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Fermionic response from fractionalization in an
insulating two-dimensional magnet
J. Nasu1*, J. Knolle2*, D. L. Kovrizhin2,3, Y. Motome4 and R. Moessner5

Conventionally ordered magnets possess bosonic elementary
excitations, called magnons. By contrast, no magnetic insula-
tors in more than one dimension are known whose excitations
are not bosons but fermions. Theoretically, some quantum
spin liquids (QSLs)1—new topological phases that can occur
when quantum fluctuations preclude an ordered state—are
known to exhibit Majorana fermions2 as quasiparticles arising
from fractionalization of spins3. Alas, despite much searching,
their experimental observation remains elusive. Here, we show
that fermionic excitations are remarkably directly evident
in experimental Raman scattering data4 across a broad
energy and temperature range in the two-dimensionalmaterial
α-RuCl3. This shows the importance of magnetic materials
as hosts of Majorana fermions. In turn, this first systematic
evaluation of the dynamics of a QSL at finite temperature
emphasizes the role of excited states for detecting such
exotic properties associated with otherwise hard-to-identify
topological QSLs.

The Kitaev model has recently attracted attention as a canonical
example of a QSL with emergent fractionalized fermionic
excitations2,5. The model is defined for S = 1/2 spins on a
honeycomb lattice with anisotropic bond-dependent interactions,
as shown in Fig. 1a2. Recent theoretical work—by providing
access to properties of excited states—has predicted signs of
Kitaev QSLs in the dynamical response at T = 0 (refs 6,7) and
in the T dependence of thermodynamic quantities8,9. However,
the dynamical properties at finite T have remained a theoretical
challenge, as it is necessary to handle quantum and thermal
fluctuations simultaneously. Here, by calculating dynamical
correlation functions over a wide temperature range, we directly
identify signatures of fractionalization in available experimental
inelastic light scattering data.

In real materials, Kitaev-type anisotropic interactions may
appear through a superexchange process between jeff =1/2 localized
moments in the presence of strong spin–orbit coupling10. Such
a situation is believed to be realized in several materials, such
as iridates A2IrO3 (A= Li, Na)11,12 and a ruthenium compound
α-RuCl3 (refs 4,13–15). These materials show magnetic ordering
at a low T (∼10K), indicating that some exchange interactions
coexist with the Kitaev exchange and give rise to the magnetic order
instead of the QSL ground state16–19. Nevertheless, evidence suggests
that the Kitaev interaction is predominant (several tens to hundreds
of kelvin)15,18–22, which may provide an opportunity to observe the
fractional excitations in a quantum paramagnetic state above the
transition temperature as a proximity effect of the QSL phase.

In particular, unconventional excitations were observed by
polarized Raman scattering in α-RuCl3 (ref. 4). In this material,

Néel ordering sets in only at Tc ∼ 14K, whereas there is growing
evidence15,22 that the Kitaev interaction is much larger than
additional interactions such as the Heisenberg interaction, and
hence finite-temperature signatures of the Kitaev QSL are expected
to be observed in the paramagnetic state persisting in a broad
temperature window above Tc.

The inset of Fig. 2 shows the integrated experimental Raman
intensity for α-RuCl3 as a function of temperature4. A background
contribution, probably due to phonons, has been identified and
subtracted4, as it persists up to very high T much larger than any
magnetic scale. In this limit, it can be fitted to standard one-particle
scattering which is proportional to n + 1, with n=1/(eβω −1)
being the Bose distribution function (β = 1/T is the inverse
temperature and ω is the energy for bosons). The main panel (red
symbols) shows the remaining, presumably dominantly magnetic
contribution.

Most remarkably, the T dependence of the spectral weight up
to high temperatures (more than an order of magnitude above Tc),
does not follow the bosonic form expected for conventional
insulating magnets in which both magnons and phonons obey Bose
statistics. It is thus imperative to understand the origin of this
anomalous contribution. This will provide a more direct test of the
proximity to QSLs than an asymptotic low-T behaviour which is
sensitive to the subdominant exchange interactions.

