;S2S2uAb1

~20!uGs2
Gn9r9Gv9av9 ;S2S2&.

~28!

The delta functions in this expression reflect the fact that the symplectic generatorA(20) only
connects states within a symplectic irrep which have the same spin and differ by 2\v in their
excitation. Note that these delta functions significantly restrict the sum
Gs9Gn9r9Gv9av9S9S9 of the complete set of states. Only states which are constructed from
lowest weight irrepGs95Gs2

by applying a raising polynomialP an9

Gn9(A(20)) which is character-

ized by Gn95(n19 ,n29 ,n39) with Nn95n191n291n395n1
(2)1n2

(2)1n3
(2)22 @where Gn2

5(n1
(2) ,n2

(2) ,n3
(2))# can yield nonvanishing contributions. Employing the~generalized! Wigner–

Eckart theorem, and making use of the symmetry properties of the SU~3! coupling and recoupling
coefficients, we obtain the following expression forC1 :
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C15~21!G1Gv1
1Gv2A d~Gv1

!

d~20!d~G!

3 (
Gn9r9Gv9

Ad~Gv9!^Gs2
Gn2

r2Gv2
;S2uuuA~20!uuuGs2

Gn9r9Gv9 ;S2&

3(
r3

^Gs2
Gn9r9Gv9 ;S2uuu$ah

†3ãh8%
GSuuuGs1

Gn
18
r18Gv

18
;S1&r3

3 (
r4r5

Fr3r4
@Gv9G̃;Gv

18
#Fr4r5

@Gv
18
G̃v9 ;G̃#

3(
r6

U@Gv2
G̃v9Gv1

Gv
18
;~20!2 2G̃r5r6#^Gv1

av1
;GauGv2

av2
&r6

^S1S1SSuS2S2&,

~29!
where we have introduced the abbreviation (21)G i[(21)(l i1m i ) for G i5(l im i).

The matrix element of the second term in Equation~25! takes the form

C2[(
n
A 1

12
~n11!~n12!~n13!~n14! (

av18
b1

^~20!b1 ;Gv
18
av

18
uGv1

av1
&

3^Gs2
Gn2

r2Gv2
av2

;S2S2u@$ah
†3ãh8%aS

GS ,$an12
† 3ãn%b1s50

~20!s50#uGs1
Gn

18
r18Gv

18
av

18
;S1S1&,

~30!

and can be evaluated by using the commutator of Equation~B8! ~see Appendix B!. The delta
functions in Equation~B8! restrict the sum overn to two terms only: one term withn5h and one
with n5h822. Again making use of the Wigner–Eckart theorem and the symmetry properti
the coupling coefficients, we obtain

C252~21!GA1

2
~h11!~h12!A d~Gv1

!

d~G!d~Gv
18
!

3(
G9

~21!G9Ad~G9!U@~20!~h0!G9~0h8!;~h12,0!G#

3(
r3

^Gs2
Gn2

r2Gv2
;S2uuu$ah12

† 3ãh8%
G9SuuuGs1

Gn
18
r18Gv

18
;S1&r3

3(
r4

U@Gv2
G̃9Gv1

~20!;Gv
18
r32G̃2r4#^Gv1

av1
;GauGv2

av2
&r4

3^S1S1SSuS2S2&

1~21!h1h82GA 1

24
~h821!h8~h811!~h812!A d~Gv1

!

d~h0!d~Gv
18
!

3(
G9

Ad~G9!U@G~h80!G9~0,h822!;~h0!~20!#

3(
r3

^Gs2
Gn2

r2Gv2
;S2uuu$ah

†3ãh822%
G9SuuuGs1

Gn
18
r18Gv

18
;S1&r3

3(
r4

U@Gv2
G̃9Gv1

~20!;Gv
18
r32G̃2r4#^Gv1

av1
;GauGv2

av2
&r4

^S1S1SSuS2S2&. ~31!

Note that the sum overG9 is restricted by coupling requirements (h12,0)3(0h8)→G9, (20)
3G→G9, andGv

18
3G9→Gv2

in the first term and (h0)3(0,h822)→G9, G3(20)→G9, and

Gv
18
3G9→Gv2

in the second term.

The matrix element of the third term in Equation~25! originates from the two-body center
of-mass correction in the fermion realization ofA(20) @Equation~13!# and can be evaluated onc
the commutator,
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@$ah
†3ãh8%aS

GS ,$$an
†3an8

† %GaS83$ãn213ãn821%
G̃bS8%b1s50

~20!s50#, ~32!

is worked out. Upon doing so and employing the Wigner–Eckart theorem, recoupling coeffic
their symmetry and orthogonalization properties, it turns out that~while the commutator is non
zero! the contribution to the matrix element of Equation~22! vanishes identically:C350.

We can now combine Equations~23!, ~29!, ~31!, apply the Wigner–Eckart theorem to th
matrix element under consideration, and utilize the orthonormality of the Clebsch–Gorda
Wigner coupling coefficients to obtain the final expression, a recursion formula for triple-red
matrix elements of the one-body unit operator$ah

†3ãh8%aS
GS :

^Gs2
Gn2

r2Gv2
;S2uuu$a~h0!~1/2!

† 3ã~0h8!~1/2!%
GSuuuGs1

G n̂1
r̂1Gv1

;S1&r

5 (
Gn1

r1

@K 21~Gs1
Gv1

!#G n̂1
r̂1 ,Gn1

r1

3 (
G n̂18

r̂18Gv18

U@~20!G n̂
18
Gv1

Gs1
;Gn12r1Gv

18
r̂128 #XGn1~G n̂

18
!

3 (
Gn18

r18
@K ~Gs1

Gv
18
!#G n̂18

r̂
18 ,Gn18

r
18

3H ~21!G1Gv1
1Gv2Ad~Gv1

!

6d~G!

