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Abstract: We use gauge-gravity duality to compute spectral functions of fermionic op-

erators in a strongly-coupled defect field theory in p-wave superfluid states. The field

theory is (3+1)-dimensional N = 4 supersymmetric SU(Nc) Yang-Mills theory, in the ’t

Hooft limit and with large coupling, coupled to two massless flavors of (2+1)-dimensional

N = 4 supersymmetric matter. We show that a sufficiently large chemical potential for

a U(1) subgroup of the global SU(2) isospin symmetry triggers a phase transition to a

p-wave superfluid state, and in that state we compute spectral functions for the fermionic

superpartners of mesons valued in the adjoint of SU(2) isospin. In the spectral functions

we see the breaking of rotational symmetry and the emergence of a Fermi surface com-

prised of isolated points as we cool the system through the superfluid phase transition.

The dual gravitational description is two coincident probe D5-branes in AdS5 × S5 with

non-trivial worldvolume SU(2) gauge fields. We extract spectral functions from solutions

of the linearized equations of motion for the D5-branes’ worldvolume fermions, which cou-

ple to one another through the worldvolume gauge field. We develop an efficient method

to compute retarded Green’s functions from a system of coupled bulk fermions. We also

perform the holographic renormalization of free bulk fermions in any asymptotically Eu-

clidean AdS space.
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1 Introduction and summary

The Anti-de Sitter/Conformal Field Theory correspondence (AdS/CFT) [1–3], and more

generally gauge-gravity duality, is a holographic duality between a weakly-coupled theory of

gravity in some spacetime and a strongly-coupled field theory living on the boundary of that

spacetime. Gauge-gravity duality thus provides a powerful new tool for studying strongly-

coupled, scale-invariant field theories in states with finite charge density, and hence may be

useful in condensed matter physics, for instance in understanding low-temperature systems

near quantum criticality [4–7]. In particular, many special properties of certain high-Tc

superconducting materials may be due to an underlying quantum critical point [4, 5, 7].

Gauge-gravity duality may provide valuable insight into the physics of such materials.
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Of central importance for potential condensed matter applications is the holographic

description of a Fermi surface1 [9–12]. On the field theory side, the minimal ingredients are

some strongly-coupled theory with a global U(1) symmetry, in a zero-temperature state

with a finite U(1) chemical potential, and some fermionic operator charged under the U(1).

Holographic calculations of the fermionic spectral function, as a function of frequency and

momentum, reveal a pole at zero frequency but finite momentum, which defines the Fermi

momentum. The pole represents an excitation about a Fermi surface.

On the gravity side, the minimal ingredients are gravity and a U(1) gauge field, plus

some bulk Dirac fermion charged under the U(1). The bulk geometry is a Reissner-

Nordström black hole. The bulk fermion is dual to the fermionic operator, and the spectral

function of the operator is extracted from solutions of the linearized bulk equation of mo-

tion, the Dirac equation. These Fermi liquids are, generically, not Landau Fermi liquids,

although the exact properties depend on the mass and charge of the bulk fermion.

The bulk theory can also describe a phase transition to s-wave superfluid states, if

a scalar charged under the U(1) is present [13–15]. On the gravity side, the Reissner-

Nordström black hole grows scalar hair at low temperature, that is, a solution with a non-

trivial scalar becomes thermodynamically preferred to Reissner-Nordström. In the dual

field theory, the thermodynamically-preferred state includes a nonzero expectation value

for a scalar operator charged under the global U(1), which we will refer to as the operator

“condensing.” The phase transition is second order with mean-field exponents [14, 15].

Gauge-gravity duality can also describe p-wave superfluids, that is, superfluids in which

the condensing operator is a vector charged under the U(1), thus breaking not only the

U(1) but also rotational symmetry (to some subgroup) [16]. On the gravity side, the

minimal ingredients are gravity and non-Abelian gauge fields. The simplest case is an AdS

geometry and SU(2) gauge fields, Aa
M , with Lorentz index M and a = 1, 2, 3 labels the

SU(2) generators τa. Here the U(1) is a subgroup of SU(2), for example the U(1) in the τ3
direction, which we will call U(1)3. At high temperature the thermodynamically preferred

geometry is Reissner-Nordström with nonzero A3
t . At low temperature, the charged black

hole grows vector hair: the preferred solution has non-trivial A1
x. The dual field theory

has three conserved currents, Jµ
a , dual to the gauge fields. A chemical potential, producing

a finite density 〈J t
3〉, explicitly breaks SU(2) to U(1)3, and the transition occurs at large

chemical potential, where the thermodynamically preferred state has nonzero 〈Jx
1 〉.

In bulk calculations for both the s- and p-wave, a major technical simplification is

the so-called probe limit, in which the charge of the bulk scalar, or the SU(2) Yang-Mills

coupling, is sent to infinity, so that the scalar or Yang-Mills stress-energy tensor on the

right-hand side of Einstein’s equation becomes negligible. The bulk calculation then re-

duces to solving the scalar or Yang-Mills equation of motion in a fixed Reissner-Nordström

background. The probe limit is sufficient to detect the transitions and determine that

they are second order. In either case, however, if we cool the system then, as shown in

refs. [15], the matter fields’ stress-energy tensor grows and we can no longer trust the probe

limit. Reaching zero temperature requires solving the fully-coupled equations, as done in

refs. [15, 17, 18].

1For an alternative approach, see ref. [8].
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The zero-temperature limits of the bulk hairy black hole solutions generically involve

a domain wall interpolating between two regions, one near the boundary and one deep

in the interior of the spacetime. For example, the geometry may interpolate between a

near-boundary AdS space and an interior AdS space with a different radius of curvature

and speed of light [19–23]. In field theory language, the interior AdS space represents

an emergent conformal symmetry at low temperature and finite charge density. In other

words, the emergent AdS represents a quantum critical point.

Holographic calculations of fermionic spectral functions in zero-temperature s-wave

superfluid states [24–27] exhibit the so-called ‘peak-dip-hump’ structure [24], expected to

be relevant in high-Tc superconductors [28], as well as, for suitable mass and charge of the

bulk fermion, continuous bands of poles [26] and, for suitable coupling to the bulk scalar, a

gap, i.e. poles in the spectral function at nonzero momentum and nonzero frequency [25].

Generally, the bulk actions used in holographic constructions of superfluids and Fermi

surfaces are not derived from any particular string theory construction. In other words,

they are basically ad hoc models built from the minimal ingredients needed to capture the

essential physics. Simple models have one big advantage (besides simplicity!), namely a

kind of universality: the results may be the same for many different theories, regardless of

the details of their dynamics.

On the other hand, knowing the detailed dynamics of a specific dual theory, meaning

the fundamental fields and Lagrangian of some microscopic, weak-coupling description, also

has advantages. For example, the holographic results may tell us that a superfluid phase

transition occurs, but may not tell us why. Is a nonzero 〈Jx
1 〉 the result of some pairing

mechanism? If so, is the pairing mechanism the same in every dual theory? Knowing

an exact dual theory may help to answer such questions, for example by providing some

weak -coupling intuition.2 Finding a dual Lagrangian means “embedding” the bulk theory

into a full string or supergravity construction, built for example from D-branes (for which

we know the worldvolume theories). String (and M-) theory embeddings of holographic

s-wave superfluids appear in refs. [20, 30, 31].

A string theory embedding of holographic p-wave superfluids, in the probe limit, ap-

pears in refs. [32–35]. Here we begin with Nc Dq-branes and Nf Dp-branes. Taking the

usual decoupling limit for the Dq-branes, which in particular means Nc → ∞, we obtain

supergravity in the near-horizon geometry of the Dq-branes. Non-extremal Dq-branes pro-

duce a black hole geometry. The probe limit consists of keeping Nf fixed as Nc → ∞,

such that Nf/Nc → 0. The dynamics of Nf coincident Dp-branes is then described by the

non-Abelian Born-Infeld action (plus Wess-Zumino terms) in the near-horizon Dq-brane

geometry. Truncating that action to leading order in the field strength, we obtain a Yang-

Mills action in a black hole geometry.

We then know precisely what the dual field theory is: the Dq-brane worldvolume

theory, with gauge group SU(Nc), in the large-Nc and strong coupling limits, coupled to a

number Nf of fields in the fundamental representation of the gauge group, i.e. flavor fields.

We will call this the Dq/Dp theory. If the Dp-branes do not overlap with all q spatial Dq-

2A good recent example is ref. [29].
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brane directions, then the flavor fields will only propagate along a defect. The probe limit

consists of neglecting quantum effects due to the flavor fields, such as the running of the

coupling, because these are suppressed by powers of Nf/Nc. These theories generically have

bound states similar to mesons in Quantum Chromodynamics (QCD). The U(Nf ) gauge

invariance of the Dp-branes is dual to a global U(Nf ) analogous to the isospin symmetry

of QCD. In such systems the p-wave transition occurs when a sufficiently large isospin

chemical potential triggers vector meson condensation (as we review in section 3).

Our goal is to use such a string theory system to compute fermionic spectral functions

in the p-wave phase.

We choose our Dq-branes to be D3-branes. The dual field theory is then a CFT, N = 4

supersymmetric Yang-Mills (SYM) theory with gauge group SU(Nc) in the ’t Hooft limit of

Nc →∞ with large ’t Hooft coupling, λ ≡ g2
YMNc →∞. The near-horizon gravity solution

is (4+1)-dimensional AdS times a five-sphere, AdS5×S5, withNc units of Ramond-Ramond

(RR) five-form flux on the S5. At finite temperature AdS becomes AdS-Schwarzschild.

We consider supersymetric probe Dp-branes extended along AdSP ×SQ, where super-

symmetry requires |P−Q| = 2 [36]. We focus on P ≥ 3, since only in those cases is a vector

condensate 〈Jx
1 〉 possible.3 We will study only trivial embeddings of such Dp-branes, that

is, we will only study solutions in which all Dp-brane worldvolume scalars are trivial.

Our bulk fermions will be the Dp-branes’ worldvolume fermions. These fermions are in

a supermultiplet with the worldvolume scalars and gauge field, hence they are in the adjoint

of the worldvolume U(Nf ), and couple to the gauge field via the gauge-covariant derivative.4

In other words, supersymmetry determines the charges of the fermions. For example, we

will use Nf = 2, where we find three fermions with charges +1, −1 and 0 under U(1)3.

To compute fermionic spectral functions we need the linearized equations of motion,

the Dirac equation, for these fermions. Fortunately, the fermionic part of the D-brane

action, for D-branes in arbitrary backgrounds (including RR fields) is known to quadratic

order [37–39]. The form of the action is determined by supersymmetry and T-duality [39],

as we review in section 4. For our Dp-branes extended along AdSP ×SQ, we perform a re-

duction on the SQ to obtain a Dirac equation in AdSP , following ref. [40] very closely. The

spectrum of AdSP fermion masses are fixed by P , Q and the coupling to the background

RR five-form.

We emphasize a major difference between our systems and the models of refs. [9–11]:

in our embedding of the Dirac equation into string theory, the mass and charge of the

fermions are fixed by supersymmetry and T-duality. We are not free to dial the values of

the mass and charge, unlike refs. [9–11].

Much of our analysis will be valid for any supersymmetric Dp-brane extended along

AdSP ×SQ, with P ≥ 3, but one particular Dp-brane is attractive for a number of reasons,

namely the D5-brane extended along AdS4×S2 (P = 4 and Q = 2). From the bulk point of

view, this D5-brane is the only Dp-brane with a massless worldvolume fermion, as we show

in section 4.1. That makes both our numerical analysis, and comparison to refs. [9, 11] (in

3One exception is a D5-brane along AdS2×S
4, which we study in section 4.1 (but not in p-wave states).

4Like all worldvolume fields, they are not charged under the diagonal U(1) ⊂ U(Nf ).
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which the fermions were massless), much easier.

With two coincident P = 4, Q = 2 D5-branes, the dual field theory is (3+1)-

dimensional N = 4 SYM coupled to Nf = 2 massless (2+1)-dimensional N = 4 supersym-

metric flavor fields. The classical Lagrangian of the theory, with couplings that preserve

the SO(3, 2) conformal symmetry of the (2+1)-dimensional defect, appears explicitly in

refs. [41, 42]. We write the explicit form of the fermionic operators dual to the D5-branes’

worldvolume fermions in section 4.2, following refs. [40, 41] very closely. These fermionic

operators are mesinos, the supersymmetric partners of mesons.

The P = 4, Q = 2 D5-brane is also attractive for potential condensed matter ap-

plications. As mentioned in ref. [43], many real condensed matter systems are effectively

(2+1)-dimensional degrees of freedom interacting with ambient (3+1)-dimensional degrees

of freedom. The D3/D5 theory also exhibits a rich phase structure, explored in detail in

refs. [43–50], including for example a Berezinskii-Kosterlitz-Thouless transition (with finite

charge density and magnetic field for the diagonal U(1) ⊂ U(2)) [51]. We initiate the study

of the D3/D5 theory’s phase diagram with finite isospin chemical potential.

As always in the probe limit, we cannot access the T = 0, finite chemical potential

ground state. The P = 4, Q = 2 D5-brane is again attractive, however, because we

know that, unlike many Dp-branes, with zero temperature and zero chemical potential,

fully back-reacted solutions appear to preserve an AdS factor in the geometry, namely an

AdS4 [52, 53]. That suggests that the field theory retains SO(3, 2) conformal invariance

even including quantum effects due to the flavor, which was indeed proven in ref. [42].

Whether some scale invariance emerges with zero temperature and finite chemical

potential is unclear.

On a technical level, our goal is to solve the Dirac equation for a massless fermion

in the adjoint of SU(2) confined to an AdSP submanifold of (4+1)-dimensional AdS-

Schwarzschild. For any Dp-brane, the three worldvolume fermions decouple in the normal

(non-superfluid) phase, where A1
x is zero, but couple to one another in the superfluid phase,

where A1
x is nonzero. These couplings indicate that, in the field theory, the dual fermionic

operators experience operator mixing under renormalization group flow [54, 55]. In the

field theory, the retarded Green’s function, and hence the spectral function, becomes a

matrix with off-diagonal entries.

We thus develop a method to compute the retarded Green’s function for bulk fermions

coupled to one another. Our method is essentially a combination of the method of ref. [54,

55], for coupled bosonic fields, with the method of ref. [10, 56], for free fermions. Our

method is actually very general, i.e. applicable to any system of coupled bulk fermions, not

just to fermions on the worldvolume of probe Dp-branes, and is especially convenient for

numerical analysis. We thus explain our method first, in section 2.

As an added bonus, we also perform, to our knowledge for the first time, holographic

renormalization for fermions in AdS.5 More precisely, we study a single free fermion in any

space that asymptotically approaches Euclidean-signature AdS and determine the coun-

terterms needed to render the on-shell action finite without spoiling the stationarity of

5For the holographic renormalization of fermions in Schrödinger spacetime, see ref. [57].

– 5 –



J
H
E
P
0
5
(
2
0
1
0
)
0
5
3

the action. Our results rigorously justify many of the ad hoc prescriptions used in the

literature, where divergences of the on-shell action were simply discarded.

For the P = 4, Q = 2 D5-brane, using our method for coupled bulk fermions, we

numerically compute spectral functions for mesinos as we cool the system through the p-

wave superfluid phase transition. Due to the operator mixing, or equivalently the coupling

of the fermions in the bulk, we see that the spectral function of even a neutral fermion

develops a nontrivial feature, a peak, as the system enters the p-wave phase.

Furthermore, as we lower the temperature, the zero-frequency spectral measure6 is

clearly no longer rotationally invariant, and in fact at the lowest temperatures we can re-

liably access in the probe limit, the main features of the spectral measure are five largely

isolated peaks in the (kx, ky) plane, two on the kx axis, two on the ky axis, and one at the ori-

gin. These results are very similar to the T = 0 results of ref. [18], where the bulk theory was

gravity and SU(2) gauge fields in (3+1)-dimensions, in the T = 0 vector-hairy black hole ge-

ometry. In that case, for a fermion in the fundamental representation of SU(2), the spectral

measure consisted of two points on the kx axis, located symmetrically about the origin. The

prediction of ref. [18] for fermions in the adjoint representation would be three points on the

kx axis, one at the origin and two at finite kx, positioned symmetrically about the origin.

At finite temperature we see five points emerging, but we strongly suspect that, if we could

access the T = 0 limit, we would indeed see only three points, as we discuss in section 5.

We cannot resist drawing an analogy between our system and certain experimentally-

realized p-wave superconductors (see also ref. [58]).7 In that context, a“reduction of the

Fermi surface” to certain points in momentum space has been proposed for the ruthenate

compound Sr2RuO4 [59]: the p-wave state is supported by ferromagnetic fluctuations that

increase the propensity for electrons to form spin triplet Cooper pairs, with an odd (p-wave)

Cooper pair wave function.8 Scattering channels with momentum transfer Q = (0, 0), as

is the case in a ferromagnet, should be enhanced in the system, as opposed to scattering

channels of Q = (π, π), which is the case in an anti-ferromagnet. Small momentum transfer

is best accomplished by a strongly peaked density of states at the Fermi level, as occurs for

example with van Hove singularities, where the density of states diverges. This lies at the

heart of the strong suspicion that a Fermi surface localized to certain points with a high

density of states may account for a suitable setup to support p-wave pairing.

The paper is organised as follows. In section 2, we describe our method for computing

retarded Green’s functions for coupled bulk fermions. In section 3 we review general

features of Dq/Dp holographic p-wave superfluids and demonstrate a p-wave transition

using the P = 4, Q = 2 D5-brane. In section 4, we write the fermionic part of the Dp-

brane action, perform the reduction of the worldvolume Dirac equation to AdSP , and,

for the P = 4, Q = 2 D5-brane, match bulk fermions to dual field theory operators. In

section 5 we present our numerical results for the fermionic retarded Green’s functions

6As mentioned above, the retarded Green’s function, and hence the spectral function, is generically a

matrix. The spectral measure is simply the trace of the spectral function.
7We thank Ronny Thomale for many useful conversations about real p-wave superconductors.
8This is rather particular, bearing in mind that a large number of generic spin interactions, for example

induced by superexchange processes, favor antiferromagnetic fluctuations.
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using the P = 4, Q = 2 D5-brane. We conclude with suggestions for future research in

section 6. The holographic renormalization of fermions in AdS appears in the appendix.

Section 2 and the appendix are technical, and may be read independently of the rest

of the paper. Readers who only want to understand our system and our numerical results

should read at least sections 3.2, 4.3 and 5.

2 Holographic fermionic operator mixing

2.1 Review: free fermions

We begin by studying a single free fermion in AdS space. In particular we will review how

to extract the field theory fermionic two-point function from a solution for a bulk Dirac

fermion, following refs. [9, 11, 60].

In this section we will work mainly with Euclidean-signature AdS space, with the

metric written in Fefferman-Graham form,9

ds2 = gAB dx
AdxB =

du2

u2
+

1

u2
δij dx

idxj . (2.1)

The boundary is at u = 0. Notice that throughout the paper we use units in which the

radius of AdSd+1 is equal to one.

We will study a bulk Dirac spinor Ψ. The Dirac action (plus boundary terms) is

S =

∫

dd+1x
√
g
(

Ψ̄ ∆Ψ−m Ψ̄Ψ
)

+ Sbdy, (2.2)

where, picking one of the spatial directions to be “time,” with corresponding γt, we define

Ψ̄ = Ψ†γt. We write the AdSd+1 Dirac operator ∆ below. Here Sbdy includes boundary

terms that do not affect the equation of motion.

The AdS/CFT correspondence is the statement that a theory of dynamical gravity on

AdSd+1 is equivalent to a d (spacetime) dimensional CFT that “lives” on the boundary

of AdSd+1. Every bulk field is dual to some operator in the boundary CFT. The precise

statement of the correspondence equates the on-shell bulk action with the generating func-

tional of connected CFT correlation functions. The bulk field Ψ is dual to some fermionic

operator O in the dual d-dimensional field theory. The on-shell bulk action, S, acts as the

generating functional for correlators involving O. In other words, to compute renormalized

correlators of O, we take functional derivatives of S with respect to some source.

Generically, however, both the on-shell bulk action and the CFT generating functional

diverge. On the bulk side, the divergences arise from the infinite volume of AdSd+1, i.e.

they are long-distance or infrared (IR) divergences. In the field theory the divergences

are short-distance, ultraviolet (UV) divergences. To make the AdS/CFT correspondence

meaningful we must regulate and renormalize these divergences.

Holographic renormalization proceeds as follows (see ref. [61] and references therein).

We first regulate the on-shell bulk action by introducing a cutoff on the integration in the

9Capital Latin letters A,B, . . . will always denote all the AdSd+1 directions, including the radial direction

u, while lower-case Latin letters will denote field theory directions: i, j = 1, . . . d.
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radial direction: we integrate not to u = 0 but to some u = ǫ. We then add counterterms

on the u = ǫ surface to cancel any terms that diverge as we remove the regulator by taking

ǫ→ 0. Generically, the form of the counterterms is fixed by symmetries, and the coefficients

of the counterterms are adjusted to cancel the divergences. Once the counterterms are

known, we can proceed to compute functional derivatives of the on-shell bulk action, always

taking ǫ → 0 in the end, thus obtaining renormalized CFT correlation functions in a way

that is manifestly covariant and preserves all symmetries.

As first observed in ref. [62], when we evaluate the Dirac action on a solution, the

bulk term obviously vanishes. The nonzero contribution to the on-shell action comes from

Sbdy, which involves terms localized on the u = ǫ surface. As observed in ref. [63], the

form of Sbdy is fixed by demanding a well-defined variational principle for the Dirac action.

