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Abstract. We study intragap bound states in the topological phase of a Rashba nanowire in the presence
of a magnetic field and with non-uniform spin orbit interaction (SOI) and proximity-induced supercon-
ductivity gap. We show that fermionic bound states (FBS) can emerge inside the proximity gap. They
are localized at the junction between two wire sections characterized by different directions of the SOI
vectors, and they coexist with Majorana bound states (MBS) localized at the nanowire ends. The energy
of the FBS is determined by the angle between the SOI vectors and the lengthscale over which the SOI
changes compared to the Fermi wavelength and the localization length. We also consider double-junctions
and show that the two emerging FBSs can hybridize and form a double quantum dot-like structure inside
the gap. We find explicit analytical solutions of the bound states and their energies for certain parameter
regimes such as weak and strong SOI. The analytical results are confirmed and complemented by an in-
dependent numerical tight-binding model approach. Such FBS can act as quasiparticle traps and thus can
have implications for topological quantum computing schemes based on braiding MBSs.

1 Introduction

Bound states arising in a variety of condensed matter
systems were explored intensively over the last decade
or so. Some of these states such as Majorana bound
states (MBSs) [1–28], fractional fermions [29–36], and
parafermions [37–53] are attractive due to their potential
use in topological quantum computation schemes owing
to their non-Abelian statistics [54]. Moreover, MBSs can
be transformed into fractional fermions by tuning parame-
ters from the topological phase to the trivial phase [13]. At
the same time, the possibility of generating simultaneously
MBSs together with fermionic bound states (FBSs) in
topological Rashba nanowire lying on the uniform s-wave
superconducting surface [23–28], has not received much
attention.

In this work we explore such a scenario in non-uniform
Rashba nanowires coupled to an s-wave superconductor in
the presence of a magnetic field in the topological regime
(i.e. with Zeeman energy being dominant over the super-
conducting pairing). The considered non-uniformity is in
the spin orbit interaction (SOI) along the wire. Specifi-
cally, we consider a situation where the SOI vector changes
its direction along the nanowire axis creating an inter-
face between two nanowire sections with different SOI vec-
tor directions. In this case, we find that additional FBSs
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localized at such SOI interfaces emerge. In contrast to
zero-energy MBSs localized at the nanowire ends, the en-
ergy of these FBSs crucially depends on the SOI vector
rotation angle and can take any value inside the proximity
induced bulk gap.

In the particular case, when the SOI has a sharp
discontinuity, i.e., changes abruptly, such that the SOI
vector rapidly rotates by the angle φ = π, or, equiv-
alently, changes its sign, the system possesses an addi-
tional symmetry that constrains the FBSs to be zero-
energy states [55]. In this case, each of these FBSs can
be represented as a pair of MBSs [55]. However, this de-
generacy between the FBS being filled and unfilled is not
robust against small perturbations and thus is not pro-
tected topologically. For instance, if the interface is not
abrupt (see below) or if the rotation angle deviates from π,
the FBS energy levels smoothly shifts away from zero and
eventually disappears from the gap into the continuum at
φ = 0. The localization length of such states is the larger
the closer the energy level is to the gap edge.

In addition, we also study the situation of the SOI
vector rotation taking place over a finite region � of the
nanowire, which could be comparable to the Fermi wave-
length λF and the FBSs localization length ξ. As expected,
if the SOI vector rotates adiabatically, � > λF , ξ, the
FBS energy level merges into the continuum, such that no
FBSs emerge at the interface. We emphasize that the FBSs
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exist at the interface (or junction) between two sections
where both of them are in the topological phase and
the superconducting phase is uniform over the nanowire
length. This is in contrast to MBSs, which exist at the in-
terface between the topological and non-topological phase.

Besides fundamental interest, the study of non-uniform
SOI is also important for practical implementations
of topological quantum computing schemes based on
MBSs [54]. The non-uniformity of the SOI could be a re-
sult of a change in the direction of an electric field caus-
ing the Rashba SOI [56,57] or of a change in the direction
of the crystallographic axes in systems with Dresselhaus
SOI [57,58]. Such changes are likely to occur, for exam-
ple, in T -junctions that underlay proposed schemes for
braiding of MBSs [59].

Moreover, using the gauge equivalence in one-
dimensional systems between Rashba SOI plus uniform
magnetic field and a spatially rotating magnetic field but
without SOI [60], one can easily show that a spatial discon-
tinuity in the SOI in a hybrid Rashba nanowire is equiv-
alent to a domain wall in a hybrid RKKY system with
self-tuned topological phase [15–17]. Thus, here again, we
can expect FBSs to emerge simultaneously with MBSs. If
the RKKY system, in addition, has an easy plane the do-
main walls are π-junctions, such that FBSs can efficiently
hybridize with MBSs.

This then raises the question whether such additional
bound states could affect the properties of topological
braiding schemes based on MBSs or affect the decoher-
ence of MBSs themselves due to trapping and releasing of
fermions in such FBSs. Here, we will not address this im-
portant issue further but instead will focus on the physics
of such FBSs and on the conditions under which they exist
and what their behavior is as function of various system
parameters.

The paper is organized as follows. In Section 2 we de-
scribe the system under consideration and provide the ef-
fective Hamiltonian both for the analytical and numerical
models. We begin with addressing the presence of FBSs
in the regimes of strong (see Sect. 3) and weak SOI (see
Sect. 4) under the assumption of an abrupt change in
the SOI vector direction. The double SOI-junctions are
considered in Section 5. Subsequently, in Section 6, we
extend our results also to the case of smoothly varying
SOI interaction. The final section, Section 7, contains our
conclusions.

