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Fermionic neural-network states for ab-initio
electronic structure
Kenny Choo1✉, Antonio Mezzacapo2✉ & Giuseppe Carleo3✉

Neural-network quantum states have been successfully used to study a variety of lattice and

continuous-space problems. Despite a great deal of general methodological developments,

representing fermionic matter is however still early research activity. Here we present an

extension of neural-network quantum states to model interacting fermionic problems. Bor-

rowing techniques from quantum simulation, we directly map fermionic degrees of freedom

to spin ones, and then use neural-network quantum states to perform electronic structure

calculations. For several diatomic molecules in a minimal basis set, we benchmark our

approach against widely used coupled cluster methods, as well as many-body variational

states. On some test molecules, we systematically improve upon coupled cluster methods

and Jastrow wave functions, reaching chemical accuracy or better. Finally, we discuss routes

for future developments and improvements of the methods presented.
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P
redicting the physical and chemical properties of matter
from the fundamental principles of quantum mechanics is a
central problem in modern electronic structure theory. In

the context of ab-initio quantum chemistry (QC), a commonly
adopted strategy to solve for the electronic wave-function is to
discretize the problem on finite basis functions, expanding the full
many-body state in a basis of anti-symmetric Slater determinants.
Because of the factorial scaling of the determinant space, exact
approaches systematically considering all electronic configura-
tions, such as the full configuration interaction (FCI) method, are
typically restricted to small molecules and basis sets. A solution
routinely adopted in the field is to consider systematic corrections
over mean-field states. For example, in the framework of the
coupled cluster (CC) method1,2, higher level of accuracy can be
obtained considering electronic excitations up to doublets, in
CCSD, and triplets in CCSD(T). CC techniques are routinely
adopted in QC electronic calculations, and they are often con-
sidered the “gold standard” in ab-initio electronic structure.
Despite this success, the accuracy of CC is intrinsically limited in
the presence of strong quantum correlations, in turn restricting
the applicability of the method to regimes of relative weak
correlations.

For strongly correlated molecules and materials, alternative,
non-perturbative approaches have been introduced. Most nota-
bly, both stochastic and non-stochastic methods based on varia-
tional representations of many-body wave-functions have been
developed and constantly improved in the past decades of
research. Notable variational classes for QC are Jastrow–Slater
wave-functions3, correlated geminal wave-functions4, and matrix
product states5–7. Stochastic projection methods systematically
improving upon variational starting points are for example the
fixed-node Green’s function Monte Carlo8 and constrained-path
auxiliary field Monte Carlo9. Main limitations of these methods
stem, directly or indirectly, from the choice of the variational
form. For example, matrix-product states are extremely efficient
in quasi-one-dimensional systems, but suffer from exponential
scaling when applied to larger dimensions. On the other hand,
variational forms considered so-far for higher dimensional sys-
tems typically rely on rigid variational classes and do not provide
a systematic and computationally efficient way to increase their
expressive power.

To help overcome some of the limitations of existing varia-
tional representations, ideas leveraging the power of artificial
neural networks (ANN) have recently emerged in the more
general context of interacting many-body quantum matter. These
approaches are typically based on compact, variational para-
meterizations of the many-body wave-function in terms of
ANN10. These approaches to fermionic problems are however
comparatively less explored than for lattice spin systems. Two
main conceptually different implementations have been put for-
ward. In the first, fermionic symmetry is encoded directly at the
mean field level, and ANNs are used as a positive-definite cor-
relator function11. Main limitation of this ansatz is that the nodal
structure of the wave function is fixed, and the exact ground state
cannot, in principle, be achieved, even in the limit of infinitely
large ANN. The second method is to use ANNs to indirectly
parameterize and modify the fermionic nodal structure12–15. In
this spirit, “backflow” variational wave functions16,17 with flexible
symmetric orbitals have been introduced13,14, and only very
recently applied to electronic structure18,19.

In this article, we provide an alternative representation of fer-
mionic many-body quantum systems based on a direct encoding
of electronic configurations. This task is achieved by mapping the
fermionic problem onto an equivalent spin problem, and then
solving the latter with spin-based neural-network quantum states.
Using techniques from quantum information, we analyze different

model agnostic fermion-to-spin mappings. We show results for
several diatomic molecules in minimal Gaussian basis sets, where
our approach reaches chemical accuracy (<1 kcal/mol) or better.
The current challenges in extending the method to larger basis sets
and molecules are also discussed.