Formally, Svar thus includes two types of terms,

Sbdy = Svar + SCT, (2.3)

where Svar are the terms required for the variation of the action to be well-defined [63],

while SCT are the counterterms, which do not affect the variation of the action.

In the appendix we perform the holographic renormalization of the Dirac action. In

particular, we determine the counterterms in SCT. The details of holographic renormal-

ization are well-known for various species of bulk fields, for example for the metric [64],

scalar fields [64], and gauge fields [65]. To our knowledge, the only detailed analysis

of holographic renormalization for fermions was in the (more complicated) context of

non-relativistic gauge-gravity duality, in ref. [57]. As shown in the appendix, however, in

the relativistic case the holographic renormalization procedure for fermions very closely

parallels the procedure for scalars.

As shown in the appendix, the details of the holographic renormalization depend on

the value of m. Some values of m are special, for example when m is half-integer (in units

of the AdSd+1 radius), counterterms logarithmic in ǫ (rather than just polynomial in ǫ) are

needed. For simplicity, in this section we will restrict to values of m that are positive and

not half-integer. Our arguments are easy to generalize to any value of m.

In this section we will also restrict to four- and five-dimensional AdS spaces, which we

will collectively denote as AdSd+1 with d = 3, 4, primarily for pedagogical reasons: in these

cases the bulk Dirac spinor has four complex components, and we can write explicit 4× 4

bulk Dirac Γ-matrices. Additionally, we note that AdSd+1 spaces with d ≤ 4 are the cases

most relevant for condensed matter applications (as opposed to, say, AdS7). The general-

ization to other dimensions is straightforward. In the appendix we work with arbitrary d.

In later sections we will be interested in computing finite-temperature, real-time cor-

relation functions, in particular the retarded Green’s functions, in which case the bulk

geometry will be Lorentzian-signature AdS-Schwarzschild. We review the prescription for

obtaining the retarded Green’s function in such cases at the end of this subsection.

Varying the above action we obtain the bulk equation of motion, the Dirac equation,

eMA γ
ADMΨ−mΨ = 0, (2.4)

– 8 –
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where eMA = u δM
A are the inverse vielbeins associated with the metric in eq. (2.1).10 The

curved-space covariant derivative is

DM = ∂M +
1

4
(ωM )AB

[

γA, γB
]

, (2.5)

where (ωM)AB is the spin connection associated with the metric in eq. (2.1). The only

nonzero components of the spin connection are (ωi)uj = 1
u δij , so that Du = ∂u and the

other components of DM are

Di = ∂i +
1

4

1

u

[

γu, γi
]

. (2.6)

We can now simplify the Dirac equation,

0 = eMA γ
ADMΨ−mΨ

= u γM∂MΨ +
1

4
γi
[

γu, γi
]

Ψ−mΨ

=

[

u γM∂M −
d

2
γu −m

]

Ψ. (2.7)

We will work with a single Fourier mode, so we let Ψ → eikx Ψ, where, without loss

of generality, we have chosen the momentum to point in the x̂ direction.11 The Dirac

equation is then
[

uγu∂u + ik u γx − d

2
γu −m

]

Ψ = 0. (2.8)

We will now choose an explicit basis for the Γ-matrices. We will use a basis in which

all the Γ-matrices are Hermitian,

γu =

(

−σ3 0

0 −σ3

)

, γt =

(

σ1 0

0 σ1

)

, γx =

(

−σ2 0

0 σ2

)

, (2.9)

where σ1, σ2 and σ3 are the usual Pauli matrices,

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (2.10)

Next we will define two sets of projectors. The first set is

Π+ =
1

2
(1 + γu) =











0

1

0

1











, Π− =
1

2
(1− γu) =











1

0

1

0











. (2.11)

10Recall that for inverse vielbeins, the upper index is general coordinate and the lower index is local

Lorentz. The γA obey the usual algebra {γA, γB} = 2 δAB.
11 In a p-wave superfluid phase rotational symmetry is broken, so there, to study the most general case,

we must use a momentum with nonzero components in different directions, as we will discuss in section 4.
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We use these to define Ψ± = 1
2 (1± γu) Ψ so that γuΨ± = ±Ψ±. The second set of

projectors was used for example in refs. [9, 11],

Π1 =
1

2

(

1 + iγuγtγx
)

=











0

0

1

1











, Π2 =
1

2

(

1− iγuγtγx
)

=











1

1

0

0











. (2.12)

To make converting between Ψ± and Ψ1,2 easy, we explicitly write Ψ first as Ψ+ + Ψ− and

then as Ψ1 + Ψ2,

Ψ =











0

Ψ+u

0

Ψ+d











+











Ψ−u

0

Ψ−d

0











=











0

0

Ψ1u

Ψ1d











+











Ψ2u

Ψ2d

0

0











, (2.13)

where the subscripts u and d indicate the “up” and “down” components of the effectively

two-component Ψ± and Ψ1,2. Identifications such as Ψ+u = Ψ2d are then obvious.

We have a choice of whether to use Ψ± or Ψ1,2, although of course, we can easily

translate between the two options using eq. (2.13). We will choose whatever is most

convenient for a given question.

For example, the projectors Π1,2 commute with the operator in eq. (2.8), which tells

us that, for a free fermion, the equations for Ψ1,2 decouple. That makes Ψ1,2 especially

attractive for numerical analysis, hence we employ them in sections 4 and 5.12 Explicitly,

the equations for Ψ1,2 are

[

u∂u −
d

2
+mσ3 − ku

]

Ψ1 = 0, (2.14)

[

u∂u −
d

2
+mσ3 + ku

]

Ψ2 = 0. (2.15)

On the other hand, the asymptotic behavior of Ψ is most succinctly described using

Ψ±, hence we use these frequently below, especially in the appendix. In terms of Ψ±, the

equation of motion becomes
(

u∂u −
d

2
−m

)

Ψ+ + kuσ3Ψ− = 0, (2.16)

(

u∂u −
d

2
+m

)

Ψ− + kuσ3Ψ+ = 0. (2.17)

These first-order equations give rise to the second-order equations
[

∂2
u −

d

u
∂u +

1

u2

(

−m2 ±m+
d2

4
+
d

2

)

− k2

]

Ψ± = 0. (2.18)

12As mentioned in footnote 11, in the p-wave superfluid phase, the most general momentum has

nonzero components in multiple directions. That means Ψ1 and Ψ2 will no longer decouple because other

Γ-matrices, such as γy , will appear in the equation of motion, and these do not commute with Π1,2.

Nevertheless, when studying the p-wave superfluid phase we use Ψ1,2 to make the comparison with the

rotationally-symmetric case easier.
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The leading asymptotic behaviors of Ψ± are

Ψ± = c±(k)u
d
2
±m +O

(

u
d
2
+1±m

)

. (2.19)

where c±(k) are spinors that obey Π±c±(k) = ±c±(k), and which may depend on k, as

indicated.

As reviewed above, to compute renormalized correlators of the dual operator O, we

take functional derivatives of S with respect to some source. We identify the source for

O as the coefficient of the dominant term in Ψ’s near-boundary expansion (the term that

grows most quickly as u→ 0). From eq. (2.19), we see that the dominant term is the u
d
2
−m

term, hence we identify c−(k) as the source for O. More formally, we equate

e−Sren[c−,c̄−] =

〈

exp

[∫

ddx
(

c̄−O + Ō c−
)

]〉

, (2.20)

where the left-hand-side is the exponential of minus the action in eq. (2.2), evaluated on

a solution and properly renormalized (hence the subscript), and the right-hand-side is

the generating functional of the dual field theory, with c−(k) acting as the source for the

operator O.13 Upon taking minus the logarithm of both sides, we find that the on-shell

bulk action is the generator of connected correlators.

For bulk bosonic fields, we must solve a straightforward Dirichlet problem: we fix the

leading asymptotic value of the field, allow the field to vary, and then impose a regularity

condition in the interior of the space to fix the entire solution. This procedure is dual to

the statement that once we choose a source, the dynamics of the theory determines the

expectation values of the dual operator.

The story for fermions is more subtle, because Ψ+(u, k) and Ψ−(u, k) are not indepen-

dent [62, 63]. Each one determines the canonical momentum associated with the other (see

for example ref. [60]). In the bulk Dirichlet problem, then, we cannot fix their asymptotic

values c±(k) simultaneously, but can fix only one, the coefficient of the dominant term,

c−(k), and then vary the field. As shown in refs. [63], for the action to remain stationary

under such variations, we must add a boundary term to the action,

Svar =

∫

ddx
√
γ Ψ̄+Ψ−, (2.21)

where the integration is over the u = ǫ hypersurface,
√
γ = ǫ−d is the square root of the

determinant of the induced metric at u = ǫ, and Ψ± are evaluated at u = ǫ.

Indeed, since the bulk action is first-order in derivatives, the only nonzero contribution

to the on-shell action comes from the boundary terms Sbdy = Svar + SCT. Generically,

when evaluated on a solution, divergent terms appear in Svar, which are canceled by

the counterterms in SCT. Notice that, to preserve stationarity of the action, SCT must

involve only Ψ−(ǫ, k), since that is held fixed under variations. We write the counterterms

explicitly in the appendix.

13As we review in the appendix, for a bulk fermion with mass m, in a standard quantization the dimension

∆ of O is ∆ = d
2

+ |m| [62, 63]. In the appendix we also discuss the chirality of O (when d is even).
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The principal result of the appendix is the renormalized on-shell action: we evaluate

Sbdy on a solution and take ǫ→ 0 to obtain (for positive, non-half-integer m)

Sren =

∫

ddx c̄+ c−, (2.22)

We can now easily compute the renormalized connected correlators of O and Ō by taking

functional derivatives of Sren. For example, the renormalized one-point function of Ō is

〈

Ō
〉

ren
= −δSren

δc−
= −c̄+. (2.23)

If we use the fact that the on-shell bulk action must be Hermitian, S = S†, then we also have

Sren = S†
ren =

∫

ddx [c̄+c−]† =

∫

ddx c̄−c+,

hence we also find, as we should,

〈O〉ren = −δSren

δc̄−
= −c+. (2.24)

We can obtain two-point functions via second functional derivatives, for example

〈

O Ō
〉

ren
= − δ2Sren

δc−δc̄−
= −δc+

δc−
. (2.25)

The equation of motion plus some regularity condition in the interior of the spacetime

will relate c+ and c− (recalling that we fix c− and vary c+). The equation is linear, hence

the relation will be linear: c+ = −G(k) γt c−, for some matrix G(k) which will turn out

to be the Euclidean Green’s function. We include a factor of γt because, as discussed

in refs. [9, 11], the Euclidean Green’s function is actually
〈

OO†
〉

ren
, which differs from

〈

O Ō
〉

ren
by a factor of γt. We indeed find

〈

O Ō
〉

ren
= G(k) γt,

〈

OO†
〉

ren
= G(k). (2.26)

In general, we must extract G(k) γt from a solution by imposing some regularity condition

in the bulk of the spacetime (in our coordinates, the u → ∞ region), which fixes c+ in

terms of c−. We review that procedure for Euclidean AdSd+1 in the appendix and for

Lorentzian-signature AdS-Schwarzschild below.

We can also reproduce the formulas used in refs. [9, 11] by switching to Ψ1,2. In that

case, the equations for Ψ1 and Ψ2 decouple, hence in the Green’s function the Π1 and Π2

subspaces will not mix. Writing c+ = −G(k) γt c− explicitly, we will have (suppressing the

k dependence of c±(k))











0

c+u

0

c+d











=−
(

G22(k)12

G11(k)12

)











0 1

1 0

0 1

1 0





















c−u

0

c−d

0











=−
(

G22(k)12

G11(k)12

)











0

c−u

0

c−d











,
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where blank entries represent zero, 12 is the 2×2 identity matrix, andG11 andG22 represent

the components of the Green’s function in the Π1 and Π2 subspaces, respectively. Given a

bulk solution for Ψ, we obtain the Green’s functions simply by reading off the asymptotic

values of c+(k) and c−(k) and then constructing

G22(k) = −c+u

c−u
, G11(k) = −c+d

c−d
. (2.27)

Finally, we review the prescription of ref. [60] to compute the retarded two-point

function in the finite-temperature, Lorentzian-signature case. Here the geometry is AdS-

Schwarzschild, with a horizon at some position uh. To obtain the retarded two-point

function, we require that, near the horizon, the bulk solution for Ψ has the form of wave

traveling into the horizon (out of the spacetime), i.e. an in-going wave. The asymptotic

form for Ψ near the boundary is the same as in eq. (2.19) (for positive, non-half-integer

m). Following ref. [60], in the regime of linear response, we have

c+(ω, k) = −iGR(ω, k) γt c−(ω, k), (2.28)

where GR(ω, k) is the retarded Green’s function. Notice that here we distinguish the

frequency ω from the momentum k, and γt is now anti-Hermitian,

γt =

(

iσ1 0

0 iσ1

)

. (2.29)

Eq. (2.28) is essentially just an analytic continuation from the Euclidean case: γt → iγt.

For a free fermion, we obtain (see also eq. (A17) of ref. [11])

GR
22(ω, k) =

c+u

c−u
, GR

11(ω, k) =
c+d

c−d
. (2.30)

2.2 Coupled fermions

We now consider multiple bulk fermions, say N of them, Ψa with a = 1, . . . , N , coupled to

one another. The fact that the linearized fluctuation of the Ψa couple in the bulk is dual

to the statement that the fermionic operators in the field theory mix with one another

under renormalization group flow.

We will work in Lorentzian signature, and finite temperature, so that the bulk geometry

is AdS-Schwazrschild, with a horizon at some position uh. We consider fermions with

quadratic couplings of the form (with implicit summation over a, b)

S = i

∫

dd+1x
√
g
(

Ψ̄a ∆Ψa − Ψ̄aΛabΨb

)

+ Sbdy, (2.31)

for some matrix Λab that need not be diagonal in either the a, b indices or the spinor indices.

As a concrete example, in later sections we will introduce a bulk SU(2) gauge field AM

and a bulk fermion valued in the adjoint of SU(2). The indices a, b are then SU(2) indices,

hence we will have three bulk fermions (for τ1, τ2, and τ3) with a coupling, coming from

the gauge-covariant derivative, of the form ǫabcΨ̄a e
M
Aγ

A (AM )b Ψc, which is obviously not

diagonal in either SU(2) indices or in spinor indices (because of the γA).
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For the following arguments, we do not need to know any details about the equations

of motion. We will only exploit one important feature. Using the Π± projectors, we will

always obtain equations similar to eqs. (2.16) and (2.17). We will then always be able to

write these equations in the form

∇ab±Ψb± = Mac±Ψc∓, (2.32)

where ∇ab± is some differential operator, involving in particular ∂u, and Mac± is a matrix

representing the couplings among not only the Ψa, which come from Λab, but also the

terms from ∆Ψa that produce couplings between Ψa+ and Ψa−, for example the terms

proportional to the momentum k in eqs. (2.16) and (2.17). The key feature is that only

the Ψa± are on the left-hand-side, while only the Ψa∓ are on the right-hand-side.

In practical terms, the total number of complex functions for which we must solve is

4×N , since each Ψa has four complex components. In other words, we need to decompose

the Ψa not only into Ψa+ and Ψa−, but also into the up and down components, Ψa+u, Ψa+d,

Ψa−u, and Ψa−d. When convenient, we may sometimes think of eq. (2.32) as equations

describing these 4×N coupled functions, which we may sometimes refer to as “fields.”

Clearly, if we solve for all the Ψa, insert the solutions into the bulk action, and

take functional derivatives, we will obtain field theory retarded Green’s functions that

are matrices, GR
ab (ω, k). In principle, we may be able to diagonalize the equations of

motion and obtain decoupled equations, in which case the Green’s function will be

diagonal. Given the bulk solutions for the Ψa, we then extract the elements of GR
ab (ω, k)

using eq. (2.30). In some cases, however, diagonalizing the equations of motion may be

prohibitively difficult, i.e. practically impossible. We can always resort to numerics to

find solutions, but we will then be forced to compute elements of the un-diagonalized

GR
ab (ω, k). We thus need to know what combinations of the asymptotic values ca+ and

ca− give an arbitrary element GR
ab(ω, k).

We will describe a prescription to obtain the matrix GR
ab(ω, k), assuming we have

bulk solutions for the Ψa. The method is a hybrid of the methods in refs. [54, 55] and

refs. [10, 56]. Refs. [54, 55] described a general method to construct a retarded Green’s

function for coupled bulk scalar and gauge fields, while refs. [10, 56] described general

methods for computing Green’s functions from fermions in the bulk.

The first observation is that we can construct second-order equations for the bulk fields,

the Ψa±, that will be similar to eq. (2.18). We actually don’t care about the exact form of

these equations. We only need to know that such equations exist. We thus have a system

of 2N second-order linear equations, for which we expect 2 × 2N linearly-independent

solutions. We must therefore fix two boundary conditions for each field to specify a solution

for the entire system. Following refs. [55], we fix these boundary conditions near the horizon

uh. For example, the Ψa+u will have the near-horizon form

Ψa+u = na+u (u− uh)iα + · · · . (2.33)

where na+u and α are constants (independent of u) and . . . represents terms that decay

faster, as u→ uh, than the terms shown. The two constants na+u and α are the two degrees
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of freedom we have to specify the solution. Generically, the equation of motion will only be

satisfied for two values of α, one describing an in-going wave and the other describing an

out-going wave. As is well-known, to obtain the retarded Green’s function, we must use an

in-going wave. We still need to choose the normalization na+u. As shown in refs. [9, 11],

for fermions, once we choose an in-going wave solution, if we use the projectors Π1,2, then

when we fix the normalization of the up component Ψa1u to be na1u, the equation of motion

fixes the down component Ψa1d to have normalization i times na1u. The same applies to

the up and down components of Ψa2. Switching to the Π± projectors (recall eq. (2.13)),

the statement is that once we fix the normalization of Ψa−d to be na−d, then Ψa+d must

have normalization i times na−d. The same statement applies to Ψa−u and Ψa+u.

We thus need only fix 2N normalizations, for the up and down components of the Ψa−.

Let us arrange these normalizations into a row vector ~n

~n = (n1−u, n1−d, n2−u, n2−d, . . . , nN−u, nN−d) . (2.34)

Following refs. [55], we use these horizon normalizations to construct a basis of solutions

as follows. We solve the equations of motion 2N times, each time with a different choice

of ~n. The first time we use ~n = (+1,+1,+1, . . . ,+1,+1), the second time we use ~n =

(+1,−1,+1, . . . ,+1,+1), the third time we use ~n = (+1,+1,−1, . . . ,+1,+1), and so on.

We label these choices ~n(i), with i = 1, . . . , 2N . For each choice of normalizations, we

obtain solutions Ψ
(i)
a±. We now have a basis of solutions, so we can write any particular

solution as a linear combination of these. To do so, we construct matrices that we will

call P̃±
aj(u, ω, k) from the basis solutions, where each row corresponds to a field and each

column corresponds to a choice of normalization (the i index). For example, (suppressing

the Ψa−’s dependence on all variables)

[

P̃−
aj(u, ω, k)

]

=











Ψ
(1)
1− Ψ

(2)
1− . . . Ψ

(2N)
1−

Ψ
(1)
2− Ψ

(2)
2− . . . Ψ

(2N)
2−

. . . . . . . . .

Ψ
(1)
N− Ψ

(2)
N− . . . Ψ

(2N)
N−











, (2.35)

with P̃+
aj(u, ω, k) defined similarly. The P̃±

aj(u, ω, k) are 2N × 2N matrices. For later

convenience, we will factor out the leading asymptotic behavior of the solutions, defining

new matrices P±
aj(u, ω, k),

P̃±
aj(u, ω, k) ≡ u

d
2
±m P±

aj(u, ω, k). (2.36)

We can now write any solution as a linear combination of the basis solutions:

Ψa+(u, ω, k) = u
d
2
+m P+

aj(u, ω, k)
(

P+(ǫ, ω, k)−1
)

jb
cb+(ω, k),

Ψa−(u, ω, k) = u
d
2
−m P−

aj(u, ω, k)
(

P−(ǫ, ω, k)−1
)

jb
cb−(ω, k), (2.37)

with a summation over the j index. Notice that we take the solutions Ψa± to be linear in

the “sources,” ca±. As emphasized in refs. [55], eq. (2.37) is simply saying that the sources
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ca± will source various linear combinations of fields in the bulk, and that we can write those

linear combinations as linear combinations of our basis solutions. Notice that when we eval-

uate the solutions at u = ǫ, we reproduce the leading asymptotic form, Ψa± ∼ ca± u
d
2
±m.

