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1 Introduction

Since the seminal work of Cremmer and Julia [1] it is well known that maximal supergravity

compactified on a torus Td enjoys a hidden exceptional symmetry Ed(d). From the M-theory

point of view these U-duality transformations unify the perturbative T-duality, that relates

type IIA and type IIB theories, and the S-duality of type IIB string theory. However, such

formulation does not provide a natural geometric interpretation of the duality symmetries.

In the series of works [2–5], exceptional field theory, the Ed(d)-covariant formulation

of the full bosonic sector of maximal supergravity, was constructed for d = 6, 7, 8. It

brings together the ideas from double field theory [6–10], its extension to exceptional

groups [11–14], and extended geometry [15–17] that is an extension of Hitchin’s generalised

geometry [18, 19] to the case of exceptional duality groups. These structures are defined

on an exceptional space-time parametrized by external and internal coordinates {xµ,YM},
µ = 0, . . . , 4; M = 1, . . . , 27, the latter transforming in the fundamental representation of

Ed(d).
1 This space is dynamically restricted by a covariant differential constraint called

1In the scheme of [20], generalized space-time is encoded in the infinite-dimensional l1 representation

of E11.
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section condition, that allows to systematically drop the extra coordinates and return to

the conventional supergravity. The structure of the exceptional field theories resembles the

one of the corresponding (11−d)-dimensional gauged supergravities [21, 22], however with

all fields living on the full exceptional space-time. The dynamics of the “internal” sector is

formulated in terms of the Lagrangian for a generalised metric, that is constructed from the

scalar fields, parametrising the coset space G/K. In this formalism U-duality symmetries

are recovered from generalized Lie derivatives in the internal space [15, 23]. Invariance un-

der generalized diffeomorphisms in the external and internal coordinates uniquely fixes all

the bosonic couplings of the theory without imposing any supersymmetric structure. Yet,

the resulting bosonic system can be supersymmetrized by introducing fermions together

with the corresponding connections under the generalized Lorentz group. The supersym-

metric version of the full E7(7) EFT has been constructed in [24].

In this work we present the supersymmetric completion of the E6(6)-covariant excep-

tional field theory that lives on a 5+27-dimensional exceptional space-time. The bosonic

theory has been constructed in [2, 3]. Generalized diffeomorphisms in the internal coordi-

nates Y
M enter the theory as Yang-Mills type gauge symmetries coupled to the Kaluza-

Klein vector field Aµ
M in the fundamental representation of E6(6). Fermions enter the

theory as spinors under the generalized SO(1, 4) × USp(8) Lorentz group. Under gener-

alized diffeomorphisms they transform as weighted scalars. As in D = 5 maximal super-

gravity [21, 25], gravitinos ψµ
i and fermions χijk transform in the fundamental 8 and the

antisymmetric traceless 42 representation of USp(8), respectively. However, unlike in the

five-dimensional truncation, they live on the full exceptional space-time modulo the covari-

ant section condition, which effectively reduces the number of physical coordinates down

to ten or eleven. Accordingly, the coupling of fermions requires a set of spin connections

Dµ DM

SO(1, 4) ωµ
ab ωM

ab

USp(8) Qµ i
j QM i

j

, (1.1)

in the external and internal directions, and for the two factors of the Lorentz group, re-

spectively. These connections are defined in terms of the bosonic frame fields, the fünfbein

eµ
a, and the E6(6)-valued 27-bein VMij . The SO(1, 4) connection ωµ

ab is defined by the

usual vanishing torsion condition

D[µeν]
a = 0 ⇐⇒ Γ[µν]

ρ = 0 , (1.2)

however modified by the fact, that the derivative is covariantized also w.r.t. internal gen-

eralized diffeomorphisms under which the fünfbein eµ
a transforms as a weighted scalar.

For the internal sector on the other hand, vanishing torsion translates into the projection

condition [15]

ΓMN
K
∣∣∣
351

= 0 , (1.3)

for the generalized Christoffel connection, decomposed into irreducible E6(6) representa-

tions. The off-diagonal blocks in (1.1) finally are determined by demanding that the
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algebra-valued currents

JMab ≡ eaµD[ω]Meµ
b , Jµklij ≡ VklMD[A,Q]µVMij , (1.4)

of the frame fields live in the complement of the maximal compact subalgebra within

GL(5)× E6(6):

JMab
∣∣∣
so(1,4)

= 0 , Jµklij
∣∣∣
usp(8)

= 0 . (1.5)

Based on these connections we construct the supersymmetry transformation laws and the

full supersymmetric Lagrangian in E6(6)-covariant form. Upon explicit solutions of the

section condition, the Lagrangian reduces to full D = 11 supergravity and the IIB theory,

respectively.

The paper is organized as follows. In section 2 we briefly review the structure of the

bosonic E6(6) exceptional field theory. We give explicit expressions for the SO(1, 4) and

USp(8) connections (1.1) and the associated curvatures which are the building blocks for

the bosonic field equations. In section 3 we present the supersymmetry transformations

for all the fields of the theory in a U-duality covariant form based on the connections (1.1).

The supersymmetry algebra closes with the following schematic form

[δ(ǫ1), δ(ǫ2)] = ξµDµ + δso(1,4)(Ω
ab) + δusp(8)(Λ

ij) + δsusy(ǫ3)

+ δgauge(Λ
M ) + δgauge(ΞµM ) + δgauge(Ξµν α) + δgauge(Ξµν M ) ,

(1.6)

into the local bosonic symmetries of the theory, with the explicit transformation parameters

listed in (3.4) below. The geometry of the extended space deforms the supersymmetry

algebra in a non-trivial way, although its structural form remains the same as that of the

maximal gauged D = 5 supergravity [21, 25]. The full U-duality covariant supersymmetric

Lagrangian is then given in section 4. In particular, we observe that all Pauli couplings

of the fermions to the field strength FµνM can be absorbed by a shift of the internal spin

connection according to

ω±
M
ab ≡ ωM

ab ± 1

2
MMN FµνN eµaeνb . (1.7)

We sketch the relevant steps in the proof of supersymmetry invariance while the full cal-

culational details are collected in appendix A. The results are discussed in section 5.

2 Gauge structure and connections

We start by giving a brief review of the bosonic field content and gauge symmetry of the

E6(6)-covariant exceptional field theory, constructed in [2, 3] (to which we refer for details).

Next we set up the USp(8) × E6(6)-covariant geometrical formalism and in particular de-

fine the SO(1, 4) and USp(8) spin connections required for the coupling of fermions. We

then work out their various curvatures which are the building blocks for the bosonic field

equations.
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2.1 Bosonic field content and tensor hierarchy

The bosonic field content of E6(6) exceptional field theory is given by

{
eµ
a , VMij , Aµ

M , Bµν M
}
, (2.1)

with indices µ, ν = 0, . . . , 4, and M = 1, . . . , 27, labelling external and internal coordi-

nates, respectively, while indices a = 0, . . . , 4, and i, j = 1, . . . , 8, label fundamental indices

of the SO(1, 4) and USp(8) Lorentz group, respectively. The fünfbein eµ
a defines the

five-dimensional ‘external’ metric as gµν ≡ eµ
aeν

bηab with the flat Minkowski metric ηab.

Similarly, the pseudo-real 27-bein VMij defines an ‘internal’ metric as

MMN = VMijVN ij , (2.2)

where VM ij ≡ (VMij)∗. The 27-bein VMij can be viewed as an E6(6)/USp(8) coset repre-

sentative with the properties

VMij = VM [ij] , VMijΩij = 0 , VM ij ≡ (VMij)∗ = VMklΩkiΩlj , (2.3)

where Ωij = Ω[ij] denotes the symplectic invariant tensor. Thus MMN in (2.2) is real and

symmetric. We further define the inverse 27-bein as

VMijVijN = δM
N , VMklVijM = δklij −

1

8
ΩijΩ

kl , (2.4)

where we use conventions δijkl =
1
2(δ

i
kδ
j
l −δilδ

j
k) and ΩikΩ

jk = δji . The fact that the 27-bein is

an E6(6) group-valued matrix is most efficiently encoded in the structure of its infinitesimal

variation,

δVMij = −2 δqk
[i VMj]k + δpijkl VM kl , (2.5)

with δqi
j and pijkl spanning the 36 and 42 of USp(8), respectively, i.e.

δqi
j = −δqlkΩikΩjl , δpijkl = δpJijklK , (2.6)

and corresponding to the compact and non-compact generators of e6(6), respectively. Dou-

ble brackets JijklK here and in the following indicate projection onto the totally antisym-

metric and Ω-traceless part, i.e. δpijklΩkl = 0.

All fields (2.1) formally depend on the five external coordinates xµ, and 27 internal co-

ordinates YM , with the latter transforming in the fundamental representation of E6(6). The

Y
M -dependence is strongly restricted by the E6(6) covariant section condition [11, 23, 26]

dKMN ∂M∂NA = 0 , dKMN ∂MA∂NB = 0 , (2.7)

for any fields or gauge parameters A,B. Here, dKMN is the totally symmetric cubic

invariant of E6(6). These constraints admit (at least) two inequivalent solutions, in which

the fields depend on a subset of six or five of the internal coordinates. The resulting theories
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are the full D = 11 supergravity and the type IIB theory, respectively. For later use we

note that the cubic E6(6) invariant d
MNK is related to the symplectic tensor Ωij via

dMNP =
2√
5
VijMVklNVmnPΩjkΩlmΩni,

dMNP =
2√
5
VMijVNklVPmnΩjkΩlmΩni ,

(2.8)

as a consequence of the group property of VMij . We use normalization such that

dMKLd
NKL = δM

N . With (2.8), the section constraint (2.7) can be rewritten as

Ωl[iVj]kMVklN ∂MA∂NB =
1

8
Ωij MMN ∂MA∂NB , etc. , (2.9)

which is a form that we will often use in the following.

