Fermions in non-relativistic AdS/CFT correspondence

Amin Akhavan, Mohsen Alishahiha, A.D and Ali Vahedi
Sharif University of Technologhy
Institute for Studies in Theoretical Physics and Mathematics IPM

> arXiv:0902.0276

- Some Aspects Of Non-Relativistic Conformal Field Theory (NRCFT)

The simplest NRCFT is the free schrodinger field:

$$
\left(i \partial_{t}+\frac{1}{2 m} \nabla^{2}\right) \psi(t, \vec{x})=0 \quad S=\int d t d \vec{x} \psi^{\dagger}(t, \vec{x})\left(i \partial_{t}+\frac{1}{2 m} \nabla^{2}\right) \psi(t, \vec{x})
$$

The symmetry group of schrodinger equation is:
A Galilean group , translations, rotations, boosts, ,
4. Scale transformation,

$$
\begin{array}{ll}
x^{\prime}=\lambda x & , t^{\prime}=\lambda^{2} t, \\
x^{\prime}=\frac{x}{1+\alpha t} & , t^{\prime}=\frac{t}{1+\alpha t}
\end{array}
$$

This group (Schrodinger group) is the maximall symmetry group of Schrodinger equation.

NRCFT is a field theory which is invariant under Schrodinger group.

The schrodinger algebra is:

$$
\begin{array}{ll}
{\left[M_{i j}, P_{k}\right]=-i\left(\delta_{i k} P_{j}-\delta_{j k} P_{i}\right),} & {\left[M_{i j}, K_{k}\right]=-i\left(\delta_{i k} K_{j}-\delta_{j k} K_{i}\right),} \\
{\left[M_{i j}, M_{k l}\right]=-i \delta_{i k} M_{j l}+\text { perms, }} & {\left[P_{i}, K_{j}\right]=-i N \delta_{i j}} \\
{\left[D, P_{i}\right]=-i P_{i}, \quad\left[D, K_{i}\right]=i K_{i},} & {[D, H]=-2 i H} \\
{\left[C, P_{i}\right]=i K_{i}, \quad[C, D]=-2 i C,} & {[C, H]=-i D}
\end{array}
$$

It can be shown by using Ward identities that the form of two point function in any NRCFT is:

$$
\left\langle\psi_{M}(t, x) \bar{\psi}_{-M}(0,0)\right\rangle=C t^{-\Delta} e^{-i M x^{2} / 2 t}
$$

- Relation between Schrodinger group and Conformal group

Massless Klein-Gordon equation in $(d+1) \mathrm{D}$ is invariant under Conformal Group of $(d+1) \mathrm{D}, S O(2, d)$:

$$
S=\int d^{d+1} x \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi
$$

By writing action in Light-Cone coordinate:

$$
t=x^{0}+x^{d+1} \quad \xi=x^{0}-x^{d+1}
$$

action becomes:

$$
S=\int d t d \xi d^{d-1} x \quad\left(\partial_{t} \phi \partial_{\xi} \phi+\partial_{i} \phi \partial^{i} \phi\right)
$$

By getting ξ direction periodic and imposing the condition that the field has definite momentum in ξ direction:

$$
\phi\left(t, \xi, x^{i}\right)=e^{i M \xi} \phi\left(t, x^{i}\right)
$$

we receive to Schrodinger action:

$$
S=\int d t d \vec{x} \phi^{\dagger}(t, \vec{x})\left(i \partial_{t}+\frac{1}{2 m} \nabla^{2}\right) \phi(t, \vec{x})
$$

So schrodinger group can be viewed as a subgroup of Conformal group in one higher dimension that consists of operators which do not mix modes in ξ direction,or in the other words:
$\left[\mathbf{A}, P_{\xi}\right]=0 \Leftrightarrow \mathbf{A} \in$ Schrodinger Algebra

Conformal Group in $(d+1) D \Rightarrow$ Schrodinger Group in $[(d-1)+1] D$

- Gravity description

Since NRCFT can be derived from CFT in one higher dimension, and gravity dual of CFT is $A d S$ Space-time in one higher dimension, we expect that the gravity dual of NRCT be a space-time with two higher dimension:

$$
A d S_{d+2} \Rightarrow C F T_{d+1} \Rightarrow N R C F T_{d}
$$

metric with Schrodinger isometry:

$$
d s^{2}=-\frac{d t^{2}}{z^{4}}+\frac{2 d t d \xi+d \vec{x}^{2}+d z^{2}}{z^{2}}
$$