Now we arrive at the main difference between bulk fermions and bulk bosons: ca+

and ca− are not independent. The equation of motion relates them [62, 63]. Indeed, we

saw above that only the ca− are sources, while the ca+ give one-point functions (roughly

speaking). To relate them, we follow refs. [10, 56]. We return to the equation of motion as

written in eq. (2.32). We focus only on the equation with Ψa+ on the left-hand-side, and

simply insert solutions as written in eq. (2.37) (suppressing all ω and k dependence)

∇ab+ u
d
2
+mP+

bj (u)
(

(

P+(ǫ)−1
)

jd
cd+

)

= Mae+ u
d
2
−mP−

ej(u)
(

(

P−(ǫ)−1
)

jf
cf−

)

, (2.38)

where the parentheses separate u-dependent factors from u-independent factors. We now

observe that the matrices P±
aj also solve the equation of motion, by construction, since they

are built from solutions. We thus have

∇ab+ u
d
2
+mP+

bj (u) = Mac+ u
d
2
−mP−

cj (u). (2.39)

Here we have a free j index, so we actually have 2N such equations. (Recall that the index

j labels the choice of normalization vector ~n.) The above equation is just the statement

that one column of the P±
aj matrices solves the equation of motion. We are free to act on

the right with the vector
(

P+(ǫ)−1
)

jd
cd+, so that we obtain

∇ab+ u
d
2
+mP+

bj (u)
(

(

P+(ǫ)−1
)

jd
cd+

)

= Mac+ u
d
2
−mP−

cj (u)
(

(

P+(ǫ)−1
)

jd
cd+

)

. (2.40)

We now simply compare eqs. (2.38) and (2.40). The left-hand sides are identical, so we

may equate the right-hand sides. Acting on the left with some inverse matrices, we obtain

the desired relation between the ca+ and ca−,

ca+ = P+(ǫ)aj

(

P−(ǫ)−1
)

jb
cb−. (2.41)

Invoking eq. (2.28), we now just need to perform two operations to extract the retarded

two-point function GR
ab(ω, k) from P+(ǫ)aj

(

P−(ǫ)−1
)

jb
: we take ǫ → 0 and then act on

the right with −iγt.

The effect of taking ǫ→ 0 is easy to understand. From the definition of the P̃±
aj(u) in

eq. (2.35) and the definition of the P±
aj(u) in eq. (2.36), we can identify the ǫ→ 0 limit of

the P±
aj(u) as

lim
ǫ→0

[

P−
aj(ǫ)

]

=











c
(1)
1− c

(2)
1− . . . c

(2N)
1−

c
(1)
2− c

(2)
2− . . . c

(2N)
2−

. . . . . . . . .

c
(1)
N− c

(2)
N− . . . c

(2N)
N−











, (2.42)

and similarly for limǫ→0 P
+
aj(ǫ). In short, the matrices P±

aj , when evaluated at the

boundary, are simply matrices of the ca+ and ca−.

Notice that the P−(ǫ)−1 matrix will introduce a factor of detP−(ǫ) in the denominator

of the Green’s function. Generically, then, if detP−(ǫ) has a zero, the Green’s function
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will have a pole, which means a quasi-normal mode appears in the bulk spectrum, as

in the bosonic cases of ref. [55]. Given the identification in eq. (2.42), then, to identify

quasi-normal modes we need only identify the zeroes of the matrix of c−’s.

Understanding how γt acts on P+(ǫ)aj

(

P−(ǫ)−1
)

jb
is a little tricky. Luckily, the way

we have written P+(ǫ)aj

(

P−(ǫ)−1
)

jb
means that −iγt acts trivially. To see that, notice

that eq. (2.41) is written in a two-component form: here ca± are two component spinors.

To restore them to four-component form, we take a direct product,

ca+ =

(

ca+u

ca+d

)

→ ca+ ⊗
(

0

1

)

=











0

ca+u

0

ca+d











, ca− =

(

ca−u

ca−d

)

→ ca− ⊗
(

1

0

)

=











ca−u

0

ca−d

0











.

(2.43)

To restore the P±
aj matrices to the same four-component form, we recall recall eq. (2.35),

which shows that we should perform exactly the same direct products (suppressing the

dependence on all variables):

P+
aj → P+

aj ⊗
(

0

1

)

, P−
aj → P−

aj ⊗
(

1

0

)

, (2.44)

which implies (P−)
−1
ja → (P−)

−1
ja ⊗

(

1 0
)

. Eq. (2.41) thus becomes

ca+ ⊗
(

0

1

)

=

{

[

P+(ǫ)aj

(

P−(ǫ)−1
)

jb

]

⊗
(

1 0

0 0

)} [

cb− ⊗
(

1

0

)]

. (2.45)

We now simply observe that, in such a representation, −iγt = 1N ⊗ σ1. In the N × N
subspace we want, −iγt merely acts as the identity.

In summary, the retarded Green’s function for coupled bulk fermions is

GR
ab(ω, k) = lim

ǫ→0

(

P+(ǫ)aj P
−(ǫ)−1

jb

)

, (2.46)

with the matrices P±
aj defined in eq. (2.36).

Finally, as an important check, let us use our prescription to reproduce the result

for free fermions, eq. (2.30). For illustration, we consider N = 2, so we have two bulk

fermions, which we will call Ψa and Ψb. We return to the equation of motion as written

in eq. (2.32), and assume the equations for Ψa and Ψb decouple, so that ∇ab± and Mab±

become diagonal in the a and b indices. We can further decouple the equations of motion

by using the projectors Π1,2. Acting with these, we obtain equations similar to eq. (2.14).

We thus find four decoupled equations, for Ψa1, Ψa2, Ψb1 and Ψb2.

We now solve the equations 2N = 4 times, each time with a different normalization

vector ~n for the Ψa− and Ψb− fields. In the first solution, all four fields have normal-

izations ~n = (na−u, na−d, nb−u, nb−d) = (+1,+1,+1,+1). In the second solution, we use

~n = (+1,−1,+1,+1). The key observation is that the field Ψa−d whose normalization

we change is Ψa−d = Ψa1u (recall eq. (2.13)), and hence couples only to Ψa1d = Ψa+d.
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The change in normalization thus leaves the other three fields, Ψa−u, Ψb−u, and Ψb−d

unchanged. The solutions for these fields will thus be identical to what they were using

the original +1 normalizations. The P−
aj matrix thus takes the form (here we must write

the up and down components explicitly)

[

P̃−
aj(u, ω, k)

]

=













Ψ
(1)
1−u Ψ

(1)
1−u Ψ

(1)
1−u Ψ

(1)
1−u

Ψ
(1)
1−d Ψ

(2)
1−d Ψ

(1)
1−d Ψ

(1)
1−d

Ψ
(1)
2−u Ψ

(1)
2−u Ψ

(3)
2−u Ψ

(1)
2−u

Ψ
(1)
2−d Ψ

(1)
2−d Ψ

(1)
2−d Ψ

(4)
2−d













, (2.47)

with P̃+
aj(u, ω, k) being identical except all − subscripts become +. The main feature

here is that all the superscripts are the same, except on the diagonal. A straightforward

exercise (especially simple for 2 × 2 matrices) then shows that taking the inverse (P−)
−1
ja

and then contracting with P+
aj , and taking ǫ → 0, reproduces exactly the purely diagonal

c+u/c−u and c+d/c−d form of eq. (2.30).

In summary: by combining the methods of refs. [54, 55] and [10, 56], we have provided

a relatively simple prescription to compute the matrix-valued retarded two-point function

from bulk solutions for coupled fermions. We simply solve the equations of motion (typi-

cally numerically) 2N times, using a different normalization vector ~n each time, use those

solutions to construct the matrices P±
aj(ǫ), and then take limǫ→0 P

+(ǫ)aj

(

P−(ǫ)−1
)

jb
.

3 Probe branes and holographic p-wave superfluids

In this section we review how to obtain a holographic p-wave phase transitions from

simple string theory constructions of intersecting Dq-branes and Dp-branes [32–35] (see

also ref. [66]). We also present some new results for the particular D3/D5 system we

subsequently explore in later sections.

3.1 p-waves, probe branes, and vector meson condensation

The minimal ingredients for a holographic p-wave phase transition are gravity in a black

hole spacetime with holographic variable u (and some dual field theory), plus non-Abelian

bulk gauge fields. We will consider the simple example of SU(2) gauge fields Aa
M , where a =

1, 2, 3 labels the generators τa of SU(2), although other non-Abelian groups besides SU(2)

work just as well [18, 67]. As described in the introduction, the p-wave superfluid transition

appears in the bulk as a charged black hole growing vector hair at low temperature.

As observed in refs. [32–35], we can easily obtain holographic p-wave superfluids using

well-known intersections of Nc coincident Dq-branes with Nf coincident Dp-branes in type

II string theory, which we will refer to as Dq/Dp systems. The idea is to take the usual

decoupling limit for the Dq-branes, which in particular means Nc →∞, to obtain type II

supergravity in the near-horizon geometry of the Dq-branes. Starting with non-extremal

Dq-branes produces a black hole spacetime.

If we keep Nf fixed as Nc → ∞, so that Nf ≪ Nc, then we may neglect the effect

of the Dp-branes on the supergravity fields. The Dp-branes are then probes of the
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background geometry, and their dynamics is described by the non-Abelian Born-Infeld

action (possibly plus Wess-Zumino terms) with gauge group U(Nf ). If we introduce

exactly Nf = 2 probe branes, then we have U(2) gauge fields on the worldvolume of the

Dp-branes. The SU(2) subgroup gives us the SU(2) gauge fields we want. Given that the

non-Abelian Born-Infeld action is not known to all orders in the field strength, we are

typically limited to working at the leading non-trivial order, which is the Yang-Mills term.

We have thus obtained SU(2) gauge fields in a black hole spacetime.

Crucially, notice that these Dq/Dp systems give rise to probe gauge fields, rather

than gauge fields coming from the supergravity sector. The probe limit is sufficient to

study many properties of the p-wave phase transition [16, 32–35], however, the probe

limit is known to fail at low temperatures, because the solutions with nonzero A1
x(u) have

a field strength that increases as we cool the system, so that we can no longer neglect

the back-reaction (or trust the Yang-Mills approximation to the non-Abelian Born-Infeld

action) [32, 34]. To reach zero temperature, we must solve the fully coupled equations of

motion, which to date has only been done in ad hoc models [17, 18, 23, 68].

The benefit of the Dq/Dp construction is that we can identify the dual theory, which

we will call the Dq/Dp theory. The Nc Dq-branes generically give rise to an SU(Nc) gauge

theory with fields only in the adjoint representation of SU(Nc). Open strings from the Nf

Dp-branes to the Dq-branes give rise to fields in the fundamental representation of SU(Nc),

i.e. flavor fields. In analogy with (supersymmetric) QCD, we will call any flavor fermions

or scalars “quarks” or “squarks,” respectively. If the Dp-branes do not overlap with all

q spatial directions of the Dq-branes, then the flavor fields will be confined to propagate

along some defect of nonzero codimension.

In the field theory, the probe limit consists of neglecting quantum effects due to the

flavors, such as the effect on the running of the coupling, because such effects are para-

metrically suppressed by Nf/Nc. In the language of perturbation theory, the probe limit

consists of discarding all diagrams involving quark or squark loops.

If we separate the D-branes in an overall transverse direction, we may give the Dq-Dp

strings a finite length and hence the flavor fields a finite mass, although in this paper we

consider only massless flavor fields (unless stated otherwise).

The U(Nf ) gauge invariance on the Dp-branes’ worldvolume is dual to a U(Nf ) flavor

symmetry, analogous to the vector symmetry of QCD. The overall U(1) we identify as

baryon (or really quark) number, and the SU(2) subgroup we identify as isospin.

We can thus easily see what the bulk transition looks like in the field theory. We have a

strongly-coupled, large-Nc non-Abelian gauge theory coupled to Nf = 2 species of massless

flavor fields, which may be confined to a defect. We study thermal equilibrium states with

temperature T , and introduce an isospin chemical potential µ for U(1)3. For sufficiently

large µ, the system develops a nonzero 〈Jx
1 〉. The operator Jx

1 is a gauge-invariant bilinear

in the flavor fields, valued in the adjoint of SU(Nf ). For example, in two-flavor massless

QCD, with up and down quarks u and d, Jx
1 ∼ ūγxd.

Such an operator is precisely what we would call a vector meson, and the phase transi-

tion appears to be vector meson condensation. To be precise, the spectrum of the Dq/Dp

theory includes gauge-invariant bound states of flavor fields. We will refer to such bosonic
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or fermionic bound states as “mesons” or “mesinos,” respectively. For massive flavor

fields, these mesons/mesinos are typically the lightest flavor degrees of freedom in the the-

ory [69, 70]. We may thus imagine writing an effective theory for these degrees of freedom,

analogous to the chiral Lagrangian of QCD. An isospin chemical potential µ will act as a

negative mass-squared for any mesons/mesinos charged under U(1)3. If we make µ suffi-

ciently large, then we expect Bose-Einstein condensation of mesons. In QCD, we expect

the lightest charged mesons, the pions, to condense first producing a scalar condensate

(and hence an s-wave superfluid), while the heavier vector mesons may condense at higher

µ [71, 72]. Which mesons condense first in Dq/Dp systems depends on the details of the

system. In Dq/Dp holographic models of QCD, such as the Sakai-Sugimoto model [73],

holographic calculations suggest that indeed the pions condense first and the vector mesons

second, as we increase µ [74, 75]. The general lesson from these Dq/Dp systems is that

the p-wave superfluid phase transition appears to be vector meson condensation, which is

in line with our weak-couling intuition.

Moreover, thinking of the p-wave states as a Bose-Einstein condensate makes many

potentially confusing features of the p-wave state transparent. For example, the p-wave

transition appears to involve the spontaneous generation of a persistent current 〈Jx
1 〉, that

is, at high density charges begin moving without experiencing dissipation.14 While not

impossible, such a scenario naturally raises some questions. Why do charges start moving?

How does that lower the free energy? Vector meson condensation neatly accounts for all

of the physics: we merely see Bose-Einstein condensation, i.e. bosons populating a zero-

momentum state, the main novelty being that the bosons are vectors, not scalars.

We are interested in condensed matter applications, and in particular quantum critical

theories, which are scale-invariant, hence our Dq-branes will be D3-branes, whose near-

horizon geometry is AdS5×S5. The dual theory is then a CFT, namely (3+1)-dimensional

N = 4 SYM with large Nc and and large ’t Hooft coupling. Our Dp-branes will preserve half

the supersymmetry of the background, which means Dp-branes extended along AdSP ×SQ

with P +Q = p+1, where supersymmetry requires |P −Q| = 2 [36]. Well-known examples

include D7-branes extended along AdS5 × S3 [76, 77] or AdS3 × S5 [78–80], D5-branes

extended along AdS4×S2 [41, 42], or D3-branes along AdS3×S1 [81].15 For two coincident

D7-branes with P = 5 and Q = 3, holographic calculations have shown that a p-wave

transition occurs precisely when peaks in the Green’s function, namely those corresponding

to vector mesons charged under U(1)3 in the vacuum state, cross into the upper-half of the

complex frequency plane, indicating an instability toward Bose-Einstein condensation.

With an eye toward condensed matter applications, and for technical reasons we explain

14Crucially, however, no net momentum is flowing. In holographic calculations, in both the probe and

fully back-reacted cases [17, 18, 23], the Yang-Mills stress-energy tensor and the metric are diagonal, and

indeed the bulk spacetime is static, which indicates that the expectation value of the field theory stress-

energy tensor is strictly diagonal. The system thus has zero net momentum. If charges are moving, they

must be doing so in pairs that move in opposite directions. A static bulk spacetime also indicates that the

energy density of the field theory is not changing in time: the system is not heating up, consistent with the

fact that the moving charges experience no dissipation (no frictional forces).
15These are the cases in which the flavor fields propagate in at least one spatial dimension, and hence a

nonzero 〈Jx
1 〉 is possible.

– 20 –



J
H
E
P
0
5
(
2
0
1
0
)
0
5
3

in section 4, we will work with (two coincident) D5-branes with P = 4 and Q = 2. The

dual theory is thus N = 4 SYM coupled to Nf = 2 flavor fields that propagate only

in 2+1 dimensions (a codimension one defect) and preserve (2+1)-dimensional N = 4

supersymmetry (eight real supercharges). The field content and Lagrangian of the D3/D5

theory were determined in refs. [41, 42], which we review in section 4.2. The D3/D5 system

exhibits rich thermodynamics, studied in detail (holographically) in [43–48, 50, 51]. Here

we initiate the study of the D3/D5 theory with a finite isospin chemical potential and finite

temperature. As expected, we will find a p-wave phase transition.

Our ultimate goal is to compute, holographically, fermionic retarded Green’s functions

in p-wave superfluid states. We discuss fermionic excitations on the worldvolume of the

D5-branes, and the dual mesinos, in section 4. We will be able to compare our numerical

results with previous studies, however, we cannot exploit the analytic results for the form of

fermionic Green’s functions derived in ref. [11]. The analysis of ref. [11] involved fermions

in an extremal Reissner-Nordström background, and in particular made great use of the

emergent near-horizon AdS2 factor. Without having access to the T = 0 finite-density state,

we do not know for sure whether the geometry exhibits an emergent AdS2 or something

similar. Nevertheless, the equations of motion for our fermions are formally similar to those

of refs. [9, 11], and hence we can recover similar finite-temperature results.

Despite the bad news that we cannot reach T = 0 in the probe limit, we do have good

news: we can study fermionic response near the p-wave transition. The high-temperature

normal phase is rotationally symmetric, but the p-wave phase is of course not. We will see

the breaking occur explicitly in fermionic spectral functions in section 5.

3.2 Probe Dp-branes in AdS5 × S5

We now want to study a p-wave superfluid transition for (2+1)-dimensional flavor fields de-

scribed holographically by two coincident D5-branes with P = 4 and Q = 2. Although our

(numerical) analysis will be for the D5-brane, in the interest of generality, and to connect

to our discussion in section 4, we will write formulas for an arbitrary Dp-brane with P ≥ 3.

The background supergravity solution includes a metric and Ramond-Ramond (RR)

five-form. The five-form will be important in section 4. The spacetime is (4+1)-dimensional

AdS-Schwarzschild times S5, with metric

ds2 =
1

u2

(

du2

f(u)
− f(u)dt2 + d~x2

)

+ ds2S5 , (3.1)

with

f(u) = 1− u4

u4
h

, uh =
1

πT
. (3.2)

In our units, where the AdS radius is one, we can convert between string theory and field

theory quantities using α′−2 = 4πgsNc = 2g2
YMNc = 2λ.

As we will be studying fermions in section 4, we will need the vielbeins and spin

connection associated with the metric above. We record these here for later use. The

nonzero vielbeins of (4+1)-dimensional AdS-Schwarzschild are (recall that upper index is
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local Lorentz, and the lower index is general coordinate),

euu =
1

u
√
f
, ett =

√
f

u
, eij =

1

u
δi

j . (3.3)

The spin connection ω of (4+1)-dimensional AdS-Schwarzschild then has the nonzero

components

ωtu =

(

f(u)

u
− f ′(u)

2

)

dt, ω~xu = −
√

f(u)

u
d~x, (3.4)

where ω~xu indicates the three components ωxu, ωyu, and ωzu.

Next we introduce two coincident probe Dp-branes extended along AdSP × SQ. We

will only consider the trivial embedding of the Dp-branes, that is, we consider solutions

in which all the Dp-branes’ worldvolume scalars (including scalars in AdS5 directions) are

zero. The dual flavor fields are then massless. The induced metric on the Dp-branes

ds2Dp =
1

u2

(

du2

f(u)
− f(u)dt2 + d~x2

)

+ ds2SQ , (3.5)

where now d~x2 represents the appropriate-dimensional Euclidean metric.

We want non-trivial worldvolume SU(2) gauge fields. The action for the gauge fields,

to leading non-trivial order, is

SDp = −TDpNf

∫

dp+1ξ
√

−gDp

[

1 + (2πα′)2
1

2
Tr (FµνF

µν)

]

,

where TDp = (2π)−p g−1
s (α′)−

p+1

2 is the tension of the Dp-brane, Nf = 2, the integral is

over the worldvolume coordinates ξµ, gDp is the determinant of the induced metric, and the

trace is over gauge indices. We use SU(2) generators τa = 1
2σa such that, with ǫ123 = +1

[τa, τb] = i ǫabc τc. (3.6)

The field strength Fµν = F a
µν τa.

The equation of motion for the gauge field is simply the Yang-Mills equation,

∇µF
µν
a + fabc (Aµ)b F

µν
c = 0. (3.7)

For probe Dp-branes wrapping AdSP ⊆ AdS5 with P ≥ 3, we will consider solutions of

eq. (3.7) of the form

A = A1
x(u) τ1 dx+A3

t (u) τ3 dt, (3.8)

in which case the Yang-Mills equation becomes

(

A3
t

)′′

+
4− P
u

(

A3
t

)′ − 1

f(u)
A3

t

(

A1
x

)2
= 0, (3.9a)

(

A1
x

)′′

+

(

4− P
u

+
f ′(u)

f(u)

)

(

A1
x

)′
+

1

f(u)2
(

A3
t

)2
A1

x = 0, (3.9b)
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where primes denote ∂u. The equations of motion determine the asymptotic forms of the

solutions,16

A3
t (u) = µ− d3

t u
P−3 + · · · , A1

x(u) = d1
x u

P−3 + · · · , (3.10)

where . . . represent terms that decay faster than uP−3 as u → 0. Here the constant d3
t is

related to 〈J t
3〉 as

〈J t
3〉 = NfTDp

(

2πα′
)2
d3

t = (2π)−p+3 2
p−3

4 NfNc λ
p−7

4 d3
t , (3.11)

where in the second equality we converted to field theory quantities. Similarly, 〈Jx
1 〉 =

NfTDp (2πα′)2 d1
x. Notice in particular that both 〈J t

3〉 and 〈Jx
1 〉 are proportional to NfNc.

One solution of eqs. (3.9) has A1
x(u) = 0 and

A3
t (u) = µ

(

1− uP−3

uP−3
h

)

. (3.12)

Such a solution corresponds in the field theory to the normal phase, in which the chem-

ical potential µ explicitly breaks the SU(2) isospin symmetry down to the U(1)3, but no

spontaneous symmetry breaking occurs. These solutions exist for all values of µ.