2 Model

2.1 Analytical model

We consider a nanowire with Rashba SOI brought into
proximity to an s-wave superconductor in the presence of
an applied magnetic field B (see Fig. 1). The SOI in the
nanowire is characterized by the SOI vector α. The direc-
tion of α determines the direction in which the spins are
polarized by the SOI, and its magnitude α determines the
SOI strength. A particularly interesting regime emerges

Fig. 1. Sketch of a non-uniform nanowire of length 2L directed
along x direction which consists of two segments x < 0 (left sec-
tion, yellow) and x > 0 (right section, green) in which the cor-
responding SOI vectors α1̄ and α1 point in different directions
in the yz-plane. If the nanowire is in the topological regime
such that the Zeeman energy produced by a magnetic field
B applied along the nanowire dominates over the proximity-
induced superconductivity gap, bound states are formed inside
the gap. First, there are zero-energy Majorana bound states
(red area) localized at the nanowire ends x = ±L. Second,
there are fermionic bound states (blue area) at the interface
x = 0, where the SOI vector changes its direction. These
fermionic bound states are not fixed to zero energy and can
acquire any energy inside the gap depending on the relative
angle between the two SOI vectors α1̄ and α1.

when the direction of B is perpendicular to α. If the result-
ing Zeeman energy dominates over the proximity-induced
superconductivity gap in the nanowire, the system hosts
MBSs localized at the ends of the nanowire [4–6]. Below
we extend this well-known uniform model to the case of
non-uniform SOI, namely, to a setup in which the SOI
vector α(x) changes its direction as a function of posi-
tion along the nanowire. In what follows, without loss of
generality, we fix the direction of the SOI vector α to be
in the z direction for x < 0, while for x > 0 it lies in
the yz-plane,

α(x) =

{
α1̄ẑ, x < 0
α1(ẑ cosφ + ŷ sin φ), x > 0

. (1)

The kinetic part of the Hamiltonian is given by:

H0 =
∑

σ=±1

∫
dx Ψ †

σ(x)
[
−�

2∂2
x

2m
− μ(x)

]
Ψσ(x), (2)

where the fermionic annihilation operator Ψσ(x) removes
an electron (of charge e and effective mass m) with spin
σ = ±1 at the position x. The integral over x runs
over the entire wire of length 2L. The spin quantization
axis is chosen to be along the z direction. The chemi-
cal potential μ(x) is assumed to be uniform in each of
the two nanowire segments, but changes between the seg-
ments, where μ(x) ≡ μj is tuned to the corresponding
SOI energy ESOI,j = �

2k2
so,j/2m with the SOI wavevec-

tor kso,j = mαj/�
2. Here, j = −1, 1, distinguishes the left

(−L < x < 0) and the right (0 < x < L) segment of the
nanowire, respectively.
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The SOI term is written as:

HSOI = − i

2

∑
σ,σ′=±1

∫
dxΨ †

σ(x)([α(x) · σ]σσ′∂x

+ ∂x[α(x) · σ]σσ′ )Ψσ′(x), (3)

where σk are Pauli matrices with k = x, y, z. Here, we
use the symmetrized form of the SOI such that HSOI is
a hermitian operator. Any change of α(x) as function of
position x we shall consider in the following is assumed
to be smooth on the atomistic scale. This is for self-
consistency reasons, i.e., to preserve the validity of the ef-
fective Rashba or Dresselhaus SOI derived from the band-
structure in the low-energy and long-wavelength limit.

The magnetic field B applied along the x-axis such
that it always stays perpendicular to α(x) results in a
term

HZ =
∫

dx ΔZΨ †
σ(x)(σx)σσ′Ψσ′(x), (4)

where the Zeeman energy is given by ΔZ = gμBB/2,
with g being the g-factor and μB the Bohr magneton.

If the nanowire is placed in contact with an s-wave
superconductor, the proximity induced superconductivity
of strength Δsc is described by the term

HSC =
Δsc

2

∫
dx
[
Ψ †

1Ψ †
1̄
− Ψ †

1̄
Ψ †

1 + H.c.
]
. (5)

The total Hamiltonian under consideration is the sum of
all terms mentioned above and given by:

H = H0 + HSOI + HZ + HSC . (6)

The bulk energy spectrum is then readily obtained,

E2
±,j =

(
�

2k2

2m

)2

+ (αik)2 + Δ2
Z + Δ2

sc

± 2

√
Δ2

ZΔ2
sc +
(

�2k2

2m

)2 [
(αjk)2 + Δ2

Z

]
, (7)

where j = ±1 corresponds to the right/left segment of
the nanowire (see Fig. 1). Importantly, independent of the
SOI strength and of the SOI direction, the bulk spectrum
is gapless if ΔZ = Δsc for both nanowire segments. This
is a signature of the topological phase transition that sep-
arates the topological phase with zero-energy MBSs local-
ized at the nanowire ends from the trivial phase without
such bound states [4–6]. At the same time, the system in
the trivial phase can also host fermionic bound states with
their energy also lying inside the bulk gap [13]. However,
in contrast to MBSs, their energy is sensitive to local fluc-
tuations in the system parameters such as, for example,
the chemical potential [33]. In this work, we explore if it
is possible to generate FBSs simultaneously with MBSs,
i.e. in the topological phase. As we show below, the an-
swer is positive for non-uniform nanowires in which the
SOI vector changes its direction. In this case, the FBSs
are localized in the region of the nanowire where the SOI
vector α(x) rotates in space.