Results
Themain panel of Fig. 2 provides a comparison of theT dependence
of our theoretical results (blue circles) with the experimental data.
The good agreement over a wide temperature range, from just
above Tc up to a much higher scale (∼15Tc), offers compelling
evidence that our Kitaev QSL theory correctly identifies the nature
of fundamental excitations in the form of fractionalized fermions.
This is further reinforced by noticing that the asymptotic two-
fermion-scattering form (1− f )2, with f = 1/(1+ eβε) being the
Fermi distribution function (ε is the energy for fermions), is a good
fit of the response. In the following, we outline our calculations and
explain how the two-fermion-scattering T -dependence emerges as
a result of fractionalization.

We investigate the Raman spectrum at finite T for the Kitaev
model using quantum Monte Carlo (QMC) simulations which
enable the numerically exact calculation. This directly utilizes the
fractionalization of quantum spins into two species of Majorana
fermions: itinerant ‘matter’ and localized ‘flux’ fermions (see
Methods for details). Crucially, the Raman response is elicited only
by the itinerant Majorana fermions7, which allows us to detect their
Fermi statistics more directly than in other dynamical responses6.
Below we focus on the case of isotropic exchange couplings,
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Figure 1 | Schematic pictures for the Kitaev model and Raman processes. a, Honeycomb lattice structure. Blue, green and red bonds represent Ising-like

interactions between x-, y- and z-components of the S= 1/2 spins, respectively. Incoming and outgoing photons, whose frequencies are ωi and ωf, are also

depicted. b,c, Feynman diagrams of the Raman scattering processes that correspond to a creation or annihilation of a pair of matter fermions (process (A))

(b) and a combination of creation and annihilation of the matter fermions (process (B)) (c). In process (A), a photon scattering creates two fermions with

energies ε1 and ε2, hence the Raman shift ω=ωf −ωi is equal to ε1 +ε2. In process (B), the scattering creates a fermion with energy ε2 and annihilates a

fermion with ε1 simultaneously, hence, ω is equal to ε2 −ε1.
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Figure 2 | Comparison between the numerical results and the

experimental data for α-RuCl3.Main panel: blue circles represent QMC

data for a L=20 cluster for the integrated Raman intensity Imid shown in

Fig. 3c. The errors evaluated by the standard deviation of the MC samplings

are sufficiently smaller than the symbol size. Red squares are the experi-

mental data in the energy window from 5 to 12.5meV (ref. 4), from which

the non-magnetic background is subtracted (see text). Green dashed lines

represent the fitting by aM[1− f(ε∗
M)]2 +bM (see caption of Fig. 3). We take

J= 10meV in calculating Imid. Inset: red squares show the experimental raw

data and the orange curve indicates the bosonic background. Note that the

assignment of the bosonic background is slightly different from that in

ref. 4. Details of the fitting procedure are given in Methods.

Jx = Jy = Jz = J ; a small anisotropy plausible in real materials does
not alter our main conclusions (see Supplementary Information).
The thermodynamic behaviour exhibits two characteristic crossover
T -scales originating from fractionalization at T ∗/J ∼ 0.012 and
T ∗∗/J ∼ 0.38: the former is related to the condensation of flux
Majorana fermions, set by the flux gap ∼0.06J (ref. 2), whereas
the latter arises from the formation of matter Majorana fermions
at much higher T , set by their bandwidth ∼1.5J .