The exceptional field theory is invariant under generalized diffeomorphisms in the

internal coordinates which act according to [15]

(LΛV )M = ΛN∂NV
M − 6PMN

K
L∂KΛ

LV N + λV ∂PΛ
PVM , (2.10)

on a vector VM of weight λV . Here, P
M
N
K
L = (tα)N

M (tα)L
K denotes the projector

onto the adjoint representation of E6(6), (tα)N
M denoting the representation matrix in the

fundamental representation. The diffeomorphism parameter ΛM in (2.10) may depend on

internal and external coordinates. As a result, all external derivatives are covariantized

according to

Dµ = ∂µ − LAµ , (2.11)

with the vector field Aµ
M from (2.1). Accordingly, non-abelian field strengths for vector

and two-form fields are defined as

FµνM = 2 ∂[µAν]
M − 2A[µ

K∂KAν]
M + 10 dMKRdNLRA[µ

N ∂KAν]
L

+ 10 dMNK ∂KBµν N ,

HµνρM = 3D[µBνρ]M − 3 dMKLA[µ
K ∂νAρ]

L + 2 dMKLA[µ
KAν

P∂PAρ]
L

− 10 dMKLd
LPRdRNQA[µ

KAν
N ∂PAρ]

Q + · · · , (2.12)

with the dots indicating terms that vanish under projection with dKMN∂N . Here, vector

fields and two-forms carry weight λA = 1
3 , λB = 2

3 , respectively, and the same weight is car-

ried by their respective gauge parameters. The field strengths (2.12) transform covariantly

under the non-abelian gauge transformations

δAµ
M = DµΛ

M − 10 dMNK∂KΞµN ,

δBµν M = 2D[µΞν]M + dMKL

(
ΛKFµνL −A[µ

KδAν]
L
)
+Oµν M , (2.13)

with dKMN∂MOµν N = 0. The parameter Oµν M can be viewed as the tensor gauge param-

eter of the three-forms of the theory which we have not explicitly introduced, since they
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do not enter the Lagrangian. More precisely, this parameter may decomposed according

to the field content of three-forms, as

Oµν M = (tα)M
N ∂NΞµνα + Ξµν M , (2.14)

with gauge parameter Ξµνα in the adjoint representation, and a constrained gauge pa-

rameter Ξµν M satisfying the same section condition (2.7) as the internal derivatives, i.e.

dKMN ΞM∂N = 0 , etc.. This is analogous to the structure of two-forms in E7(7) EFT and

vector fields in E8(8) EFT, respectively, cf. [4, 5]. The two forms Bµν M enter the Lagrangian

only under projection dKMN∂MBµν N , such that their shift symmetry δO constitutes a triv-

ial symmetry of the action.

Under generalized diffeomorphisms, the field strengths FµνM and HµνρM transform

according to (2.10) as contravariant and covariant vector of weight λF = 1
3 and λH = 2

3 ,

respectively. In contrast, both are inert under tensor gauge transformations ΞµM . The

remaining bosonic fields in (2.1) transform as scalars under generalized diffeomorphisms

with vanishing weight for VMij and weight 1
3 for the fünfbein eµ

a.

Furthermore, the non-abelian field strengths (2.12) satisfy the Bianchi identities

3D[µFνρ]M = 10 dMNK∂KHµνρN ,

4D[µHνρσ]M = −3 dMKLF[µν
KFρσ]L + · · · . (2.15)

In addition to the generalized internal diffeomorphisms and tensor gauge transforma-

tions (2.10), (2.13), the theory is invariant under external diffeomorphisms in the coordi-

nates xµ, under which the fields transform as

δeµ
a = ξνDνeµ

a +Dµξ
νeν

a ,

δMMN = ξµDµMMN ,

δAµ
M = ξν FνµM +MMN gµν ∂Nξ

ν ,

δBµν M =
1

2
√
10
ξρ eεµνρστ Fστ NMMN − dMKLA[µ

K δAν]
L , (2.16)

according to a modified version of the standard five-dimensional diffeomorphisms, with

parameter ξµ which also is a function of xµ and YM .

2.2 Fermions and connections

The fermionic fields of the theory comprise 8 gravitino fields ψiµ and 42 spin-12 fermions

χijk = χJijkK. With respect to generalized internal diffeomorphisms (2.10) the fermionic

fields transform as weighted scalars of weight λψ = 1
6 , λχ = −1

6 . With respect to the (ex-

ternal and internal) Lorentz group, the fermions are SO(1, 4) spinors and transform in the

corresponding representations of USp(8). Like the bosonic fields, also the fermions depend

on all coordinates xµ, YM , modulo the section condition (2.7). We use the conventions

of [21] from five-dimensional gauged supergravity.2

2The only exception is our convention for the Levi-Civita density where we follow [3], with the two

conventions related by ε
[1312.0614]
µνρστ = −iε

[hep−th/0412173]
µνρστ . Accordingly, γ-matrices satisfy γabcde = iεabcde.
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In particular, we use symplectic Majorana spinors subject to the reality constraint

C−1ψ̄Ti = Ωijψ
j , ψi

T
C = Ωijψ̄j , C−1χ̄Tijk = ΩilΩjmΩknχ

lmn, (2.17)

where the charge conjugation matrix C is defined by the following relations

CγaC
−1 = γTa , CT = −C, C† = C−1 . (2.18)

This implies the following relation for fermionic bilinears with spinor fields ψi and ϕi

ψ̄iΓϕ
j = −ΩikΩ

jlϕ̄l(C
−1ΓTC)ψk , (2.19)

for any expression of gamma matrices Γ.

According to the structure of the internal and external Lorentz group there are four

different blocks of the spin connection

[
ωµ Qµ

ωM QM

]
, (2.20)

that ensure SO(1, 4) and USp(8) covariance of external and internal derivatives, respec-

tively. Let us discuss them one by one. The external SO(1, 4) connection ωµ
ab is defined

by the vanishing torsion condition

D[µeν]
a ≡ D[µeν]

a + ω[µ
abeν]b

!
= 0 , (2.21)

as in standard Riemannian geometry albeit with derivatives Dµ covariantized according

to (2.11). Furthermore, the external Christoffel connection Γµ can be defined by imposing

the vielbein postulate for the fünfbein Dµeν
a − Γλµνeλ

a = 0. The internal spin connection

on the other hand is defined via

eµ[aDMeµ
b] !

= 0 ⇐⇒ ωM
ab = eµ[a∂Meµ

b] . (2.22)

Its presence guarantees that internal spinor derivatives transform as SO(1, 4) spinors. As

a general notation in the following we will use D to indicate (internal or external) deriva-

tives including all spin connections while Dµ will only refer to the covariantization (2.11).

Moreover, in the following it will be useful to define the modified internal spin connections

ω±
M
ab ≡ ωM

ab ± 1

2
MMN FµνN eµaeνb , (2.23)

shifted by the non-abelian field strength (2.12). We will denote the corresponding covariant

derivatives by D±
M .

Similar relations define the USp(8) connections. The external connection Qµ i
j is

defined in analogy to D = 5 gauged supergravity [21] by imposing that the covariant

derivative of the 27-bein takes the form

DµVMij ≡ DµVMij + 2Qµk
[i VMj]k !

= Pµijkl VM kl , (2.24)

– 7 –
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with an E6(6)/USp(8) coset current Pµijkl = PµJijklK. After proper contractions of indices

it is straightforward to find the explicit expressions

Qµ i
j =

1

3
VikMDµVMjk , Pµijkl = DµVM [ij Vkl]M . (2.25)

Note the use of the covariant derivative Dµ = ∂µ−LAµ to preserve invariance under gener-

alized diffeomorphisms. These equations imply the following Maurer-Cartan integrability

conditions

Qµν i
j ≡ 2 ∂[µQν]i

j + 2Q[µi
kQν]k

j = −2

3
P[µiklmPν]jklm − 1

3
VkiMLFµνVMkj ,

D[µPν]ijkl = −1

2
LFµνVM [ijVkl]M ,

(2.26)

with the field strength FµνM from (2.12). It is straightforward to check that the Bµν M
contribution in the action LFµνVMij drops out due to the section condition (2.7).

Finally, the internal USp(8) connection QM is defined by an analogue of the vanishing

torsion condition (2.21) for the internal vielbein [15, 16]. To this end, it is convenient to

define the full internal covariant derivative on an E6(6)×USp(8) tensor XN
i of weight λX as

∇MXN
i ≡ ∂MXN

i −QM j
iXN

j − ΓMN
KXK

i − 3

4
λXΓKM

KXN
i , (2.27)

with the algebra valued Christoffel connection ΓMN
K ≡ ΓM

α(tα)N
K . Such defined covari-

ant derivative transforms as a generalized tensor of the weight λ = λX− 1
3 under generalised

diffeomorphisms. Vanishing torsion corresponds to imposing the relation

TNKM ≡ ΓNK
M − 6PMK

P
LΓPN

L +
3

2
P
M
K
Q
NΓPQ

P !
= 0 , (2.28)

which transforms as a tensor under generalized diffeomorphisms (2.10). The vanishing

torsion condition can equivalently be rewritten as [15, 17, 27]

(P351)M
αN

βΓN
β = 0 , (2.29)

with the explicit form of the projector P351 onto the 351 representation of E6(6) given by

(P351)M
αN

β = −6

5
(tα)P

N (tβ)M
P +

3

10
(tα)M

P (tβ)P
N +

1

5
δNMδ

α
β . (2.30)

A particular consequence of (2.29) is

dMNK ΓNK
L = −1

2
dMKL ΓNK

N . (2.31)

The vanishing torsion conditions (2.21) can be explicitly solved upon imposing the

generalized vielbein postulate for the 27-bein

∇MVNij ≡ ∂MVNij + 2QM k
[iVNj]k − ΓMN

KVKij !
= 0 , (2.32)

– 8 –
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which allows to express the Christoffel connection in terms of the 27-bein and the internal

USp(8) connection. In turn, the vanishing torsion conditions (2.21) translate into the

conditions

DNVK JijVklKK =6DKVN JijVklKK − 3

2
VN JijVklKM ΓKM

K ,

VikKDNVKjk =3
(
VikMDMVNjk − VjkMDMVNik

)

− 3

4
ΓKM

K
(
VikMVNjk − VjkMVNik

)
,

(2.33)

for the USp(8) connection QM i
j . These equations determine (part of) the USp(8) connec-

tion QM i
j in terms of the standard decomposition of the Cartan form V−1∂MV along the

compact and non-compact parts of the E6(6) Lie algebra

qM i
j ≡ 1

3
VikN∂MVNjk , pM

ijkl ≡ ∂MVN [ijVkl]N . (2.34)

Explicitly, parametrizing the connection as

QMj
i = qMj

i + VMklΩim qkl,jm , (2.35)

with qkl,ij = qJklK,(ij), it is straightforward to verify that equations (2.33) are verified

provided that3

qkl,mn = −pM klp(m Vn)qM Ωpq − 1

4
VpqM

(
pM pqk(mΩn)l − pM pql(mΩn)k

)

+
1

4
ΓKM

K
(
Vk(mMΩn)l − Vl(mMΩn)k

)
+ ukl,mn . (2.36)

Here, ukl,mn denotes the undetermined part of the connection, satisfying

ukl,jm = uJklK,(jm) , u[kl,m]n = 0 , ukl,jmΩlj = 0 , (2.37)

i.e. transforming in the 594 of USp(8), and dropping out from equations (2.33). Vanishing

torsion thus determines the USp(8) connection (and thereby the Christoffel connection)

up to a block transforming in the 594 of USp(8) [15, 16, 27]. The undetermined part of

this connection drops out of all field equations and supersymmetry variations. Finally, one

may fix the trace part in the Christoffel connection by demanding

∇Me
!
= 0 =⇒ ΓKM

K =
4

5
e−1 ∂Me . (2.38)

2.3 Curvatures

Let us recollect the notation for the various covariant derivatives introduced in the previous

sections for the external and internal coordinates

Dµ = D[Aν ]µ ,

Dµ = D[Aν , ων ,Qν ]µ , DM = D[ωN ,QN ]M ,

∇µ = ∇[Aν , ων ,Qν ,Γν ]µ , ∇M = ∇[ωN ,QN ,ΓN ]µ ,

(2.39)

3An explicit form of QMi
j in terms of the GL(6) components of VM

ij has been given in [15].
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with vector field Aµ
M gauging generalized diffeomorphisms as (2.11) and the composite

connections ω, Q, defined by (2.21), (2.22), (2.25), (2.35), in terms of the fünfbein eµ
a and

the 27-bein VMij . In addition, we recall the modified covariant derivatives D±
M and ∇±

M ,

defined with the shifted internal spin connection ω±
M from (2.23), that will come to play

their role below.