2.2 Numerical model

The Hamiltonian H introduced in the previous subsec-
tion (see Eq. (6)) can be modeled in the tight-binding
framework as:

Hn
0 =

N∑
i=1

∑
σ=±1

[
−tx

(
c†(i+1)σciσ + c†iσc(i+1)σ

)
+ μc†iσciσ

]
,

(8)

Hn
SOI = − i

2

N−1∑
i=1

∑
σ,σ′=±1

c†(i+1)σ [(ᾱi+1 + ᾱi) · σ]σσ′ ciσ′

+ H.c., (9)

Hn
Z =

N∑
i=1

∑
σ=±1

ΔZc†iσciσ̄ , (10)

Hn
sc =

N∑
i=1

Δsc

(
c†i1c

†
i1̄

+ ci1̄ci1

)
. (11)

Here, the hopping amplitude tx = �
2/(2ma2) sets the

width of the band, and a is the lattice constant (par-
enthetically, we note that the lattice constant a of the
tight-binding model is typically ten times smaller than
the Fermi wavelength but, for self-consistency, is implic-
itly assumed to be much larger than the true atomistic
lengthscale of the modeled semiconductor). The num-
ber of sites N in the chain sets the nanowire length
2L ≡ (N − 1)a. The SOI vector ᾱi determines the SOI
energy ESOI = ᾱ2

i /tx and is connected to the SOI vector
from the previous section via ᾱi = α|x=(i−N/2)a/(2a). In
what follows, we again consider the SOI vector to lie in
the yz-plane,

ᾱi = ᾱ(ẑ cosφi + ŷ sin φi). (12)

The angle φi varies from φ1 = 0 at the left end to φN = φ
at the right end of the nanowire. The SOI angle φ varies
as a function of position as:

φi =
φ

2
{1 + tanh [(2i − N − 1) /l]} . (13)

Here, l is the characteristic width over which the SOI
vector rotates. We distinguish two limiting cases. In the
first case, the SOI vector rotates rapidly over a distance l
much smaller than the Fermi wavelength λF = 2π/kF ,
i.e., l � λF , whereas in the second one, the SOI vector
rotates adiabatically, i.e., l � ξ > λF . Here ξ is the MBS
localization length. Again, for self-consistency we implic-
itly assume that l is larger than any atomistic scale of
the described semiconductor. Based on this model we can
find the various bound states numerically and compare
with the analytical solutions obtained in some limits as
we discuss in the following sections.
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3 Regime of strong spin orbit interaction

3.1 Linearized effective Hamiltonian

In this section, we focus on the regime of strong spin-orbit
interaction where the SOI energy ESOI is much larger
than the proximity gap Δsc and the Zeeman energy ΔZ .
Here, for a moment, we focus on the left section of the
nanowire x < 0, where the SOI vector is strictly along
the z-axis. We note that the eigenvectors for the right
section x > 0 can be obtained by rotating the spin basis
by an angle φ around the x-axis and by changing the SOI
strength.

The Hamiltonian H can be linearized around the Fermi
points, which are determined solely by the SOI and are
equal to kF0 = 0 and ±kF 1̄ = ±2kso,1̄. The electron anni-
hilation operator Ψσ(x) can be represented around these
Fermi points as a sum of slowly-varying right-[Rσ(x)] and
left-[Lσ(x)] moving fields

Ψ1(x) = R1e
2ikso,1̄x + L1, (14)

Ψ1̄(x) = R1̄ + L1̄e
−2ikso,1̄x. (15)

The kinetic part of the Hamiltonian Hkin = H0 + HSOI

then takes on the following form,

Hs
kin = −i�υF,1̄

∑
σ

∫
dx
(
R†

σ∂xRσ − L†
σ∂xLσ

)
, (16)

where the Fermi velocity υF,1̄ is given by υF,1̄ = �kso,1̄/m.
The Zeeman term is given by:

Hs
Z = ΔZ

∫
dx
(
R†

1̄
L1 + L†

1R1̄

)
, (17)

while the superconductivity term is given by:

Hs
SC =

Δsc

2

∫
dx
(
R†

1L
†
1̄
+ L†

1̄
R†

1 + H.c.
)

. (18)

The Hamiltonian density Hs is written in terms of the
Pauli matrices σi, ηi (acts on electron-hole space), and τi

(acts on right-/left-mover space) as:

Hs = �υF,1̄k̂τ3 + Δscσ2η2 + ΔZ (τ1σ1 − τ2σ2) η3/2, (19)

where k̂ = −i�∂x is the momentum operator [61]. The
corresponding bulk spectrum is given by:

E±
e = ±

√
(�υF,1̄k)2 + Δ2

sc, (20)

E±
i,± = ±

√
(�υF,1̄k)2 + (Δsc ± ΔZ)2, (21)

where the energy levels E±
e are twofold degenerate. As

was already shown above, the system is gapped for all
non-zero parameter values except when ΔZ = Δsc, which
correspond to the topological phase transition (see Fig. 2).
Moreover, we note that the bulk spectrum is independent
of the direction of the SOI vector in the yz-plane. Thus,
the bulk spectrum at the right section of the wire, x > 0,
is also given by equations (20) and (21) with the corre-
sponding exchange of the Fermi velocity υF,1̄ → υF,1.

0.1 0.2 0.3 0.4

-0.2

-0.1

0.1

0.2

Fig. 2. The energy spectrum of the nanowire with uniform
SOI, φ = 0, as function of the Zeeman energy ΔZ found in the
tight-binding model (see Eqs. (8)–(11)). The chain consists of
N = 100 sites. The parameters are chosen as ᾱ/tx = 0.3,
Δsc/tx = 0.2, and μ is tuned to ESOI . As expected, if ΔZ =
Δsc, the extended bulk states (black dots) move to zero energy
and close the gap. If ΔZ < Δsc, there are no bound states in
the gap. However, if ΔZ > Δsc, the system is in the topological
phase with two MBS at zero-energy (red dots). One MBS is
localized at the right and the other one at the left end of the
nanowire.

3.2 Bound states

Now we focus on bound states localized around x = 0,
i.e., at the interface between two sections of the nanowire
with different directions of the SOI vector. This case cor-
responds to a finite discontinuity in the SOI, i.e., to an
abrupt change of the SOI at the interface. In contrast to
MBSs which are always zero-energy bound states, FBSs
can also be at non-zero energy ε inside the bulk gap. The
spectrum of the FBSs can be found following standard
scattering theory approach (see Appendix A).