3 (
Gn9r9Gv9

Ad~Gv9!^Gs2
Gn2

r2Gv2
;S2uuuA~20!uuuGs2

Gn9r9Gv9 ;S2&

3(
r3

^Gs2
Gn9r9Gv9 ;S2uuu$ah

†3ãh8%
GSuuuGs1

Gn
18
r18Gv

18
;S1&r3

3 (
r4r5

Fr3r4
@Gv9G̃;Gv

18
#Fr4r5

@Gv
18
G̃v9 ;G̃#U@Gv2

G̃v9Gv1
Gv

18
;~20!22G̃r5r#

2S 12
1

AD ~21!GA~h11!~h12!

2d~G! Ad~Gv1
!

d~Gv
18
!

3(
G9

~21!G9Ad~G9!U@~20!~h0!G9~0h8!;~h12,0!G#

3(
r3

^Gs2
Gn2

r2Gv2
;S2uuu$ah12

† 3ãh8%
G9SuuuGs1

Gn
18
r18Gv

18
;S1&r3

3U@Gv2
G̃9Gv1

~20!;Gv
18
r32G̃2r#

1S 12
1

AD ~21!h1h82GA~h821!h8~h811!~h812!

24d~h0! Ad~Gv1
!

d~Gv
18
!

3(
G9

Ad~G9!U@G~h80!G9~0,h822!;~h0!~20!#

3(
r3

^Gs2
Gn2

r2Gv2
;S2uuu$ah

†3ãh822%
G9SuuuGs1

Gn
18
r18Gv

18
;S1&r3

3U@Gv2
G̃9Gv1

~20!;Gv
18
r32G̃2r#J . ~33!
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To evaluate this expression, a series of ingredients are necessary: First, numeric values
SU~3! Racah coefficients U@G1G2GG3 ;G12r12r12,3G23r23r1,23# and Frr8@G1G2 ;G3#
5Z@G1(00)G3G2 ;G12rG22r8# are required. These may be calculated with a computer c
published by Akiyama and Draayer.34 Second, matrix elements of the symplectic raising opera
A(20) and of theK -matrix, which effects the orthonormalization of the symplectic basis states
needed. Both types can be obtained from the matrix elements ofA (20), a generator of the
u(3)^Weyl algebra, as is outlined in Reference 7. Third, matrix elements of the f

^Gs2
Gn9r9Gv9 ;S2uuu$ah

†3ãh8%
GSuuuGs1

Gn
18
r18Gv

18
;S1&r3

between states of excitationNn9 andNn
18

are requisite ingredients. HereNn95Nn2
22 as a result of the delta functiondNn9 ,Nn2

22 , intro-

duced through the symplectic generatorA(20) @see also Equation~28!#, andNn
18
5Nn92(h2h8)

5Nn̂1
22. Furthermore, one needs values for the matrix elements of the operators$ah12

†

3ãh8%a9S
G9S and$ah

†3ãh822%a9S
G9S between the original bra state of excitationNn2

and ket states with
Nn

18
5Nn2

2(h2h812)5Nn̂1
22. Thus the desired matrix element is expressed in terms

known quantities and unit matrix elements involving states of lower excitation. Hence, thr
repeated application of this recursive process matrix elements of arbitrary one-body ope
between symplectic basis states may be related back to valence shell matrix elements, w
turn can be evaluated by means of standard shell model techniques. A user-friendly co
code, which calculates the latter, has been published by Bahri and Draayer.25

The above formula has been derived for fermionic unit operators of the form$ah
†3ãh8%aS

GS

with h>h8. The recursive process also covers the caseh.h8, since the following relation holds

^Gs2
Gn2

r2Gv2
;S2uuu$ah

†3ãh8%
GSuuuGs1

Gn1
r1Gv1

;S1&r

5~21!h1h82Gv1
1Gv2

1S11S2Ad~Gv1
!

d~Gv2
!
A2S111

2S211

3^Gs1
Gn1

r1Gv1
;S1uuu$ah8

†
3ãh%G̃SuuuGs2

Gn2
r2Gv2

;S2&r* . ~34!

A stringent test of Equation~33! is given by the following: One can evaluate the mat
element

^Gs2
Gn2

r2Gv2
;S2uuu$ah

†3ãh8%
GSuuuGs1

Gn1
r1Gv1

;S1&r ~35!

by stepping down on the bra-side, and proceeding analogously to the derivation given abov
result is a recursion formula analogous to Equation~33!. Alternatively, using relation~34! in
conjunction with Equation~33! yields an expression for the matrix element of Equation~35! which
exactly equals the formula that is obtained by stepping down on the ket-side. Another te
carried out by encoding the recursion formula and using the one-body matrix elements so ob
to calculate expectation values of the particle number operatorN̂ and the symplectic raising an
lowering operatorsA(20) andB(02), as well as the expectation values ofC(11) for the valence shell.
For A→`, perfect agreement with the matrix elements ofA(20) andB(02) as evaluated by mean
of a code that is based on the vector coherent state method outlined in reference 7 was o
as well as agreement with the matrix elements ofN̂ and C(11), which can be evaluated analyt
cally.

VI. CONCLUDING REMARKS

We have introduced a fermion realization of the Sp(6,R) algebra. Specifically, we expresse
the symplectic generators in terms of fermion creation and annihilation operators
Sp(6,R).U~3!.SO~3! basis. The new formalism was employed to derive a recursive proces
calculating matrix elements of arbitrary one-body operators. The resulting formula requir
input SU~3! coupling coefficients, matrix elements of symplectic generators, and valence
matrix elements of one-body unit operators. These ingredients may be calculated using pu
computer codes; references for those were given. The new formalism allows for the evalua
1 Jun 2006 to 130.39.180.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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physical observables in the nuclear Sp(6,R) model which until now were only available, if at al
as an approximation to the exact result. First applications include symplectic calculatio
longitudinal and transverse nuclear form factors,35 which can be compared to those extracted fro
experiments.