The external curvature can be evaluated in the standard way by the commutator of

covariant derivatives on an SO(1, 4)×USp(8) spinor ǫi of weight λǫ

[Dµ,Dν ] ǫ
i =

1

4
Rµν

ab γab ǫ
i −Qµνj

i ǫj −FµνM ∂M ǫ
i − λǫ ∂MFµνM ǫi , (2.40)

in terms of the Riemann curvature, USp(8) curvature Qµν i
j , and the non-abelian field

strength FµνM from (2.12). As it stands however, none of the terms on the r.h.s. is

simultaneously covariant under generalized diffeomorphisms and local SO(1, 4) × USp(8)

transformations. In particular, the naive Riemann curvature defined as the curvature of

the external spin connection

Rµν
ab = 2D[µων]

ab + 2ω[µ
ac ων]c

b , (2.41)

transforms as δλRµν
ab = FµνM∂Mλab under SO(1, 4) Lorentz transformations. Using (2.26)

and (2.32), the terms on the r.h.s. of (2.40) can be rearranged into the manifestly covariant

expressions

[Dµ,Dν ] ǫ
i =

1

4
R̂µν

ab γab ǫ
i +

2

3
P[µjklmPν]iklm ǫj +∇MFN

(
VNjkVikM − VN ikVjkM

)
ǫj

−FµνM ∇M ǫ
i − λǫ∇MFµνM ǫi , (2.42)

with the full covariant internal derivatives ∇M from (2.27) and the ‘improved’ Riemann

tensor defined by [3, 28]

R̂µν
ab ≡ Rµν

ab + FµνM ωM
ab , (2.43)

transforming covariantly under local Lorentz transformations. For later use, we note that

this tensor and the associated Ricci tensor R̂µν ≡ Rµρ
abea

ρeνb, satisfy the modified Bianchi

identities

R̂[µν] = −1

2
gρ[µ∇MFν]ρM ,

R̂[µνρ]
a = −F[µν

K ∇Keρ]
a − 1

3
e[µ

a∇KFνρ]K . (2.44)

In contrast, the symmetric part of the Ricci tensor R̂(µν) will appear in the Einstein field

equations in the standard way. Similar to (2.42), the Maurer-Cartan integrability relations

for the coset currents (2.26) can be rewritten in the manifestly covariant form

D[µPν]ijkl = −3VN JijVklKM ∇MFµνN . (2.45)

Let us now discuss the mixed components of the curvature, i.e. the tensors obtained by

commuting internal with external covariant derivatives. We only consider combinations of
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commutators in which the undetermined part of the USp(8) spin connection (2.35), (2.36)

drops out. This is the case for

VijM
[
D−
M ,Dµ

]
ǫj =

1

2
VjkMDMPµ ijknǫn +

1

4
R−
Mµ

ab γab ǫ
j . (2.46)

Indeed, the undetermined connection on the l.h.s. appears as Ωjmuij,km = 0. On the r.h.s.,

the two term describe the mixed USp(8) and SO(1, 4) curvature, respectively, with the

second term defined by the tensor

R−
Mµ

ab ≡ ∂M ωµ
ab −Dµ ω

−
M
ab . (2.47)

Evaluating this curvature gives rise to its Bianchi identity

R−
M [ν ρσ] =

1

2
D[ν

(
Fρσ]N MNM

)
, (2.48)

and the mixed Ricci tensor

R−
Mν

µν = −1

2
ĴµM +

1

2
ea
µeb

ν Dν

(
MMNFabN

)
, (2.49)

with the current ĴµM defined by

ĴµM ≡ −2ea
µeb

ν
(
∂Mων

ab −Dν

(
eρ[a∂Meρ

b]
))

, (2.50)

that will feature in the vector field equations. Similar to (2.46), we can evaluate the

following combination of commutators

VJij M
[
D−
M ,Dµ

]
ǫkK = −2VmnM ΩprΩ

mJiDMPµjkKnpǫr −
1

2
VmnM DMPµmnJijǫkK

+
1

4
R−
Mµ

abVJij M γabǫ
kK , (2.51)

in terms of the coset current Pµijkl and the mixed curvature (2.47). Again, the undeter-

mined part of the USp(8) spin connection drops out on the l.h.s..

Let us finally discuss the internal components of the curvature. These are obtained

from commutators of internal derivatives in combinations such that the undetermined part

of the spin connections drops out. The relevant combinations are given by [15–17]

V ikMVkjN [∇M ,∇N ] ǫ
j +

(
4V ikMVkjN +

1

2
MMN δij

)
∇(M∇N)ǫ

j

=
1

4
V ikMVkjN RMN

ab γab ǫ
j − 1

16
R ǫi , (2.52)

VJij NVkKlMΩln[∇M ,∇N ] ǫ
n + 2ΩlmV lJiMVj|m|N∇(M∇N) ǫ

kK

=
1

4
VJij NVkKlMΩlnRMN

abγabǫ
n − 1

4
Rijkl Ωln ǫ

n . (2.53)

The combinations on the l.h.s. are such that the undetermined part ukl,mn of the USp(8)

spin connection is projected out while the leading two-derivative terms vanish due to the
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section condition (2.9). The first terms on the r.h.s. refer to the curvature of the internal

spin connection (2.22) which takes the form [24]

RMN
ab = −1

2
eµ[aeb]νgστ∇Mgµσ∇Ngντ . (2.54)

The generalized scalar curvatures R and Rijkl in (2.53) can be evaluated using the explicit

expressions for the USp(8) spin connection (2.35), (2.36), leading to

R = −2VijMVklN
(
∂MpN

ijkl + 4qMm
[ipN

jkl]m
)
+

1

6
MMN pM ijklpN

ijkl

+ 2VijMVklN pMijmn pN klmn −
16

5
VijMVklN e−1 ∂Me pN

ijkl

+
8

5
MMNe−1∂M∂Ne−

4

5
MMN e−2 ∂Me∂Ne ,

Rijkl =
1

3
MMN e−1

(
∂M (epN

ijkl) + 4 eqMm
JipN

jklKm
)

− 4VmnMe−1
(
∂M (epN

mnJij) + 2 epN
mnpJiqM p

j + 2 eqM p
mpN

npJij
)
VklKN

+ 2VJijMVklKNe−1∂M∂Ne−
8

5
VJijMVklKNe−2 ∂Me∂Ne

− 2

3
VmnMVpqNpMijklpN

mnpq +
32

3
Vmn[MVpqN ]pM

mnpJipN
jklKq

+ 4VmnMVpqNpMmnJijpN
klKpq +

1

3
VJijMVklKNpMmnpq pN

mnpq , (2.55)

in terms of the 27-bein and its derivatives. Their explicit calculation requires a num-

ber of non-trivial USp(8) identities, some of which are collected in appendix B. Together

with (2.54), these curvatures appear in the Einstein and the scalar field equations, re-

spectively. For the following, it is also useful to note the relation between the curvature

components R and Rijkl: under a non-compact e6(6) transformation of the form

δVM ij = −Σijkl VMkl , (2.56)

the scalar curvature R transforms as

δR = Rijkl Σijkl + ∇MJM
Σ , (2.57)

into the Rijkl curvature, up to a boundary current of weight λJΣ
= −1

3 . Moreover, the

dependence of R on the external metric is such that

δ(eR) = (δe)R + total derivatives . (2.58)

3 Supersymmetry transformations and algebra

As the main result of this section we present the supersymmetry transformation rules for

all the fields of the E6(6) exceptional field theory and verify that their algebra consistently
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closes into generalized diffeomorphisms and gauge transformations. The full set of super-

symmetry transformations is given by

δǫψ
i
µ = Dµǫ

i − i
√
2V ij M

(
∇−
M (γµǫ

k)− 1

3
γµ∇−

M ǫ
k

)
Ωjk ,

δǫχ
ijk =

i

2
PµijklΩlm γµǫm +

3√
2
VJij M ∇−

M ǫ
kK ,

δǫe
a
µ =

1

2
ǭiγ

aψiµ , δǫVMij = 4iΩimΩjn VMkl ΩpJkχ̄lmnKǫ
p ,

δǫAµ
M =

√
2
(
iΩik ǭkψµ

j + ǭkγµχ
ijk

)
VijM ,

δǫBµνM = − 1√
5
VMij

(
2 ψ̄i[µγν]ǫ

kΩjk + iχ̄ijkγµνǫ
k
)
− dMNP A[µ

NδǫAν]
P ,

(3.1)

in terms of the covariant derivatives defined above. Spinor conventions were summarized

in section 2.2. Upon dropping all internal derivatives ∂M −→ 0, these transformation rules

precisely reproduce those of D = 5 maximal supergravity [21, 25].4 It is interesting to

note that just as for the supersymmetric E7(7) theory [24], all appearance of the gauge

field strength FµνM in the transformation rules can be absorbed into the homogeneous

shift (2.23) of the internal spin connection. In the next section, we will see that the

supersymmetric Lagrangian in contrast carries the opposite derivative ∇+
M as well.