Notice that these D3/Dp theories in the probe limit are scale-invariant,17 so the only

meaningful physical quantity is µ/T , so fixing T and increasing µ is equivalent to fixing

µ and reducing T . We will think in terms of the latter. Any transition must occur at a

temperature Tc set by the chemical potential, Tc ∝ µ.

For sufficiently low T (or large µ), other solutions of eq. (3.7) exists in which A1
x(u) is

nonzero. For the D7-brane with P = 5 and Q = 3, such solutions were found numerically

in refs. [32–34]. These solutions correspond in the field theory to superfluid states, with

nonzero 〈J1
x〉, so U(1)3 is spontaneously broken. For P ≥ 4, the field theory’s spatial

rotational symmetry18 is also broken from SO(P − 2) down to SO(P − 3).

For sufficiently low T , we have two solutions, so we need to determine which is thermo-

dynamically preferred. As shown in refs. [32–34] for the D7-brane with P = 5 and Q = 3,

the superfluid phase is thermodynamically preferred relative to the normal phase for all

T/µ where the solutions with nonzero Ax
1(u) exist. The transition between the phases is

second order, with mean-field exponents. In particular, near the transition, the condensate

has mean field exponent 1/2: 〈Jx
1 〉 ∝ (1− T/Tc)

1/2.

For two coincident D5 branes with P = 4 and Q = 2, the story is qualitatively the

same. For µ ≥ 3.81 × (πT ) the state with nonzero 〈J1
x〉 has lower free energy. In other

words, Tc = µ
3.81×π . In figure 1 we plot the constant d1

x, which is proportional to 〈Jx
1 〉,

versus the rescaled temperature T/Tc. Near the transition, 〈Jx
1 〉 appears to have a mean-

field exponent of 1/2 as in the D7-brane case [32–34].

16Notice that A1
x(u) has no leading constant the way At

3(u) does, so no source for Jx
1 is present in the

field theory: U(1)3 will be broken spontaneously.
17In the probe limit we neglect the quantum effects that would cause the N = 4 SYM coupling to run,

and we are working with massless flavor fields. The theory is thus in a limit where no intrinsic scale appears.
18When P = 3 the flavor fields are confined to a (1+1)-dimensional defect and hence have no spatial

rotational symmetry. Notice that in the P = 3, 4 cases the large Nc limit is what permits spontaneous

symmetry breaking to occur, by suppressing the fluctuations that would destroy long-range order.
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Figure 1. The condensate 〈J1

x〉, times 2
3/2λ1/2

Nf NcT 2 , versus the rescaled temperature T/Tc.

Notice that as T decreases, the condensate grows, which, as explained in refs. [14, 15],

suggests that we are leaving the probe limit. We will only present results in the p-wave

phase for T/Tc & 0.4 (as plotted in figure 1), where we have some hope that the probe

approximation captures the essential physics faithfully.

4 The worldvolume fermions

We want to study fluctuations of fermionic operators of the D3/D5 theory with finite

temperature and isospin chemical potential, in the two phases described above, the normal

(non-superfluid) phase and the superfluid phase. On the field theory side, we will study

mesino operators valued in the adjoint representation of the SU(2) isospin symmetry.

As we will see below, we will thus have three mesinos, two with equal and opposite

charges under the U(1)3, and one that is neutral. We discuss the form of the mesino

operators in section 4.2.

To be specific, we will compute holographically the retarded two-point function of

mesinos as a function of frequency and momentum. On the gravity side, that means

studying fermionic fluctuations of the Dp-branes, and in particular solving their linearized

equation of motion in the background we found in the last section, where the geometry

is (4+1)-dimensional AdS-Schwarzschild and the D5-branes have non-trivial worldvolume

gauge fields. As for all supersymmetric Dp-branes, the worldvolume fermions are in a

supermultiplet with the worldvolume gauge field and scalars, and hence are in the adjoint

of the worldvolume SU(2) gauge group, which is dual to the statement that the mesinos

are in the adjoint of the isospin symmetry.19

19Obviously, the mesinos carry no baryon number, which is dual to the statement that the worldvolume

fermions, like all of the worldvolume fields, do not couple via a gauge-covariant derivative to the diagonal

U(1) part of the worldvolume gauge field.

– 24 –



J
H
E
P
0
5
(
2
0
1
0
)
0
5
3

As we will see, in the normal phase the three bulk fermions decouple, which is dual to

the statement that the retarded Green’s function is diagonal. In the superfluid phase, how-

ever, where A1
x(u) is nonzero, the three fermions couple, indicating that the dual operators

mix under renormalization group flow in the field theory. The Green’s function is then a

6×6 matrix, where the 6 is the number of fermions times the two components of the fermions

(two, using the Π1,2 projectors). We thus have a perfect testing ground for the method we

developed in section 2 for computing Green’s functions from coupled bulk fermions.

The fermionic part of general Dp-brane actions, to quadratic order in the fermionic

fields and in backgrounds with non-trivial RR forms, was determined in refs. [37–39]. The

general couplings were derived by starting with the action for a supermembrane in M-

theory, written in a superspace formalism, expanding the action to second order in the

Grassmann variables, reducing to type IIA supergravity, and then performing a T-duality

to type IIB. The form of the quadratic fermionic action on the Dp-brane worldvolume is

thus determined completely by supersymmetry and T-duality.

Using the worldvolume fermion actions of refs. [37–39], the spectra of mesinos in the

D3/D7 theory (for the D7-brane with P = 5 and Q = 3) and in the Sakai-Sugimoto

model were determined in refs. [40, 82]. We will very closely follow the D7-brane analysis

of ref. [40], which in turn was the fermionic generalization of the analysis of ref. [69] for

mesons. For a Dp-brane extended along AdSP × SQ, we consider a worldvolume spinor

that is a spherical harmonic on the SQ. We reduce the worldvolume spinor on the SQ,

obtaining an effective Dirac action in AdSP . This procedure fixes the masses of the bulk

fermionic excitations, which allows us to identify the dimensions of the dual mesinos, and

more generally to map bulk fluctuations to mesino operators. As emphasized in ref. [40],

the coupling to the RR five-form is crucial to obtain the correct bulk masses.20

One of our main points is: because we work with a particular string theory system,

we do not have the freedom to change the mass or the charge of our bulk fermion, in stark

contrast to the models of refs. [9–11]. Both the masses and charges are, ultimately, fixed

by supersymmetry and T-duality, as explained above.

4.1 Equation of motion I: reduction to AdS

We will now repeat the analysis of ref. [40], in which the fermionic action of a D7-brane

extended along AdS5 × S3 was reduced to an effective Dirac action in AdS5, but now for

more general Dp-branes extended along AdSP × SQ, with emphasis on D5-branes with

P = 4 and Q = 2.21

The quadratic action for fermionic fluctuations of the Dp-branes is (refs. [39, 40])

SDp = NfTDp

∫

dp+1ξ
√

−gDp
1

2
Tr

[

ˆ̄ΨP−ΓÂ

(

DÂ +
1

8

i

2 ∗ 5!
FN̂P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂ŜΓÂ

)

Ψ̂

]

,

20The authors of ref. [83] appear to omit the coupling to the five-form when they study fermionic fluctu-

ations of the probe D3-brane extended along AdS3 × S1.
21In section 3 we were interested in p-wave states and hence required P ≥ 3. In this subsection we relax

that constraint. Our results will thus also apply for D5-branes extended along AdS2 ×S4, which were used

in ref. [84] to construct a holographic model of fermions at lattice sites (that can pair to form dimers).

– 25 –



J
H
E
P
0
5
(
2
0
1
0
)
0
5
3

Here Ψ̂ is a ten-dimensional positive-chirality Majorana-Weyl spinor of type IIB supergrav-

ity, the ΓÂ are the pullback of the ten-dimensional Γ-matrices to the Dp-brane worldvolume,

ΓÂ = ΓM̂∂Âx
M̂ (we use a trivial embedding, so the pullback is trivial), P− is a κ-symmetry

projector that ensures κ-symmetry invariance of the action, DA is a (gauge and curved-

space) covariant derivative, and FN̂ P̂ Q̂R̂Ŝ is the five-form of the background. Notice that

here FN̂P̂ Q̂R̂Ŝ is not the pullback of the five-form to the Dp-brane worldvolume, rather, it

is the five-form evaluated on the submanifold spanned by the Dp-brane. Indeed, no part of

the expression FN̂P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂Ŝ involves a pullback. Here Â, B̂, . . . denote all worldvolume

indices, while below A,B, . . . denote AdS-Schwarzschild coordinates which are wrapped by

the probe brane. Moreover, the indices of the coordinates on the sphere SQ are labelled

by a, b, . . . . Notice that the fermion Ψ̂ is in the adjoint representation of SU(2).

The equation of motion for the fermion is (for now we suppress gauge indices)

[

ΓÂDÂ +
1

8

i

2 ∗ 5!
ΓÂFN̂P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂ŜΓÂ

]

Ψ̂ = 0 (4.1)

We will reduce the equation of motion for the fermion to a Dirac equation in AdSP ,

following ref. [40] very closely. First we decompose every ten-dimensional spinor and

Γ-matrix into parts associated with AdS5 and S5. In a local Lorentz frame, the Γ-matrices

decompose as

ΓM = σ2 ⊗ 14 ⊗ γM , Γm = σ1 ⊗ γm ⊗ 14, (4.2)

where 14 is the 4 × 4 identity matrix, the index M runs over AdS5 directions (which we

will generically call 01234), and the index m runs over S5 directions (which we will call

56789). The γ-matrices are five-dimensional, obeying the usual relations

{

γM , γN
}

= 2ηMN , {γm, γn} = 2δmn. (4.3)

Given the above decompositions, we then have

Γ01234 = iσ2 ⊗ 14 ⊗ 14, Γ56789 = σ1 ⊗ 14 ⊗ 14 (4.4)

Γ11 = Γ0123456789 = σ3 ⊗ 14 ⊗ 14 (4.5)

The ten-dimensional spinor Ψ̂ has positive chirality, Γ11Ψ̂ = Ψ̂, and decomposes as

Ψ̂ =↑ ⊗χ⊗Ψ, (4.6)

where ↑=
(

1

0

)

, and χ and Ψ are four-component spinors of SO(5) and SO(4, 1), which

act on the tangent spaces of S5 and AdS5, respectively. The spinor χ further decomposes

as χ = χ‖ ⊗ χ⊥, where χ‖ is a spinor associated with the SQ that the Dp-brane wraps

and χ⊥ is associated with the S5 directions transverse to the SQ.

We parameterize the five-form in terms of the volume forms of AdS5 and S5, which

we denote as ΩAdS5
and ΩS5,

FNPQRS = 4 (ΩAdS5
)NPQRS , Fnpqrs = 4 (ΩS5)npqrs .
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Using the decomposition of the type IIB spinor in eq. (4.6) and of the γ-matrices in eq. (4.2)

we obtain

Γa
(

Γ01234 + Γ56789
)

Γa (↑ ⊗χ⊗Ψ) = 2 ↓ ⊗χ⊗Ψ ,

ΓA
(

Γ01234 + Γ56789
)

ΓA (↑ ⊗χ⊗Ψ) = −2 ↓ ⊗χ⊗Ψ , (4.7)

In eq. (4.7) we have not summed over a or A. Using this result we can simplify the coupling

of the spinor to the five-form,

1

8

i

2 ∗ 5!
ΓÂFN̂P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂ŜΓÂΨ̂=

i

4
ΓÂ((σ1+iσ2)⊗ 14 ⊗ 14)ΓÂΨ̂=− i

2
(P −Q)(↓ ⊗χ⊗Ψ)

(4.8)

where here we do sum over Â. We can also extract the SQ and the AdSP part of the

derivative terms as

ΓÂDÂΨ̂ = ΓADAΨ̂ + ΓaDaΨ̂

=
((

σ2 ⊗ 14 ⊗ γADA

)

+ (σ1 ⊗ γaDa ⊗ 14)
)

(↑ ⊗χ⊗Ψ)

=
(

i
(

12 ⊗ 14 ⊗ γADA

)

+ (12 ⊗ γaDa ⊗ 14)
)

(↓ ⊗χ⊗Ψ)

≡ (i∆AdSP
+ ∆SQ) (↓ ⊗χ⊗Ψ) , (4.9)

where ∆AdSP
and ∆SQ are the Dirac operators of AdSP and SQ, respectively. The Dirac

operator on a sphere SQ has spinor spherical harmonics χ±
ℓ that obey

∆SQχ±
ℓ = ∓ i

RQ

(

ℓ+
Q

2

)

χ±
ℓ , (4.10)

where ℓ ≥ 0 and RQ is the radius of the SQ. In our units, RQ = 1. For Q = 3, relevant

for the D7-brane along AdS5 × S3, the spinors χ+
ℓ are in the

(

ℓ+1
2 , ℓ

2

)

representation of

the SO(4) that acts on S3, while the spinors χ−
ℓ are in the

(

ℓ
2 ,

ℓ+1
2

)

representation. For

Q = 2, relevant for the D5-brane along AdS4×S2, the spinors χ±
ℓ are in the

(

ℓ+ 1
2

)

of the

SU(2) ≃ SO(3) that acts on S2.

Inserting everything into eq. (4.1), we find

(

∆AdSP
∓
(

ℓ+
Q

2

)

− 1

2
(P −Q)

)

Ψ±
ℓ =

{

(

∆AdSP
−
(

ℓ+ 1
2P
))

Ψ+
ℓ

(

∆AdSP
+
(

ℓ− 1
2P +Q

))

Ψ−
ℓ

}

= 0. (4.11)

The fermions22 Ψ± thus have masses (in our units, where the radius of AdS is one)

m+
ℓ = ℓ+

P

2
, m−

ℓ = −
(

ℓ+Q− 1

2
P

)

. (4.12)

We collect the values of m±
ℓ for our Dp-branes of interest in the table below.

Notice that since P and Q are integers, the m±
ℓ will always be integer or half-integer.

As we review in the appendix, a bulk fermion with an integer or half-integer mass m

22The ± superscript here refers to the sign of the eigenvalue of the Dirac operator in eq. (4.10), not to

the projectors Π± defined in section 2.

– 27 –



J
H
E
P
0
5
(
2
0
1
0
)
0
5
3

Dp P Q [ψ] [q] m+
ℓ = ℓ+ P/2 ∆+

ℓ |m−
ℓ | = ℓ+Q− P/2 ∆−

ℓ

D7 5 3 3/2 1 ℓ+ 5/2 ℓ+ 9/2 ℓ+ 1/2 ℓ+ 5/2

D7 3 5 1/2 - ℓ+ 3/2 ℓ+ 5/2 ℓ+ 7/2 ℓ+ 9/2

D5 4 2 1 1/2 ℓ+ 2 ℓ+ 7/2 ℓ ℓ+ 3/2

D5 2 4 0 - ℓ+ 1 ℓ+ 3/2 ℓ+ 3 ℓ+ 7/2

D3 3 1 1/2 0 ℓ+ 3/2 ℓ+ 5/2 ℓ− 1/2 ℓ+ 1/2

Table 1. Masses of fermionic excitations on the worldvolume of a Dp-brane extended along

AdSP ×SQ inside AdS5×S5. We list Dp-branes that are known to preserve eight real supercharges

(at zero temperature and density), in which case |P −Q| = 2. Here ψ denotes a generic quark field

and q denotes a generic squark field. ∆±

ℓ denotes the dimension of the operator dual to the bulk

fermion with mass m±

ℓ , with ∆±

ℓ = P−1

2
+ |m±

ℓ |. For the D3-brane, the values of m−

ℓ and ∆−

ℓ shown

are for ℓ ≥ 1 only, whereas for ℓ = 0, |m−

0
| = 1/2 and ∆−

0
= 3/2.

is dual to a fermionic operator of dimension ∆ = P−1
2 + |m|. We include the values of

∆±
ℓ = P−1

2 + |m±
ℓ | in the table.

To get a rough idea of which operators correspond to which bulk fermion, we can

do some dimension counting. Let us denote a generic quark as ψ, a generic squark as

q, a generic adjoint Majorana fermion as λ, and a generic adjoint real scalar as X. The

dimensions of the fields are [ψ] = P−2
2 , [q] = P−3

2 , [λ] = 3/2, [X] = 1.

For the D7-brane extended along AdS5 × S3, the D5-brane along AdS4 × S2, and the

D3-brane along AdS3 × S1, all of which have P − Q = 2, the dual flavor fields comprise

a supermultiplet with both quarks ψ and squarks q. In these cases, we can build a

gauge-invariant mesino in two ways [40]. One way is to construct an operator of the form

ψ̄λψ + q†Xλq, with dimension ∆ = P − 1/2. We can additionally include some number

ℓ of adjoint scalars23 as ψ̄λXℓψ + q†XλXℓq, so that the dimension is ∆ = ℓ + P − 1/2.

Inspecting the table, these are precisely the ∆+
ℓ , so apparently these kinds of mesinos

are dual to the bulk fermions with masses m+
ℓ . The other way to build a mesino is to

construct ψ̄Xℓq (plus the Hermitian conjugate), with dimension ∆ = ℓ + P − 5/2. For

Dp-branes with P −Q = 2, these dimensions are precisely the ∆−
ℓ , so apparently mesinos

of this type are dual to the fermions with masses m−
ℓ .

For the D7-brane extended along AdS3 × S5 and D5-brane along AdS2 × S4, which

have P − Q = −2, the dual flavor fields are quarks alone, with no squarks [78–80, 85].

The mesinos with dimensions ∆+
ℓ are of the same form, ψ̄λXℓψ, but the mesinos with

dimensions ∆−
ℓ must obviously have a different form. We leave a detailed study of these

mesinos for the future.

Looking at the table, we immediately notice that the D5-branes are special: for these,

the masses of the worldvolume fermions are integers. The reason is that the D5-branes

wrap even-dimensional spheres, so the eigenvalue in eq. (4.10) is ±i times an integer.

In the next subsection we focus on the D5-brane extended along AdS4×S2, explaining

23Notice these are not necessarily all the same scalar, i.e. Xℓ could represent ℓ distinct scalars. At the

moment we are just counting dimensions, ignoring this subtlety.
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in more detail the symmetries of the theory and the form of the mesinos. In the subsequent

sections, we focus on the single worldvolume fermion with mass m−
0 = 0, for a number of

reasons. First, of all the worldvolume fermions, these have the smallest mass, hence the

dual operator will have the lowest dimension, ∆−
0 = 3/2, and hence be the most relevant

mesino. Second, a numerical analysis is simpler when the fermion’s mass is zero. Third,

with a massless bulk fermion we can directly compare to the results of refs. [9, 11], where

most of the analysis focused on massless bulk fermions. Fourth, as we show in the appendix,

a massless fermion requires no counterterms.

4.2 The dual operators

In this section we focus on the D5-brane along AdS4×S2 and study in detail the operators

in the D3/D5 theory dual to the fermionic fluctuations considered above. For the D7-

brane along AdS5 × S3, a similar analysis appears in ref. [40]. We begin with Nf = 1 and

generalize to Nf > 1 at the end.

The dual field theory is (3+1)-dimensional N = 4 SYM coupled to defect flavor fields

preserving (2+1)-dimensional N = 4 supersymmetry (eight real supercharges). The cou-

plings of the theory were determined in refs. [41, 42]. Coupling the defect fields to the am-

bient fields requires decomposing the (3+1)-dimensional N = 4 multiplet into two (2+1)-

dimensional N = 4 multiplets, a vector multiplet and a hypermultiplet. The bosonic

content of the (3+1)-dimensional N = 4 multiplet is the vector Aµ and six scalars24

X4,X5, . . . ,X9. The bosonic content of the (2+1)-dimensional vector multiplet is the

(2+1)-dimensional vector field Ak and the three scalars XV = (X7,X8,X9). The bosonic

content of the (2+1)-dimensional hypermultiplet is the scalar A3 and the three scalars

XH = (X4,X5,X6). The flavor fields form a (2+1)-dimensional hypermultiplet with two

fermions (quarks) ψ and two complex scalars (squarks) q.

The classical Lagrangian preserves (2+1)-dimensional SO(3, 2) conformal symmetry

but breaks the SO(6) R-symmetry down to a subgroup SU(2)H × SU(2)V , under which

the scalars in XH transform in the (1, 0) representation and the scalars in XV transform

in the (0, 1). We use an upper index to denote these representations: XA
V and XI

H . The

adjoint fermions λim transform in the (1/2, 1/2). Here i is the SU(2)V index and m is

the SU(2)H index. The quarks ψi transform in the (1/2, 0) and the squarks qm transform

in the (0, 1/2). In table 2 (borrowed from ref. [41]), we summarize the field content and

quantum numbers, including the conformal dimensions of the fields.

Let us now match fluctuations of the D5-brane probe to dual field theory operators,

building on the matching of bosonic fields and operators in refs. [41, 70, 86]. These fluctu-

ations correspond to mesonic operators in the dual theory [69, 76], which can be arranged

into a (2+1)-dimensional massive N = 4 supersymmetric multiplet.