Results
Electronic structure on spin systems. We consider many-body
molecular fermionic Hamiltonians in second quantization form-
alism,

H ¼
X

i;j

tij c
y
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uijkm c
y
i c

y
kcmcj; ð1Þ

where we have defined fermionic annihilation and creation

operators with the anticommutation relation fcyi ; cjg ¼ δi;j on N

fermionic modes, and one- and two-body integrals tij and uijkm.
The Hamiltonian in Eq. (1) can be mapped to interacting spin
models via the Jordan–Wigner20 mapping, or the more recent
parity or Bravyi–Kitaev21 encodings, which have been developed
in the context of quantum simulations. These three encodings can
all be expressed in the compact form
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where we have defined an update U(j), parity P(j), and remainder
R(j) sets of spins, which depend on the particular mapping

considered22,23, and σ
ðx;y;zÞ
i denote Pauli matrices acting on site i.

In the familiar case of the Jordan–Wigner transformation, the
update, parity, and remainder sets become U(j)= j, P(j)= {0,
1, ... j− 1}, R(j)= P(j), and the mapping takes the simple form
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where σ
þð�Þ
j ¼ ðσxj þ ð�Þiσ

y
j Þ=2. For all the spin encodings con-

sidered, the final outcome is a spin Hamiltonian with the general
form

Hq ¼
X

r

j¼1

hjlσ j; ð4Þ

defined as a linear combination with real coefficients hj of σj, N-
fold tensor products of single-qubit Pauli operators I, σx, σy, σz.
Additionally, under such mappings, there is a one to one corre-
spondence between spin configuration σ

! and the original particle
occupations n!σ . In the following, we will consider the interacting
spin Hamiltonian in Eq. (4) as the starting point for our varia-
tional treatment.

Neural-network quantum states. Once the mapping is per-
formed, we use neural-network quantum states (NQS) introduced
in ref. 10 to parametrize the ground state of the Hamiltonian in
Eq. (4). One conceptual interest of NQS is that, because of the
flexibility of the underlying non-linear parameterization, they can
be adopted to study both equilibrium24,25 and out-of-
equilibrium26–31 properties of diverse many-body quantum sys-
tems. In this work, we adopt a simple neural-network para-
meterization in terms of a complex-valued, shallow restricted
Boltzmann machine (RBM)10,32. For a system of N spins, the
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many-body amplitudes take the compact form

ΨMð σ
!
;WÞ ¼ e
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aiσ
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Here,W are complex-valued network parametersW ¼ fa; b;Wg,
and the expressivity of the network is determined by the hidden
unit density defined by α=M/N whereM is the number of hidden
units. The simple RBM ansatz can efficiently support volume-law
entanglement33–36, and it has been recently used in several
applications37.

One can then train the ansatz given in Eq. (5) with a variational
learning approach known as variational Monte Carlo (VMC), by
minimizing the energy expectation value

EðWÞ ¼
hΨM jHqjΨMi

hΨM jΨMi
: ð7Þ

This expectation value can be evaluated using Monte Carlo
sampling using the fact that the energy (and, analogously, any
other observable) can be written as

EðWÞ ¼
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where we have defined the local energy
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Given samples M drawn from the distribution jΨMð σ
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Þj2
P
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the average over the samples ÊðWÞ ¼ Elocð σ
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M
gives an

unbiased estimator of the energy. Note that the computational
cost of evaluating the local energy depends largely on the sparsity
of the Hamiltonian Hq. In generic QC problems, this cost scales in
the worst case with OðN4Þ, as compared to the linear scaling in
typical condensed matter systems with local interaction.

Sampling from jΨMð σ
!Þj2 is performed using Markov chain

Monte Carlo (MCMC), with a Markov chain σ
!
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2 ! ¼ constructed using the Metropolis–Hastings algo-
rithm38. Specifically, at each iteration, a configuration σ
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The sample M then corresponds to the configurations of
the Markov chain downsampled at an interval K, i.e.,
f σ!0; σ

!
K ; σ
!

2K ; ¼ g. For the simulations done in this work,
we typically use K= 10N with a sample size of approximately
100,000.