The internal derivatives ∇M appear in the supersymmetry transformations only in

particular combinations such that the undetermined part of the USp(8) connection (2.35)

drops out [15, 16]. With the explicit parametrization of QM i
j from (2.36) we may explicitly

evaluate these derivatives in terms of the Cartan form (2.34) of the 27-bein as

VijM∇M ǫ
j = VijM

(
∂M ǫ

j − qM k
jǫk

)
− 1

2
VjkMpMijknǫ

n +
1

4
(2− 3λǫ)VijMΓKM

K ǫj ,

VJij M∇M ǫ
kK = VJij M

(
∂M ǫ

kK − qM l
kKǫl

)
+ 2VmnM ΩprΩ

mJipM
jkKnpǫr

+
1

2
VmnM pM

mnJijǫkK +
1

8
(1− 6λǫ) ΓKM

K VJij M ǫkK , (3.2)

where we have suppressed all ωM contributions (which enter canonically), and used (B.4)

to simplify the expression in the second line.

The algebra of the supersymmetry transformations closes on the (1 + 4)-dimensional

general coordinate transformations (2.16), generalized internal diffeomorphisms (2.10), co-

variant gauge transformations of the p-form fields (2.13), local SO(1, 4) and USp(8) ro-

tations, and an additional supersymmetry transformation, higher order in the fermions.

The structural form of the supersymmetry algebra is the same as for the five-dimensional

theory [21]

[δ(ǫ1), δ(ǫ2)] = ξµDµ + δso(1,4)(Ω
ab) + δusp(8)(Λ

ij) + δsusy(ǫ3)

+ δgauge(Λ
M ) + δgauge(ΞµM ) + δgauge(Ξµν α) + δgauge(Ξµν M ) .

(3.3)

4To be precise, we note the rescaling of gauge and tensor fields Aµ
M

[1312.0614] =
1
√

2
Aµ

M
[hep−th/0412173],

Bµν M [1312.0614] = − 1
4
Bµν M [hep−th/0412173] together with rescaling of the associated symmetry parameters,

in order to translate the notation from [21] into [3]. In this paper, we will stick to the conventions of [3] for

the normalization of the gauge fields.
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The transformation parameters on the r.h.s. can be explicitly given as combinations of

the spinors ǫ1,2, their covariant derivatives, and the external and internal vielbeins eµ
a,

VMij , as

ξµ =
1

2
ǭ2iγ

µǫi1 ,

Ωab =−
√
2 i

3

(
ǭ1iγ

ab∇−
M ǫ

k
2 −∇−

M ǭ1iγ
abǫk2

)
V ij MΩjk − ΛMω−

M
ab ,

ΛM =−
√
2iV ij MΩjk ǭ2iǫ

k
1 ,

ΞµM =
1√
5
VMklΩlm

(
ǭ2kγµǫ

m
1

)
,

Ξµν α =
3i√
10

(tα)
M
NVM liVkiN

(
ǭ2kγµνǫ

l
1

)
,

Ξµν M =− i√
10

(
ǭ2kγµν∂M ǫ

k
1 − ∂M ǭ2kγµνǫ

k
1 − (ǭ2kǫ

k
1) e

a
[µ∂Meν]a

− 2

3
VkiN∂MVN li

(
ǭ2kγµνǫ

l
1

))
.

(3.4)

In the rest of this section we provide the explicit calculations that show closure of the

supersymmetry algebra (3.3), (3.4), thereby confirming the supersymmetry transformation

laws (3.1). Let us start with closure on the external vielbein eµ
a

[δǫ1 , δǫ2 ] eµ
a =

1

2
ǭ2iγ

aDµǫ
i
1 −

i√
2
ǭ2iVMijγa

(
∇−
M (γµǫ

k
2)−

1

3
γµ∇−

M ǫ
k
1

)
Ωjk − (1↔2)

=
1

2
Dµ

(
ǭ2iγ

νǫi1eν
a
)
−
√
2i

(
ǭ2iǫ

k
1V ij MΩjk

)
∇−
Meµ

a

−
√
2i

3

(
ǭ2iγ

ab∇−
M ǫ

k
1 −∇−

M ǭ2iγ
abǫk1

)
V ij MΩjkeµb

−
√
2i

3
∇−
M

(
ǭ2iǫ

k
1

)
V ij MΩjkeµ

a .

(3.5)

Taking into account that the term ǭ2iǫ
k
1 has all spinor indices contracted, the general-

ized vielbein postulate (2.32), and the vanishing torsion (2.21), we may rewrite the above

expression as follows

[δǫ1 , δǫ2 ] eµ
a = eν

aDµξ
ν + ξνDνeµ

a + ΛN∂Neµ
a +

1

3
∂NΛ

Neµ
a +Ωabeµb , (3.6)

reproducing the correct transformation under external and internal diffeomorphisms. In

particular, we obtain the correct value λ = 1/3 for the weight of the fünfbein.

Next we check closure of the supersymmetry on the generalized vielbein VMij . We

directly project the variation onto its coset valued part, since any remaining part can be

absorbed into a local USp(8) transformation. The result is

VJklM [δǫ1 , δǫ2 ]VMijK = 2PµmJijkΩlKpΩmn
(
ǭ2pγ

µǫn1
)
+ 6

√
2iVJklMΩj|p|ǭ2p∇−

M ǫ
iK
1 − (1 ↔ 2)

= ξµPµklij + 6VJklM∇M

(
VNijKΛN

)
, (3.7)
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where we used the identity Pµ[ijklΩmn] = 0 and the vielbein postulate. The first term in

the expression above gives just a (covariantized) diffeomorphism along ξµ, while the second

can be rewritten using the generalised vanishing torsion condition (2.33) which gives

VJklM [δǫ1 , δǫ2 ]VMijK

= ξµPµklij + 6VJklM DM

(
VNijK

)
ΛN + 6VJklM VNijK

(
∂MΛN − 1

4
ΛNΓKM

K
)

= ξµPµklij +
(
VJklM DKVMijK

)
ΛN + 6VJklM VNijK ∂MΛN

= ξµPµklij + VJklM δΛVMijK .

(3.8)

The weight term that comes from the derivative of VNijΛN is cancelled by the same con-

tribution from the vanishing torsion condition. Again, we find the correct transformation

with the same gauge parameters as in (3.6).

Now we turn to the gauge field sector and investigate closure of the supersymmetry

algebra on the vector field Aµ
M . A direct calculation gives

[δǫ1 , δǫ2 ]Aµ
M =

√
2iΩik(ǭ2kDµǫ

j
1)VijM +

√
2i ǭ2kγµPνijklγνΩlmǫm1 VijM

+ 3 ǭ2kγµ

(
Ωm[iVjk]N − 1

3
Ω[ijVk]mN

)
Ωmr∇−

N ǫ
r
1VijM

+ 2Ωik ǭ2kVjr N
(
∇−
N (γµǫ

s
1)−

1

3
γµ∇−

N ǫ
s
1

)
ΩrsVijM − (1 ↔ 2)

= DµΛ
M +

1

2
∂N

(
ǭ2kγµǫ

k
1

)
MMN −

(
ǭ2kγ

νǫk1
)
MMNeνa∇−

Neµ
a

+ 2
(
VMikVijN + VNikVijM − 1

4
δkjMMN

)
∇−
N

(
ǭ2kγµǫ

j
1

)

= DµΛ
M + gµν∂Nξ

νMMN − 2ξνMMNea[ν∇−
Neµ]

a

− 2∇−
N

[(
V ikMVijN + V ik NVijM − 1

4
δkjMMN

)(
ǭ2kγµǫ

j
1

)]
.

(3.9)

Finally using the relations (2.8) and (2.22), the above expression can be written in the

following form

[δǫ1 , δǫ2 ]Aµ
M = gµν∂Nξ

νMMN − 2ξνMMNea[ν∇−
Neµ]

a

+DµΛ
M − 10 dMNK∂NΞµK

= ξνFνµM + gµν∂Nξ
νMMN +DµΛ

M − 10 dMNK∂NΞµK ,

(3.10)

with the parameter ΞµM from (3.4), thus precisely reproducing the E6(6) covariant gauge

transformation (2.13) of the gauge field coming from tensor hierarchy. The first two terms

in the expression correspond to the transformation (2.16) of the gauge field under external

diffeomorphisms.
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Finally, we investigate transformations of the two-form field Bµν M that give

[δǫ1 , δǫ2 ]Bµν M = − 1√
5

[
2VMij ǭ2iγ[µDν]ǫ

k
1Ωjk +

1

2
VM lmǭ2nγµνγ

ρPρlmnpΩpqǫq1
]

− 4i√
10

VMijVjpN
(
ǭ2iγ[µ∇−

N (γν]ǫ
p
1)−

1

3
ǭ2iγµν∇−

N ǫ
p
1

)

− 3i√
10

VM lmǭ2nγµν

(
Ωk[lVmn]N − 1

3
Ω[lmVn]kN

)
Ωkp∇−

N ǫ
p
1 − (1 ↔ 2)

=
1√
5
D[µ

(
VMij ǭ2iγν]ǫ

k
1 Ωjk

)
− 4i√

10
VjlNVkj M

(
ǭ2kγaγbǫ

l
1

)
e[µ

a∇−
Neν]

b

− 2i√
10

(
VM niVkiN − VniNVMki

)(
ǭ2kγµν∇−

N ǫ
n
1

)
+

i√
10

(
ǭ2kγµν∇−

M ǫ
k
1

)

− (1 ↔ 2)

= 2D[µΞν]M − 2i√
10

(
VM niVkiN − VniNVMki

)
∇−
N

(
ǭ2kγµνǫ

n
1

)

− 4i√
10

(
VM niVkiN − VniNVMki

)
(ǭ2kǫ

n
1 ) e[µ

a∇−
Neν]a

+
i√
10

(
ǭ2kγµν∇−

M ǫ
k
1 −∇−

M ǭ2kγµνǫ
k
1

)
. (3.11)

Here, we have systematically ignored the contribution from the last term dMNPA[µ
NδAν]

P

in the supersymmetry variation, which will simply reproduce the corresponding terms in

the action of generalized diffemorphisms and gauge transformations, due to the fact that

the algebra closes on the vector field Aµ
M . To simplify the second term in (3.11) it is

helpful to consider the following identity

(
VM niVkiN − VniNVMki

)(
ǭ2kγµνǫ

n
1

)

=
(
VM niVkiNΩmk + VMmiVkiNΩnk

)
Ωmp

(
ǭ2pγµνǫ

n
1

)

=
3

2
PM

N
Q
PVP niVkiQ

(
ǭ2kγµνǫ

n
1

)
,

(3.12)

where in the second line we notice that the expression in brackets is symmetric in (mn)

and hence is an element of the usp(8) part of e6(6). The traceless antisymmetrisation on

the r.h.s. can be replaced by the usual antisymmetrization giving the same result. Using

this relation and the vanishing torsion condition we may express the corresponding term

as follows

∇N

[(
VM niVkiN − VniNVMki

)(
ǭ2kγµνǫ

n
1

)]