First we consider the bosonic fluctuations of the D5-brane, as studied in refs. [41, 70,

86]. The bosonic fluctuations consists of three real scalars, which in the notation of ref. [41]

24In the initial type IIB D3/D5 intersection, the D3-branes are extended along 0123, and these scalars

represent fluctuations of the D3-branes in the 456789 directions, hence our notation. The D5-branes are

extended along 012456, so they break the SO(6) rotational symmetry in 456789 down to SO(3) × SO(3) ≃

SU(2) × SU(2), one rotating 456 and one rotating 789.
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Mode Spin SU(2)H SU(2)V SU(Nc) ∆

Ak 1 0 0 adj 1

XA
V 0 0 1 adj 1

A3 0 0 0 adj 1

XI
H 0 1 0 adj 1

λim 1
2

1
2

1
2 adj 3

2

qm 0 1
2 0 N 1

2

ψi 1
2 0 1

2 N 1

Table 2. The field content of the D3/D5 theory. (Adapted from ref. [41].) Here Ak, XA
V , A3, X

I
H

and λim are the adjoint fields of (3+1)-dimensionalN = 4 SYM decomposed into (2+1)-dimensional

N = 4 multiplets. Ak and XA
V are the bosons in a (2+1)-dimensional vector multiplet while A3 and

XI
H are the bosons in a (2+1)-dimensional hypermultiplet. qm and ψi are the (2+1)-dimensional

flavor fields, which are in an N = 4 hypermultiplet.

Mode ∆ SU(2)H SU(2)V Operator Operator in lowest multiplet

bkl l + 2 l, l ≥ 0 0 Jl iq̄m
←→
Dk qm + ψ̄iρkψi

φl l + 2 l, l ≥ 0 1 El ψ̄iσ
A
ijψj + 2q̄mXAa

V T aqm

(b+ z)
(−)
l+1 l + 1 l + 1, l ≥ 0 0 Cl q̄mσI

mnq
n

(b+ z)
(+)
l−1 l + 3 l − 1, l ≥ 1 0 Dl —

Table 3. The bosonic fluctuations and their dual field theory operators for the D3/D5 system.

(Adapted from ref. [41].) Here σ are Pauli matrices, T a are the generators of SU(2)V , and ρk are

the (2+1)-dimensional Γ-matrices.

are φl, (b+z)
(−)
l and (b+z)

(+)
l , as well as a vector bkl . Here φl corresponds to fluctuations of

the embedding in S5 directions (transverse to the S2), (b+z)
(−)
l and (b+z)

(+)
l are linear com-

binations of the fluctuations of the S2 components of the worldvolume gauge field with the

fluctuation of the embedding in AdS5 transverse to AdS4, and bkl (k = 0, 1, 2) corresponds

to fluctuations of the worldvolume gauge field in the AdS4 directions. We summarize the

quantum numbers of these fluctuations in table 3 (borrowed from ref. [41]). Notice that our

definition of l differs from that in ref. [41]. In our notation, fluctuations with the same l have

the same mass. Later we will show that all operators with the same quantum number l fit

into a super multiplet. Note that (b+z)
(+)
l is not present in the lowest multiplet with l = 0.

We studied the fermionic fluctuations25 Ψ±
l of the D5-brane in the last section. The

fluctuations Ψ−
l with l ≥ 0 correspond to operators with dimensions ∆−

l = l+3/2 that are

in the l + 1/2 representation of SU(2)H . The fluctuations Ψ+
l−1 with l ≥ 1 correspond to

25In the last subsection we used a subscript ℓ, while here we use a subscript l. For Ψ−

ℓ the two are

identical: ℓ = l. For Ψ+

ℓ we take ℓ = l − 1.
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D5-brane Mode ∆ SU(2)H SU(2)V Operator

Ψ−
l l + 3/2 l + 1/2, l ≥ 0 1/2 Fl

Ψ+
l−1 l + 5/2 l − 1/2, l ≥ 1 1/2 Gl

Table 4. Matching between fermionic fluctuations of the D5-brane and field theory operators. The

explicit form of the fermionic operators Fl and Gl appear in the text below.

operators with dimensions ∆+
l−1 = l + 5/2 in the l − 1/2 representation of SU(2)H . Since

both fluctuations are fermionic they transform in the 1/2 representation 1/2 of SU(2)V .

We summarize the fermionic modes in table 4.

We first review the lowest multiplet, i.e. l = 0, which appears already, including the

fermionic operators, in ref. [41]. According to tables 3 and 4, the D5-brane fluctuation

corresponding to the lowest-dimension operator is (b+ z)
(−)
l+1 with l = 0. Only one operator

exists on the field theory side with the same quantum numbers as (b+z)
(−)
1 , so we can match

(b + z)
(−)
1 with the operator CI

0 = q†mσI
mnq

n, where σI are the Pauli matrices of SU(2)H .

C0 transforms in the (1, 0) representation of SU(2)H × SU(2)V . Moreover C0 is the lowest

chiral primary in the multiplet since all other operators dual to D5-brane fluctuations have

larger conformal dimensions. We can thus construct all operators in the same multplet

as C0 by applying supersymmetry generators to C0. The supersymmetry generators form a

2× 2 matrix of Majorana spinors ηim, which transforms like λim, i.e. in the representation

(1/2, 1/2) of SU(2)H × SU(2)V . Applying the supersymmetry generators to C0 we obtain

the fermionic operator F im
0 = ψ̄iqm + q†mψi with conformal dimension ∆ = 3/2 and

SU(2)H × SU(2)V quantum numbers (1/2, 1/2). F im
0 is dual to the fermionic D5-brane

fluctuation Ψ−
l=0. Applying another supersymmetry generator to F im

0 we obtain either J0

or E0, the forms of which appear in table 3. Both J0 and E0 have conformal dimension

∆ = 2 and are singlets under SU(2)H but can be distinguished by their SU(2)V quantum

number: J0 is a singlet whereas E0 is a triplet under SU(2)V .

Let us now discuss the general multiplet dual to the higher-l fluctuations of the D5-

brane. As in the l = 0 case, we construct the multiplet by applying supersymmetry

generators to the lowest chiral primary in the multiplet, Cl, which is dual to (b + z)
(−)
l .

According to ref. [41], the lowest chiral primary is CI0I1...Il
l = C

(I0
0

(

X l
H

)I1...Il) , where (X l
H)

stands for the traceless symmetric product of l copies of the field XI
H . Cl has conformal

dimension ∆ = l+1 and is in the (l+1, 0) representation of SU(2)H ×SU(2)V . Applying a

supersymmetry generator to Cl we find the fermionic operator Fl with conformal dimension

∆ = l + 3/2, which is dual to the D5-brane fluctuation Ψ−
l . Fl is in the (l + 1/2, 1/2)

representation of SU(2)H × SU(2)V . Explicitly, Fl is of the form

FI1...Il im
l = ψ̄i

(

X l
H

)I1...Il

qm + q†m
(

X l
H

)I1...Il

ψi . (4.13)

Applying another supersymmetry generator to Fl we obatin Jl or El, which have the

same conformal dimension ∆ = l+2, but differ in the SU(2)H ×SU(2)V representation. Jl

transforms in the (l, 0) representation whereas El has quantum numbers (l, 1). To obtain the

precise form of Jl or El we insert the operator X l
H into the operator J0 or E0, respectively.
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In contrast to the l = 0 multiplet, other operators also appear in the multiplet for

l ≥ 1, which we construct by applying three or four supersymmetry generators to Cl: a

fermionic operator Gl and a bosonic operator Dl. Gl has conformal dimension ∆ = l+ 5/2

and SU(2)H × SU(2)V quantum numbers (l − 1/2, 1/2). These are precisely the quantum

numbers of the fermionic D5-brane fluctuation Ψ+
l−1. Explicitly, Gl has the form

GI1...Il−1 im
l = ψ̄j

(

X l−1
H

)I1...Il−1

λim ψj + q†n
(

X l−1
H

)I1...Il−1

λimXH,I σ
I
np q

p . (4.14)

Finally Dl has conformal dimension ∆ = l + 3 and SU(2)H × SU(2)V quantum numbers

(l − 1, 0) and therefore can be identified with the D5-brane fluctuation (b+ z)
(+)
l−1.

We have constructed the supermultiplet for the cases l = 0 and l ≥ 1. For l = 0 they

multiplet consists of the bosonic operators C0,J0 and E0 and of the fermionic operator

F0. The multiplet includes are eight bosonic and eight fermionic degrees of freedom. The

multiplet containing Cl, l ≥ 1 has 16l + 1 fermionic and bosonic degrees of freedom:

• One real scalar Cl in the (l + 1, 0) representation with ∆ = l + 1

• One spinor Fl in the (l + 1/2, 1/2) representation with ∆ = l + 3/2,

• One massive vector Jl in the (l, 0) representation with ∆ = l + 2,

• One real scalar El in the (l, 1) representation with ∆ = l + 2,

• One spinor Gl in the (l − 1/2, 1/2) representation with ∆ = l + 5/2,

• One real scalar Dl in the (l − 1, 0) representation with ∆ = l + 3.

Moreover we mapped the operators in the supermultiplet to the fluctuations of the probe

brane summarized in tables 3 and 4.

Finally, we consider Nf > 1 coincident probe D5-branes. The dual field theory then has

Nf massless flavors, with a global U(Nf ) flavor symmetry. The overall U(1) we identify as

baryon (more accurately quark) number, while the SU(Nf ) subgroup we identify as isospin.

The mesino operators Fl and Gl of course have zero baryon number charge and are valued

in the adjoint of SU(Nf ). For example, in our case with Nf = 2 the mesinos acquire an

SU(2) isospin index, Fa
l and Ga

l .

As explained at the end of the last subsection, for our numerical analysis we use the

D5-brane fermions with zero mass, Ψ−
0 . The dual fermionic operator is F0 ∼ ψ̄q + q†ψ.

4.3 Equation of motion II: gauge couplings

In this section we return to the equation of motion for the worldvolume fermions,

eq. (4.11), and specialize to our case of interest, namely two coincident Dp-branes in (4+1)-

dimensional AdS-Schwarzschild with trivial worldvolume scalars but non-trivial worldvol-

ume gauge fields A3
t (u) and A1

x(u). More specifically, we will explicitly unpack the gauge-

and curved-space covariant Dirac operator ∆AdSP
for the AdSP submanifold of (4+1)-

dimensional AdS-Schwarzschld and see how, when A1
x(u) is nonzero, the three worldvolume

fermions couple to one another. In this subsection we assume P ≥ 3.
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The linearized equation of motion for the worldvolume fermions in eq. (4.11) is26

(

∆AdSP
−m±

l

)

Ψ±
l = 0 , (4.15)

where the masses m±
l appear in eq. (4.12). To simplify the notation we write m instead of

m±
l as well as Ψ instead of Ψ±

l . ∆AdSP
= eMAγ

ADM is the gauge and curved-space covariant

Dirac operator. The index A runs over the worldvolume directions inside AdS5. Notice

that here eMA are the inverse vielbeins. The γA are the Γ-matrices of (4+1)-dimensional

Minkowski space, which obey
{

γA, γB
}

= 2 ηAB .

For the Dirac operator, we have (here a is a gauge index)

[(∆AdSP
−m) Ψ]a =

(

u
√

f γu ∂u +
u√
f
γt ∂t + u γi ∂i +

[

−P − 1

2

√

f +
1

4
u
f ′√
f

]

γu

)

Ψa

+eMA i γ
A [AM ,Ψ]a −mΨa, (4.16)

where f ′ = ∂uf . When T = 0 and hence f(u) = 1, the operator in parentheses on the

right-hand side in the first line is the Dirac operator of AdSP . At finite temperature, where

f(u) = 1 − u4/u4
h, the operator is that of an AdSP submanifold of (4+1)-dimensional

AdS-Schwarzschild.27 The coupling to the gauge field in the second line is of course fixed

by gauge invariance.

We need an ansatz for Ψa. For the coordinate dependence, our ansatz will be similar

to the one in refs. [9–11],

Ψ = Ψa σa = u(P−1)/2 f−
1

4 eikµxµ
ψa(u) τa, (4.17)

where µ runs over field theory directions, the ψ(u)a are three spinor functions for which

we must solve, and we extract a factor of u(P−1)/2 f−
1

4 to make the Dirac equation look

nice later (in the language of ref. [25] these factors will “remove the spin connection” from

the equation of motion).

Using our ansatz for the fermion in eq. (4.17) and the ansatz for the gauge field in

eq. (3.8) (from which we can recover eq. (3.12) simply by setting A1
x = 0), we find three

Dirac equations,

0 =

(

√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ1 +
A3

t (u)√
f

γt ψ2, (4.18)

0 =

(

√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ2 −
A3

t (u)√
f

γt ψ1 +A1
x(u) γx ψ3, (4.19)

0 =

(

√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ3 − A1
x(u) γx ψ2. (4.20)

26Here the ± does not refer to the projectors Π± of section 2, but rather to the ± sign labeling the

eigenvalues of the Dirac operator of SQ in eq. (4.10).
27For a general (d+1)-dimensional AdS-Schwarzschild space, f(u) = 1 − ud/ud

h.
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In what follows we use the Lorentzian-signature γA from section 2, in which all the γA

are Hermitian except for γt, which will be anti-Hermitian:28

γu =

(

−σ3 0

0 −σ3

)

, γt =

(

iσ1 0

0 iσ1

)

, γx =

(

−σ2 0

0 σ2

)

, γy =

(

0 σ2

σ2 0

)

.

(4.21)

We will also use the projectors Π1,2, which in Lorentzian signature are defined as

Πα ≡
1

2

(

1− (−1)α γuγtγx
)

, (4.22)

with α = 1, 2.

4.3.1 Normal phase

First consider the normal phase, where A1
x(u) = 0. In that case, ψ3 decouples from ψ1

and ψ2, and its equation of motion becomes that of a free neutral fermion, as expected.

We can then simplify the remaining two equations by taking linear combinations of them.

Defining29 ψ± ≡ ψ2 ± iψ1, we find three decoupled equations,

0 =

(

√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ+ + i
A3

t (u)√
f

γt ψ+, (4.23)

0 =

(

√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ− − i
A3

t (u)√
f

γt ψ−, (4.24)

0 =

(

√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ3 (4.25)

which are precisely the equations of motion for fermions (in the fundamental representation

of the unbroken U(1)3 ⊂ SU(2)) with charges q = ∓1, 0. As in section 4, we emphasize

that, because we consider a particular embedding of the Dirac equation into string

theory, the allowed values of the mass and charge of the fermions are constrained by

supersymmetry and T-duality.

We will now follow appendix A of ref. [11] to simplify the equation of motion further.

First we rewrite the equation as,30

(

√

f γu∂u −
1

u
m

)

ψ + iKµ(u)γµψ = 0, (4.26)

Kµ(u) = (−v(u), ki) , v(u) =
1√
f

(ω + qAt(u)) , (4.27)

where the index i runs over spatial directions, q = ∓1 for ψ± and q = 0 for ψ3. Notice that

near the boundary, v(u) → ω + qµ, so the frequency ω is measured relative to (q times)

the chemical potential.

28We only need γy when P ≥ 4.
29Here the ± index refers to linear combinations of the worldvolume fermions that diagonalize the equa-

tions of motion when A1
x(u) = 0. Nowhere in this subsection or the next do we use a ± index to refer to

the projectors Π± of section 2 or to the eigenvalues of the Dirac operator on SQ of eq. (4.10).
30Starting now, we will use the notation ψ to refer to any of our three fermions, when we are making

general statements.
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The system is rotationally invariant, so without loss of generality we can take only kx to

be nonzero. (Obviously, this will not be the case in the superfluid phase, where rotational

symmetry is broken.) The fermion’s equation of motion then depends only on γu, γt and

γx, so the projectors Πα commute with the operator acting on the ψ in eq. (4.26), hence

the equations for φα ≡ Παψ decouple from one another. In terms of the φα, the equation

of motion becomes
(

∂u +
1

u
√
f
mσ3

)

φα +
1√
f

(−iv(u)σ2 − (−1)α kxσ1)φα = 0. (4.28)

We thus obtain six decoupled equations, four for the φ±α and two for the φ3α.

Eq. (4.28) is almost identical to eq. (A14) of ref. [11]. The biggest difference is the

function f(u), which for us is the f(u) of (4+1)-dimensional AdS-Schwarzschild and in

ref. [11] was the f(u) of (3+1)-dimensional AdS-Schwarzschild. Given that we will solve

nearly identical equations of motion, we will obtain qualitatively similar finite-temperature

results. As mentioned above, however, we cannot reach T = 0 within the probe approxi-

mation, so we will not be able to reproduce the T = 0 results of refs. [9, 11], including in

particular the influence of an emergent AdS2.

4.3.2 Superfluid phase

In the solution corresponding to the superfluid phase, where A1
x(u) is nonzero, we cannot

write linear combinations of ψ1, ψ2 and ψ3 to diagonalize the system and produce three

decoupled equations. To make comparison to the normal phase easier, we will again work

with ψ± = ψ2 ± iψ1, so that eqs. (4.18)–(4.20) become

0 =

(

√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ+ + i
A3

t (u)√
f

γt ψ+ +A1
x(u) γx ψ3, (4.29)

0 =

(

√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ− − i
A3

t (u)√
f

γt ψ− +A1
x(u) γx ψ3, (4.30)

0 =

(

√

fγu∂u −
i ω√
f
γt + ikiγ

i − 1

u
m

)

ψ3 −
1

2
A1

x(u) γx (ψ+ + ψ−) . (4.31)

Clearly the three fermions ψ± and ψ3 couple to one another via a nonzero A1
x(u). Here

we have a concrete example of the couplings described in section 2.2 (especially around

eq. (2.32)). We simplify the ψ+ and ψ− equations again by writing them as

0 =

(

√

f γu∂u −
1

u
m

)

ψ+ + iKµ(u)γµψ+ +A1
x(u) γx ψ3, (4.32)

0 =

(

√

f γu∂u −
1

u
m

)

ψ− + iKµ(u)γµψ− +A1
x(u) γx ψ3, (4.33)

0 =

(

√

f γu∂u −
1

u
m

)

ψ3 + iKµ(u)γµψ3 −
1

2
A1

x(u) γx (ψ+ + ψ−) , (4.34)

where Kµ is defined the same way as in eq. (4.27). Recall that ψ+ has charge q = −1, ψ−

has charge q = +1 and ψ3 has charge q = 0.
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Now we come to a big difference from the solution corresponding to the normal phase,

at least for Dp-branes wrapping AdSP with P ≥ 4. In the solution corresponding to the

superfluid phase, rotational symmetry is broken from SO(P − 2) to SO(P − 3). Using the

SO(P − 3) rotational symmetry, the most general momentum we can pick has nonzero kx

and nonzero ky. The equations for ψ+ and ψ− then depend on γu, γt, γx and now also γy,

hence the Πα projectors no longer commute with the operators acting on the fermions in

the equations of motion, and the equations for the φα ≡ Παψ will not decouple from each

other. Upon acting with the projectors Πα, the equations of motion become

0 =

[

∂u +
m

u
√
f
σ3 +

1√
f

(−iv(u)σ2 − (−1)α kxσ1)

]

φ+ α

− ky√
f
σ1 (−1)α+1 ǫαβφ+β −

A1
x√
f

(−1)α iσ1φ3 α, (4.35a)

0 =

[

∂u +
m

u
√
f
σ3 +

1√
f

(−iv(u)σ2 − (−1)α kxσ1)

]

φ−α

− ky√
f
σ1 (−1)α+1 ǫαβφ−β −

A1
x√
f

(−1)α iσ1φ3 α, (4.35b)

0 =

[

∂u +
m

u
√
f
σ3 +

1√
f

(−iv(u)σ2 − (−1)α kxσ1)

]

φ3 α

− ky√
f
σ1 (−1)α+1 ǫαβφ3 β +

1

2

A1
x√
f

(−1)α iσ1 (φ+ α + φ−α) . (4.35c)

Here ǫαβ is antisymmetric with ǫ12 = +1. Notice that when ky is nonzero, the φ1 and φ2

couple.

Eq. (4.35) is the result for any Dp-brane extended along AdSP ×SQ. What will change

from one Dp-brane to another are the allowed values of m and the solutions for A3
t (u) and

A1
x(u). In the next section we specialize to the D5-brane extended along AdS4×S2 (P = 4

and Q = 2), and to the massless worldvolume fermion.

5 Emergence of the p-wave Fermi surface

5.1 Properties of the spectral function

For the probe D5-brane worldvolume fermions of the last section, we solved the linearized

equations of motion, eqs. (4.35), numerically, and used these solutions to extract the

fermionic spectral functions. In this section we present a selection of our numerical results.

We work with two D5-branes extended along (when T = 0) AdS4×S2 inside AdS5×S5.

As shown in section 4.1, we have many worldvolume fermions to choose from, with many

different masses. In our numerical analysis we work exclusively with the massless worldvol-

ume fermion. The dual operator is then the l = 0 case of the mesino operator Fl written

explicitly in eq. (4.13). These mesinos are valued in the adjoint of the SU(2) isospin symme-

try, so we actually have three mesinos, F+
0 , F−

0 , and F0
0 , where the superscript denotes the

charge under U(1)3. These are dual to the three fermions ψ± and ψ0 in subsection 4.3.2.

In more detail, our procedure is as follows. We first choose the values of T and µ that

we want, and solve for the background SU(2) gauge field functions A3
t (u) and A1

x(u), as in
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section 3.2. Plugging the gauge field solution into eqs. (4.35), we then solve for the bulk

fermions. Near the horizon the fermions have the form of an in-going wave, eq. (2.33),

with the α in that equation being α = ω
4πT for our system. When A1

x(u) is nonzero, the

fermions couple to one another, hence we employ the technique of section 2 to compute the

retarded Green’s function, which then gives us the spectral function, as we explain below.