Figure 3a shows the QMC data for the Raman spectrum I(ω)

at several T . At T = 0, it exhibits ω-linear behaviour in the
low-energy region, due to a linear Dirac dispersion of matter
Majorana fermions7. With increasing T above T ∗, the low-energy
part increases and the ω = 0 contribution becomes nonzero, as
shown in the figure for T/J = 0.0375. At higher T , the broad peak

in the intermediate energy range at ω/J ∼ 1 is suppressed above
T ∼ T ∗∗. Indeed, the Raman spectrum at T/J = 0.75 shows no
substantial energy dependence for 0<ω/J .2, as shown in Fig. 3a.
For higher T , the intermediate-to-high-energy weight gradually
decreases. The T and ω dependence of the Raman spectrum is
summarized in Fig. 3b. The result clearly shows that the broad peak
structure is slightly shifted to the low-energy side above T ∗ and the
spectrum becomes featureless above T ∗∗.

For further understanding of the T dependence of the Raman
spectra, it is helpful to work in a basis of complex matter
fermions constructed as a superposition of real Majorana fermions
(see Methods). These elementary excitations determine the
T -dependence because their occupation (in a fixed background
of fluxes) is given by the Fermi distribution function. In detail,
one needs to analyse two different processes contributing to
Raman scattering23: one consists of creation or annihilation of
a pair of fermions (process (A)), with the other a combination
of the creation of one fermion and the annihilation of another
(process (B)) (see Methods for details). Process (A) is proportional
to [1− f (ε1)][1− f (ε2)]δ(ω−ε1 −ε2), where ω is the Raman
shift, and ε1 and ε2 are the energies of fermions (see Fig. 1b).
Process (B) is proportional to f (ε1)[1− f (ε2)]δ(ω + ε1 − ε2) and
vanishes at T = 0 due to the absence of matter fermions in the
ground state (see Fig. 1c). Because of their different frequency
dependence—for example, (A) vanishes for ω→0 at low T—their
distinct T -behaviour can be extracted by looking at different
frequency windows.

Figure 3c shows the T dependence of the integrated spectral
weight in the intermediate energy window, Imid for 0.5<ω/J <1.25
(see the hatched region in Fig. 3a). The same is used in Fig. 2 in
accordance with the frequency window for the experimental data
with J = 10meV. We emphasize that the value of J is consistent
not only with the spectral width and peak position of the Raman
continuum at the lowest T (ref. 4), but also with the inelastic
neutron scattering in α-RuCl3 (ref. 15). As shown in Fig. 3c, Imid

has a non-monotonic change as a function of T : it grows around
T ∗ with increasing T , but turns over to decrease above T/J ∼ 0.1,
yielding the shift of the peak structure in I(ω) to the low-energy side
shown in Fig. 3b. Note that the decrease persists up to temperatures
much higher than J due to thermal fluctuations of the itinerant
Majorana fermions. We also highlight the contributions from the
processes (A) and (B) in Fig. 3c. The result clearly indicates that Imid
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Figure 3 | Calculated Raman intensity for finite temperatures. a, ω dependences of the Raman spectra I(ω) at several T. b, Contour map of the

Raman spectrum I(ω) in the T–ω plane. c,d, Integrated spectral weights Imid for 0.5<ω/J< 1.25 (c) and Ilow for 0.0<ω/J<0.25 (d), whose energy

ranges are indicated by the hatched and shaded areas in Fig. 3a, respectively. Green dashed lines represent fits using aM[1− f(ε∗
M)]2 +bM with

ε∗
M/J=0.58 in c, and aLf(ε

∗
L )[1− f(ε∗

L )]+bL with ε∗
L /J=0.42 in d (see Supplementary Information). Here, f(ε)= (1+eβε)−1 is the Fermi distribution

function with zero chemical potential. Horizontal dashed-dotted lines represent the values of Ilow and Imid at T=0 (refs 7,23). The red and blue

areas in c and d highlight the contributions to the integrated Raman intensities from the processes (A) and (B), respectively. The errors evaluated

by the standard deviation of the MC samplings are sufficiently smaller than the symbol size. Vertical dotted lines indicate two crossover temperatures,

T∗ and T∗∗.

is dominated by the process (A), which supports the scaling with
(1− f )2 (see Supplementary Information).