= ∂N

[(
VM niVkiNki − VniNVMki

)(
ǭ2kγµνǫ

n
1

)]
− 1

3
VN niDMVkiN

(
ǭ2kγµνǫ

n
1

)

=

√
10 i

2
(tα)M

N ∂NΞµν
α − 1

3
VN niDMVkiN

(
ǭ2kγµνǫ

n
1

)
,

(3.13)

with Ξµν
α from (3.4). Next, using the identity (2.8), the second line of the last equation
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in (3.11) can be rewritten in the following suggestive form

− 4i√
10

(
VM niVkiN + VniNVMki

)
(ǭ2kǫ

n
1 ) e[µ

a∇−
Neν]a

= dMNKΛ
NFµν

K − i√
10

(ǭ2kǫ
k
1) e[µ

a∇−
Meν]a. (3.14)

Finally, we focus on the last term in the last equation of (3.11) and notice that its USp(8)

connection part cancels that of the last term in (3.13). Hence, we may take into account

only the spin connection ω−
M
ρσ that includes the SO(1, 4) connection and the field strength

FρσM . After some gamma-matrices algebra we obtain the following expression

ǭ2kγµν∇−
M ǫ

k
1 −∇−

M ǭ2kγµνǫ
k
1 = −1

4
MMN

(
ǭ2kγµνρσǫ

k
1

)
FρσN + (ǭ2kǫ

k
1)e[µ

a∇−
Meν]a

+ ǭ2kγµν∂M ǫ
k
1 − ∂M ǭ2kγµνǫ

k
1 − (ǭ2kǫ

k
1)e[µ

a∂Meν]a

= − i

2
ξλeελµνρσMMNFρσN + (ǭ2kǫ

k
1)e[µ

a∇−
Meν]a

+ ǭ2kγµν∂M ǫ
k
1 − ∂M ǭ2kγµνǫ

k
1 − (ǭ2kǫ

k
1)e[µ

a∂Meν]a.

(3.15)

The first term here represents the diffeomorphism transformation (2.16) of the field Bµν ,
the second term precisely cancels the last term in (3.14). The rest can be packaged into a

tensor OMµν constrained by

dMNK∂NOKµν = 0 , (3.16)

as a consequence of the section condition. Collecting everything together, the commutator

of supersymmetry transformations (3.11) of the two-form field takes the following form

[δǫ1 , δǫ2 ]Bµν M = 2D[µΞν]M +
1

2
√
10
ξλeελµνρσMMNFρσN + (tα)M

N ∂NΞµν
α

+ dMNKΛNFK
µν +OMµν − dMKLA[µ

K [δǫ1 , δǫ2 ]Aν]
L ,

(3.17)

up to terms of higher order in the fermions. This confirms the supersymmetry alge-

bra (3.3), (3.4).

4 Invariant Lagrangian

We now have all the ingredients to present the full supersymmetric Lagrangian for E6(6)

exceptional field theory. Its bosonic part has been constructed in [2, 3], here we give the

supersymmetric extension based on the fermionic structures introduced in the previous

sections. The final result reads

e−1L = R̂ − 1

4
MMN FµνMFµνN − 1

6
PµijklPµ

ijkl +

√
10

8
e−1 Ltop − V (M, g)

−ψ̄µiγµνρDνψ
i
ρ + 2

√
2 iVijMΩikψ̄µkγ

[µ∇+
M

(
γν]ψν

j
)

−4

3
χ̄ijkγ

µDµχ
ijk + 8

√
2 iVmnMΩnpχ̄pkl∇+

Mχ
mkl

+
4i

3
Pµijklχ̄ijkγνγµψνmΩlm + 4

√
2V ij M χ̄ijkγ

µ∇−
Mψµ

k , (4.1)
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up to quartic fermion terms. The latter are expected to coincide with the quartic terms of

the D = 5 theory [25]. Let us explain the various terms of (4.1). The first line describes

the bosonic couplings, with the modified Ricci scalar R̂ obtained from contracting (2.43),

Yang-Mills term for the field strength (2.12) and the scalar kinetic term

−1

6
PµijklPµ

ijkl =
1

24
DµMMNDµMMN . (4.2)

We note, that variation of the Einstein-Hilbert term and the scalar kinetic term w.r.t. the

vector fields is given by

δ

(
e R̂ − 1

6
ePµijklPµ

ijkl

)
= e

(
ĴµM + J µ

M

)
δAµ

M , (4.3)

with the current ĴµM from (2.50) and the scalar current given by

J µ
M = −2VMij VklN ∇N

(
gµνPνijkl

)
. (4.4)

The topological term in (4.1) is most compactly defined by its variation

δLtop = εµνρστ
(
dMNKFµνMFρσNδAτ

K (4.5)

+
20

3
dMNK∂NHµνρM

(
δBστ K + dKPQAσ

P δAτ
Q
))

,

equivalently, the associated action can be expressed as the boundary contribution of a

manifestly covariant integral over six external dimensions. The scalar potential V has been

given in [2, 3] in the explicit form

V (M, g) =− 1

24
MMN∂MMKL ∂NMKL +

1

2
MMN∂MMKL∂LMNK (4.6)

− 1

2
g−1∂Mg ∂NMMN − 1

4
MMNg−1∂Mg g

−1∂Ng −
1

4
MMN∂Mg

µν∂Ngµν ,

and can be rewritten in the following manifestly covariant form

V (M, g) = R− 1

4
MMN ∇Mgµν∇Ng

µν +∇MI
M , (4.7)

with the curvature scalar R from (2.55), up to boundary contributions IM and terms that

vanish due to the section condition. The explicit calculation confirming (4.7) requires a

number of non-trivial USp(8) identities, some of which are collected in appendix B.

The kinetic fermion terms in (4.1) are such that upon dropping all internal derivatives,

the Lagrangian L0 ≡ L|∂M→0 reduces to the five-dimensional theory [21, 25]. The fermion

terms carrying internal derivatives ∇M are then obtained by imposing invariance of the

Lagrangian under the supersymmetry transformations (3.1).5 In the limit ∂M → 0, these

terms reduce to the Pauli couplings of fermions to the field strength via (2.23) and again

reproduce the couplings from the D = 5 theory. It is interesting to observe that in the

5See also [16] for these couplings in a Cliff(10, 1;R) formulation.
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full theory, and unlike for the supersymmetry transformations (3.1), these FµνM couplings

cannot entirely be absorbed into a homogeneous shift of the internal spin connection (2.23),

but require both ∇+
M and ∇−

M derivatives, however in a very systematic pattern.

By construction, the full Lagrangian (4.1) is manifestly invariant under generalized

internal diffeomorphisms. To show that it is invariant under supersymmetry, one has to go

through rather tedious calculations, that we sketch in the remainder of this section. For the

full detailed calculations the reader is referred to appendix A. The proof of supersymmetry

of the Lagrangian is most conveniently organized order by order in the internal derivatives

∇M .6 Internal derivatives enter in L in two different ways: first they render the Lagrangian

L0 covariant under generalized diffeomorphisms by virtue of (2.11) and (2.12), second they

give rise to explicit couplings such as the bilinear fermion terms and the scalar potential

V . I.e. the Lagrangian schematically organizes as

L = Lcov
0 + L1[ψ̄∇Mψ] + L2[∇MM∇NM] . (4.8)

Similarly, the supersymmetry transformations (3.1) organize as

δ = δcov0 + δ1[∇M ǫ] , (4.9)

where δ0 describe the supersymmetry transformation laws of the five-dimensional theory.

In lowest order in ∇M , supersymmetry of the Lagrangian amounts to the corresponding

property of the five-dimensional theory [21, 25]. In first and second order in ∇M , the

contributions from δcov0 L1, δ1Lcov
0 , and δ1L1 can be organized according to their fermion

structure

ψDµ∇M ǫ, χDµ∇M ǫ, ψ∇M∇N ǫ, χ∇M∇N ǫ , (4.10)

and we discuss the four classes of terms separately in appendices A.1–A.4. The latter

terms combine with the second order contributions from δcov0 L2 arising from variation

of the scalar potential (4.7). These are obtained by using the properties of the scalar

curvature (2.57), (2.58) as

δǫ(eV ) =
1

2
e

(
gµν R− 1

4
gµν MMN∇Mg

µν∇Ngµν +∇N (MMN∇Mg
µν)

)
δǫgµν

+ eΣǫijkl

(
Rijkl − 1

2
V ij MVklN ∇Mgµν∇Ng

µν

)
, (4.11)

up to total derivatives, and with Σǫijkl ≡ −4iΩmJiχ̄jklKǫ
m describing the supersymmetry

variation of the scalar fields (3.1).

In addition, we have further contributions from δcov0 Lcov
0 due to the fact that covariant

derivatives Dµ no longer commute. Such contributions arise from variation of the fermionic

kinetic term with (2.45)

−4i

3
χ̄ijkγ

µνǫmDµPνijklΩlm = 4i χ̄ijkγ
µνǫmΩlm VN JijVklKM ∇MFµνN , (4.12)

6This is very much in parallel with the analogous calculation in gauged supergravity [21] order by order

in the coupling constant.
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but also from variation of the Rarita-Schwinger term upon using the commutator (2.42)

ψ̄µ iγ
µνρ [Dν ,Dρ] ǫ

i

= ψ̄µ iγνǫ
i

(
R̂νµ +

1

2
gµν R̂

)
+

2

3
Pνiklm Pρ jklm ψ̄µ iγµνρǫj

−FνρM ψ̄µ iγ
µνρ∇M ǫ

i +∇MFνρN
(
VNjkVikM − VN ikVjkM

)
ψ̄µ iγ

µνρǫj

− 1

2
ψ̄µ iγ

µρ
νǫ
i∇MFρν M +

1

4
ψ̄µ iγ

νρσǫiFνρKgµτ∇Kgστ .

(4.13)

Here the first two terms cancel as in the D = 5 theory (where it is important though that

R̂µν arises with indices contracted in the proper order since R̂[µν] 6= 0), while all remaining

terms cancel against terms of the form (4.10) as discussed in appendix A.3, A.4.

Finally, there are the contributions that arise from variation of the vector gauge field

in the minimal couplings of (2.11), and from variation of the two-form gauge field in the

vector kinetic term and the topological term. The first appear proportional to the currents

from (4.3)

δA

(
eR̂ − 1

6
ePµijklPµ

ijkl

)
= e

(
ĴµM + J µ

M

)
δAµ

M , (4.14)

and the latter are proportional to the first order duality equation between vectors and

tensors

δBL = 5 dMNK∇N

(
eMMNFµν N +

√
10

6
εµνρστ Hρστ M

) (
δǫBµν K + dKPQAµ

P δǫAν
Q
)
.