One can also employ the recursion formula of Equation~33! to derive a recursion relation fo
A(20) for the special case of a large number of nucleons in the system (A→`). Upon doing so,
and comparing the result to the formula that was derived by Rosensteel using a step-dow
cedure analogous to the one outlined above,27 we find that exact agreement requires the followi
relations to hold:

~h13!~h14!U@~02!~h12,0!~22!~0h!;~h0!~20!#

5~h21!hU@~20!~h22,0!~22!~0h!;~h0!~02!#, ~36!

~h13!~h14!U@~02!~h12,0!~11!~0h!;~h0!~20!#

2~h21!hU@~20!~h22,0!~11!~0h!;~h0!~02!#5A10h~h13!, ~37!

U@~02!~h12,0!~00!~0h!;~h0!~20!#5U@~20!~h22,0!~00!~0h!;~h0!~02!#51. ~38!

While Equation~38! was known previously,36 the other two relations, Equation~36! and Equation
~37!, are new and may prove valuable for analytic work that involves SU~3! Racah coefficients.
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APPENDIX A: BOSON CREATION AND ANNIHILATION OPERATORS

Given positionxi(s) and momentumpi(s) coordinates of thes-th particle ~i 51,2,3 ands
51,...,A!, one-body operatorsbi

†(s) and bi(s), which create and annihilate, respectively, o
oscillator quantum in thei -th direction of thes-th particle, can be defined as follows:

bi
†~s![

1

&
~xi~s!2 ipi~s!!,

~A1!

bi~s![
1

&
~xi~s!1 ipi~s!!.

These operators are related to each other by Hermitian conjugationbi(s)5(bi
†(s))† and satisfy the

standard boson commutation relations:

@bi~s!,bj
†~ t !#5dstd i j ,

~A2!

@bi
†~s!,bj

†~ t !#5@bi~s!,bj~ t !#50.

They may also be viewed as the components of SU~3! irreducible tensor operators,b1q
†(10) andb̃1q

(01)

(q50,61), transforming according to the (lm)5(10) and (lm)5(01) SU~3! irreps, respec-
tively:

b1,61
†~10![7

1

&
~b1

†6 ib2
†!, b1,0

†~10![b3
† , ~A3!
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and

b̃1,61
~01! [7

1

&
~b16 ib2!, b̃1,0

~01![b3 , ~A4!

where the subscript (1,q) denotes the angular momentum character~l 51; q50,61! of the
spherical components of the boson creation and annihilation operators. For the sake of sim
the angular momentum labell 51 and the particle indexs will be suppressed from here on, exce
where needed to avoid ambiguities. The operatorsbq

†(10) andb̃q
(01) satisfy the conjugation relation

b̃q
(01)5(21)q(b2q

†(10))†, and their commutator is given by@ b̃q
(01) ,bq8

†(10)
#5(21)qdq(2q8) . Matrix

elements of the boson creation and annihilation operators take a very simple form in the st
SU~3! basis:

^~h0!Suuub†~10!s50uuu~lm!S8&5^~l11,m!Suuub†~10!s50uuu~h21,0!S8&5Ahd~lm!~h21,0!dSS8 ,
~A5!

^~lm!Suuub̃~01!s50uuu~h0!S8&5^~h21,0!Suuub̃s
~01!s50uuu~l11,m!S8&5Ah12d~lm!~h21,0!dSS8 .

The bq
†(10) and b̃q

(01) are scalars in spin space, as has been noted explicitly in Equation~A5!. @For
the definition of the triple-reduced matrix element and the relevant phase conventions re
Appendix C.#

Since the creation and annihilation operatorsbq
†(10) and b̃q

(01) are SU~3! irreducible tensor
operators, two or more of them may be coupled to form new SU~3! tensors. Matrix elements o
such tensor products can be evaluated with the help of SU~3! reduction rules as given in Appendi
C. A relevant example is the matrix element of the one-body operator$b†(10)s50

3b̃(01)s50%(11)S50, evaluated between two single-particle states,

^~n0! 1
2 uuu$b†~10!s503b̃~01!s50%~11!S50uuu~n80! 1

2&

5 (
~l9m9!S9

F11@~10!~01!;~11!#U@~n80!~01!~n0!~10!;~l9m9!~11!#US 1

2
0

1

2
0;S90D

3^~n0! 1
2 uuub†~10!s50uuu~l9m9!S9&^~l9m9!S9uuub̃~01!s50uuu~n80! 1

2&

5A2

3
n~n13!dnn8 , ~A6!

where U@¯# and F@¯# are Racah recoupling coefficients~see Appendix C!. For the tensor
product of two raising~lowering! operators, acting on a single-particle state, one may proc
analogously to obtain

^~n0! 1
2 uuu$b†~10!s503b†~10!s50%~20!S50uuu~n80! 1

2&5An~n21!dn,n812 ,

~A7!
^~n0! 1

2 uuu$b̃~01!s503b̃~01!s50%~02!S50uuu~n80! 1
2&5A~n13!~n14!dn8,n12 .

Matrix elements of a SU~3!-coupled tensor product of two boson operators, acting o
two-particle state, can be evaluated using Millener’s reduction rule37 ~see also Appendix C!. For
the product of a creation and an annihilation operator, coupled to (lm)5(11), this method yields

^$~n10!3~n20!%~lm!;$ 1
2 3 1

2%Suuu$b†~10!0~1!3b̃~01!0~2!%~11!0uuu

3$~n180!3~n280!%~l8m8!;$ 1
23 1

2%S8&

5An1~n213!dSS8dn
18 ,n121dn

28 ,n2115
~n121,0! ~10! ~n10! 2

~n211,0! ~01! ~n20! 2

~l8m8! ~11! ~lm! 2

2 2 2
6 , ~A8!
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whereas for two creation operators, coupled to (lm)5(20), we obtain

^$~n10!3~n20!%~lm!;$ 1
23 1

2%Suuu$b†~10!0~1!3b†~10!0~2!%~20!0uuu

3$~n180!3~n280!%~l8m8!;$ 1
2 3 1

2%S8&

5An1n2dSS8dn
18 ,n121dn

28 ,n2215
~n121,0! ~10! ~n10! 2

~n221,0! ~10! ~n20! 2

~l8m8! ~20! ~lm! 2

2 2 2
6 , ~A9!

and for two annihilation operators we find

^$~n10!3~n20!%~lm!;$ 1
23 1

2%Suuu$b̃~01!0~1!3b̃~01!0~2!%~02!0uuu$~n180!3~n280!%~l8m8!;$ 1
23 1

2%S8&

5A~n113!~n213!dSS8dn
18 ,n111dn

28 ,n2115
~n111,0! ~01! ~n10! 2

~n211,0! ~01! ~n20! 2

~l8m8! ~02! ~lm! 2

2 2 2
6 , ~A10!

whereb†(t) and b̃(t) ~t51,2 here! act only on that part of the wave function which refers
particle t.