The normalization of our Green’s functions is fixed by the normalization of the

fermionic part of the D5-brane action, eq. (4.1). The normalization includes various nu-

merical factors, and in particular depends on the normalization of the S5 spinor χ defined

in eq. (4.6). We will omit the details, but we will mention that the normalization includes a

factor of Nf TD5 ∝
√
λNfNc. In what follows we will rescale our Green’s functions by the

overall normalization. In other words, we will divide the action by the normalization factor,

so that we obtain an effective AdS4 Dirac action with a Lagrangian of the form iΨ̄∆Ψ.

As explained in section 2, with three bulk fermions, the field theory retarded Green’s

function will be a 6×6 matrix. In the normal phase where the three bulk fermions decouple,

the Green’s function will be diagonal in isospin indices and in the subspaces defined by the

Π1,2 projectors defined in eq. (2.12) (see also eq. (2.13)). Explicitly, the retarded Green’s

function will have the form

[

GR
AB(ω, kx, ky)

]

= diag
(

GR
−2, G

R
−1, G

R
+2, G

R
+1, G

R
02, G

R
01

)

, (5.1)

with A,B = 1, . . . , 6, so that A = 1 corresponds to the components of the F−
0 mesino in

the Π2 subspace, A = 2 corresponds to F−
0 in the Π1 subspace, A = 3 corresponds to the

components of the F+
0 mesino in the Π2 subspace, and so on. In the superfluid phase, due

to the bulk couplings, for generic momenta all the off-diagonal elements become nonzero.

The spectral function Rab is defined as the anti-Hermitian part of the retarded Green’s

function,

RAB(ω, kx, ky) ≡ i
(

GR
AB(ω, kx, ky)−GR†

AB(ω, kx, ky)
)

. (5.2)

We define the spectral measure R(ω, kx, ky) as the trace over RAB(ω, kx, ky) (a trace over

both flavor and spinor indices),

R(ω, kx, ky) ≡ trRAB(ω, kx, ky). (5.3)

Stability requires the eigenvalues of RAB , and hence both the diagonal elements of

RAB and the spectral measure (the sum of the eigenvalues), to be strictly non-negative.

Otherwise, if we perturb the medium with one of the operators appearing in the spectral

function, the resulting excitation would experience negative energy dissipation into the

medium, i.e. the excitation would extract energy from the medium, signaling an instability.

The eigenvalues of the spectral function are a direct measure of the states of the theory that

have an overlap with the relevant operators. The off-diagonal elements of RAB, however,

need not obey any positivity requirement. Indeed, the off-diagonal elements are more

similar to interference effects than to a measure of a density of states. We have confirmed

numerically that all of our spectral functions obey the correct positivity requirements.

We have confirmed that our numerical result for the spectral function obeys the fol-

lowing symmetries in both the normal and superfluid phases (in each case, any argument
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not shown is invariant):

R11(−ω) = R44(ω), R22(−ω) = R33(ω), R55(−ω) = R66(ω), (5.4)

R11(−kx) = R22(kx), R33(−kx) = R44(kx), R55(−kx) = R66(kx) , (5.5)

R11(−ω,−ky)=R44(ω, ky), R22(−ω,−ky)=R33(ω, ky), R55(−ω,−ky)=R66(ω, ky) .

(5.6)

An example for frequency and momentum symmetries in the off-diagonal elements is

RAB(−ky) = (−1)A+BRBA
∗(ky) , (5.7)

which is also true for all diagonal elements, stating their invariance under ky → −ky. We

have also confirmed that our numerical results obey

RAB = RBA
∗ , (5.8)

which follows directly from the definition of the spectral function in eq. (5.2).

Lastly, notice that because we study a fermionic operator of dimension 3/2, the re-

tarded Green’s function, and hence the spectral function and measure, are dimensionless.

5.2 Numerical results

First we compute the spectral function for temperatures below Tc but in the normal (non-

superfluid) phase, which we know is thermodynamically disfavored. We do so for two

reasons: first, to compare later to the superfluid phase, and second, to reproduce some of

the finite-temperature results of ref. [9], as a check of our methods. In practical terms, we

use the solution for the gauge field with A3
t (u) (from eq. (3.12) with P = 4) and zero A1

x(u).

Figure 2 shows two diagonal spectral function components, RAA(ω, kx, ky) with A = 1, 5,

as functions of kx/πT , with ω = ky = 0, for T ≤ Tc in the normal phase.

Figure 2 (a) shows the component R11, which corresponds to the components of the

mesino F−
0 in the Π2 subspace, at temperature T = 0.61Tc. For the moment, our main

point is that figure 2 (a) is qualitatively similar to figure 4 of ref. [9]. As we lower the

temperature, the peaks in the figure move to larger momenta and additional peaks appear

near zero momentum. In fact, in figure 2 (a), R11 along negative momenta (dashed blue

curve) already displays a small bump near kx/πT = 0, which grows into a peak as we cool

the system. Similar effects were observed in ref. [9], and were interpreted as the emergence

of multiple Fermi surfaces at different momenta. Additionally, the spectral functions for

our other charged fermions in the low-temperature normal phase are similar to those in

refs. [9, 11] (so we will not present them).

Figure 2 (b) shows the component R55, which corresponds to the neutral operator F0
0 ,

in the Π2 subspace, at temperatures T = Tc, 0.75Tc, and 0.61Tc. R55 is featureless here, but

will not be so in the p-wave phase. Notice thatR55 also does not change as the temperature

decreases, or equivalently as the chemical potential increases, since when q = 0 the chemical

potential does not enter the relevant bulk fermion’s equation of motion: see eq. (4.27).

Next we plot the essentially the same thing as in figure 2, but now in the thermody-

namically favored superfluid phase. More precisely, figure 3 shows two diagonal spectral
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Figure 2. Two spectral function components RAA(ω, kx, ky), for A = 1, 5, plotted versus

the rescaled momentum kx/πT , with ω = ky = 0, at temperatures T ≤ Tc but in the normal

(non-superfluid) phase, i.e. in the thermodynamically disfavored phase. (a) R11, corresponding

to the fermionic operator with charge q = −1, at T = 0.61Tc. The two curves are for positive

momentum kx (solid red curve) and negative momentum −kx (dashed blue curve), the latter

case being equal to R22(ω, kx, ky) at positive momentum due to the symmetries of the spectral

function. Multiple peaks are visible, just as in ref. [9]. (b) R55, corresponding to a fermionic

operator with charge q = 0, at temperatures T = Tc (solid curve), T = 0.75Tc, (grey dotted curve),

T = 0.61Tc (dashed curve). The curves remain coincident since changing the chemical potential

does not affect the uncharged operator.

function components, RAA(ω, kx, ky) with A = 1, 5, as a function of the rescaled momen-

tum kx/πT , with ω = ky = 0, for T ≤ Tc in the superfluid phase, i.e. now with nonzero

A1
x(u). Figure 3 (a) shows the same component of the spectral function as in figure 2

(a), R11, again with T = 0.61Tc. Figure 3 (b) shows the same component of the spectral

function as in figure 2 (b), R55, at the same temperatures T = Tc, 0.75Tc, and 0.61Tc.

The operator mixing is obvious in figure 3: the spectral function for a neutral fermion,

R55, develops a bump that grows into a small peak located at the same momentum as the

peak in R11, kx/πT = 3.87. In bulk terms, the coupling between φ3 and φ± in eq. (4.35)

is allowing the peak in the charged fermions’ spectral functions to “leak” into the spectral

functions of the neutral fermions. That coupling is proportional to A1
x(u), hence the peak

should grow as the temperature decreases and A1
x(u) grows, which is indeed what we see

in figure 3 (b). The method we developed in section 2 for computing retarded Green’s

functions for coupled bulk fermions seems to work very well.

As another comparison between the normal and broken phases when T ≤ Tc, we focus

on the pole in the retarded Green’s function GR
11(ω, kx, ky), for the mesino with charge q =

−1 in the Π2 subspace, that is closest to the origin of the complex frequency plane, ω = 0,

and follow the movement of the pole in the frequency plane as we change the momentum.31

31Poles in the retarded Green’s function are holographically equivalent to the bulk fermion’s quasi-normal

modes [87–89]. As explained in section 2, we can detect these quasi-normal modes from the vanishing of

detP−(ǫ), where the matrix P− is defined in eqs. (2.35) and (2.36).
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Figure 3. Two spectral function components RAA(ω, kx, ky) plotted versus the rescaled momen-

tum kx/πT with ω = ky = 0 in the superfluid phase. (a) Exactly the same spectral function as in

figure 2 (a), R11, at the same temperature T = 0.61Tc, but now in the superfluid phase. The two

curves correspond to positive momentum kx (solid red curve) or negative momentum −kx (dashed

blue curve). (b) Exactly the same spectral function component as in 2 (b), R55, at the same

temperatures Tc (solid curve), T = 0.75Tc (grey dotted curve), T = 0.61Tc (dashed curve). Here

we see operator mixing: a feature develops in the neutral fermion’s spectral function in the p-wave

phase. A bump grows into a peak at the same momentum kx/πT ≈ 3.87 as the peak in R11.

Figure 4 (a) shows the movement of the pole in the normal phase when T = 0.91Tc

for values of kx/πT ∈ [2.579, 12.580], which in the figure corresponds to starting at the

point nearest Re[ω/πT ] = 0 and moving toward the upper left. The pole asymptotically

approaches the real frequency axis Imω/πT = 0, as kx increases.

At a temperature T ∗ ≈ 0.6Tc, however, the distance to the real axis develops a local

minimum. Figure 4 (b) shows the movement of the same pole as figure 4 (a) at a temper-

ature T = 0.48Tc < T ∗, still in the normal phase. Here we see that the distance to the real

frequency axis has a local minimum at (Reω/πT, Imω/πT ) = (−1.79,−7.21× 10−6) when

kx/πT = 8.15. Such behavior persists to lower temperatures, and indeed, the distance to

the real frequency axis decreases. The lowest temperature we studied was T = 0.19Tc,

where the local minimum occurred at (Reω/πT, Imω/πT ) = (5.32, 2.64 × 10−18) when

kx/πT = 23.22.

We seem to be seeing the emergence of a Fermi surface, which, as in ref. [9], would

occur at T = 0 when the pole would reach the origin of the complex frequency plane at some

finite momentum kF , the Fermi momentum. Let us consider low temperature, and define

k∗ as the value of momentum where the closest approach to the real frequency axis occurs.

When T = 0, k∗ would be the Fermi momentum, k∗ = kF . At our lowest temperature,

T = 0.19Tc, k
∗
x/πT ≡ 23.22, and the closest approach to the real frequency axis occurs at

an ω∗ given by (Reω∗, Imω∗) = (5.32, 2.64 × 10−18)πT . Letting k∗ play the role of kF ,

we see behavior similar to the results of ref. [9]: for small but nonzero temperature, as we
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Figure 4. The movement of the pole in the retarded Green’s function GR
11

(ω, kx, ky), for a mesino

of charge q = −1, that is closest to ω = 0, as a function of momentum, for T < Tc, in both the

normal (thermodynamically disfavored) phase and superfluid (thermodynamically favored) phase.

(a.) The movement of the pole in the normal phase at T = 0.91Tc, for kx/πT ∈ [2.58, 12.58]. As

the momentum increases, the pole moves from the lower right, near Reω/πT = 0, toward the upper

left. (The same applies for the following three figures.) The pole asymptotically approaches the

real frequency axis, Imω/πT = 0, as kx increases. (b) The movement of the pole in the normal

phase at T = 0.48Tc, for kx/πT ∈ [6.15, 16.15]. Here we see that the distance to the real axis

does not decrease monotonically, but rather a local minimum develops at (Reω/πT, Imω/πT ) =

(−1.79,−7.21× 10−6) when kx/πT = 8.15. (c.) The movement of the pole in the superfluid phase

at T = 0.91Tc, for kx/πT ∈ [2.49, 12.29] and ky = 0. The movement is qualitatively similar to (a).

(d) The movement of the pole in the superfluid phase at T = 0.48Tc, for kx/πT ∈ [4.83, 8.98] and

ky = 0. The movement is again qualitatively similar to (a), in particular, the distance to the real

frequency axis does not develop a local minimum, in contrast to the normal phase result in (b). We

see qualitatively similar behavior when we set kx = 0 and increase ky.

change the momentum the frequency of the pole behaves as

ω − ω∗ ∼ (k − k∗)z , (5.9)

where our numerical results indicate that the exponent z = 1.00 ± 0.01, and the spectral

function behaves as

R11 ∼ (k − k∗)−α , (5.10)

where our numerical results indicate that the exponent α = 2.0± 0.1. In fact, these results
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are rather robust: we find the same z and α for many values of T < T ∗, and for several

other poles. These results suggest that the low-temperature normal phase may not be a

Landau Fermi liquid, which would have z = α = 1.

Figures 4 (c) and (d) show the movement of the same pole, at the same temperatures,

but in the superfluid phase.32 Figure 4 (c) shows the movement of the pole at T = 0.91Tc

for kx/πT ∈ [2.49, 12.29] and ky = 0. Figure 4 (d) shows the movement of the pole at

T = 0.48Tc for kx/πT ∈ [4.83, 8.98] and ky = 0. Unlike the normal phase result, here the

distance to the real frequency axis does not develop a local minimum. In other words, here

we do not see a Fermi surface emerge in the same fashion as in the normal phase.

To see the emergence of the p-wave superfluid Fermi surface, we study the spectral

measure (largely following ref. [18]), which as mentioned above, provides a direct measure

of the density of states that have overlap with our fermionic operators.

Our main results concern the evolution of the spectral measure R(ω, kx, ky) as we cool

the system through the superfluid phase transition. In the spectral measure we will see

the breaking of rotational symmetry as we take T below Tc, and we will see the emergence

of the Fermi surface as we approach T = 0, although in the probe limit we will not reach

T = 0. Our results agree qualitatively with the T = 0 results of ref. [18], in which the

Fermi surface in the p-wave phase consists of isolated points.

Figure 5 provides a road map for the evolution of the spectral measure as we lower the

temperature. Here we set ω = 0, so we are studying fluctuations with zero energy above the

chemical potential. Figure 5 (a) indicates the locations of peaks in the spectral measure, in

the (kx/πT, ky/πT ) plane, with solid lines and the locations of small bumps as the dashed

grey line. At T = Tc we see rotational symmetry: the black solid line indicates peaks for

any values of (kx/πT, ky/πT ) on the black circle. At T = 0.7Tc the rotational symmetry

is mildly broken: the green line is not a perfect circle. At T = 0.43Tc, sharp peaks only

appear at isolated points on the axes, denoted by the red and blue dots (and also at the

blue dot at the origin), while the dashed line indicates a small bump, rather than a sharp

peak. Here we are clearly seeing the emergence of the Fermi surface at isolated points.

To illustrate what the peaks and bumps look like, we choose a representative slice of

the (kx/πT, ky/πT ) plane, namely the line given by the polar angle φ = π/8, which is

drawn in figure 5 (a), and plot the (ω = 0) spectral measure versus the magnitude of the

momentum |k| =
√

k2
x + k2

y divided by πT . In figure 5 (b) a distinct peak is visible for

both T = Tc (black curve) and T = 0.7Tc (green curve), while for this generic (off-axis)

value of φ the only feature of the spectral measure at T = 0.43Tc (dashed grey curve) is a

small bump. On the axes (φ = 0, π/2), the picture is similar, except the bump becomes a

sharp peak, corresponding to the red or blue dots in figure 5 (a).

To illustrate the evolution of the spectral measure in more detail, we present three-

dimensional plots of R(ω, kx, ky), for ω = 0, over the (kx/πT, ky/πT ) plane, for temper-

atures T = Tc (figure 6 (a)), T = 0.91Tc (figure 6 (b)), T = 0.69Tc (figure 6 (c)) and

T = 0.4Tc (figure 6 (d)). In figure 6 (a) we see the peaks corresponding to the black circle

32Our independent caluclations in the normal and superfluid phases yield the same position for the pole

at T = Tc to within 0.1%.
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Figure 5. The evolution of the spectral measure R(ω, kx, ky) = trRAB(ω, kx, ky) in the

(kx/πT, ky/πT ) plane at ω = 0, as we lower the temperature. (a.) The position of peaks in

the spectral measure R are indicated by the curves as we lower the temperature from Tc (black

curve) through 0.7Tc (green curve) to 0.43Tc (dashed grey curve). The T = 0.43Tc case exhibits a

small bump rather than a sharp peak, except for points on the kx and ky axes. We have indicated

the bump with the grey dashed curve and the peaks with red and blue dots, including the blue dot

at the origin. (b.) The spectral measure R plotted for a representative slice of the (kx/πT, ky/πT )

plane (still with ω = 0), namely along the line given by the polar angle φ = π/8 drawn in (a.). We

plot R versus the magnitude of the momentum |k| =
√

k2
x + k2

y divided by πT , at T = Tc (black

curve), T = 0.7Tc (green curve), and T = 0.43Tc (dashed grey curve).

in figure 5 (a). Clearly here the spectral measure is rotationally symmetric. When we

cool the system to T = 0.69Tc (figure 6 (c)), we clearly see the emergence of five distinct

peaks, two on the kx/πT axis, two on the ky/πT axis, and one at the origin. The circle of

peaks corresponds to the green circle in figure 5 (a). When we further cool the system to

T = 0.4Tc, the five peaks are still present, although the resolution of our three-dimensional

plot is insufficient to resolve the two on the ky/πT axis away from the origin.

Although these peaks have a much smaller footprint in the (kx/πT, ky/πT ) plane than

the peaks on the kx/πT axis, they are much taller. The spectral measure R is of order

5×105 at the peaks on the ky/πT axis, but only order 102 at the peaks on the kx/πT axis,

and order 5× 104 at the peak at the origin. Apparently a large number of states are piling

up at two precise locations on the ky/πT axis.

For a bulk theory with SU(2) gauge fields and fermions in the fundamental representa-

tion, a combination of analytic and numerical results reveal that the ω = 0 spectral measure

at T = 0 consists of two isolated points on the kx axis, located symmetrically about the

origin [18]. For the same bulk theory but for fermions in the adjoint representation, as we

consider here, the analytic arguments of ref. [18] indicate that the ω = 0 spectral measure

at T = 0 should consist of three isolated points, one at the origin and two on the kx axis,
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(a) T = Tc, ω = 0 (b) T = 0.91 Tc, ω = 0

(c) T = 0.69 Tc, ω = 0 (d) T = 0.43 Tc, ω = 0

Figure 6. Three-dimensional plots of the spectral measure R(ω, kx, ky) in the superfluid phase

over the (kx/πT, ky/πT ) plane at zero frequency, ω = 0, and for distinct temperatures T ≤ Tc.

(a) The T = Tc case, which is clearly rotationally invariant. The peaks correspond to the black

circle in figure 5 (a). (b) The T = 0.91Tc case, where the spectral measure does not yet display

any dramatic breaking of rotational symmetry. Notice the peak a the origin of the (kx/πT, ky/πT )

plane. (c) The T = 0.69Tc case, where the breaking of rotational symmetry is obvious. We see

that the “cylinder” of (a) breaks into five distinct peaks on the kx/πT and ky/πT axes. The peaks

correspond to the green circle in figure 5 (a). (d) The T = 0.4Tc case, which still has five peaks,

labeled by the red and blue dots in figure 5 (a). The peaks along the ky/πT axis are too narrow to

appear in the three-dimensional plot with the resolution we use.

located symmetrically about the origin.

Therefore, what we see appears to be consistent with the results of ref. [18] for the

structure of the spectral measure in the superfluid phase. The main obstacle to a direct

comparison is the probe limit, which restricts us to finite temperatures: we do not know

which peaks in our spectral measure persist to T = 0. Nevertheless, given that we see

the three peaks on the kx/πT that we generically expect, and that the two peaks on the

ky/πT axis have a shrinking footprint as we cool the system, we have good reason to

believe that the results of ref. [18] may apply to our system. To answer the question fully

– 44 –



J
H
E
P
0
5
(
2
0
1
0
)
0
5
3

H1LH1L

H2LH2L

H3LH3L

H4LH4L

H0LH0L

-4 -2 0 2 4

-4

-2

0

2

4

kx/πT

ky

πT

(a)

0 2 4 6 8

0

1

2

3

4

5

6

R

|k|/πT
(b)

0 2 4 6 8 10 12

0

20

40

60

80

100

R

ω/πT

((1))

0 2 4 6 8 10

0

5

10

15

20

25

R

ω/πT

((2))

0 2 4 6 8 10 12 14

0

50

100

150

R

ω/πT

((3))

Figure 7. (a) Peaks in the ω = 0 spectral measure in the ( kx

πT
,

ky

πT
) plane at T = 0.4Tc. The

labeling is the same as figure 5 (a). (b) The ω = 0 spectral measure along three lines in (a): along

the kx

πT
axis (red curve) and the

ky

πT
axis (blue curve), so the peaks at nonzero momenta correspond

to (3) and (4) in (a), respectively, and along the polar angle φ = π/8 (dashed grey curve), drawn

in figure 5 (a), so the bump corresponds to where φ = π/8 intersects the dashed grey line in (a).

In each case the peak at zero momentum corresponds to (0) in (a). (1) R as a function of ω/πT

for the point labeled (1) in (a). The dotted and solid lines are for T = 0.55Tc and T = 0.4Tc,

respectively. (2) and (3) show the same thing for the corresponding points (2) and (3) in (a).

requires computing the back-reaction of the D5-branes in the bulk. Whether that produces

a domain-wall geometry of the kind used in ref. [18] is not guaranteed.