In what follows, we assume that the nanowire is in the
topological regime such that Δz > Δsc. Two MBSs are
localized at the nanowire ends: one at the left end x = −L
and one at the right end x = L, and both are not affected
by the change in the SOI vector rotation vector φ (see
Fig. 2). These MBSs stay at zero energy as long as they
do not overlap with each other [62,63] and with possible
FBSs localized around x = 0 (compare Figs. 3 and 4).
In this work we focus on FBSs and for details on MBS
wavefunctions we refer to reference [61].

To begin with, we show that if the SOI vectors are op-
posite in the two sections, i.e., φ = π, the interface at x = 0
hosts two zero-energy bound states, i.e., two MBSs [55].
The corresponding wavefunctions Φ

(i=1,2)
MBS (x) are of the

form, written in the basis (Ψ1, Ψ1̄, Ψ
†
1 , Ψ †

1̄
),

Φ
(i)
MBS(x) =

⎛
⎜⎝

fi(x)
gi(x)
f∗

i (x)
g∗i (x)

⎞
⎟⎠ . (22)

If we also assume for the sake of simplicity that
α1 = α1̄ = α in what follows, then the functions fi
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0.05
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Fig. 3. The energy spectrum of the nanowire in the topolog-
ical phase as function of the SOI angle φ calculated in the
tight-binding model (see Eqs. (8)–(11)). The chain consists of
N = 100 sites. The parameters are fixed to be ᾱ/tx = 0.3,
Δsc/tx = 0.2, and ΔZ/tx = 0.4, and μ is tuned to ESOI. There
is one MBS at the left nanowire end and one MBS at the right
nanowire end (red dots). In addition, there are two FBSs lo-
calized at x = 0 (blue dots) with energy depending on φ. In
particular, for opposite SOI vectors, φ = π, the FBSs are at
zero energy and, thus, degenerate with the MBSs, whereas for
φ = 0, 2π, the FBS merge with the extended bulk states (black
dots).

-0.1

0.1

-0.2

Fig. 4. The same as in Figure 3 except that the chain is shorter
with N = 30. If the FBSs localized at x = 0 (blue dots) are
away from zero energy, the MBSs localized at x = ±L (red
dots) stay at zero energy. However, if the FBS energy gets
close to zero, the two MBSs hybridize with each other via the
FBS states, and, thus, split away from zero energy.

and gi are given by:

f1 =

{
e−2iksoxex/ξ1 − ex/ξ2− , x < 0

e−x/ξ2− − e2iksoxe−x/ξ1 , x > 0
,

g1 = if∗
1 , (23)

f2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e−2iksoxex/ξ1(1 + iksoξ1)(ksoξ1 + ksoξ2−)

−2ex/ξ2− [1 + (ksoξ1)2](ksoξ2−), x < 0

ie2iksoxe−x/ξ1(1 + iksoξ1)

×[2(ksoξ1)(ksoξ2−) − i(ksoξ1 − ksoξ2−)], x > 0

,

g2 = if∗
2 , (24)

where we have introduced the SOI wavevector kso =
mα/�

2 and the localization lengths, ξ1 = �υF,1̄/Δsc and

a)

b)

Fig. 5. The wavefunction components of the FBS ((a),
blue dots) and of the MBS ((b), red dots) in the basis
(Ψ1, Ψ1̄, Ψ

†
1 , Ψ†

1̄
) obtained numerically from the tight-binding

model. The SOI vector is rotated by the angle φ = π/2 in the
right section. All other parameters are the same as in Figure 3.

ξ2− = �υF,1̄/(ΔZ − Δsc). As can be seen from equa-
tion (24), the wavefunctions are involved even for the sim-
ple special case of φ = π. We note here that the MBS local-
ization length ξ is determined by the longest localization
length, ξ = max{ξ1, ξ2−}, and thus depends on the ratio
between Δsc and ΔZ . This result is in stark contrast to
reference [55], which finds just ξ = ξ2−.

Next, we focus on the deviations of the rotation angle φ
from the special value φ = π. The accidental two-fold de-
generacy for FBSs being filled and unfilled gets lifted, and
the corresponding energy level goes away from zero. In
general, the eigenvalue equation obtained from the bound-
ary conditions is too involved to be solved analytically for
all parameter values (see Fig. 5). However, one can demon-
strate that the energy of the FBS grows linearly as the SOI
rotation angle slightly deviates from φ = π,

ε(φ) = ±Δsc

(
1 − Δsc

ΔZ

)
(φ − π). (25)

A general remark is in order here. The energies of the FBSs
are excitation energies, and thus only the non-negative en-
ergy values are physical, whereas the negative energies are
spurious resulting from the formal doubling of the degrees
of freedom in the Nambu representation used here. Still,
following standard practice, we will always show the full
spectrum with positive and negative energies.

In addition, in the special case ΔZ = 2Δsc, the
problem simplifies considerably such that the FBS spec-
trum can be found analytically for all angle values and is
given by:

ε = ±Δsc cos(φ/2). (26)

http://www.epj.org
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In general, the FBS energy moves inside the energy gap
as a function of φ. When the SOI vectors are aligned in
opposite directions, φ = π, the bound states are at zero
energy. However, if the SOI vectors are not collinear, the
FBS energy is finite (see Fig. 3). Moreover, the FBS disap-
pear in the continuum if φ = 0 when there is no interface
around x = 0 and the SOI is (locally) uniform.