APPENDIX B: FERMION SECOND QUANTIZATION

A general one-body operator that acts symmetrically on a system ofA identical particles is
given by

F 5(
s

f ~r s ,ss!, ~B1!

wherer s andss represent the position and spin~or spin–isospin! coordinates, respectively, of th
s-th particle. In a fermion second quantization formulation this one-body operator takes the

F 5 (
r,r8

^r8u f ~r ,s!ur&ar8
† ar , ~B2!

wherer labels the available single-particle states andar
† andar are single-particle creation an

annihilation operators that satisfy the usual fermion anti-commutation relations:

$ar ,ar8
† %5dr,r8 ,

~B3!
$ar ,ar8%5$ar

† ,ar8
† %50.

For fermions in a harmonic oscillator potential,r stands for a set of quantum numbersr

5h lm 1
2s or r5h l 1

2 jmj , depending on whether the states are characterized by an LS
j j -coupling scheme, respectively. Hereh is the principal quantum number~major oscillator shell!
of the single-particle level;l , 1

2, and j label the orbital, spin, and total angular momenta w

projectionsm, s, andmj , respectively.~In a spin–isospin formalism, one hasr5h lm 1
2s

1
2t or

r5h l 1
2 jmj

1
2t, respectively, where the additional1

2 denotes the isospin quantum number w
projectiont.! For the present purposes it is most convenient to use the LS-coupling schem

Since the single-particle harmonic oscillator wave functions,uh lm 1
2s&5ah lm(1/2)s

† u2&, where
u2& denotes the particle vacuum, transform irreducibly under a set of physically relevant S~3!

and SU~2! symmetry group operations, the fermion creation operatorah lm(1/2)s
† is a double irre-

ducible tensor operator of rank (lm)5(h0) in SU~3!, which labels its orbital character~with
subgroup labelsl andm!, and of ranks5 1

2 in SU~2! for the spin part~with subgroup labels! and
1 Jun 2006 to 130.39.180.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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should be written asa(h0)lm(1/2)s
† . Sincear5(ar

†)† is not a proper irreducible tensor operator wi
respect to the above group transformations, it is advantageous to defineã(0h) lm(1/2)s

[(21)h1 l 1m1(1/2)1sa(h0)l (2m)(1/2)(2s) which is a proper irreducible tensor operator of ra
(lm)5(0h) in SU~3! and ranks5 1

2 in ~spin-!SU~2!.
It thus becomes possible to construct tensor products from the fermion creation and a

lation operators, such as

$a~h10!~1/2!
† 3ã~0h2!~1/2!%kLMS

~lm!S5 (
a1a2s1s2

^~h10!a1 ;~0h2!a2u~lm!kLM &

3^ 1
2 s1

1
2 s2uSS&a~h10!a1~1/2!s1

† ã~0h2!a2~1/2!s2
, ~B4!

which moves a particle from theh2-th major oscillator shell to theh1-th shell. The possible~lm!

values are given by the coupling rule (h10)3(0h2)5 % k50
min(h1,h2)(h12k,h22k) ~see reference 38!

anda i is an abbreviation for the set of possible subgroup labelsa i5k i l imi , wherek i51 must
hold here. The total intrinsic spinS can take the values 0 or 1 with projectionS50 or S50,
61, respectively. The product$a(h10)(1/2)

† 3a(h20)(1/2)
† %kLMS

(lm)S , on the other hand, creates a pair

fermions with one particle in theh1-th shell and one in theh2-th shell, and the pair is coupled t
(lm)P$(h10)3(h20)%5$ % k50

min(h1,h2)(h11h222k,k)% and S50 or 1. Similarly, the product

$ã(0h1)(1/2)3ã(0h2)(1/2)%kLMS
(lm)S annihilates a SU~3!-coupled pair of fermions with one particle in th

h1-th shell, one in theh2-th shell, (lm)P$(0h1)3(0h2)%5$ % k50
min(h1,h2)(k,h11h222k)%, and S

50 or 1. One can furthermore construct a SU~3! irreducible tensor which destroys a pair
fermions in a particular SU~3!-coupled configuration, and creates a new pair configuration:

$$a~h10!~1/2!
† 3a~h20!~1/2!

† %~l1m1!S13$ã~0n1!~1/2!3ã~0n2!~1/2!%
~l2m2!S2%kLMS

r~lm!S

5 (
a1a2S1S2

^~l1m1!a1 ;~l2m2!a2u~lm!a&r^S1S1S2S2uSS&

3$a~h10!~1/2!
† 3a~h20!~1/2!

† %a1S1

~l1m1!S1$ã~0n1!~1/2!3ã~0n2!~1/2!%a2S2

~l2m2!S2, ~B5!

wherer denotes the multiplicity of~lm! in the coupling (l1m1)3(l2m2)→(lm).
The Hermitian adjoint of the above products are given by

~$a~h10!~1/2!
† 3ã~0h2!~1/2!%kLMS

~lm!S!†5~21!h22h11L1M1S$a~h20!~1/2!
† 3ã~0h1!~1/2!%kL2M2S

~ml!S ,

~B6!