(4.15)

All these terms cancel against terms of the form (4.10) as discussed in appendix A.1–A.4.

As a final result, we find that the Lagrangian (4.1) is supersymmetric under the

transformations (3.1) up to terms of higher order in the fermions. Remarkably, and

unlike in the reduced theory, invariance of the Lagrangian under generalized diffeomor-

phisms (2.10), (2.16) already fixes all the bosonic couplings without reference to supersym-

metry. The present construction gives the fermionic completion which turns the bosonic

Lagrangian of [2, 3] into a supersymmetric system.

5 Conclusions and discussion

In this paper we have constructed the supersymmetric completion of E6(6)-covariant ex-

ceptional field theory, with the final result given by the Lagrangian (4.1) and the super-

symmetry transformation laws (3.1). The section condition (2.7) effectively constrains

the geometry of the extended space. It admits at least two independent maximal solu-

tions which restrict the number of internal coordinates to six and five, respectively [2, 3].7

They are identified upon splitting the 27 representation of E6(6) under the action of the

subgroup GL(6) and GL(5) × SL(2), respectively. Upon imposing the former solution,

7The same is true for the E7,8 cases and the higher dimensional SO(5, 5) and SL(5) EFT’s [4, 5, 29, 30].
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the Lagrangian (4.1) reproduces the full Lagrangian of D = 11 supergravity, as explicitly

demonstrated for its bosonic part in [3]. With the latter solution, the Lagrangian (4.1)

describes the full supersymmetric IIB theory. It may at first appear surprising that one

and the same set of fermions and couplings encodes both type IIA and type IIB, despite

the crucial difference of their fermion chiralities. This is due to the fact that the E6(6)-

covariant formulation (4.1) does not preserve the original D = 10 Lorentz invariance. As

a consequence, its fermions can consistently encode the fermions of the type IIA and type

IIB theory in the same way that both type IIA and type IIB give rise to the same super-

symmetric theory in D = 5 upon dimensional reduction.

Upon the most straightforward solution of the section constraint, that is ∂M = 0, the

Lagrangian (4.1) directly reduces to the maximal D = 5 supergravity of [25]. In the con-

text of generalized Scherk-Schwarz reductions, it has been proposed to relax the section

condition (2.7) from a differential constraint into the known algebraic constraints on the

embedding tensor, that naturally appears as a generalized torsion [17, 31–33]. Although,

the generalized torsion formally reproduces all the gaugings, it remains an open question,

to which extent they can be embedded into higher-dimensional supergravity via the cor-

responding EFT. The work [34], where the structure of the space of T-duality orbits was

analysed, suggests that in principle one should be able to catch non-geometric compact-

ifications by generalized Scherk-Schwarz reductions of EFT. On the other hand, a gener-

alized Scherk-Schwarz ansatz that is consistent with the section condition (2.7), describes

a consistent truncation of the exceptional field theory (4.1) and by virtue of the section

condition translates into a consistent truncation of the conventional higher-dimensional

supergravities. For the SO(p, q) gauged supergravities, this ansatz has been constructed

in [35]. It yields their higher-dimensional embedding as sphere and hyperboloid compact-

ifications of the higher-dimensional supergravities [35],8 and naturally extends to the full

Lagrangian (4.1).

In discussion of geometry of the extended space let us mention the works [37–39]

where the geometrical meaning of the T-duality group O(d, d) has been investigated. It

was conjectured that the d-dimensional torus is just one of possible solutions of the field

equations of double field theory, precisely the one that preserves the whole O(d, d) group.

Following this direction one may try to construct other solutions of DFT or EFT that

preserve less duality symmetries and compare these with the known examples. Recently,

in [40] it was shown that the brane solutions ofD = 4 supergravity can be uplifted to a single

solution of E7(7) exceptional field theory, that solves the twisted self-duality constraint. A

possible direction of further research would be the investigation of similar uplifts in the

presented E6(6) theory adding, possibly, winding coordinates, that should lead to non-

geometric branes. Following the lines of [24] and the result of this paper one may explicitly

investigate the supersymmetry properties of the obtained solutions in the EFT sense. In

this context, we also mention the recent [41] for the embedding of supersymmetric flux

backgrounds in exceptional geometry.

8See also [36] for the explicit uplift of several vacua of these theories.
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A Details of the supersymmetry calculation

In this section we provide most of the technical details of the rather lengthy calculations

required to verify supersymmetry invariance of the Lagrangian (4.1) under the transfor-

mations (3.1). We discuss the various cancellations according to the different types of

terms (4.10) that arise in the variation of the Lagrangian.

A.1 The ψ∇MDµǫ terms

The relevant contributions of this type from variation of the Rarita-Schwinger term are

δǫ(−eψ̄µiγµνρDνψ
i
ρ)

−→− ψ̄µiDν(eγ
µνρ)δǫψ

i
ρ − 2eψ̄µiγ

µνρDνδǫψ
i
ρ

−→− 2
√
2ieDνψ̄µiγ

µνρ

(
2

3
γρ∇−

M ǫ
kV ij MΩjk +∇−

Mγρǫ
kV ij MΩjk

)

=− 4
√
2ieDνψ̄µiγ

µν∇−
M ǫ

kV ij MΩjk − 2
√
2ieDνψ̄µiγ

µνρ∇−
Mγρǫ

kV ij MΩjk ,

(A.1)

where the term Dν(eγ
µνρ) vanishes due to the vanishing torsion condition. The other

contributions of this type come from the following variations

δǫ

(
4
√
2V ij M χ̄ijkγµ∇−

Mψµ
k
)
−→ 2

√
2iDνVklMΩlm∇−

M ψ̄µmγ
µγνǫk,

δǫ

(
2
√
2ieVijMΩikψ̄µkγ

[µ∇+
M (γν]ψν

j)
)
−→− 4

√
2ieΩikVijM∇+

M (ψ̄µkγ
[µ)γν]δǫψ

j
ν

− 2
√
2i∇+

MeVijMΩikψ̄µkγ
µνδǫψ

j
ν ,

δǫ

(
4i

3
Pµijklχ̄ijkγνγµψmν Ωlm

)
−→ 2

√
2iDµVklMΩlmψ̄νmγ

µγν∇−
M ǫ

k

− 16

3
Pµijklχ̄ijkγµ∇−

M ǫ
rVlrM

− 4
√
2

3
Pµijklχ̄ijk

(
γµγν∇−

Mγν
)
ǫrVlrM .

(A.2)
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Let us first separately verify cancellation of the FµνM terms against the variation of the

vector kinetic term and of the topological term. From the above expressions we have

Ωlm
(
VklMDµψ̄νm

(
γµνγρσ − 2γµνργσ

)
ǫkFρσM + VklM ψ̄νmγ[µγρσγν]Dµǫ

kFMρσ

+
1

2
DµVklM ψ̄νm

(
γρσγνγµ − γµγνγρσ

)
ǫkFρσM

)

=
(
VklMDµψ̄νm

(
γµνρσ − 2gµσgνρ

)
ǫkFρσM −DµVklM ψ̄νm

(
γµνρσ + 2gµσgνρ

)
ǫkFρσM

+ VklM ψ̄νm
(
γµνρσ − 2gµσgνρ

)
Dµǫ

kFρσM
)
Ωlm

= ΩlmDµ

(
eVM klψ̄νmγ

µνρσǫk
)
FρσM + 2ΩlmDµ

(
VklM ψ̄νmǫk

)
Fµν

M , (A.3)

where we have defined Fµν M ≡ FµνNMMN . The last term above is already present in

the D = 5 reduced theory and cancels the ǭ ψ part of the lowest order variation of the

vector kinetic term. The first term can be rewritten upon partial integration and use of

the Bianchi identities (2.15)

5
√
2

3
Ωlm εµνρστ ψ̄νmγτ ǫ

k VM kl d
MNK∂NHµρσK , (A.4)

which precisely cancels the corresponding part in the variation (4.15) of the topologi-

cal term.

To check the remaining terms one first notes the following relations

eγµνρ∇Mγρ = ∇M (eγµν) , ∇M (γµν) = 2(∇Mγ
[µ)γν] , (A.5)

which can be used to bring the remainder into the following form

2eVklMΩlmDµψ̄νmγ
µν∇M ǫ

k + VklMΩlmDµψ̄νm∇M (eγµν)ǫk

− eDµVklMΩlm
(
∇M ψ̄νmγ

µνǫk − ψ̄νmγ
µν∇M ǫ

k
)
+ egµνDµVklMΩlm∇M (ψ̄νmǫ

k)

− 2eΩlmVklM∇M ψ̄νmγ
µνDµǫ

k − VklMΩlmψ̄νm∇M (eγµν)Dµǫ
k.

(A.6)

Now integrating by parts of Dµ in the first term and of ∇M in the fourth and the seventh

term we get

Ωlm
(
− 2eDµVklM ψ̄νmγµν∇M ǫ

k − 2eVklM ψ̄νmγµνDµ∇M ǫ
k + VklMDµψ̄νm∇M (eγµν)ǫk

+ e∇MDµVklM ψ̄νmγµνǫk +DµVklM ψ̄νm∇M (eγµν)ǫk + 2eDµVklM ψ̄νmγµν∇M ǫ
k

+ 2VklM ψ̄νm∇M (eγµν)Dµǫ
k + 2eVklM ψ̄νmγµν∇MDµǫ

k − VklM ψ̄νm∇M (eγµν)Dµǫ
k

+ egµνDµVklM∇M (ψ̄νmǫ
k)
)
. (A.7)

Here it is straightforward to construct a commutator from the second terms in the first

and the third lines, while the terms with ∇M ǫ
k cancel. What is left can be collected into

the following expression

Ωlm
(
2eVklM ψ̄νmγµν [∇M ,Dµ]ǫ

k + e∇MDµVklM ψ̄νmγµνǫk + egµνDµVklM∇M (ψ̄νmǫ
k)

+ VklMDµψ̄νm∇M (eγµν)ǫk +DµVklM ψ̄νm∇M (eγµν)ǫk + VklM ψ̄νm∇M (eγµν)Dµǫ
k
)
.
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Integrating Dµ and ∇M by parts in the second line this simplifies into

Ωlm
(
eVklM ψ̄νmγµν [∇M ,Dµ]ǫ

k − eVklM [∇M ,Dµ]ψ̄νmγ
µνǫk + egµνDµVklM∇M (ψ̄νmǫ

k)
)
.

(A.8)

Upon using the expression (2.46) for the commutator of covariant derivatives together

with (2.49) and restoring the prefactor 2
√
2i, these terms reduce to

2
√
2iΩlm

(
−1

2
eVklM ψ̄νmǫkĴνM + egµνDµVklM∇M (ψ̄νmǫ

k)

)
. (A.9)

Upon partial integration in the second term, these remaining contributions precisely can-

cel the corresponding terms in (4.14). In what follows we drop the e-factor for simpler

presentation as the corresponding terms cancel out in the very similar way as above.