4 Regime of weak spin-orbit interaction

4.1 Linearized effective Hamiltonian

In this section, we focus on the weak SOI regime (or alter-
natively, on the regime of a strong magnetic field) in which
the Zeeman energy dominates over the SOI energy and the
superconducting pairing, ΔZ � ESOI , Δsc. In this case,
the spins are almost aligned along the magnetic field in the
x-direction. The SOI vector, which lies in the yz-plane at
the angle φ to the z-axis, tilts the spins slightly into the
yz-plane. As a result, the wavefunction at the Fermi level
in the absence of the superconductivity is given in the
basis (Ψ1, Ψ1̄) by:

φ
R/L
0 =

1√
2

(
−1 ± eiφ kso

kF

1 ± eiφ kso

kF

)
e±ikF x, (27)

where we only keep terms up to linear order in kso/kF .
Here, the Fermi wavevector ±kF is solely determined
by the magnetic field, kF =

√
2mΔZ/�. The plus (mi-

nus) sign corresponds to the right (left) mover with the
wavevector kF (−kF ).

The kinetic energy is written in terms of slowly-varying
right [R(x)] and left [L(x)] movers as:

Hw
kin = −i�υF

∫
dx [R(x)†∂xR(x) − L(x)†∂xL(x)].

(28)

The superconducting term is obtained directly from
equation (5),

Hw
SC =

∫
dx Δ̄sc[e−iφR†(x)L†(x) + H.c.], (29)

where the superconductivity strength is given by:

Δ̄sc = eiφΔsc(φR
0 )∗ · (iσ2)(φL

0 )∗ = 2Δsc
kso

kF
. (30)

As can be seen from the form of Hw
SC , the SOI rotation

angle φ takes the role of the superconducting phase. As a
result, it is possible to generate Josephson currents in the
nanowires brought into the contact with an s-wave super-
conductor with a uniform superconducting phase [55]. The
amplitude of the generated current is strongest for φ = π
and vanishes in spatially uniform nanowires with φ = 0.

Again, the spectrum of the total Hamiltonian Hw =
Hw

kin + Hw
SC is independent of the direction of the SOI

vector in the yz-plane,

E± = ±
√

(�υF k)2 + Δ̄2
sc. (31)

4.2 Bound states

Next, we explore the presence of localized states at the
interface at x = 0 where the SOI vector changes its direc-
tion. Without loss of generality, we assume that φ is fixed
to zero in the negative section of the nanowire and can
vary from 0 to 2π in the positive section (see Appendix B).
The spectrum of the localized states is given by:

ε±(φ) = ±Δ̄sc cos(φ/2). (32)

This analytical formula is in good agreement with the
numerical results shown in Figure 3. The corresponding
wavefunctions are given by:

Φ+(x) =
(

e−iφ/2

1

)
eikF xe−|x|/ξ (33)

Φ−(x) =
(

e−iφ/2

1

)
e−ikF xe−|x|/ξ, (34)

where the localization length is given by:

ξ = �υF /
[
Δ̄sc sin(φ/2)

]
.

Here, the basis (Ψ0, Ψ
†
0 ) is composed of the operator Ψ0

that correspond to the annihilation operator acting on
electrons in the lowest Zeeman-field-split subband that are
spin-polarized along the x-axis (see Eq. (27)). In passing,
we note that, as follows from equation (32), the Josephson
current driven through the junction is similar to the one
with MBSs [1,55,64] and is 4π periodic. By changing the
direction of the SOI vector, for example, by rotating an
externally applied electric field in the yz-plane, one can
generate an ac Josephson current.

We confirm again that the FBSs are at zero-energy
if φ = π [55]. Moreover, the FBS energy level moves
smoothly as a function of the SOI rotation angle inside
the gap Δ̄sc until it disappears in the bulk spectrum at
φ = 0. As expected, the localization length ξε is the longer
the closer the energy level is to the edge of the bulk gap.
Interestingly, the electron and hole components of the FBS
wavefucntions Φ±(x) differ only by the phase irrespective
of the energy ε±. Thus, the charge of the FBSs is zero.
However, we recall that this result is valid only as long as
corrections of order kso/kF are neglected. To check this
property, we also calculated the charge numerically and
found that the non-zero charge corrections are at most a
few percent of e and thus indeed negligibly small.

5 Double SOI-junction

In this section, we consider a double junction composed
of two SOI-junction considered above. The two junctions
are separated by a distance 2w from each other such that
the SOI vector is given by:

α(x) =

⎧⎪⎨
⎪⎩

α1̄ẑ, −L < x < −w

α1(ẑ cosφ + ŷ sin φ), −w < x < w

α1̄ẑ, w < x < L.

(35)
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Fig. 6. The energy spectrum of the nanowire in the topological phase with a double SOI-junction as function of the junction
half-width w as numerically obtained in the tight-binding model (see Eqs. (8)–(11)). The chain consists of N = 300 sites. The
SOI vector rotation along the chain is described by equation (35) with φ0 = π (a), (c) and φ0 = 4π/5 (b) and (d). The two
initially independent FBS (blue dots) hybridize as the double junction gets shorter. (a), (b) Strong SOI regime (ᾱ/tx = 0.2,
Δsc/tx = 0.02, and ΔZ/tx = 0.05), the energy of hybridized states exhibits Friedel oscillations and even periodically returns to
zero-energy. (c), (d) Weak SOI regime (ᾱ/tx = 0.1, Δsc/tx = 0.2, and ΔZ/tx = 0.4), Friedel oscillations are nearly visible, and
the FBS level smoothly merges with the bulk (black dots) as w gets small. The MBSs (red dots) at each wire end coexist with
the FBSs.

Here, we assume the double junction to be symmetric
around x = 0 such that the FBSs are at the same en-
ergy at each of two SOI-junctions in the limit of large w,
i.e., w � ξ. First, such a situation maximizes the degree of
hybridization between them (compare with the hybridiza-
tion between FBSs and MBSs in Fig. 4). Second, this al-
lows us to go the limit of small separation, w ≈ λF , where
the effect of the SOI-junctions effectively vanishes. In this
limit, the nanowire becomes again spatially uniform, and
thus the FBSs will merge with the bulk states (see Fig. 6).
On the other hand, in the intermediate regime of w ≈ ξ,
the two overlapping FBSs hybridize into symmetric and
antisymmetric states with energies distinct from the ones
obtained for a single SOI-junction. The energy splitting
between the two hybridized states depends on the system
parameters as shown in Figure 6.