~$a~h10!~1/2!
† 3a~h20!~1/2!

† %kLMS
~lm!S!†5~21!2h12h22L1M211S$ã~0h2!~1/2!3ã~0h1!~1/2!%kL2M2S

~ml!S ,

and

~$$a~h10!~1/2!
† 3a~h20!~1/2!

† %~l1m1!S13$ã~0n1!~1/2!3ã~0n2!~1/2!%
~l2m2!S2%kLMS

r~lm!S!†

5~21!n11n22h12h21~l11m1!1~l21m2!1~l1m!2L1M1S

3(
r8

~21!rmax8 2r8Fr8r@~l2m2!~l1m1!;~lm!#

3$$a~n20!~1/2!
† 3a~n10!~1/2!

† %~m2l2!S23$ã~0h2!~1/2!3ã~0h1!~1/2!%
~m1l1!S1%kL2M2S

r8~ml!S , ~B7!

where the phase matrixF is a special case of the recoupling coefficientZ, Frr8@(l1m1)
3(l2m2);(lm)#5Z@(l1m1)(00)(lm)(l2m2);(l1m1)2r(l2m2)2r8#, and can be evaluated with
available computer codes~see also Appendix C!. The symbolrmax8 denotes the maximum multi
plicity in the coupling (m2l2)3(m1l1)→(ml), andr8 takes on values 1,2,...,rmax8 .
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The following commutation relations, which are required for the derivation of the fermio
expressions for the symplectic generators, can be derived by making use of the commutatio
of the uncoupled components@see Equation~B3!# and SU~3! coupling and recoupling techniques
For clarity we abbreviate (l im i) with the symbolG i , (21)G i[(21)l i1m i, andŜ[A2S11:

@$ah
†3ãh8%a1S1

G1S1 ,$an
†3ãn8%a2S2

G2S2 #

5~21!h1n(
ss

Ŝ1Ŝ2^S1S1S2S2uss&H 1
2

1
2 S1

s S2
1
2

J
3H 2dh8n~21!2s2G1Ad~G1!

d~h0!(Ga
$ah

†3ãn8%as
Gs

3(
r

^G1a1 ;G2a2uGa&rU@G1~n0!G~0n8!;~h0!22G22r#

1dhn8~21!S11S22G2Ad~G2!

d~n0! (
Ga

$an
†3ãh8%as

Gs

3(
r

^G2a2 ;G1a1uGa&rU@G2~h0!G~0h8!;~n0!22G12r#J , ~B8!

and

@$ah
†3ah8

† %a1S1

G1S1 ,$an
†3ãn8%a2S2

G2S2 #

5~21!h1n2G2Ad~G2!

d~n0! (
ss

Ŝ1Ŝ2^S2S2S1S1uss&H 1
2

1
2 S2

s S1
1
2

J
3H dn8h8~21!s1S12G1(

Ga
$an

†3ah
†%as

Gs

3(
r

^G2a2 ;G1a1uGa&rU@G2~h80!G~h0!;~n0!22G12r#

1dn8h~21!s(
Ga

$an
†3ah8

† %as
Gs (

r
^G2a2 ;G1a1uGa&rU@G2~h0!G~h80!;~n0!22G12r#J ,

~B9!

and

@$ãh3ãh8%a1S1

G1S1 ,$an
†3ãn8%a2S2

G2S2 #

52(
ss

Ŝ1Ŝ2^S1S1S2S2uss&H 1
2

1
2 S1

s S2
1
2

J
3H dh8n~21!h81h2G11sAd~G1!

d~0h! (
Ga

$ãh3ãn8%as
Gs

3(
r

^G1a1 ;G2a2uGa&rU@G1~h80!G~0n8!;~0h!22G22r#

1dhn~21!S12sA d~G1!

d~0h8! (
Ga

$ãh83ãn8%as
Gs

3(
r

^G1a1 ;G2a2uGa&rU@G1~h0!G~0n8!;~0h8!22G22r#J , ~B10!
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where d(G)5d(lm)5 1
2(l11)(m11)(l1m12) is the dimension of the SU~3! irrep G

5(lm).
In order to derive the recursion relation~33!, it is furthermore necessary to evaluate t

commutator of the two-body operator$$ah
†3ah8

† %G1S13$ãt3ãt8%
G2S2%a3S3

r3G3S3 with $an
†

3ãn8%a4S4

G4S4 , wherer3 denotes the multiplicity ofG3 in the couplingG13G2→G3 . We obtain the

following expression:

@$$ah
†3ah8

† %G1S13$ãt3ãt8%
G2S2%a3S3

r3G3S3,$an
†3ãn8%a4S4

G4S4 #

52(
Gr

(
r5G5a5

~21!G12G31G42GA d~G!d~G3!

d~G1!d~G4! (
r8r9

Frr8@G2G4 ;G#Fr8r9@GG̃2 ;G4#

3(
r̃

^G3a3 ;G4a4uG5a5&r̃U@G3G̃2G5G;G1r3r5G4r9r̃ #

3 (
sS5S5

~21!S11S42S51sŜ2Ŝ3Ŝ4ŝ^S3S3S4S4uS5S5&H 1
2

1
2 S2

s S4
1
2

J H S2 S1 S3

S5 S4 s J
3H dt8n~21!t81t2G21S2Ad~G2!

d~0t!
$$ah

†3ah8
† %G1S13$ãt3ãn8%

Gs%a5S5

r5G5S5

3U@G2~t80!G~0n8!;~0t!22G42r#

1dtnA d~G2!

d~0t8!
$$ah

†3ah8
† %G1S13$ãt83ãn8%

Gs%a5S5

r5G5S5U@G2~t 0!G~0n8!;~0t8!22G42r#J
1(

Gr
(

r5G5a5

~21!h1n2G4Ad~G4!

d~n0! (r̃
^G4a4;G3a3uG5a5&r̃U@G4G1G5G2;Grr5G3r3r̃ #

3 (
sS5S5

~21!2S22S41S51sŜ1Ŝ3Ŝ4ŝ^S4S4S3S3uS5S5&H 1
2

1
2 S4

s S1
1
2

J H S1 s S4

S5 S3 S2
J

3$dn8h8~21!G1$$an
†3ah

†%Gs3$ãt3ãt8%
G2S2%a5S5

r5G5S5U@G4~h80!G~h0!;~n0!22G12r#

1dn8h~21!S1$$an
†3ah8

† %Gs3$ãt3ãt8%
G2S2%a5S5

r5G5S5U@G4~h0!G~h80!;~n0!22G12r#% .