We begin to explore the ω dependence of the spectral measure R(ω, kx, ky) in figure 7.

Figure 7 (a) simply reproduces the T = 0.4Tc part of figure 5 (a), where ω = 0. Figure 7
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(b) shows the spectral function along three lines in the (kx/πT, ky/πT ) plane: along the

positive kx/πT axis (red curve), along the positive ky/πT axis (blue curve), and along the

line given by the polar angle φ = π/8 in figure 5 (a). Here we see explicitly the difference

in widths of the peaks on the kx/πT and ky/πT axes (the red and blue peaks).

To explore the ω dependence, we choose a few representative points in the

(kx/πT, ky/πT ) plane and, for each point, plot the spectral measure versus ω. For these

points, we consider not only T = 0.4Tc, as in figure 7 (a), but also the slightly higher

temperature T = 0.55Tc, in order to study the behavior as we cool the system.

Our points are similar to those in figure 8 of ref. [18], where the same quantities were

plotted (for the slightly different system of ref. [18]): the spectral measure versus ω for fixed

kx and ky. We will thus compare our results to those of figure 8 of ref. [18] along the way.

In figure 7 (1) we plot the ω dependence of R(ω, kx, ky) for the point (1) labeled in

figure 7 (a). The dotted line is for T = 0.55Tc and the solid line is for T = 0.40Tc. Here we

see that as we cool the system, a small gap (a depletion of states) opens near ω = 0, while

a sharp peak emerges near ω/πT ≈ 1.7. Such behavior at least appears to be approaching

that of figure 8 (1) in ref. [18], where a genuine gap (zero states) appeared at ω = 0.

In figure 7 (2) we plot the ω dependence of R(ω, kx, ky) for the point (2) labeled in

figure 7 (a). The dotted line is for T = 0.55Tc and the solid line is for T = 0.40Tc. Here

we see that a sharp peak near ω/πT ≈ 1.5 when T = 0.55Tc shrinks and begins moving

toward ω = 0 as we lower the temperature to T = 0.4Tc. Moreover, the small peak near

ω/πT ≈ 3.5 when T = 0.55Tc grows much sharper at T = 0.4Tc. As in ref. [18], here we

seem to see the emergence of the well-known “peak-dip-hump” shape, with the peak being

at ω/πT ≈ 3.5, the dip being at ω/πT ≈ 5.2, and the hump being at ω/πT ≈ 6.5.

In figure 8 (2) of ref. [18], a gap was present in the spectral measure for small

frequencies, except for a single genuine delta-function peak at finite frequency, and at

larger frequency a continuum of states appears (the “hump”). As argued in ref. [18], at

finite temperature the delta-function peak will acquire a finite width and merge with the

hump, producing the peak-dip-hump. Our spectral measure appears to be approaching

the form of the spectral measure in figure 8 (2) of ref. [18] (with the usual caveat that we

cannot actually reach T = 0).

In figure 7 (3) we plot the ω dependence of R(ω, kx, ky) for the point (3) labeled

in figure 7 (a), which is sitting right on top of the peak on the positive kx/πT axis.

The dotted line is for T = 0.55Tc and the solid line is for T = 0.40Tc. At the higher

temperature (the dotted line), the primary feature is the peak near ω/πT ≈ 1.2, which

moves toward ω = 0 and also shrinks (the peak is lower) as we lower the temperature,

becoming the peak in the solid line. Assuming such a trend continues, our results would

be consistent with figure 8 (3) of ref. [18], where, sitting right on top of the peak on the

kx axis, the spectral measure went to a finite constant at ω = 0.

Figure 8 shows R(ω, kx, ky) versus ω/πT for the points (0) and (4) in figure 7 (a),

sitting right on top of the peaks at the origin and on the positive ky/πT axis, respectively.

Here we use only T = 0.4Tc. We clearly see a gap developing at low frequency in both

cases. Such behavior is similar to the gap that develops in the spectral function of vector
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Figure 8. The spectral measure R(ω, kx, ky) as a function of ω/πT for (kx/πT, ky/πT ) values

corresponding to points (0) (dotted blue curve) and (4) (solid blue curve) in figure 7 (a). These

points sit right on top of the peaks at the origin and on the positive ky/πT axis, respectively. Here

T = 0.4Tc.

fluctuations [32, 34], which is immediately related (via a Kubo formula) to a gap in the

conductivity. Whether these two gaps are related is unclear, but deserves further study.

Finally, to explore further the ω dependence of R(ω, kx, ky), we do not restrict to points

in the (kx/πT, ky/πT ) plane, but rather restrict to a single nonzero value of frequency,

ω/πT = 0.25, and plot the spectral me asure over the entire (kx/πT, ky/πT ) plane. The

result appears in figure 9, where (a) is for T = Tc, (b) is for T = 0.91Tc, (c) is for T = 0.54Tc

and (d) is for T = 0.4Tc. We see a number of differences from the ω = 0 case of figure 6.

At the transition, T = Tc, the spectral measure is again rotationally symmetric, but now

with two concentric “cylinders.” By the time we cool the system to T = 0.54Tc, we see a

number of peaks clumped near the momentum axes. If we compare the spectral measure

at T = 0.4Tc at ω = 0 and ω/πT = 0.25, figures 6 (d) and 9 (d), respectively, then we see

that the ω = 0 peaks on the ky/πT axis each split into a number of peaks at ω/πT = 0.25

which then move apart along the kx/πT axis.

To summarize, in the superfluid phase we observe isolated peaks in the spectral mea-

sure, whose locations appear to be consistent with the p-wave nature of the condensate,

as well as with the fact that our fermions are in the adjoint representation of SU(2). Such

a structure suggests nodes in the energy gap on the normal-phase Fermi surface. We plan

to investigate this further in the near future, for instance by identifying the appropriate

Dirac cones and by studying the spectral measure for fixed values of ω, as well as for

further values of fixed kx, ky.
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(a) T = Tc, ω/πT = 0.25 (b) T = 0.91 Tc, ω/πT = 0.25

(c) T = 0.54 Tc, ω/πT = 0.25 (d) T = 0.43 Tc, ω/πT = 0.25

Figure 9. Three-dimensional plots of the spectral measure R(ω, kx, ky) in the superfluid phase

over the (kx/πT, ky/πT ) plane at ω/πT = 0.25, and for distinct temperatures T ≤ Tc. The four

plots are arranged in a similar fashion as in figure 6. (a) is the T = Tc case, (b) is the T = 0.91Tc

case, (c) is the T = 0.54Tc case, and (d) is the T = 0.4Tc case. The main differences from figure 6

are that the “cylinder” we saw in figure 6 (a) is now two concentric cylinders, and the peaks along

the ky/πT axis each split into multiple peaks which then move away from one another along the

kx/πT axis as we cool the system.

6 Conclusions

The main results of this paper are:

• We described an efficient algorithm for computing retarded Green’s functions from

bulk fermions that couple to one another,

• We performed holographic renormalization for fermions in AdS,

• We determined a simple embedding into string theory of a charged fermion in AdS,

using probe D-branes,
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• Using the above ingredients, we numerically computed fermionic spectral functions

in p-wave superfluid states, with emphasis on the emergence of the isolated points of

the Fermi surface as we cooled the system through the p-wave superfluid transition.

Using the machinery that we have developed, we can think of a number of directions

for future research.

Introducing a magnetic field on the worldvolume of a probe Dp-brane is straightforward

to do, and has many interesting consequences [34, 43, 47, 48, 51, 90–95]. Our embedding

of p-wave superfluids, and of charged fermions, into string theory may be a useful arena in

which to study the effects of magnetic fields both on holographic p-wave superfluids, along

the lines of ref. [34], and on holographic Fermi surfaces, along the lines of refs. [96–99].

Typically the mesinos carry some R-charge, so another avenue to study holographic

Fermi surfaces would be to embed probe Dp-branes into background geometries corre-

sponding to field theory states with finite R-charge density. In those cases the T = 0 limit

is accessible within the probe approximation. These geometries will generically be charged

dilatonic black hole solutions. The most attractive of such solutions, for condensed matter

applications, may be the solution discussed in ref. [100], which produced in the field theory

specific heats linear in temperature.

We focused on probe D5-branes extended along AdS4 × S2 inside AdS5 × S5, and

worked only with the massless worldvolume fermion. Other Dp-branes, and worldvolume

fermions of other masses, deserve further study.

Lastly, knowing the T = 0, finite isospin density ground state of the D3/D5

theory would be extremely useful. In bulk terms, the problem is to find a solution

of type IIB supergravity representing fully back-reacted D5-branes with non-trivial

worldvolume gauge fields.

We plan to investigate these and related issues in the future.
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A Holographic renormalization of fermions in AdS

In this appendix we perform the holographic renormalization of a Dirac fermion in spaces

that asymptotically approach AdSd+1. We will work in Euclidean-signature AdSd+1,

unless stated otherwise. We assume the bulk metric asymptotically approaches the metric

of eq. (2.1),

ds2 = gAB dx
AdxB =

du2

u2
+

1

u2
δij dx

idxj , (A.1)
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but, unlike section 2, we leave the number of spatial dimensions d unconstrained.

Our results will only be valid for spaces whose metrics asymptotically approach the

AdSd+1 metric. Various generalizations are possible. One generalization would involve

spaces for which surfaces of fixed u are not simply flat space, that is, spaces for which δij →
gij(x) in eq. (A.1), where gij(x) has non-trivial curvature. Another generalization would be

to study spaces that are not asymptotically AdSd+1, for example, spaces that asymptoti-

cally approach the near-horizon geometry of Dp-branes, with p ≤ 5 but p 6= 3. We also leave

an analysis of the Lorentzian-signature case, along the lines of ref. [101–103], for the future.

As mentioned in section 2, the form of the counterterms will be fixed by symmetries

(in particular Lorentz invariance on the u = ǫ surface) and by the requirement that they

cancel divergences of the on-shell action. Moreover, for fermions we have an additional

constraint. The counterterms can be built only from Ψ− (defined in eq. 2.13), because that

is held fixed under variations, and hence does not spoil the stationarity of the action.

Otherwise, the procedure for fermions very closely parallels that for scalars, which was

reviewed for example in ref. [61]. Our main results are the counterterms in eqs. (A.27)

and (A.34) and the renormalized on-shell actions in eqs. (A.38), (A.39), and (A.40).

A.1 Solving the equation of motion

We begin with the Dirac action (plus boundary terms),

S =

∫

dd+1x
√
g
(

Ψ̄ ∆Ψ−m Ψ̄Ψ
)

+ Sbdy, (A.2)

We will work with a single Fourier mode, so we let Ψ → eikx Ψ, where, without loss of

generality, we have chosen the momentum to point in the x̂ direction. The equation of

motion is then eq. (2.8),

[

uγu∂u + ik u γx − d

2
γu −m

]

Ψ = 0. (A.3)

As in section 2 we define Ψ± = 1
2 (1± γu)Ψ so that γuΨ± = ±Ψ±. We will refer to Ψ+

and Ψ− as having opposite chirality (even when d + 1 is odd). With Ψ±, we obtain the

same decoupled second-order equations as in eq. (2.18),

[

∂2
u −

d

u
∂u +

1

u2

(

−m2 ±m+
d2

4
+
d

2

)

− k2

]

Ψ± = 0. (A.4)

We can solve eq. (A.4) exactly. The form of the solution depends on the value of m.

First, suppose m is not a half-integer. The solution of eq. (A.4) is then

Ψ± = u
d+1

2

[

C±
1 (k)Jm∓ 1

2

(
√

−k2 u) + C±
2 (k)J−(m∓ 1

2
)(
√

−k2 u)
]

, (A.5)
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where the J functions are Bessel functions of the first kind33 and C±
1 (k) and C±

2 (k) are

spinors of the same chirality34 as Ψ±, which may depend on k, as indicated.

When m is half-integer, m± 1
2 is an integer and hence the order of the Bessel functions

is an integer. In that case the two Bessel functions are not linearly independent: if the order

n of Jn(x) is an integer, then Jn(x) obeys the special identity J−n(x) = (−1)nJn(x), so in

that case Jn(x) and J−n(x) are obviously linearly related.35 When m is half-integer, we

must introduce a Bessel function of the second kind, Yn(x), which is linearly independent

from Jn(x). When m is half-integer, the solution thus becomes

Ψ± = u
d+1

2

[

C±
1 (k)Jm∓ 1

2

(
√

−k2 u) + C±
2 (k)Ym∓ 1

2

(
√

−k2 u)
]

. (A.6)

Notice that if the order n of Yn(x) is an integer, then Yn(x) obeys a relation similar to that

for Jn(x), namely Y−n(x) = (−1)nYn(x).

The key difference between the Bessel functions of the first and second kinds that

will be important for us is that the small-x expansion of Jn(x) involves only powers of x,

whereas the expansion of Yn(x) involves both powers of x and logarithms of x. Indeed,

Jn(x) has a series expression (for any n),

Jn(x) =
(x

2

)n
∞
∑

k=0

(−1)k

k! Γ(k + n+ 1)

(x

2

)2k
, (A.7)

from which we can immediately read the expansion for small x. Yn(x) has a series expres-

sion, when n is a non-negative integer,

Yn(x) =
2

π
Jn(x) log

x

2
− 1

π

(x

2

)−n
n−1
∑

k=0

(n − k − 1)!

k!

(x

2

)2k

− 1

π

(x

2

)n
∞
∑

k=0

(−1)k

k!(n+ k)!
[ψ(n + k + 1) + ψ(k + 1)]

(x

2

)2k
, (A.8)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function. We can obtain the series form of Y−n(x)

simply from Y−n(x) = (−1)nYn(x). The two features to notice are that the logarithmic

33 Notice also that since the arguments of the Bessel functions are imaginary, we could equally well write

them using the modified Bessel functions In(x) and Kn(x). For our asymptotic analysis, the distinction is

not important. If the space was pure AdSd+1 (not just asymptotically AdSd+1), however, then eq. (A.5) is

the solution for all u, and regularity in the bulk would force us to discard the In(x) solution. Indeed, we

will discuss this later in the appendix.
34In the rest of the paper, 1 and 2 subscripts referred to the projectors Π1,2. We never use these projectors

in this appendix. Here, the subscripts 1 and 2 on C±

1 (k) and C±

2 (k) simply distinguish the two linearly

independent solutions of eq. (A.4).
35The Wronskian

W (Jn(x), J−n(x)) = −
sinnπ

πx
,

clearly vanishes when n is integer, indicating linear dependence. The Wronskian

W (Jn(x), Yn(x)) =
2

πx
,

for any n.
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terms in Yn(x) are simply of the form Jn(x) log x, and Yn(x) also includes terms with

inverse powers of x, from the x−n multiplying the first sum.

Using the series expressions for the Bessel functions, we can rewrite the solutions in a

form useful for our purposes (and introduce some notation to keep expressions simple and

compact). First, consider m not-half-integer. We write

Ψ± = u
d+1

2

[

C±
1 (k)Jm∓ 1

2

(
√

−k2 u) + C±
2 (k)J−(m∓ 1

2
)(
√

−k2 u)
]

,

= u
d+1

2

[

c±1 (k)um∓ 1

2

(

1 + s±a (u, k)
)

+ c±2 (k)u−(m∓ 1

2)
(

1 + s±b (u, k)
)

]

,

= c±1 (k)u
d
2
+m∓ 1

2
+ 1

2

(

1 + s±a (u, k)
)

+ c±2 (k)u
d
2
−m± 1

2
+ 1

2

(

1 + s±b (u, k)
)

, (A.9)

where in the second line we have absorbed various factors into C±
1 (k) and C±

2 (k), which

we then relabeled as c±1 (k) and c±2 (k), and we have defined the series

s±a (u, k) ≡
∞
∑

j=1

a±j (m)
(

−k2
)j
u2j , a±j (m) ≡ (−1)j

j! 22j

Γ
(

1 +
(

m∓ 1
2

))

Γ
(

j + 1 +
(

m∓ 1
2

)) , (A.10)

and s±b (u, k) and b±j (m) are defined similarly, but with
(

m∓ 1
2

)

→ −
(

m∓ 1
2

)

. We have

isolated the leading powers of u near the boundary u→ 0: the sums s±a (u, k) and s±b (u, k)

involve sub-leading powers of u (each sum starts at order u2). Written separately (to

facilitate counting powers of u), Ψ± are

Ψ+ = c+1 (k)u
d
2
+m
(

1 + s+a (u, k)
)

+ c+2 (k)u
d
2
−m+1

(

1 + s+b (u, k)
)

Ψ− = c−1 (k)u
d
2
+m+1

(

1 + s−a (u, k)
)

+ c−2 (k)u
d
2
−m
(

1 + s−b (u, k)
)

. (A.11)

The coefficients in eq. (A.11) are actually not independent. If we return to eq. (A.3) and

insert Ψ = Ψ+ + Ψ−, using our solutions for Ψ±, then we find, upon generalizing kγx → 6k
and collecting powers36 of u,

0 =
[

(−2m+ 1) c+2 (k) + i6k c−2 (k)
]

u
d
2
−m+1

+
[

−(2m+ 1) c−1 (k) + i6k c+1 (k)
]

u
d
2
+m+1 +O

(

u
d
2
−m+2

)

. (A.12)

We thus conclude that

c−1 (k) =
1

2m+ 1
i6k c+1 , c+2 (k) =

1

2m− 1
i6k c−2 (k). (A.13)

When m is half-integer, we can plug the series expressions for the Bessel functions in

eqs. (A.7) and (A.8) into the solutions for Ψ±, and rearranging various terms, we can write

Ψ± = u
d+1

2

[

C±
1 (k)Jm∓ 1

2

(
√

−k2 u) + C±
2 (k)Ym∓ 1

2

(
√

−k2 u)
]

,

36When m is an integer, another term of order u
d
2
+m+1 appears in eq. (A.12), with a coefficient propor-

tional to b+m(m)c+2 (k)+ b−m(m)i6k c−2 (k). This term has opposite chirality from the term shown in eq. (A.12),

hence we set them to zero independently. Using the definition of the b±j (m), we then recover exactly the

same relation between c+2 (k) and c−2 (k) as in eq. (A.13), so we obtain no new information.
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= u
d+1

2

[

c±1 (k)um∓ 1

2 (lnu)
(

1 + s±a (u, k)
)

+ c±2 (k)u−(m∓ 1

2)
(

1 + s±d (u, k)
)

]

,

= c±1 (k)u
d
2
+m∓ 1

2
+ 1

2 (lnu)
(

1 + s±a (u, k)
)

+ c±2 (k)u
d
2
−m± 1

2
+ 1

2

(

1 + s±d (u, k)
)

,

where in the second line we have absorbed various factors into C±
1 (k) and C±

2 (k), which

we then relabeled as c±2 (k) and c±1 (k). Notice in particular that we exchanged the indices

1 and 2. Recall that we are using units in which the radius of AdSd+1 is equal to one.

The arguments of the logarithms include factors of the AdSd+1 radius to render them

dimensionless. The sums s±a (u, k) are defined in eq. (A.10), while the sums s±d (u, k) are

s±d (u, k) =

∞
∑

j=1

d±j (m,k)(−k2)ju2j, (A.14)

where the coefficients d±j (m,k) are not particularly illuminating to see, so we will not write

them. They can be derived straightforwardly from eqs. (A.7) and (A.8). That derivation

also shows that they can depend not only on m but also on k, as indicated. We have

defined our notation to isolate the leading powers of u near the boundary u→ 0, and also

to show that the solutions are identical in form to those for the m-not-half-integer case in

eq. (A.9), except for an extra logarithmic factor in the c±1 (k) terms. Written separately (to

facilitate counting powers of u), Ψ± are

Ψ+ = c+1 (k)u
d
2
+m (lnu)

(

1 + s+a (u, k)
)

+ c+2 (k)u
d
2
−m+1

(

1 + s+d (u, k)
)

Ψ− = c−1 (k)u
d
2
+m+1 (lnu)

(

1 + s−a (u, k)
)

+ c−2 (k)u
d
2
−m
(

1 + s−d (u, k)
)

. (A.15)

Here again, the coefficients in eq. (A.15) are not independent. Inserting the solutions for

Ψ± into the Dirac equation, eq. (A.3), and generalizing kγx → 6k, produces

0 =
[

−(2m+ 1) c−1 (k) + i6k c+1 (k)
]

u
d
2
+m+1 lnu+O

(

u
d
2
+m+2 lnu

)

+(−2m+ 1) c+2 (k) u
d
2
−m+1

(

1 + s+d (u, k)
)

+ i6k c−2 (k)u
d
2
−m+1

(

1 + s−d (u, k)
)

+c+1 (k)u
d
2
+m + c+2 (k)u

d
2
−m+1

[

u∂us
+
d (u, k)

]

+O
(

u
d
2
−m+2

)

, (A.16)

where in the first line we have indicated the sub-leading order of terms involving powers

and the logarithm of u, while in the third line we have indicated the sub-leading order of

terms involving just powers of u. When m 6= 1/2, the vanishing of the u
d
2
+m+1 lnu and

u
d
2
−m+1 terms in eq. (A.16) requires

c−1 (k) =
1

2m+ 1
i6k c+1 , c+2 (k) =

1

2m− 1
i6k c−2 (k), (A.17)

which are identical to what we found in the m non-half-integer case, eq. (A.13). In what

follows, we will also need to write c+1 (k) in terms of c−2 (k). We thus turn to higher-order

terms in eq. (A.16). When m 6= 1/2, the u
d
2
+m term will always be the same power of u

as u
d
2
−m+1 times a particular term in the summations s+d (u, k), s−d (u, k) and u∂us

+
d (u, k).