A.2 The χ∇MDµǫ terms

There are four fermionic terms from the Lagrangian which contribute such terms

(1) = −4

3
χ̄ijkγ

µDµχ
ijk, (2) = 8

√
2 iVmnMΩnpχ̄pkl∇+

Mχ
mkl,

(3) =
4i

3
Pµijklχ̄ijkγνγµψνmΩlm, (4) = 4

√
2VklMΩkiΩljχ̄ijkγ

µ∇−
Mψµ

k.

(A.10)

The relevant terms in supersymmetry variations of these expressions have the following form

δ1ǫ (1) =− 4
√
2 χ̄ijkγ

µDµ(V ij M∇−
M ǫ

k)

=− 4
√
2 χ̄ijkγ

µV ij MDµ∇−
M ǫ

k + 4
√
2 χ̄ijkγ

µ∇−
M ǫ

k PµijmnVmnM

δ0ǫ (2) =− 8
√
2VmnMΩnpχ̄pkl∇+

M (PµmklqγµΩqrǫr)

=− 4
√
2
(
2VmnMΩnpχ̄pklγ

µΩqrǫ
r∇MPµmklq + 2VmnMΩnpχ̄pklPµmklqγµΩqr∇+

M ǫ
r

+ VmnMΩnpχ̄pklγνΩqrǫ
r Pµmklq∇Mg

µν − VMmnΩ
npχ̄pklPµmklqγνΩqrǫrFµνM

)
,

δ1ǫ (3) =
4
√
2

3
Pµijklχ̄ijkγνγµ VrlN

(
∇−
N (γνǫ

r)− 1

3
γν∇−

N ǫ
r

)

=− 4
√
2

3
Pµijklχ̄ijkγνǫr∇Ng

µν VrlN − 8
√
2

3
PµmijkVmrN χ̄ijk γµ∇−

N ǫ
r

− 2
√
2

3
Pµijklχ̄ijk VM rlFνρMγµνρǫr ,

δ0ǫ (4) = 4
√
2V ij M χ̄ijkγµ∇−

MDµǫ
k . (A.11)

The variations of (1) and (4) give rise to a commutator of type (2.51)

4
√
2V ij M χ̄ijkγµ[∇−

M ,Dµ]ǫ
k

= 8
√
2VnmM Ωmi∇MPµjknpχ̄ijkγµΩprǫr + 2VmnM ∇MPµmnij VN ij δ

(χ̄ǫ)
ǫ Aµ

N

+ 2
√
2VmnM Pµmnij∇Mg

µν χ̄ijkγνǫ
k +

√
2V ij MR−

Mµ
ab χ̄ijkγ

µγabǫ
k ,

(A.12)

of which the first term cancels the corresponding term in δ0ǫ (2), and the second term

cancels with the JM contribution in (4.14). The ∇Mg
µν can be seen to cancel against the
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contributions from δ0ǫ (2) and δ1ǫ (3) by virtue of the USp(8) identity (B.4). By the same

identity, the three ∇M ǫ terms in (A.11) would cancel if they came with the same spin

connection ω−
M , i.e. they induce an extra term in the field strength FµνM .

Collecting all resulting terms, we arrive at

(A.11) =

=
√
2V ij MR−

Mµ
ab χ̄ijkγ

µγabǫ
k − 2

√
2VMmnΩ

npχ̄pklPµmklqγµΩqrγνρǫr FνρM

+ 4
√
2VMmnΩ

npχ̄pklPµmklqγνΩqrǫrFµνM − 2
√
2

3
Pµijklχ̄ijk VM rlFνρMγµνρǫr ,

(A.13)

with the second term coming from converting ∇+
M into ∇−

M . Now the curvature term can

be expanded with (2.48), (2.49) as

√
2V ij MR−

Mµ
ab χ̄ijkγ

µγabǫ
k

=
√
2V ij MR−

Mµνρ χ̄ijkγ
µνρǫk + 2

√
2VM ijR−

Mµ
µν χ̄ijkγνǫ

k

=
1√
2
D[µ(Fνρ]NMNM )V ij M χ̄ijkγµνρǫk

+
√
2V ij M ĴµM χ̄ijkγµǫ

k −
√
2V ij MeaνebµDµ(MMNFabN )χ̄ijkγνǫ

k .

(A.14)

The last two terms cancel against the vector field variation from the Einstein-Hilbert

term (4.14) and from the vector kinetic term. The first term gives

→ 1√
2
VMij D[µFνρ]M χ̄ijkγ

µνρǫk +
√
2PµijmnVMmnFνρM χ̄ijkγ

µνρǫk (A.15)

=
1√
2
VMij D[µFνρ]M χ̄ijkγ

µνρǫk

+
2

3

√
2VMmnPµmijkFνρM χ̄ijkγµνρǫn − 2

√
2VMmnFνρMΩprχ̄ijkγ

µνρǫrΩmiPµjknp

where we have once more used the algebraic identity (B.4). The last two terms precisely

cancel the FµνM terms from (A.13). We remain with the first term of (A.15) which can be

rewritten with the Bianchi identity (2.15) and cancels against the corresponding HµνρM

term from variation of the topological term in (4.15).

A.3 The ψ∇M∇N ǫ terms

These terms arise from the ∇M ǫ variation of the following two terms from the La-

grangian (4.1)

(1) = 2
√
2 iVijMΩikψ̄µkγ

[µ∇+
M

(
γν]ψν

j
)
, (2) = 4

√
2VijM ψ̄µk∇−

M

(
γµχijk

)
. (A.16)
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Explicitly, with (3.1) this gives

δ1ǫ (1) = 8VnjMVjk N ψ̄µkγ[µ∇+
N

(
γν]

(
∇−
M (γνǫ

n)− 1

3
γν∇−

M ǫ
n

))
,

δ1ǫ (2) =− 12

(
V [ij NΩk]m − 1

3
Vm[iNΩjk]

)
ΩmrVijM ψ̄µk∇−

M

(
γµ∇−

N ǫ
r
)

= 4

(
MMN δkn + 2VnjMVjk N +

2

3
VijMVjmNΩikΩmn

)
ψ̄µk∇−

M

(
γµ∇−

N ǫ
n
)

= 4

(
MMN δkn + 2VnjMVjk N +

2

3
VnjNVjkM

)
ψ̄µk∇−

M

(
γµ∇−

N ǫ
n
)
.

(A.17)

Let us now consider the terms containing ∇M and the gauge field flux FµνM separately.

For the derivative terms and ignoring all derivatives on the external metric we have

δǫ(1) + δǫ(2) →
(
64

3
+

8

3

)
VnjMVNjkψ̄µkγµ∇N∇M ǫ

n

+ 8VnjMVjk N ψ̄µkγµ∇M∇N ǫ
n + 4MMN ψ̄µkγ

µ∇M∇N ǫ
k

=

(
−32

3
− 4

3
+ 4

)
VnjMVjk N ψ̄µkγµ[∇M ,∇N ]ǫ

n

(
+
64

3
+

8

3
+ 8

)
VnjMVjk N ψ̄µkγµ∇(M∇N)ǫ

n + 4MMN ψ̄µkγ
µ∇M∇N ǫ

k

=− 8VnjMVjk N ψ̄µkγµ[∇M ,∇N ]ǫ
n

+ 32VnjMVjk N ψ̄µkγµ∇(M∇N)ǫ
n + 4MMN ψ̄µkγ

µ∇M∇N ǫ
k

=− 1

2
R ψ̄µkγ

µǫk , (A.18)

upon using (2.52).

That cancels the corresponding variations of the scalar potential. Now for the FF
terms altogether we obtain

δǫ(1) + δǫ(2) →
1

16

(
MMN δkn + 8VnjNVjkM

)
ψ̄µkγ

µκλρσǫnFκλMFρσ N

− 1

8
MMN ψ̄µkγ

µǫk Fρν MFρν
N − 1

2
MMN ψ̄µkγ

ρǫk Fµν
MFνρN

=− i

4

√
5 εµκλρσdMNK VijKΩir ǭrψµ

j FκλMFρσN

+
1

4
(e−1δǫe)MMN Fρν MFρν

N +
1

4
δǫ(γ

µνgρσ)MMN FµρMFνσN ,

(A.19)

that precisely cancels the variation from the kinetic and topological vector term. Let us
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turn to the terms of the form ∇F that give

δǫ(1) + δǫ(2) → VnjMVjk N ψ̄µk
(
γρσγµǫn +

1

3
γµγρσǫn

)
∇NFρσM

− 1

2

(
MMN δkn + 2VNnjVjkM +

2

3
VnjMVjk N

)
ψ̄µkγ

µγρσǫn∇NFρσM

=− 1

2
MMN ψ̄µkγ

µρσǫk∇MFρσ N − 2VnjMVjk N ψ̄µkγµρσǫn∇[MFρσ N ]

− 4VnjMVjk N ψ̄µkγνǫn∇(MFµν
N) −

1

2
MMN ψ̄µkγνǫ

k∇MFµν
N

=− 2VnjMVjk N ψ̄µkγµρσǫn∇[MFρσ N ] −
1

2
ψ̄µkγ

µρσǫk∇MFρσM

− 5 dMNK δ(ψ̄ǫ)ǫ Bµν K ∇(MFµν
N) . (A.20)

The first line here precisely cancels against the corresponding terms in (4.13) from vari-

ation of the Rarita-Schwinger term. The second line cancels against the corresponding

contribution in (4.15). Finally, for the terms of type F∇ǫ, we obtain

δǫ(1) → VnjMVjk N ψ̄µkγ[µγρσ
(
γν]

(
2

3
γν∇M ǫ

n

))
Fρσ N

− VnjNVjkM ψ̄µkγ[µ
(
γν]

(
γρσγν −

1

3
γνγ

ρσ

))
∇M ǫ

nFρσ N

=
4

3
VnjMVjk N ψ̄µkγµρσ∇M ǫ

nFρσ N +
4

3
VnjMVjk N ψ̄µkγσ∇M ǫ

nFµ
σN

+
4

3
VnjNVjkM ψ̄µkγµρσ∇M ǫ

nFρσ N − 4

3
VnjNVjkM ψ̄µkγσ∇M ǫ

nFµ
σN ,

δǫ(2) →− 1

2

(
MMN δkn + 2VnjNVjkM +

2

3
VnjMVNjk

)
ψ̄µkγ

ρσγµ∇M ǫ
nFρσ N

− 1

2

(
MMN δkn + 2VnjMVjk N +

2

3
VnjNVjkM

)
ψ̄µkγ

µγρσ∇M ǫ
nFρσ N .