~B11!

APPENDIX C: SU „3… COUPLING AND RECOUPLING RULES

The work presented here makes extensive use of SU~2! and SU~3! coupling techniques and
the ~generalized! Wigner–Eckart theorem. The relevant definitions of the SU~2! coupling coeffi-
cients, along with their phase and normalization conventions, can be found in most textboo
quantum mechanics. Analytic expressions and numerical values for special cases of these
cients, as well as useful relations between different coupling coefficients, are compiled in v
monographs on angular momentum theory, as for instance in reference 39. In contrast, an
results for the SU~3! case required here are distributed over about a dozen different articles
the convenience of the reader and as a practical reference for future analytical and numer
in this field, we list the basic definitions and relations in this appendix. We also point the rea
sources of additional information and to publicly available computer codes. Specifically, we
sider the coupling of two, three, and four irreducible SU~3! representations and give the Wigne
Eckart theorem for SU~3!. The results presented here are primarily taken from publications
1 Jun 2006 to 130.39.180.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Hecht et al.,28,36,40–42Draayeret al.,34,43–45O’Reilly,38 Millener,37 and Vergados.46 Several new
relations are included as well. The phase conventions used here are those employed in re
44.

1. SU„3… Wigner coefficients: Coupling of two SU „3… irreps

If a represents a set of labels used to distinguish orthonormal basis states within a
irreducible SU~3! representationG5(lm), the Wigner coefficientŝG1a1 ;G2a2uGa&r are defined
as the elements of a unitary transformation between coupled and uncoupled orthonormal ir
SU~3! in the a-scheme:44

uGa&r5 (
a1a2

^G1a1 ;G2a2uGa&ruG1a1&uG2a2&, ~C1!

and the inverse transformation is given by

uG1a1&uG2a2&5(
rGa

^G1a1 ;G2a2uGa&ruGa&r . ~C2!

Here a5eLML for the SU~3!.SU~2!^U~1! ~canonical! group chain anda5k lm for the
SU~3!.SO~3! reduction. The subgroup chains impose certain restrictions on the above coup
for example,e5e11e2 , ML5ML1

1ML2
, and L5L11L2 ,...,uL12L2u must hold for the

canonical group chain, and the usual angular momentum coupling rules,l 5 l 11 l 2 ,...,u l 12 l 2u,
andm5m11m2 apply for the chain containing SO~3!. The conjugates of the relevant SU~3! basis
states are given by44

uGa&* 5~21!xauG̃ā&, ~C3!

whereG̃5(ml) is the conjugate irrep toG5(lm), andā andx i depend on the selected subgro
chain:47

for a5eLML , one hasā5~2e!L~2ML! and x i5
1

3
~l i2m i !2

1

6
e i2ML i

;

~C4!
for a5k lm one hasā5k l ~2m! and x i5~l i2m i !1 l i2mi .

The outer multiplicity labelr51,2,...,rmax is used to distinguish multiple occurrences of
givenG in the direct productG13G2 : r51,2,...,rmax, wherermax denotes the number of possib
couplingsG13G2 , and the possibleG irreps in the product can be obtained by coupling t
appropriate Young diagrams.48 O’Reilly38 determines a closed formula for the decomposition
the outer product (p,q)3(r ,s) of finite-dimensional irreps of SU~3! for arbitrary positive integers
p, q, r , ands:

~r ,s!3~p,q!5 %
k50

min~q,r 1s!

%
j 50

min~s,p,r 1s2k!

%
i 5max~0,j 2s1k!

min~p2 j 1k,r !

~r 1p2 j 22i 1k,s1q1 i 2 j 22k!,

~C5!

and furthermore derives necessary and sufficient conditions for a SU~3! irrep (m,n) to appear as
summand in the product (r ,s)3(p,q).

Draayer and Akiyama44 give a prescription for the unique determination, including the pha
of all SU~3!.SU~2!^U~1! Wigner coefficients and derive their relevant conjugation and sym
try properties. Since the SU~3!.SO~3! reduction is related to the SU~3!.SU~2!^U~1! reduction
via the coefficients of the transformation between thea5k lm and thea5eLML schemes,44,45 it
suffices to determine the conjugation relationship and symmetry properties for
SU~3!.SU~2!^U~1! chain only. The corresponding SU~3!.SO~3! results follow then from the
known relationships among the transformation brackets between the two schemes. These r
1 Jun 2006 to 130.39.180.124. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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are given in reference 44 and a computer code which allows for a numerical determinat
SU~3!.SU~2!^U~1! and SU~3!.SO~3! Wigner coefficients, as well as SU~3! Racah coefficients,
is published in reference 34. Analytic expressions for Wigner coefficients which are of part
interest inp-shell andds-shell nuclear shell-model calculations are tabulated in reference 2
the canonical subgroup chain and in references 46, 41 for the SU~3!.SO~3! chain.