In the regime of strong SOI, the components of the
FBS wavefunction (see, for example, Eq. (23)) not only
exponentially decay away from the SOI-junction but also
oscillate with the wavevector 2kF . As a consequence, the
overlap between the two FBS wavefunctions, and thus the
splitting between them, is also an oscillating function (see
Figs. 6a and 6b). Moreover, as expected, these Friedel
oscillations are highly sensitive to the width w and get
stronger as the double junction shrinks. The amplitude of
the oscillations can become so large that the FBS energy
could even go back to zero.

In the opposite regime of weak SOI, however, the
structure of the FBS wavefunction (see Eq. (33)) is such

that Friedel oscillations are nearly absent. This is in good
agreement with the numerical results presented in Fig-
ures 6c and 6d. The two hybridized FBS have almost the
same energy and smoothly merge with the bulk states with
vanishing width w.

6 Smooth rotation of SOI

In contrast to the previous sections, in which the SOI vec-
tor changes its direction abruptly at x = 0, in this section,
the SOI vector rotates smoothly as function of position x.
Without loss of generality, we assume that the SOI vector
rotation angle φ(x) is given by:

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x ≤ 0,

φ0x/�, 0 < x < �,

φ0, x ≥ �,

(36)

where � is a characteristic length that determines the adi-
abaticity of the SOI vector rotation. The choice of the lin-
ear change of the phase as a function of the coordinate x
is motivated by the fact that in this particular case we
can find explicit eigenstates of the effective Hamiltonian
Hw

kin+Hw
sc in the regime of weak SOI (Eqs. (28) and (29)),

see Appendix C for details. The general expression for the
bound state energy is too involved to be reproduced here,
and, instead, we show only a limiting case below.
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Fig. 7. The energy spectrum of the nanowire in the topological
phase as function of the characteristic SOI width l as numeri-
cally found in the tight-binding model (see Eqs. (8)–(11)). The
chain consists of N = 300 sites. The parameters are fixed to
be ᾱ/tx = 0.1, Δsc/tx = 0.2, and ΔZ/tx = 0.4, and μ = ESOI .
The SOI vector rotates in total by the angle φ = π (a) and
φ = π/2 (b). The MBSs (red dots) are not affected by the
width of the SOI. In contrast, the FBS energy (blue dots) is
sensitive to l. The smoother the variation the closer is the FBS
energy to the edge of the gap (black dots). In general, if the SOI
variation is smooth on the Fermi wavelength scale λF (here,
λF /a ≈ 10), the FBS level merges with the bulk.

We consider a limit in which the SOI vector rotates
over distances much smaller than the Fermi wavelength
λF = 2π/kF , � � λF , and, thus, much smaller than the
localization length ξε. This limit is the closest to the case of
an abrupt change considered above (see Eq. (32)). We find
that there is a trend to the repulsion of the energy levels
from the zero energy towards to the bulk gap (see Fig. 7).
In particular, the twofold degeneracy of zero-energy states
at φ = π gets lifted. This behavior remains hidden in an
approach based on Chern numbers [55].

The energy spectrum is given by:

E± = ±Δ̄sc cos
(

φ

2

)
± Δ̄2

sc�

�υF

2 − 2 cosφ − φ sin φ

2φ
. (37)

All these finding are consistent with our numerical results
(see Fig. 7). The energy level disappears in the bulk if the
SOI vector rotates more slowly than any characteristic
length in the problem, � > ξε = �υF /

√
Δ̄2

sc − ε2 � 1/kF .

7 Conclusions and outlook

We have studied FBSs in nanowires with a spatially non-
uniform SOI and found that they can coexist with MBSs
in the topological phase. In particular, we explored the
dependence of their energy on the rotation angle φ of the
SOI vector along the nanowire. In general, the FBS state
can assume any energy value inside the gap depending
on φ, in contrast to MBSs which are truly stable and re-
main at zero energy as long as the MBSs do not overlap.
Specifically, if the SOI vector rotates abruptly, the FBS
energy level moves from zero at φ = π to the gap en-
ergy at φ = 0. However, if the SOI rotates adiabatically
the FBSs are absent (merged with the bulk states). Non-
uniform SOI with FBSs can arise from varying Rashba
SOI induced by varying electric field directions along the
wire [56,57,65–69], from Dresselhaus SOI [57,58] due to
discontinuities in the crystallographic structure (like in
T -junctions of wires), or from domain walls in rotating
Zeeman fields [13,55] or RKKY systems [15–17] proposed
for MBSs. In our work we focussed on solid-state systems
as mentioned above. However, we note that the effects
discussed here can also be implemented in cold atom and
optical lattice systems [70] where topological phases in
one-dimensional systems of the type considered here have
been proposed [71].

Next, under certain conditions, FBSs can interfere
with topological quantum computing schemes which have
been proposed for MBSs in wire networks [59]. As an out-
look for further work, let us mention briefly three such
scenarios in a qualitative manner.

First, it was shown that non-overlapping MBSs can
hybridize via the medium, e.g via the bulk superconduc-
tor which induces the proximity gap in the nanowire [72].
Similarly, FBSs could also serve as an effective medi-
ator of hybridization between two distant MBSs which
can have wavefunction overlap via the fermionic intragap
state. However, this coupling is efficient only for FBSs at
energies close to zero (see Fig. 4) since otherwise the over-
lap of wavefunctions is exponentially suppressed.