Meanwhile, the results presented in Fig. 3d covering the
low-energy window, Ilow for 0.0 < ω/J < 0.25 (see the shaded
region in Fig. 3a), have a different T -dependence. The increase
around T ∗ is because the Dirac semimetallic dip in the itinerant
fermion system is filled in due to thermal fluctuations of the flux
fermions9. Moreover, with increasing T , Ilow saturates around the
high-T crossover T ∗∗. As shown in Fig. 3d, above T/J ∼0.1, Ilow is
dominated by the process (B), indicating that the T dependence is
well fitted by f (1− f ). However, the intensity Ilow, is one order of
magnitude smaller than Imid.

Discussion
The striking T dependence of the Raman intensity observed in
experiments can be naturally attributed to the response from
fractionalized fermionic Majorana excitations, dominantly from
pairs of creation and annihilation of matter fermions. The T
dependence is qualitatively different from that of conventional
insulating magnets which show bosonic Raman spectra from two-
magnon scattering24. It is important to note that here we are dealing
with a two-dimensional magnet13–15. In one dimension, there is no
such crisp distinction between Bose and Fermi statistics, as in the
absence of true exchange processes, bosons with hardcore repulsion

are rather similar to fermions obeying the Pauli principle; and on
the other hand the roles of topology and order in two dimensions
are quite distinct from a one-dimensional case25.

We note that the behaviour below and around Tc is non-
universal, as indicated by the strong sample dependence of Tc

(ref. 13,15). All features connected to the long-range ordering
quickly disappear above Tc, and the universal aspect related with
the dominant Kitaev interaction appears in a wide T range. In fact,
a recent exact diagonalization study presents evidence of fractional
excitations above Tc (ref. 26).

The crucial observation here is that the unexpected fermionic
contribution is clearly observed over a remarkably wide T range,
more than an order of magnitude higher than the transition
temperature into the incidental low-temperature Néel order. This
approach is distinct from the conventional quest for exotic
properties of QSLs, where the experimental hallmark of fermionic
excitations has mainly been pursued in asymptotic T behaviour—
for example, in the T -linear specific heat for temperatures much
lower than the interaction energy. However, the low-T analyses
of such thermodynamic quantities are further complicated by
the need to distinguish between QSLs, glassy behaviour, spurious
order, and other low-energy contributions typified, for example, by
nuclear spins. Our finding provides a direct way of identifying QSL
behaviour, and in particular, the presence of fermionic excitations.
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This, we hope, will stimulate further studies of other dynamical
quantities in the wide T range15 as well as studies of other candidate
materials such as A2IrO3 (A= Li, Na)27.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Monte Carlo simulation. The Hamiltonian of the Kitaev model on the honeycomb
lattice is given by

H=−Jx
∑

〈jk〉x

Sx
j
Sx
k
− Jy

∑

〈jk〉y

Sy
j
Sy
k
− Jz

∑

〈jk〉z

Sz
j
Sz
k

(1)

where Sj = (Sx
j
,S

y

j ,S
z
j
) represents an S=1/2 spin on site j, and 〈jk〉γ stands for a

nearest-neighbour γ (=x ,y , z) bond shown in Fig. 1a2. By using the
Jordan–Wigner transformation and introducing two kinds of Majorana fermions,
cj and c̄j

28,29, the model is rewritten as

H=
iJx

4

∑

(jk)x

cjck −
iJy

4

∑

(jk)y

cjck −
iJz

4

∑

(jk)z

ηr cjck (2)

where (jk)γ is the nearest-neighbour pair satisfying j<k on the γ bond, and
ηr = ic̄j c̄k is a Z2 variable defined on the z bond (r is the label for the bond), which
takes ±1. Equation (2) describes free itinerant Majorana fermions coupled to
classical Z2 variables {ηr}. Although the configurations of {ηr} are thermally
disturbed away from the ground state configuration with all ηr =1, the
thermodynamic behaviour can be obtained by properly sampling {ηr} as follows.
As the Hamiltonian for a given configuration of {ηr} is bilinear in terms of c
operators, it is easily diagonalized as