(A.21)

Together these contribution simplify to the following nice expression

δǫ(1) + δǫ(2) → − ψ̄µkγ
µρσFρσM∇M ǫ

k, (A.22)

which precisely cancels the corresponding contribution from (4.13).

A.4 The χ∇M∇N ǫ terms

As the final check we collect the χ∇M∇N ǫ terms which originate from the ∇M ǫ variation

of the following two terms

(1) = 8
√
2 iVmnMΩnpχ̄pkl∇+

Mχ
mkl, (2) = 4

√
2VijM ψ̄µk∇−

M

(
γµχijk

)
, (A.23)
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of the Lagrangian (4.1). Their supersymmetry variation gives

δǫ(1) =− 48 iVmnMΩnp
(
VN [lmΩk]j − 1

3
VNj[lΩmk]

)
Ωjrχ̄pkl∇+

M∇−
N ǫ

r

=16 i

(
2Vkj NΩjnVnlMδpr + VklNVpj MΩjr +

2

3
VklMVpj NΩjr

)
χ̄pkl∇+

M∇−
N ǫ

r,

δǫ(2) =− 8iVklMVpj NΩjr χ̄klpγµ∇−
M

(
2

3
γµ∇−

N ǫ
r + γaǫ

r∇−
Neµ

a

)
. (A.24)

Again for simplicity we start from analysis for the terms that do not contain the field

strength

δǫ(1) + δǫ(2) → 32 iVkj MΩjnVnlN χ̄pkl∇(M∇N)ǫ
p + 16 iVklNVpj MΩjrχ̄pkl[∇M ,∇N ]ǫ

r

− 8iVklMVpj NΩjr χ̄klpγµγaǫr∇M∇Neµ
a

= 16 i
(
VklNVpj MΩjrχ̄pkl[∇M ,∇N ]ǫ

r + 2Vkj MΩjnVnlN χ̄pkl∇(M∇N)ǫ
p
)

(2.51)
= − 4iRijkl Ωriχ̄jklǫ

r + 2iVklMVpj NΩjr χ̄klpǫr∇Mgµν∇Ng
µν , (A.25)

with the curvature Rijkl in the 42 representation. These terms, after using the section

constraint for the second one, precisely cancel the variation of the scalar potential (4.11).

Collecting now the ∇F terms, we get

δǫ(1) + δǫ(2)

→− 4iVklMVKpjΩr[k χ̄lpj]γµνǫr∇MFµνK − 4iVklMVKpjΩr[k χ̄lpj]γµλǫr FλρK ∇Mgµρ

− 4iVkj MΩjnVKnl χ̄pklγabǫp∇MFabK

=− 4iVklMVKpjΩrJk χ̄lpjKγµνǫr∇MFµνK − 4iVklMVKpjΩr[k χ̄lpj]γµλǫr FλρK ∇Mgµρ

− 2iVkj MΩjnVKnl χ̄pklγµνǫp∇MFµνK

=− 4iVklMVKpjΩrJk χ̄lpjKγµνǫr∇MFµνK − 4iVklMVKpjΩr[k χ̄lpj]γµλǫr FλρK ∇Mgµρ

− 5 dKMN δǫBµν N ∇M (MKLFµνL) . (A.26)

The last term precisely cancels the corresponding variation of the vector kinetic term,

the second term cancels against (A.28) below, the first one upon using the identity (B.5)

cancels against the contribution from (4.12). Collecting the FF terms we obtain (again

with FM ≡ MMNFN )

−
(
δǫ(1) + δǫ(2)

)
(A.27)

→ i

4

(
2Vkj NΩjnVnlMδpr + VklNVpj MΩjr +

2

3
VklMVpj NΩjr

)
χ̄pklγ

µνγρσǫr Fµν MFρσ N

i

8
VklMVpj NΩjr χ̄klp

(
γτγµνγρσγτ −

1

3
γτγµνγτγ

ρσ

)
ǫr

=
i

4

(
2Vkj NΩjnVnlMδpr + VklNVpj MΩjr

)
χ̄pkl(γ

µνρσ + 4γµσgνρ − 2gµρgνσ)ǫr Fµν MFρσ N
i

8
VklMVpj NΩjr χ̄klp(−2 γµνρσ + 8 γµσgνρ − 12 gµρgνσ)ǫr Fµν MFρσ N

=
i

2
Vkj NΩjnVnlMδpr χ̄pklγµνρσǫr FµνMFρσN − 2iVMklVNpjΩrJk χ̄lpjK ǫr FµνMFµν N .

– 28 –



J
H
E
P
0
3
(
2
0
1
5
)
0
2
7

These cancel against the corresponding variation of the kinetic and the topological vector

terms. Finally, for the F∇ terms, we write

δǫ(1) + δǫ(2)

→ 2

3
iVklNVMpjΩjrFµνM χ̄pklγµν∇N ǫ

r − 2

3
iVMklVpj NΩjrFµνM χ̄pklγµν∇N ǫ

r

+ iVklMVpj NΩjr χ̄klpγνρ∇N ǫ
rFνρM − i

3
VklMVpj NΩjr χ̄klpγνρ∇N ǫ

rFνρM

+ iVklNVpj MΩjr χ̄klp γ
νρ∇N ǫ

rFνρM − 5i

3
VklNVpj MΩjr χ̄klpγ

νρ∇N ǫ
rFνρM

+ iVklMVpj NΩjr χ̄klpγµγνργaǫrFνρM ∇Neµ
a

− i

3
VklNVpj MΩjr χ̄klpγ

µγaγ
νρǫrFνρM∇Neµ

a

= 4iVklMVpj NΩjr χ̄klpγµνǫrFνρ (M gρλ∇N)gµλ ,

(A.28)

that precisely cancels the second term above in (A.26).

B USp(8) identities

In this section some useful algebraic relations, that follow from the structure of USp(8)

representations. Their derivation was facilitated in part by using the computer algebra

system Cadabra [42, 43]. Some of the more complicated algebraic relations were obtained

using an explicitly chosen USp(8) representation.

We first recall the notation of double brackets

P JijklK = P [ijkl] − (Ω-traces) , etc. , (B.1)

in order to define the irreducible USp(8) representations. E.g. the tensor P ijkl = P JijklK

defines the irreducible 42 representation of USp(8) and can explicitly be constructed by

making use of the corresponding projector

P JijklK = P
ijkl
42 mnpq P

mnpq ,

P
ijkl
42 mnpq ≡ δijklmnpq −

3

2
Ω[ijδkl][mnΩpq] +

1

8
Ω[ijΩkl]Ω[mnΩpq] . (B.2)

Several of the USp(8) identities are not straightforward to derive but most conveniently

derived by identifying the underlying representation structure. A simple example of such

an identity is

P [ijklΩmn] = 0 , (B.3)

for P ijkl = P JijklK in the 42 of USp(8). The identity (B.3) follows straightforwardly from

the fact that there is no 42 representation in the six-fold antisymmetric tensor product.

In the same manner, one may derive the identity

0 =
3

4
VmnM ǫJiP jkKmn −

1

2
VmnMPmijkǫn +

3

2
VmnMΩprǫ

rΩmJiP jkKnp , (B.4)
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for P ijkl = P JijklK, whose existence follows from the fact that there is no 42 representation

in the tensor product 27×42, and as a consequence there are only two singlets in 8⊗27⊗
48 ⊗ 42. The coefficients in (B.4) can then be fixed by employing an explicit realization

of these objects, or by using the explicit form (B.2) of the projector.

Similarly, one shows the identity

VK Jij VklKM Ωriχ̄jkl = VmnMVKpq
(
Ωr[mχ̄npq] −

3

2
Ωriχ̄jkl Ω

[ijδkl][mnΩpq]

)

= VmnMVKpq Ωr[mχ̄npq] +
1

2
VmnMΩnqVKqp χ̄rmp .

(B.5)

In the main text, the calculation of the scalar potential (4.7) and its properties

like (2.57) require further USp(8) identities. E.g. one derives

VijMVklN∂(MpN)
jklm ǫm − Ωim VpjMVklN∂(MpN)

jklmΩpqǫq

= −1

4
VklMVmnN∂(MpN)

klmn ǫi +ΩirVkmMΩmnVnlN ∂(MpN)
rjkl ǫj ,

(B.6)

that follows from the fact that in the above VijMVklN appears only projected onto the 42

due to the section condition (2.9), and furthermore there is only 1 and no 36 in (42⊗42)sym.

Another set of relations is required for the evaluation of the commutator (2.53) that

contains

→ VmnMVklNΩpqǫpχklrpMN
mnqr − V ij MVklNΩmnǫpχikmpMN jlnp

− 1

2
VmnMVklNΩkpǫqχlqrpMN

mnpr − 1

16
MMNΩijǫ

iχklmpMN
jklm

+
1

4
VmnMVklNΩkpǫpχlqrpMN

mnqr +
3

2
VmnMVklNΩkpǫmχlqrpMN

npqr ,

(B.7)

where we denote pMN
ijkl ≡ ∂(MpN)

ijkl. Next, one notes a non-trivial USp(8) identity

0 =
1

2
VmnMVklNΩpqǫpχklrpMN

mnqr − VMijVklNΩmnǫpχikmpMN jlnp

− VmnMVklNΩkpǫqχlqrpMN
mnpr − 1

12
MMNΩijǫ

iχklmpMN
jklm

− 1

2
VmnMVklNΩkpǫpχlqrpMN

mnqr + VmnMVklNΩkpǫmχlqrpMN
npqr .

(B.8)

Finally, one employs the relations

VmnMVklNΩkpǫqχlqrpMN
mnpr =− 1

3
V iJj MV lKkNΩikΩlqǫqΩrsχrmnpMN

mn
js

− V iJj MV lKkNΩikǫrχlmnpMN
mn

jr ,
(B.9)

and
VmnMVklNΩpqǫpχklrpMN

mnqr − 2V ij MVklNΩmnǫpχikmpMN jlnp

− 1

12
MMNΩijǫ

iχklmpMN
jklm

= 2V iJj MV lKkNΩikǫrχlmnpMN
mn

jr,

– 30 –



J
H
E
P
0
3
(
2
0
1
5
)
0
2
7

of which both r.h.s. vanish due to the section constraint. Together, we conclude that the

expression (B.7) contains

−→ VmnMVklNΩp[qǫpχklr]pMN
mnqr − 1

12
MMNΩijǫ

iχklmpMN
jklm , (B.10)

which is precisely the contribution from −1
4 Rijkl from (2.55).

Open Access. This article is distributed under the terms of the Creative Commons
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