The most important of the symmetry relations of the SU~3! Wigner coefficients is the one tha
involves a 1↔3 interchange of the quantum labels:

^G1a1 ;G2a2uG3a3&r5~21!w1x2Adim~G3!

dim~G1!
^G3a3 ;G̃2ā2uG1a1&r , ~C6!

where w5(l11m1)1(l21m2)2(l31m3). The dimension of the SU~3! irrep G is given by
dim(G)5dim(lm)5 1

2(l11)(m11)(l1m12), andā i andx i are as defined in Equation~C4!.
The 1↔2 interchange is more complicated:

^G1a1 ;G2a2uG3a3&r5(
r8

Frr8@G1 ,G2 ;G3#^G2a2 ;G1a1uG3a3&r8 , ~C7!

since it requires a phase matrixF, which is a special case of the recoupling coefficientZ that
occurs in the coupling of three SU~3! irreps:

Frr8@G1 ,G2 ;G3#5Z@G1~00!G3G2 ;G12rG22r8#. ~C8!

If the SU~3! couplingG13G2→G3 is unique, that is, whenrmax51, the matrix reduces to a simpl
phase factor:F11@G1 ,G2 ;G3#5(21)w5(21)G11G22G3, where (21)G i[(21)l i1m i for G i

5(l im i).

Another set of useful relations involves the conjugate irrepG̃5(ml) of G5(lm); for the
canonical group chain,44

^G1a1 ;G2a2uG3a3&r5~21!w1rmax2r^G̃1ā1 ;G̃2ā2uG̃3ā3&r ~C9!

holds and fora5k lm one has44

^G1a1 ;G2a2uG3a3&r5~21!w1rmax2r1 l 11 l 22 l 3^G̃1ā1 ;G̃2ā2uG̃3ā3&r . ~C10!

With the phase and normalization conventions of reference 44, one obtains the follo
orthonormality relations for the Wigner SU~3! coupling coefficients:

(
a1a2

^G1a1 ;G2a2uGa&r^G1a1 ;G2a2uG8a&r85dG8Gdr8r ~C11!

and

(
rGa

^G1a1 ;G2a2uGa&r^G1a18 ;G2a28uGa&r5da1a
18
da2a

28
. ~C12!

It is possible to factor out the dependence of the above SU~3!.SO~3! and
SU~3!.SU~2!^U~1! Wigner coupling coefficients on theM or ML subgroup labels, respectively
by defining so-called double-barred or ‘‘reduced’’ SU~3! coupling coefficients:

~C13!

for a5k lm, and
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~C14!

for a5eLML . The ‘‘geometric’’ part^--u-& is simply a SU~2! Clebsch–Gordan coefficient. From
the unitarity of the full SU~3! Wigner and the ordinary SU~2! Clebsch–Gordan coefficients
follows that the double-bar coefficients are also unitary. With the phase convention introduc
Draayer and Akiyama44 they become real, and therefore orthogonal.

2. SU„3… Racah coefficients: Coupling of three SU „3… irreps

Coupling of three SU~3! irreps G1 , G2 , and G3 to a given resulting SU~3! irrep G can be
accomplished in three different ways, depending on the order of the coupling:~i! $G1^ G2% ^ G3

→G, or ~ii ! G1^ $G2^ G3%→G, or ~iii ! $G1^ G3% ^ G2→G. The transformation from one couplin
order to another requires the introduction of a so-called SU~3!-Racah or 6-~lm! coefficient. More
specifically, recoupling from scheme~i! to ~ii ! involves a unitary transformation with coefficien
U@G1G2GG3 ;G12r12r12,3G23r23r1,23# ~see reference 28!:

u$$G13G2%
r12G123G3%a

r12,3G&

5 (
G23r1,23r23

U@G1G2GG3 ;G12r12r12,3G23r23r1,23#u$G13$G23G3%
r23G23%a

r1,23G&,

~C15!

and the inverse transformation is given by36

u$G13$G23G3%
r23G23%a

r1,23G&

5 (
G12r12r12,3

U@G1G2GG3 ;G12r12r12,3G23r23r1,23#u$$G13G2%
r12G123G3%a

r12,3G&.

~C16!

The notation is a straightforward generalization of that introduced by Racah39 for the 6-j symbols
of SU~2!. Whenever a coupling is multiplicity-free, the associatedr-label may be omitted, pro-
vided the notation remains unambiguous.

Similarly, the transformation from scheme~i! to scheme~iii ! requires a transformation coe
ficient Z@G2G1GG3 ;G12r12r12,3G13r13r13,2# which is defined through37

u$$G13G2%
r12G123G3%a

r12,3G&

5 (
G13r13r13,2

Z@G2G1GG3 ;G12r12r12,3G13r13r13,2#u$$G13G3%
r13G133G2%a

r13,2G&.

~C17!

The U- andZ-functions depend only on the SU~3! representations involved in the coupling an
not on the specific subgroup chain chosen to specify the states. Most of the SU~3! recoupling
coefficients needed fords-shell nuclear shell model calculations have been tabulated by Hec28

and a computer code that evaluates SU~3! Racah coefficients for arbitrary couplings and mul
plicity was developed by Akiyama and Draayer.34 Special cases and symmetry properties of
SU~3! coefficients can be found in reference 36. Most notably, one hasU@¯#51 wheneverG1 or
G2 or G3 or G5(00), and

U@G1G2G1G̃2 ;G12rr8~00!22#5~21!G11G21G12drr8A d~G12!

d~G1!d~G2!
. ~C18!
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Under conjugation the SU~3! Racah coefficients exhibit the following symmetry:

U@G1G2GG3 ;G12r12r12,3G23r23r1,23#

5~21!r12
max

2r121r12,3
max

2r12,31r23
max

2r231r1,23
max

2r1,23U@G̃1G̃2G̃G̃3 ;G̃12r12r12,3G̃23r23r1,23#,

~C19!

Z@G2G1GG3 ;G12r12r12,3G13r13r13,2#

5~21!r12
max

2r121r12,3
max

2r12,31r13
max

2r131r13,2
max

2r13,2Z@G̃2G̃1G̃G̃3 ;G̃12r12r12,3G̃13r13r13,2#.

A straightforward generalization of the relations between SU~2! unitary recoupling coeffi-
cients and SU~2! Wigner coefficients leads to the corresponding relationships between S~3!
unitary ~Racah! recoupling and SU~3! Wigner coefficients.