Since the Hamiltonians we are interested in have an underlying
particle conservation law, it is helpful to perform this sampling in
the particle basis n!σ rather than the corresponding spin basis σ

!.
The proposed configuration σ

!
prop at each iteration, then

corresponds to a particle hopping between orbitals. Once a
stochastic estimate of the expectation values is available, as well as
its derivatives w.r.t. the parameters W, the ansatz can be
optimized using the stochastic reconfiguration method39,40,
closely related to the natural-gradient method used in machine
learning applications10,41.

Computational complexity. The main computational cost of the
procedure arises from the evaluation of the local energy (Eq. (5))
of the samples generated. This gives an overall computational
complexity of OðNvar ´Nop ´NsampÞ where Nvar=MN+M+N

is the number of parameters in the network, Nop is the number of
Pauli strings in the spin Hamiltonian defined by Eq. (4) and
Nsamp is sample size.

However, as can be seen in Fig. 2, there are only small number
of relevant configurations in the wavefunction, thus each sample
M only contains a few unique configurations. By caching
amplitudes ΨMð σ

!Þ the computational cost can be significantly
reduced to OðNvar ´Nop ´NuniqueÞ where Nunique≪Nsamp is the
average number of unique configurations in each sample.
Typically, for a sample size of 10,000 there are only about few
hundred unique samples.

Potential energy surfaces. We first consider small molecules in a
minimal basis set (STO-3G). We show in Fig. 1 the dissociation
curves for C2 and N2, compared to the CCSD and CCSD(T). It
can be seen that on these small molecules in their minimal basis,
the RBM is able to generate accurate representations of the
ground states, and remarkably achieve an accuracy better than
standard QC methods. To further illustrate the expressiveness of
the RBM, we show in Fig. 2 the probability distribution of the
most relevant configurations in the wavefunction. We contrast
between the RBM and configuration interaction limited to single

a b

Fig. 1 Dissociation profiles. The accuracy of fermionic neural-network quantum states compared with other quantum chemistry approaches. Shown here

are dissociation curves for a C2 and b N2, in the STO-3G basis with 20 spin-orbitals. The RBM used has 40 hidden units, and it is compared to both

coupled-cluster approaches (CCSD, CCSD(T)) and FCI energies.
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and double excitations (CISD). In CISD, the Hilbert space is
truncated to include only states which are up to two excitations
away from the Hartree–Fock configuration. It is clear from the
histogram that the RBM is able to capture correlations beyond
double excitations.

Alternative encodings. The above computations were done using
the Jordan–Wigner mapping. To investigate the effect of the
mapping choice on the performance of the RBM, we also per-
formed select calculations using the parity and Bravyi–Kitaev
mappings. All the aforementioned transformations require a
number of spins equal to the number of fermionic modes in the
model. However, the support of the Pauli operators wj= ∣σj∣ in
Eq. (4), i.e., the number of single-qubit Pauli operators in σj that
are different from the identity I, depends on the specific mapping
used. Jordan–Wigner and parity mappings have linear scalings
wj=O(N), while the Bravyi–Kitaev encoding has a more favor-
able scaling wj ¼ Oðlog ðNÞÞ, due to the logarithmic spin support
of the update, parity, and remainder sets in Eq. (2). Note that one
could in principle use generalized superfast mappings42, which
have a support scaling as good as wj ¼ Oðlog ðdÞÞ, where d is the
maximum degree of the fermionic interaction graph defined by
Eq. (1). However, such a mapping is not practical for the models
considered here because the typical large degree of molecular
interactions graphs makes the number of spins required for the
simulation too large compared to the other model-agnostic
mappings.

While these encodings are routinely used as tools to study
fermionic problems on quantum hardware43, their use in classical
computing has not been systematically explored so far. Since they
yield different structured many-body wave functions, it is then
worth analyzing whether more local mappings can be beneficial
for specific NQS representations. In Fig. 3, we analyze the effect of
the different encodings on the accuracy of the variational ground-
state energy for a few representative diatomic molecules. At fixed
computational resources and network expressivity, we typically
find that the RBM ansatz can achieve consistent levels of
accuracy, independent of the nature of the mapping type. While
the Jordan–Wigner allows to achieve the lowest energies in those
examples, the RBM is nonetheless able to efficiently learn the
ground state also in other representations, and chemical accuracy
is achieved in all cases reported in Fig. 3.