H({ηr})=
∑

λ

ελ

(

f †

λ
fλ−

1

2

)

(3)

Here, we introduce complex matter fermions fλ with the eigenenergies ελ(≥0),
which are related to c by

cj =
∑

λ

(

Xjλfλ+X∗

jλ
f †

λ

)

(4)

where Xjλ is introduced so as to diagonalize the Hamiltonian. Then, we evaluate the
free energy Ff({ηr})=−β−1 lnZf({ηr}) for the configuration {ηr}, where
Zf({ηr})=Tr{cj}e

−βH({ηr }); β =1/T is the inverse temperature, and we set kB =1.
The thermal average of an operatorO is given by

〈O〉=
1

Z

∑

{ηr }

Tr{cj}
[

Oe−βH
]

=〈Ō({η})〉η (5)

where we define Ō({ηr})=Zf({ηr})
−1Tr{cj}[Oe−βH({ηr })] and

〈· · ·〉η =Z−1
∑

{ηr }
[· · · ]e−βFf({ηr }), with Z being the partition function of the system.

In our calculations, we take the sum over configurations {ηr} in the average 〈· · ·〉η

by performing Monte Carlo (MC) simulations so as to reproduce the distribution
e−βFf({ηr }). This admits the quantumMC (QMC) simulation which is free from the
sign problem9.

Raman spectrum. To calculate the Raman spectrum at finite T , we employ
the Loudon–Fleury (L–F) approach30,31 by following previous T =0 studies7,23:
the LF operator for the Kitaev model is given by
R=

∑

γ=x ,y ,z

∑

〈jk〉γ
(ǫ in ·d

γ )(ǫout ·d
γ )J γ Sγ

j
Sγ

k
, where ǫ in and ǫout are the

polarization vectors of the incoming and outgoing photons and d
γ is the vector

connecting sites on a NN γ bond. Using the LF operator, the Raman intensity is
given by I ll

′

(ω)=1/N
∫ ∞

−∞
dteiωt〈R(t)R(0)〉, whereR(t)=eiHt

Re−iHt and N is
the number of sites; l and l ′ denote the directions of ǫ in and ǫout inR, respectively.
Note that the following relation is satisfied in the isotropic case7:

I xx(ω)= I yy(ω)= I xy(ω)≡ I(ω) (6)

In terms of the Majorana fermions, the LF operator is described by a bilinear form
of c operators as

R=
1

2

∑

jk

Bjk({ηr})cjck (7)

where B({ηr}) is a Hermitian matrix with pure imaginary elements. Note thatR(t)
is simply given by 1/2

∑

jk Bjk({ηr})cj(t)ck(t) as all {ηr} commute with the
Hamiltonian. It is this property which allows us to evaluate exactly the dynamical
correlator ofR. Using equation (4), we obtain

R=
1

2

∑

λλ′

[

Cλλ′
(

2f †

λ
fλ′ −δλλ′

)

+Dλλ′ f
†

λ
f †

λ′
+D∗

λ′λ
fλfλ′

]

(8)

where Cλλ′ =
∑

jk BjkX
∗
jλ
Xkλ′ and Dλλ′ =

∑

jk BjkX
∗
jλ
X∗

kλ′
. By applying Wick’s theorem,

we obtain the Raman intensity for a given configuration {ηr} as

Ī ll
′

(ω; {ηr}) =
1

N

∑

λλ′

[

2π|Cλλ′ |
2f (ελ)[1− f (ελ′ )]δ(ω+ελ−ελ′ )

+π|Dλλ′ |
2[1− f (ελ)][1− f (ελ′ )]δ(ω−ελ−ελ′ )

]

(9)

where ω>0. Finally, the thermal average is evaluated as I ll
′

(ω)=〈Ī ll
′

(ω; {ηr})〉η

using the QMC simulation.
The terms in equation (9) describe two different Raman processes, which show

different T dependences via the Fermi distribution function f (ε): the first term
corresponds to the process (B) (Fig. 1c) and the second term corresponds to the
process (A) (Fig. 1b). Thus, the T dependence of the Raman intensity provides a
good indicator of fermionic excitations in Kitaev QSLs.