Recall that these summations involve powers of u2. Some term in the summations, say the
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jth term, will have j = m − 1
2 . Recalling the definition of the summations in eq. (A.14),

we find from the second and third lines in eq. (A.16)

c+1 (k) = −
[

c+2 (k)(−2m+ 1)d+
j (m,k) + i6k c−2 (k)d−j (m,k) + c+2 (k)d+

j (m,k) 2j
]

(

−k2
)j
,

= −i6k c−2 (k) d−
m− 1

2

(m,k)
(

−k2
)m− 1

2 , (A.18)

where we plugged j = m − 1
2 into the first line, so that the two c+2 (k) terms canceled,

producing the second line. The factor of 2j = 2m − 1 in the first line is crucial for the

cancelation: it comes from the u∂u acting on s+d (m,k) in the third line of eq. (A.16). The

m = 1/2 story is similar: u
d
2
−m+1 and u

d
2
+m become the same power u

d
2
+ 1

2 , so that, from

the second and third lines in eq. (A.16), we immediately find

c+1 (k) = −i6k c−2 (k). (A.19)

In the following subsections we will restrict to positive values of m unless stated oth-

erwise. We can recover results for negative m as follows. For m not-half-integer, if m < 0,

then we can insert m = −|m| in eq. (A.5) to obtain

Ψ± = u
d+1

2

[

C±
1 (k)Jm∓ 1

2

(
√

−k2 u) + C±
2 (k)J−(m∓ 1

2
)(
√

−k2 u)
]

,

= u
d+1

2

[

C±
1 (k)J−(|m|± 1

2)
(
√

−k2 u) + C±
2 (k)J|m|± 1

2

(
√

−k2 u)
]

. (A.20)

To obtain results for negative m, we can work with positive m and then in all formulas

take m→ |m| and exchange C±
1 (k)↔ C∓

2 (k), which means

c±1 (k)→ c∓2 (k), c±2 (k)→ c∓1 (k), m not-half-integer. (A.21)

For m half-integer, if m < 0, then we can insert m = −|m| in eq. (A.6) to obtain

Ψ± = u
d+1

2

[

C±
1 (k)Jm∓ 1

2

(
√

−k2 u) + C±
2 (k)Ym∓ 1

2

(
√

−k2 u)
]

,

= u
d+1

2

[

C±
1 (k)J−(|m|± 1

2
)(
√

−k2 u) + C±
2 (k)Y−(|m|± 1

2
)(
√

−k2 u)
]

,

= (−1)|m|± 1

2 u
d+1

2

[

C±
1 (k)J|m|± 1

2

(
√

−k2 u) + C±
2 (k)Y|m|± 1

2

(
√

−k2 u)
]

,

where in the third equality we have used J−n(x) = (−1)nJn(x) and Y−n(x) = (−1)nYn(x).

To recover results for negative m, we can work with positive m and then in all formulas

take m→ |m|, C±
1 (k)→ (−1)|m|∓ 1

2C∓
1 (k), and C±

2 (k)→ (−1)|m|∓ 1

2C∓
2 (k), which means

c±1 (k)→ (−1)|m|∓ 1

2 c∓1 (k), c±2 (k)→ (−1)|m|∓ 1

2 c∓2 (k), m half-integer. (A.22)

A.2 Determining the counterterms

As reviewed in section 2, the AdS/CFT dictionary equates the exponential of (minus)

the on-shell supergravity action with the generating functional of field theory correlation

functions. For the action in eq. (A.2), clearly the bulk term vanishes when evaluated on a
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solution. The only nonzero contribution to the on-shell action comes from the boundary

terms. We will split Sbdy into two terms,

Sbdy = Svar + SCT, (A.23)

where Svar are terms required for the variational principle to be well-posed [56, 63] and

SCT includes the counterterms that will cancel any divergences. As shown in refs. [56, 63],

Svar =

∫

ddx
√
γ Ψ̄+Ψ−, (A.24)

where the integration is over only the u = ǫ surface,
√
γ is the determinant of the induced

metric on the u = ǫ surface, which for us is simply
√
γ = ǫ−d, and Ψ± are evaluated at u = ǫ.

We will plug the solutions for Ψ± into Svar and isolate any terms that diverge as ǫ→ 0. We

will then introduce into SCT any terms necessary to cancel the divergences and hence render

the on-shell action finite. The terms in SCT must respect the symmetries of the on-shell Svar

and must be built only from Ψ−, to preserve stationarity of the action, as explained above.

For m not half-integer (and positive), if we plug the solutions for Ψ± from eq. (A.11)

into eq. (A.24), we find37

Svar =

∫

ddx
1

ǫd

[

c̄+1 c
−
2 ǫ

d (1 + fa+b−(ǫ, k)) + c̄+2 c
−
1 ǫ

d+2 (1 + fa−b+(ǫ, k)) (A.25)

+ c̄+1 c
−
1 ǫ

d+2m+1 (1 + fa+a− (ǫ, k)) + c̄+2 c
−
2 ǫ

d−2m+1 (1 + fb+b− (ǫ, k))
]

,

where we have introduced one more piece of notation: we have defined

fa+a−(ǫ, k) = s+a (ǫ, k) + s−a (ǫ, k) + s+a (ǫ, k) s−a (ǫ, k),

and similarly for fb+b−(ǫ, k), fa+b−(ǫ, k), and fa−b+(ǫ, k), all of which are summations in

powers of ǫ2 starting with ǫ2. We now ask what happens to each of the terms in the

brackets in eq. (A.25) as ǫ→ 0. The first term clearly remains finite (the ǫd’s cancel). The

second and third terms vanish as ǫ2 and ǫ2m+1, respectively. The fate of the fourth term

depends on m. If m < 1/2, then the fourth term vanishes as ǫ−2m+1, and so we are done:

no divergences appear and no counterterms are necessary. If m > 1/2, however, then the

fourth term may have one or more divergent terms, with the leading divergence going as

ǫ−2m+1, so we must add counterterms. Starting now, we will assume m > 1/2. Using

eq. (A.13), we can write the on-shell Svar as

Svar =

∫

ddx
1

ǫd

[

c̄+1 c
−
2 ǫ

d +
1

2m− 1
c̄−2 i6k c−2 ǫd−2m+1 (1 + fb+b− (ǫ, k)) +O

(

ǫd+2
)

]

.

(A.26)

Having isolated the divergences in Svar, we now must write an SCT that obeys the

constraints mentioned in section 2: it must cancel all divergences of, while respecting all

symmetries of, the on-shell Svar, and must be built only from the boundary value of Ψ−.

The SCT that does the job is

SCT =

∫

ddx
√
γ

∞
∑

j=0

αj(m) Ψ̄− 6∂ǫ �j
ǫΨ− =

∫

ddx
1

ǫd

∞
∑

j=0

ǫ1+2j αj(m) Ψ̄− 6∂�jΨ−, (A.27)

37Starting now, we drop the k dependence in the coefficients: c±1 (k) → c±1 and c±2 (k) → c±2 .
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where 6∂ǫ = ǫ 6∂ (the power of ǫ comes from the inverse vielbein evaluated at u = ǫ) and

�
j
ǫ is some power j of the scalar Laplacian �ǫ on the u = ǫ surface (so the derivatives

act only in field theory directions), which in our case is simply �ǫ = ǫ2 ∂2. When we take

Ψ→ eikxΨ, the counterterms become

SCT =

∫

ddx
1

ǫd

∞
∑

j=0

ǫ1+2j αj(m) Ψ̄− i6k
(

−k2
)j

Ψ−, (A.28)

so that, plugging in the solutions for Ψ±, we find

SCT = +

∫

ddx
1

ǫd

∞
∑

j=0

ǫ1+2j αj(m)

×
[

+ǫd+2m+2 c̄−1 i6k (−k2)j c−1 (1 + fa−a−(ǫ, k))

+ǫd+1 c̄−1 i6k (−k2)j c−2 (1 + fa−b−(ǫ, k))

+ǫd+1 c̄−2 i6k (−k2)j c−1 (1 + fb−a−(ǫ, k))

+ǫd−2m c̄−2 i6k (−k2)j c−2 (1 + fb−b−(ǫ, k))
]

. (A.29)

Of the terms in brackets, the term that is potentially divergent when ǫ→ 0 goes as ǫd−2m.

All of the other terms vanish when ǫ → 0. We fix the coefficients αj(m) by demanding

that the divergent terms in eqs. (A.26) and (A.29) cancel each other, which means that

the quantity

1

2m− 1
(1 + fb+b−(ǫ, k)) +

∞
∑

j=0

αj(m)(−ǫ2k2)j (1 + fb−b−(ǫ, k)) (A.30)

must vanish order-by-order in −ǫ2k2, up to order ǫ2m−1. We immediately see that

α0(m) = − 1
2m−1 , and we can write a formal recursive solution for all the other αj(m)

(here we drop the dependence on m for notational clarity, so αj(m)→ αj , etc.),

αj = − 1

(2m− 1)

[

b+j + b−j +
∑

i=1

b+i b
−
j−i

]

−
∑

i<j

αi

[

2 b−j−i +
∑

k=1

b−k b
−
j−i−k

]

, (A.31)

where we define b±j (m) ≡ 0 if j ≤ 0. The first four αj(m) are

α0 = − 1

2m− 1
, α1 = − b−1 + b+1

(2m− 1)
− α0 2b−1 ,

α2 = −b
−
2 + b+2 + b−1 b

+
1

(2m− 1)
− α1 2b−1 − α0

(

2b−2 + b− 2
1

)

,

α3 = −b
+
3 + b−3 + b+2 b

−
1 + b+1 b

−
2

(2m− 1)
− α2 2b−1 − α1

(

2b−2 + b− 2
1

)

− α0

(

2b−3 + 2b−1 b
−
2

)

.

Plugging in the explicit forms for the b±j (m) (which are just the a±j (m) from eq. (A.10)

with m∓ 1
2 → −

(

m∓ 1
2

)

), we can write these explicitly:

α0(m) = − 1

2m− 1
,

α1(m) = − 1

(2m− 1)2(2m− 3)
,
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α2(m) =
2

(2m− 1)3(2m− 3)(2m− 5)

α3(m) =
17− 10m

(2m− 1)4(2m− 3)2(2m− 5)(2m − 7)
.

We have thus determined the counterterms when m is not half-integer.

We now consider half-integer m, in which case the solutions for Ψ± appear in

eq. (A.15). Oncer again, to determine the divergences, we plug the solutions for Ψ± into

Svar, with the result

Svar =

∫

ddx
√
γ Ψ̄+Ψ−

=

∫

ddx
1

ǫd

[

c̄+1 c
−
2 ǫ

d (ln ǫ) (1 + fa+d−(ǫ, k)) + c̄+2 c
−
1 ǫ

d+2 (ln ǫ) (1 + fa−d+(ǫ, k))

+ c̄+1 c
−
1 ǫ

d+2m+1 (ln ǫ)2 (1 + fa+a− (ǫ, k)) + c̄+2 c
−
2 ǫ

d−2m+1 (1 + fd+d− (ǫ, k))
]

(A.32)

where fa+d−(ǫ, k), fa−d+(ǫ, k) and fd+d− (ǫ, k) are defined similarly to fa+a− (ǫ, k). We

now ask what happens to each of the terms in brackets in eq. (A.32) when ǫ → 0. The

first term diverges as ln ǫ. The second and third terms vanish as ǫ2 ln ǫ and ǫ2m+1 (ln ǫ)2,

respectively. The fate of the fourth term depends on m. If m = 1/2, then the fourth

term is finite. The first term still diverges, however, so in this case we need counterterms

(in contrast to the m-not-half-integer cases). If m > 1/2, then the fourth term may have

one or more power-law divergent terms, with the leading divergence going as ǫ−2m+1.

Notice, however, that the fourth term will also always produce something finite, since the

sum fd+d−(ǫ, k) will always have a term that goes as ǫ2m−1 which will cancel the ǫ−2m+1.

When m 6= 1/2, we can use eqs. (A.17) and (A.18) to rewrite the Svar in eq. (A.32) as

Svar =

∫

ddx
1

ǫd

[

c̄+1 c
−
2 ǫ

d (ln ǫ) (1 + fa+d−(ǫ, k))

+c̄+2 c
−
2 ǫ

d−2m+1 (1 + fd+d− (ǫ, k)) +O
(

ǫd+2 ln ǫ
)]

=

∫

ddx
1

ǫd
c̄−2 i6k c−2

[

−d−
m− 1

2

(m,k)
(

−k2
)m− 1

2 ǫd ln ǫ (1 + fa+d−(ǫ, k)) (A.33)

+
1

2m− 1
ǫd−2m+1 (1 + fd+d−(ǫ, k)) +O

(

ǫd+2 ln ǫ
)

]

.

The m = 1/2 case is similar, except in the third line d−
m− 1

2

(m,k)
(

−k2
)m− 1

2 → 1, and the

fourth line remains identical to the first line.

We now include logarithmic terms in SCT,

SCT =

∫

ddx

∞
∑

j=0

(αj(m,k) + βj(m,k) ln ǫ)
√
γ Ψ̄− 6∂ǫ �j

ǫΨ−. (A.34)

Plugging the solutions for Ψ± into SCT, we find

SCT = +

∫

ddx
1

ǫd

∞
∑

j=0

ǫ1+2j (αj(m,k) + βj(m,k) ln ǫ)
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×
[

+ǫd+2m+2 (ln ǫ)2 c̄−1 i6k (−k2)j c−1 (1 + fa−a−(ǫ, k))

+ǫd+1 (ln ǫ)1 c̄−1 i6k (−k2)j c−2 (1 + fa−d−(ǫ, k))

+ǫd+1 (ln ǫ)1 c̄−2 i6k (−k2)j c−1 (1 + fd−a−(ǫ, k))

+ǫd−2m (ln ǫ)0 c̄−2 i6k (−k2)j c−2 (1 + fd−d−(ǫ, k))
]

=

∫

ddx
1

ǫd

∞
∑

j=0

(αj(m,k) + βj(m,k) ln ǫ) ǫ2j ǫd−2m+1

×
[

c̄−2 i6k
(

−k2
)j
c−2 (1 + fd−d−(ǫ, k)) +O

(

ǫ2m+1 ln ǫ
)

]

. (A.35)

Of the terms in brackets in the first equality, only the fourth term is potentially divergent

when ǫ→ 0. All the other terms vanish when ǫ→ 0. In the second equality we have thus

isolated the potentially divergent terms. We now compare eq. (A.33) and eq. (A.35), and

adjust the coefficients αj(m,k) and βj(m,k) such that all divergences cancel.

We first consider the logarithmically-divergent terms. For these we must adjust the

coefficients βj(m,k) such that

− d−
m− 1

2

(m,k)
(

−k2
)m− 1

2 +
∞
∑

j=0

βj(m,k)(−k2)jǫ2j−2m+1 = 0. (A.36)

We thus conclude that all βj(m,k) are zero except for one, βm− 1

2

(m,k) = d−
m− 1

2

(m,k). If

m = 1/2, the result is that only β0(m,k) = 1 is nonzero.

Next we consider the power-law divergences, which appear when m 6= 1/2. For these

we adjust the coefficients αj(m,k) such that the quantity

1

2m− 1
(1 + fd+d−(ǫ, k)) +

∞
∑

j=0

αj(m,k)(−ǫ2k2)j (1 + fd−d−(ǫ, k)) (A.37)

vanishes order-by-order in −ǫ2k2, up to order ǫ2m−3, to guarantee that all divergences

cancel. The αj(m,k) are thus straightforward to obtain, indeed, they are identical in form

to the αj(m,k) in eq. (A.31), but with b±j (m) → d±j (m,k). We have thus determined the

counterterms when m is half-integer.

Notice that when m is half-integer, a finite counterterm is also possible: we may intro-

duce a nonzero αm−1/2, producing a finite counterterm proportional to c̄−2 i6k (−k2)m−1/2 c−2 .

Something similar happens for scalars [61]. The scalar equation of motion has Bessel-

function solutions, and for certain values of the scalar mass m the linearly-independent

solutions are Bessel functions of the first and second kind, which means the asymptotic

expansion includes logarithmic terms. In those cases, a finite counterterm also appears,

and is proportional to the matter conformal anomaly of the dual CFT [61] (and references

therein). Here we are simply seeing the fermionic version of the scalar story.

To summarize: for the action in eq. (2.2), clearly the bulk term vanishes when evalu-

ated on a solution. The only nonzero contribution to the on-shell action comes from the

boundary terms, hence S = Sbdy on-shell. Generically, Sbdy diverges and we must add
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counterterms. When m is not half-integer, the resulting on-shell action is38

S =

∫

ddx c̄+1 c
−
2 +O

(

ǫ2
)

(A.38)

while when m is half-integer but m 6= 1/2 (here we take d±j (m,k)→ d±j ),

S =

∫

ddx c̄+2 c
−
2

(

d+
m− 1

2

+ d−
m− 1

2

+
∑

i=1

d+
i d

−
m− 1

2
−i

)

(

−k2
)m− 1

2 +O
(

ǫ2 ln ǫ
)

, (A.39)

and for m = 1/2,

S =

∫

ddx c̄+2 c
−
2 +O

(

ǫ2 ln ǫ
)

. (A.40)

These on-shell actions remain finite as ǫ → 0, and hence, upon functional differentiation,

will produce renormalized field theory correlators, as we next discuss.

A.3 Computing renormalized correlators

The field Ψ in the bulk is dual to some fermionic operator O. As reviewed in section 2,

the renormalized on-shell bulk action, Sren = limǫ→0 S, acts as the generating functional

for correlators involving O. In other words, to compute renormalized correlators of O, we

take functional derivatives of S with respect to some source. We identify the source for

O as the coefficient of the dominant term in Ψ’s near-boundary expansion. In eqs. (A.11)

and (A.15), the dominant term is the u
d
2
−m term, hence we identify c−2 (k) as the source

for O. More formally, we equate (see eq. (2.20))

e−Sren[c−
2

,c̄−
2

] =

〈

exp

[
∫

ddx
(

c̄−2 O + Ō c−2
)

]〉

, (A.41)

where the left-hand-side in the exponential of minus the on-shell bulk action in eq. (2.2),

and the right-hand-side in the generating functional of the dual field theory, with c−2 (k)

acting as the source for the operator O. Upon taking minus the logarithm of both sides,

we find that the on-shell bulk action is the generator of connected correlators.

For any value of the bulk fermion’s mass m, a quantization exists for which O has

dimension ∆ = d
2 + |m| [11, 60]. When |m| ∈ [0, 1/2), a second quantization exists for

which ∆ = d
2 − |m|. These two quantizations correspond to two different field theories,

one of which (the one with ∆ = d
2 − |m|) is “unstable” against a relevant deformation

by a double-trace operator of O, and flows to the other, “stable,” theory, as in the scalar

case [104].39 When |m| > d/2, the dual operator is irrelevant: ∆ > d.

When d is even, O will be an operator of definite chirality, since in that case γu is the

chirality operator of the field theory and c−2 (k) has definite chirality. Notice that taking

38Recall once again that we restricted to positive m. At the end of the last subsection we explained how

to recover results for negative m from the results for positive m.
39For the Dp-branes we study in section 4.1, m is always integer or half-integer, so the second quantization

is only possible when m = 0. Indeed, in the bulk of the paper we use m = 0. In that case, however, the

two quantizations are equivalent (see appendix A of ref. [9] and ref. [60]).
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m → −m takes c−2 (k) → c+1 (k) when m is not half-integer and c−2 (k) → (−1)|m|+ 1

2 c+2 (k)

when m is half-integer, and hence switches the chirality of O.

We reviewed in section 2 how to compute the Euclidean Green’s function from the

renormalized on-shell action. In particular, from eqs. (2.25) and (2.26), we have

〈

O Ō
〉

ren
= − δ2Sren

δc−2 δc̄
−
2

= −δc
+
1

δc−2
= G(k) γt, (A.42)

where G(k) is defined by c+1 = −G(k) γtc−2 . As we mentioned below eq. (2.26), in general,

we extract G(k) γt from from a solution by imposing some regularity condition in the bulk

of the spacetime. As an example, let us consider the simplest case: pure AdSd+1 with m

positive and not half-integer. The solution in eq. (A.5) is then the solution for all u, not

just the asymptotic solution as u → 0. We need to write c+1 in terms of c−2 . To do so,

we impose a regularity condition in the bulk of AdSd+1. Deep in the interior of AdSd+1,

where u → ∞, the solution in eq. (A.5) diverges unless C+
1 = (−1)m+1/2 C+

2 . Translating

that condition into a condition on c+1 and c+2 is trivial, once we recall the definition of c+1
and c+2 in eq. (A.9). We find

c+1 = −2−2m (2m− 1)
Γ
(

1
2 −m

)

Γ
(

1
2 +m

) k2m−1 c+2 . (A.43)

We then use eq. (A.13) to write c+2 in terms of i6k c−2 . We finally obtain for the two-point

function,
〈

O Ō
〉

ren
= 2−2m Γ

(

1
2 −m

)

Γ
(

1
2 +m

) k2m−1 i6k, (A.44)

which agrees with the result in refs. [62, 63, 105] and, up to normalization, is the correct

momentum-space form for the two-point function of a quasi-primary operator of dimension

∆ = d/2+m. Similar arguments work when m is half-integer, where again we find the cor-

rect momentum-space form for a quasi-primary operator of dimension ∆ = d/2+m. In that

case, we can also adjust the normalization to any value we like using the finite counterterm.
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