Sampling larger basis sets. The spin-based simulations of the QC
problems studied here show a distinctive MCMC sampling
behavior that is not usually found in lattice model simulations of
pure spin models. Specifically, the ground-state wave function of
the diatomic molecules considered is typically sharply peaked
around the Hartree–Fock state, and neighboring excited states.
This behavior is prominently shown also in Fig. 2, where the
largest peaks are several order of magnitude larger than the dis-
tribution tail. As a result of this structure, any uniform sampling
scheme drawing states σ

! from the VMC distribution jΨMð σ
!Þj2,

is bound to repeatedly draw the most dominant states, while only
rarely sampling less likely configurations. To exemplify this
peculiarity, we study the behavior of the ground state energy as a
function of the number of MCMC samples used at each step of
the VMC optimization. We concentrate on the water molecule in
the larger 6-31g basis. In this case, the Metropolis sampling
scheme exhibits acceptance rates as low as 0.1% or less, as a

Fig. 2 Electronic correlations. Probabilities (in logarithmic scale) of the

500 most probable configurations in the FCI (blue), RBM (orange), and

CISD (green) wavefunctions for the equilibrium nitrogen N2 molecule in the

STO-3G basis.

LiH

N2

Fig. 3 Comparison of different spin mappings. Accuracy of the RBM

(green star) representations for three different mapping types

(Jordan–Wigner, Parity, and Bravyi–Kitaev) and three different molecules

(LiH, C2, and N2) in their equilibrium configuration in the STO-3G basis.

The geometries used are reported in the Methods section.

Fig. 4 Sampling size dependence of the converged energies. Converged

energy of H2O in the 6-31g basis (26 spin-orbitals) as the number of

samples used for each VMC iteration is varied. The converged energy for

the samples obtained using the Metropolis algorithm (blue circles) matches

that obtained using exact sampling (green crosses), beating the accuracy of

CISD and approaching chemical accuracy (red line) for the largest sample

size. In the inset, we also show the variational energy as the number of

hidden units is increased from 2 to 26.
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consequence of the presence of dominating states previously
discussed.

In Fig. 4, we vary the sample size and also compare MCMC
sampling with exact sampling. We can see that the accuracy of the
simulation depends quite significantly on the sample size. The
large number of samples needed in this case, together with a very
low acceptance probability for the Metropolis–Hasting algorithm,
directly points to the inefficiency of uniform sampling from
jΨMð σ

!Þj2. At present, this represents the most significant
bottleneck in the application of our approach to larger molecules
and basis sets. This issue however is not a fundamental limitation,
and alternatives to the standard VMC uniform sampling can be
envisioned to efficiently sample less likely—yet important for
chemical accuracy—states. Beyond sampling issues, represent-
ability is also a factor as can be seen from the inset of Fig. 4.
Enough hidden units are required to capture the wavefunction
accurately, however, with more hidden units optimization also
becomes more challenging, thus finding an appropriate network
architecture is also crucial.

Discussion
In this work, we have shown that relatively simple shallow neural
networks can be used to compactly encode, with high precision,
the electronic wave function of model molecular problems in
quantum chemistry. Our approach is based on the mapping
between the fermionic quantum chemistry molecular Hamilto-
nian and corresponding spin Hamiltonians. In turn, the ground

state of the spin models can be conveniently modeled with
standard variational neural-network quantum states. On model
diatomic molecules, we show that a RBM state is able to capture
almost the entirety of the electronic excitations, improving on
routinely used approaches as CCSD(T) and the Jastrow ansatz
(Table 1).

Several future directions can be envisioned. The distinctive
peaked structure of the molecular wave function calls for the
development of alternatives to uniform sampling from the Born
probability. These developments will allow to efficiently handle
larger basis sets than the ones considered here. Second, our study
has explored only a very limited subset of possible neural-network
architectures. Most notably, the use of deeper networks might
prove beneficial for complex molecular complexes. Another very
interesting matter for future research is the comparison of dif-
ferent neural-network-based approaches to quantum chemistry.
Contemporary to this work, approaches based on antisymmetric
wave-functions in continuous space have been presented18,19.
These have the advantage that they already feature a full basis set
limit. However, the discrete basis approach has the advantage that
boundary conditions and fermionic symmetry are much more
easily enforced. As a consequence, simple-minded shallow net-
works can already achieve comparatively higher accuracy than the
deeper and substantially more complex networks so-far adopted
in the continuum case. On a different note, in a recent article44,
the use of a unitary-coupled RBM applicable for noisy
intermediate-scale quantum devices has been proposed and is
also worth exploring.