Second, the FBSs can trap quasiparticles and con-
tribute to the decoherence time of logical qubits based on
MBSs [73]. At any finite temperature, quasiparticle excita-
tions in the bulk superconductor [74–76] tend to minimize
their energy by occupying lower energy states such as the
ones, for instance, provided by the FBS described in this
work. Consider now a pair of well-separated MBSs that is
filled with a quasiparticle. For braiding one envisions to
move the MBSs through the wire [59]. In particular, if a
MBS now is moved through a nanowire section that hosts
a FBS filled with a trapped quasiparticle, then there is
a finite probability that the quasiparticle shared by the
MBS pair and the quasiparticle localized in the FBS over-
lap and form a Cooper pair which then is absorbed by
the superconducting condensate. As a result, the parity
of the MBS subsystem changes and thus the coherence of
the logical qubit based on MBSs is lost.

Third, if the FBS sits at zero energy, it can be rep-
resented as two MBSs. If one additional MBS is passing
through this FBS (during a braiding operation), it might
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not be guarantueed in general that these two MBS form-
ing the FBS will return to their initial state at the end of
the operation, with the third MBS again being far away
from the FBS. If this is not the case, then one might
expect that the braiding will be affected non-trivially
by the presence of such a FBS. This then might be
in contrast to the situation when all (three) MBS are
moved together [77]. However, this question requires fur-
ther investigation which is beyond the scope of this work.

Next, we also considered symmetric double junctions
and showed that they contain double FBS that can hy-
bridize. This behavior is very much reminiscent of double
quantum dots [78,79], which suggests that such double
FBS, being effectively spinless, can serve as a promis-
ing platform for conventional charge qubits. Indeed, as
we have seen, the amount of charge of an FBS is rather
small, especially in the weak SOI regime. This implies that
the direct coupling to electric field fluctuations due to e.g.
external voltage gates will be correspondingly small. On
the other hand, fluctuations of a Rashba SOI field will
also induce level fluctuations of the FBS and thus act as
dephasing source. This might be less the case for double
junctions induced by non-uniform Dresselhaus SOI which
is independent of gates. Nevertheless, these considerations
suggests that such charge qubits, embedded in a topologi-
cal superconductor, might be rather well protected against
environmental noise and, thus, enjoy unusually large de-
phasing times, especially the closer their energy is to zero.

Finally, the presence and location of the FBS can serve
as a detection tool of possible discontinuities of the SOI,
whereby a transport measurement of the type discussed
in references [34,35] can reveal the energy of the FBS and
thus the rotation angle of the SOI-junction. Alternatively,
the presence of the FBSs can be probed by STM measure-
ments of the local density of states at the interface [80].

To conclude, the understanding of FBSs is not only
interesting on its own, but such bound states can also
have a variety of interesting effects and applications which
deserve further exploration. It also seems worthwhile to
search for them experimentally.

We acknowledge support from the Harvard Quantum Optical
Center and from the Swiss NSF and NCCR QSIT.

Appendix A: Scattering theory approach:
strong spin-orbit interaction

The spectrum of the FBSs can be found following standard
scattering theory approach. In this section we focus on the
strong SOI regime defined in Section 3.

First, we identify eigenstates of Hs both at the left
and right section of the nanowire at a given energy ε. In
addition, for a moment, we focus on an infinite nanowire
and impose the boundary condition only in the middle of
the nanowire at x = 0 and not at the nanowire ends at
x = ±L. This limit is valid if the length 2L of the nanowire
length is much larger than the localization lengths of

the FBSs and MBSs. As a result, only spatially decay-
ing eigenstates of H can be normalized, thus, we neglect
all growing eigenstates.

The four eigenstates decaying in the left segment x < 0
are given in the basis Ψ = (Ψ1, Ψ1̄, Ψ

†
1 , Ψ †

1̄
) by:

ΦL
1 =

⎛
⎜⎜⎜⎝

ie−i(φ1+2kso,1̄x)

e2ikso,1̄x

−ie−i(φ1−2kso,1̄x)

e−2ikso,1̄x

⎞
⎟⎟⎟⎠ e

x
χ1 , (A.1)

ΦL
2 =

⎛
⎜⎜⎜⎝

e−i(φ1+2kso,1̄x)

ie2ikso,1̄x

e−i(φ1−2kso,1̄x)

−ie−2ikso,1̄x

⎞
⎟⎟⎟⎠ e

x
χ1 , (A.2)

ΦL
3 =

⎛
⎜⎜⎜⎝

1
−ie−iφ2−

1
ie−iφ2−

⎞
⎟⎟⎟⎠ e

x
χ2− , (A.3)

ΦL
4 =

⎛
⎜⎜⎜⎝

−i

e−iφ2+

i

e−iφ2+

⎞
⎟⎟⎟⎠ e

x
χ2+ , (A.4)

where we used the notations

eiφ1 =
(√

ε2 − Δ2
sc + iε

)
/Δsc, (A.5)

eiφ2± =
(√

ε2 − (Δsc ± ΔZ)2 + iε

)
/ (Δsc ± ΔZ) .