Following our previous QMC study9, we have performed more than 30,000 MC
steps for the measurements after 10,000 MC steps for the thermalization using
parallel tempering technique, for N =2L2 clusters with L=12 and 20. The Raman
intensity I ll

′

(ω) is computed from 3,000 samples during the 30,000 MC steps. The
statistical errors are evaluated by the corresponding standard deviation. However, it
turns out that the errors are sufficiently smaller than the symbol sizes in the plots in
Figs 2, 3c, and 3d, and hence, are not shown.

Details of the fitting to experimental results.We define the Raman spectrum of
the Kitaev model with J = Jx = Jy = Jz as IK(ω, J ), which is I(ω) in equation (6)
calculated by QMC for the L=20 cluster. The bosonic background is taken to be
proportional to IB(ω)≡n(ω)+1=eβω/(eβω −1), as in ref. 4. Then, we assume
that the total spectral weight Itotal(ω, J ) is given by

Itotal(ω; J ,αK,αB)=αKIK(ω, J )+αBIB(ω) (10)

where αK and αB are the coefficients to be determined in the fitting procedure
below. The integrated intensity for the intermediate energy window
0.5<ω/J <1.25 is also introduced as

Imid

total
(J ,αK,αB)=

∫ 1.25J

0.5J

Itotal(ω; J ,αK,αB)dω=αKI
mid

K
(J )+αBI

mid

B
(J ) (11)

where Imid
K

(J ) is equivalent to Imid in the main text. On the other hand, the
experimental data for the integrated intensity within the same energy window is
obtained by

Iexp(J )=

∫ 1.25J

0.5J

Iexp(ω)dω (12)

where Iexp(ω) is the Eg component of the Raman spectrum measured for
α-RuCl3 (ref. 4). In Fig. 2, we assume J =10meV and determine the coefficients
αK and αB so as to fit I

mid
total

(J ,αK,αB) to Iexp(J ) in the energy window from 5 to
12.5meV (see Supplementary Information for the choice of J ); we compute Iexp(J )
from the experimental data provided by the authors of ref. 4. We denote the
optimized coefficients by α∗

K
and α∗

B
. In the main panel of this figure, the red

squares and blue circles represent Iexp(J )−α∗
B
IB(J ) and α∗

K
IK(J ), respectively. In the

inset, the red squares represent Iexp(J ) and the orange line
represents α∗

B
IB(J ).

Data availability. Experimental Raman spectroscopy data were originally
reported in ref. 4. All other data that support the plots within this paper and
other findings of this study are available from the corresponding authors
upon request.

References
28. Chen, H.-D. & Hu, J. Exact mapping between classical and topological orders in

two-dimensional spin systems. Phys. Rev. B 76, 193101 (2007).

29. Feng, X.-Y., Zhang, G.-M. & Xiang, T. Topological characterization of

quantum phase transitions in a spin-1/2 model. Phys. Rev. Lett. 98,

087204 (2007).

30. Fleury, P. A. & Loudon, R. Scattering of light by one- and two-magnon

excitations. Phys. Rev. 166, 514–530 (1968).

31. Shastry, B. S. & Shraiman, B. I. Theory of Raman scattering in Mott–Hubbard

systems. Phys. Rev. Lett. 65, 1068–1071 (1990).

© Macmillan Publishers Limited . All rights reserved

NATURE PHYSICS | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys3809
www.nature.com/naturephysics

	Fermionic response from fractionalization in an insulating two-dimensional magnet
	Main
	Results
	Discussion
	Methods
	Monte Carlo simulation.
	Raman spectrum.
	Details of the fitting to experimental results.
	Data availability.

	Acknowledgements
	References