Methods
Geometries for diatomic molecules. The equilibrium geometries for the mole-
cules presented in this work were obtained from the CCCBDB database 45. For
convenience, we present them in Table 2.

Computing matrix elements. A crucial requirement for the efficient imple-
mentation of the stochastic variational Monte Carlo procedure to minimize the
ground-state energy, is the ability to efficiently compute the matrix elements of the

spin Hamiltonian h σ!
0
jHqj σ

!i, appearing in the local energy, Eq. (9). Since Hq is a
sum of products of Pauli operators, the goal is to efficiently compute matrix ele-
ments of the form

Mð σ!; σ!
0
Þ ¼ h σ!

0
jσ

ν1
1 σ

ν2
2 ¼ σ

νN

N j σ!i; ð11Þ

where σ
νi

i denotes a Pauli matrix with ν= I, x, y, z acting on site i. Because of the
structure of the Pauli operators, these matrix elements are non-zero only for a

specific σ
!0

such that

σ
0
i ¼ σ i νi 2 ðI;ZÞ

σ
0
i ¼ �σ i νi 2 ðX;YÞ

�

ð12Þ

and the matrix element is readily computed as

Mð σ!; σ!
0
Þ ¼ inyð Þ Π

k:vk2ðy;zÞ
σk; ð13Þ

where ny is the total number of σy operators in the string of Pauli matrices.

Table 1 Equilibrium energies (in Hartree) as obtained by different methods.

Molecule RBM Jastrow CISD CCSD CCSD(T) FCI

H2 −1.1373 −1.1373 −1.1373 −1.1373 −1.1373 −1.1373

LiH −7.8826 −7.8814 −7.8827 −7.8828 −7.8828 −7.8828

NH3 −55.5277 −55.4770 −55.5258 −55.5280 −55.5281 −55.5282

H2O −75.0232 −74.9784 −75.0221 −75.0231 −75.0232 −75.0233

C2 −74.6892 −74.5001 −74.6371 −74.6745 −74.6876 −74.6908

N2 −107.6767 −107.5924 −107.6591 −107.6717 −107.6738 −107.6774

The basis set considered here is STO-3G, and the corresponding geometries are reported in the Methods section. Energies are reported in Hartrees and statistical uncertainty on RBM and Jastrow states

energies are on the last reported digits. The RBM used has a hidden unit density α= 1 for all the molecules apart from C2 and N2 where we use α= 2.

Table 2 Equilibrium configurations used for the ground-state
calculations presented in the main text. The coordinates
(x, y, z) are given in angstroms (Å).

Molecule Basis Geometry

H2 STO-3G H(0, 0, 0)

H(0, 0, 0.734)

LiH STO-3G Li(0, 0, 0)

H(0, 0, 1.548)

N(0, 0, 0.149)

NH3 STO-3G H(0, 0.947, −0.348)

H(0.821, −0.474, −0.348)

H(−0.821, −0.474, −0.348)

C2 STO-3G C(0, 0, 0)

C(0, 0, 1.26)

N2 STO-3G N(0, 0, 0)

. N(0, 0, 1.19)

H(0, 0.769, −0.546)

H2O STO-3G H(0, −0.769, −0.546)

O(0, 0, 0.137)

H(0, 0.795, −0.454)

H2O 6-31G H(0, −0.795, −0.454)

O(0, 0, 0.113)
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Simulation details. The optimization follows the stochastic reconfiguration
scheme as detailed in the supplementary material of ref. 10. Given a variational

ansatz ΨðfαkgÞ 2 C
2n depending on parameters {αk}, the parameter update δαk is

given by solution of the linear equation
X

k0

hOy
kOk0 i � hOy

kihOk0 i þ λδkk0

h i

δαk0

¼ �ϵ hOy
kĤi � hOy

kihĤi
h i

;

ð14Þ

where Ok ¼
∂

∂αk
log Ψðfα0kgÞ
� 	

are the logarithmic derivatives, ϵ is the step size and

λ is the regularization parameter. For the simulations done in this paper, we take
ϵ= 0.05 and λ= 0.01. The expectation values 〈⋯〉 are estimated with Markov chain
Monte Carlo sampling as described in the main text.

The parameters of the RBM are initialized from a random normal distribution
with a zero mean and a standard deviation of 0.05.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the authors on reasonable request.

Code availability
The code used in the current study is largely based on the open-sourced software
NetKet46 with some custom modifications, which will be made available from the authors
upon reasonable request.
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