(A.6)

The localization lengths are given by:

χ1 = �υF,1̄/
√

ε2 − Δ2
sc, (A.7)

χ2± = �υF,1̄/
√

ε2 − (Δsc ± ΔZ)2. (A.8)

Similarly, we can find the four eigenstates decaying in the
right segment of the nanowire, i.e., for x > 0,

ΦR
1 =

⎛
⎜⎜⎜⎜⎝

e−2ikso,1x cos(φ/2) + e−i(φ1−2kso,1x) sin(φ/2)

ie−2ikso,1x sin(φ/2) − ie−i(φ1−2kso,1x) cos(φ/2)

e2ikso,1x cos(φ/2) + e−i(φ1+2ikso,1)x sin(φ/2)

−ie2ikso,1x sin(φ/2) + ie−i(φ1+2kso,1x) cos(φ/2)

⎞
⎟⎟⎟⎟⎠

× e
− x

χ1 , (A.9)

ΦR
2 =

⎛
⎜⎜⎜⎜⎝
−ie−2ikso,1x cos(φ/2) + ie−i(φ1−2kso,1x) sin(φ/2)

e−2ikso,1x sin(φ/2) + e−i(φ1−2kso,1x) cos(φ/2)

ie2ikso,1x cos(φ/2) − ie−i(φ1+2kso,1x) sin(φ/2)

e2ikso,1x sin(φ/2) + e−i(φ1+2kso,1x) cos(φ/2)

⎞
⎟⎟⎟⎟⎠

× e−
x

χ1 , (A.10)
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ΦR
3 =

⎛
⎜⎜⎜⎝

cos(φ/2) − eiφ2− sin(φ/2)

i[eiφ2− cos(φ/2) + sin(φ/2)]

cos(φ/2) − eiφ2− sin(φ/2)
−i[eiφ2− cos(φ/2) + sin(φ/2)]

⎞
⎟⎟⎟⎠

× e
− x

χ2− ,

ΦR
4 =

⎛
⎜⎜⎜⎝
−i[cos(φ/2) + eiφ2+ sin(φ/2)]

−eiφ2+ cos(φ/2) + sin(φ/2)

i[cos(φ/2) + eiφ2+ sin(φ/2)]

−eiφ2+ cos(φ/2) + sin(φ/2)

⎞
⎟⎟⎟⎠ e

− x
χ2+ , (A.11)

where the Fermi velocity υF,1 should be used instead of
υF,1̄ in the above expressions for the localization lengths.

Next, we impose the boundary condition on the com-
bination of these eigenstates. If the boundary conditions
can be satisfied at some energy ε, then there is a bound
state. In general, the FBS wavefunction should be a linear
superposition of decaying eigenstates,

Φ(x) =

{∑
i aiΦ

L
i , x ≤ 0,∑

i biΦ
R
i , x ≥ 0,

(A.12)

where ai and bi are determined by the boundary con-
ditions. The boundary condition on the wavefunction at
x = 0 are given by the continuity condition

Φσ(x = 0+) = Φσ(x = 0−), (A.13)

Φ†
σ(x = 0+) = Φ†

σ(x = 0−). (A.14)

In addition, by integrating the Shrödinger equation for the
total Hamiltonian (see Eq. (6)) around x = 0, we find the
condition on the derivatives of the wavefunction,

∂xΦσ(x = 0+) − ∂xΦσ(x = 0−)

= i(m/�
2)[(α1 − α1̄) · σ]σσ′Φσ′(x = 0), (A.15)

∂xΦ†
σ(x = 0+) − ∂xΦ†

σ(x = 0−)

= −i(m/�
2)[(α1 − α1̄) · σT ]σσ′Φ†

σ′(x = 0),
(A.16)

with implied summation over repeated spin indices. The
discontinuity in the derivatives arises from the discontinu-
ity of the SOI term at x = 0.

Appendix B: Scattering theory approach:
weak spin-orbit interaction

Two decaying eigenstates of the total Hamiltonian in the
weak spin-orbit regime Hw = Hw

kin +Hw
SC at energy ε are

given by:

Φ±L =

(
± ε±i

√
Δ̄2

sc−ε2

Δ̄sc

1

)
e±ikF xex/ξε (B.1)

in the left section of the nanowire x < 0 and by

Φ±R =

(
± ε∓i

√
Δ̄2

sc−ε2

Δ̄sc

eiφ

)
e±ikF xe−x/ξε (B.2)

in the right section of the nanowire x > 0. Here, the lo-
calization length depends on the separation of the en-
ergy level ε from the bulk gap and is given by ξε =
�υF /

√
Δ̄2

sc − ε2. Again, the boundary conditions result
an eigenvalue equation for the energy of the bound state ε
(see Appendix A).

Appendix C: Scattering theory approach:
smooth rotation

Two decaying eigenstates of the total Hamiltonian Hw
kin +

Hw
sc in the left and right sections of the double junc-

tion introduced in Section 5 are given by equations (B.1)
and (B.2) correspondingly. In the central section of the
nanowire 0 < x < �, there are four eigenstates

Φ
(p)
±C =

(
e−iφ0x/2�

eiφ0x/2�∓iθp

)
eipkF xe∓x/ξε,p , (C.1)

where the localization lengths are given by:

ξε,p =
2L√

(2Δ̄sc�/�υF )2 − (2ε�/�υF + pφ0)2
. (C.2)

Here, the label p takes the values ±1. We also introduced
the new notation

e±iθp =

2E�/�υF + pφ0 ± i
√

(2Δ̄sc�/�υF )2 − (2ε�/�υF + pφ0)2

2Δ̄sc�/�υF
.

(C.3)

After finding the eigenstates of the Hamiltonian, we follow
standard procedure and impose the boundary conditions
on the wavefunction Φ(x) and its derivative at the two
interfaces

Φ(x = 0+) = Φ(x = 0−), (C.4)

∂xΦ(x = 0+) = ∂xΦ(x = 0−), (C.5)

Φ(x = �+) = Φ(x = �−), (C.6)

∂xΦ(x = �+) = ∂xΦ(x = �−), (C.7)

where Φ(x) is defined as a linear combination

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

∑
j=±1 ajΦjR x ≤ 0,∑
j=±1(cjΦ

(1)
jC + djΦ

(2)
jC ) 0 < x < �,∑

j=±1 bjΦjL x ≥ L.

(C.8)

If equations (C.4)–(C.7) can be satisfied at some energy ε,
ε < Δ̄sc, for non-zero values for the coefficients aj , bj ,
cj, and dj , then there is a bound state of the energy ε
localized at the interface x ∈ (0, �).
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