U@G1G2GG3 ;G12r12r12,3G23r23r1,23#

5 (
a1a2a3a12a23

^G1a1 ;G2a2uG12a12&r12̂
G12a12;G3a3uGa&r12,3

3^G2a2 ;G3a3uG23a23&r23̂
G1a1 ;G23a23uGa&r1,23

, ~C20!

for a i5e iL iM i or a i5k i l imi .
The Z- andU-coefficients are related to each other as follows:

Z@G2G1GG3 ;G12r12r12,3G13r13r13,2#

5 (
G23r23r1,23

U@G1G2GG3 ;G12r12r12,3G23r23r1,23#(
r238

Fr23r238
@G2 ,G3 ;G23#

3U@G1G3GG2 ;G13r13r13,2G23r238 r1,23#, ~C21!

with the geometrical phaseFrr8 as defined in Equation~C8!. Further useful relations for theU-
andZ-recoupling coefficients are given in reference 28, for the SU~3!.SU~2!^U~1! chain, and in
references 46, 37, for the SU~3!.SO~3! chain. The following one, which holds for both cases,
especially important:

(
r1,23

^G1a1 ;G23a23uGa&r1,23
U@G1G2GG3 ;G12r12r12,3G23r23r1,23#

5 (
a2a3a12

^G2a2 ;G3a3uG23a23&r23̂
G1a1 ;G2a2uG12a12&r12̂

G12a12;G3a3uGa&r12,3
.

~C22!

A similar relation is given by Millener for theZ-coefficient.37

3. SU„3… 9-„lm… coefficients: Coupling of four SU „3… irreps

If the coupling of four SU~3! irrepsG1 , G2 , G3 andG4 is required, the resulting irrepG may
be constructed in three different ways:~i! $G1^ G2% ^ $G3^ G4%→G, or ~ii ! $G1^ G3% ^ $G2

^ G4%→G, or ~iii ! $G1^ G4% ^ $G2^ G3%→G. In analogy to the SU~2! Jahn–Hope symbol it is
possible to define a unitary SU~3! or 9-~lm! symbol, which effects the transformation from on
coupling order to another. In particular, for the transition from scheme~i! to ~ii ! one defines36
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r13G13r24G24r13,24 5 13 24 13,24

r13 r24 r12,34

6
3u$$G13G3%

r13G133$G23G4%
r24G24%a

r13,24G&.

~C23!

Similarly, one obtains for the transformation from scheme~i! to ~iii !,

u$$G13G2%
r12G123$G33G4%

r34G34%a
r12,34G&

5 (
r14G14r23G23r14,23 5

G1 G2 G12 r12

G4 G3 G34 r34

G14 G23 G r14,23

r14 r23 r12,34

6
3(

r348
Fr34r348

~G3 ,G4 ;G34!u$$G13G4%
r14G143$G23G3%

r23G23%a
r14,23G&. ~C24!

The unitary 9-~lm! symbols can be expressed as a sum over SU~3! Wigner coupling coeffi-
cients:

5
G1 G2 G12 r12

G3 G4 G34 r34

G13 G24 G r13,24

r13 r24 r12,34

6
5 (

a ia ik

^G1a1 ;G2a2uG12a12&r12̂
G3a3 ;G4a4uG34a34&r34̂

G13a13;G24a24uGa&r13,24

3^G1a1 ;G3a3uG13a13&r13̂
G2a2 ;G4a4uG24a24&r24̂

G12a12;G34a34uGa&r12,34
,

~C25!

or in terms of the RacahZ andU coefficients defined above,37

5
G1 G2 G12 r12

G3 G4 G34 r34

G13 G24 G r13,24

r13 r24 r12,34

6
5 (

G0r13,2r04r12,3

U@G13G2GG4 ;G0r13,2r04G24r24r13,24#Z@G2G1G0G3 ;G12r12r12,3G13r13r13,2#

3U@G12G3GG4 ;G0r12,3r04G34r34r12,34#. ~C26!

Various symmetry relations and special cases of the 9-~lm! coefficients can be found in reference
40, 36, and a computer code which provides numerical values for these recoupling coeffici
publicly available.34

4. Matrix elements and the Wigner–Eckart theorem for SU „3…

The Wigner–Eckart theorem for the group SU~2! yields SU~2!-reduced~double-bar! matrix
elements of an SO~3! irreducible tensor operator. Analogously, the generalized Wigner–Ec
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theorem allows one to express matrix elements of SU~3! irreducible tensor operators as a sum ov
r of the product of ar-dependent generalized reduced matrix element multiplied by the c
sponding Wigner coefficient:44

^G3a3uTG2a2uG1a1&5(
r

^G1a1 ;G2a2uG3a3&r^G3uuuTG2uuuG1&r . ~C27!

Note that the triple-bar matrix element is independent of the chosen subgroup chain.
In analogy to the well-known reduction rules for SU~2!,39 one can derive expressions for th

triple-bar matrix elements of a SU~3!-coupled tensor product acting on a one-component sys

^Guuu$TG13TG2%r3G3uuuG8&r5 (
r1r2G9

^GuuuTG1uuuG9&r1
^G9uuuTG2uuuG8&r2

3(
r38

Fr3r
38
@G1G2 ;G3#U@G8G2GG1 ;G9r2r1G3r38r#. ~C28!

Often one has to consider a quantum-mechanical system which consists of two subsystem
2 ~for example, protons and neutrons!. Reduced matrix elements for the irreducible tensor prod
of two operators,RGr(1) and SGs(2), which depend only on variables of the first and seco
subsystem, respectively, may be evaluated with the help of the following expression:

^$G13G2%rGuuu$RGr~1!3SGs~2!%r tG tuuu$G183G28%r8G8&r̃

5 (
r1r2 5

G18 G r G1 r1

G28 Gs G2 r2

G8 G t G r̃

r8 r t r
6 ^G1uuuRGr~1!uuuG18&r1

^G2uuuSGs~2!uuuG28&r2
. ~C29!
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