Isometry:

$$
\begin{aligned}
& \vec{P}: \vec{x} \rightarrow \vec{x}+\overrightarrow{x_{0}}, \quad H: t \rightarrow t+t_{0}, \\
& \vec{K}: \vec{x} \rightarrow \vec{x}-\vec{v} t \quad, \quad \xi \rightarrow \xi-\vec{v} \cdot \vec{x} \\
& N: \xi \rightarrow \xi+\xi_{0} \\
& D: \vec{x} \rightarrow \lambda \vec{x}, \quad t \rightarrow \lambda^{2} t, \quad z \rightarrow \lambda z \quad \xi \rightarrow \xi, \\
& C: \vec{x} \rightarrow(1-\alpha t) \vec{x}, \quad t \rightarrow(1-\alpha t) t \quad, \quad z \rightarrow(1-\alpha t) z, \xi \rightarrow \xi-\frac{\alpha}{2}\left(\vec{x}^{2}+z^{2}\right) .
\end{aligned}
$$

By using the AdS/CFT correspondence:

$$
\begin{gathered}
Z_{A A S}\left[\phi_{0}\right]=\int_{\phi_{0}} D \phi \exp (-I[\phi])=Z_{C F T}\left[\phi_{0}\right]=\left\langle\exp \left(\int d^{d} x \quad \psi \phi_{0}\right)\right\rangle \\
\langle\psi(x, t) \psi(0,0)\rangle \propto t^{-\Delta} e^{i M \frac{e^{2}}{z u}}
\end{gathered}
$$

- Fermion field

Two point function of fermionic field:

Field theory side:
As Schrodinger equation can be derived from massless Klein-Gordon equation in one higher dimension ,Non-Relativistic equation for half spin particles (Levy-Leblond equation) can be derived from massless Dirac equation in one higher dimension:

$$
\begin{gathered}
S=\int d^{5} x \bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi . \\
t=\frac{1}{\sqrt{2}}\left(x^{0}+x^{4}\right), \quad \xi=\frac{1}{\sqrt{2}}\left(x^{0}-x^{4}\right) . \\
S=\frac{i}{\sqrt{2}} \int d^{3} x d \xi d t \psi^{\dagger}\left(\gamma_{\xi} \gamma_{t} \partial_{\xi}+\gamma_{t} \gamma_{\xi} \partial_{t}-\left(\gamma_{\xi}+\gamma_{t}\right) \gamma_{i} \partial_{i}\right) \psi .
\end{gathered}
$$

Consider a single mode with definite momentum in the null direction ξ. suc that $\psi(t, \xi, x)=e^{i M \xi} \psi_{M}(t, x)$.

$$
\begin{gathered}
S=\frac{i}{\sqrt{2}} \int d^{3} x d t \psi_{-M}^{\dagger}\left(i M \gamma_{\xi} \gamma_{t}+\gamma_{t} \gamma_{\xi} \partial_{t}-\left(\gamma_{\xi}+\gamma_{t}\right) \gamma_{i} \partial_{i}\right) \psi_{M} \\
\left(\begin{array}{cc}
2 E & -i \sqrt{2} \sigma_{i} k_{i} \\
i \sqrt{2} \sigma_{i} k_{i} & 2 M
\end{array}\right)\binom{\phi}{\chi}=0 \\
\left\langle\psi_{M}(t, x) \bar{\psi}_{-M}(0,0)\right\rangle=\frac{i}{\sqrt{2} M}\left(i M \gamma_{t}+\gamma_{\xi} \partial_{t}-\gamma_{i} \partial_{i}\right) G(t, x ; 0,0),
\end{gathered}
$$

where

$$
G(t, x ; 0,0)=\int \frac{d^{3} k}{(2 \pi)^{3 / 2}} e^{i\left(\frac{k^{2}}{2 M} t+k_{i} x_{i}\right)}=c\left(\frac{M}{t}\right)^{3 / 2} e^{-\frac{i M x^{2}}{2 t}}
$$

Gravity side:

we must solve the dirac equation in the background with Schrodiger symmetry :

$$
\begin{gathered}
\left(r \Gamma_{\hat{t}} \partial_{\xi}+r \Gamma_{\bar{\xi}} \partial_{t}+r \Gamma_{\hat{i}} \partial_{i}+r \Gamma_{\hat{r}} \partial_{r}+\frac{\mu^{2}}{2 r} \Gamma_{\bar{\xi}} \partial_{\xi}-\frac{d+1}{2} \Gamma_{\widehat{r}}-m\right) \Psi\left(x_{i}, t, \xi, r\right)=0, \\
\lim _{r \rightarrow 0} \Psi_{M}(k, r) \sim r^{\frac{d}{2}-\nu^{+}} \Gamma_{\hat{\xi}} \mathbf{v}_{M}, \quad \lim _{r \rightarrow 0} \bar{\Psi}_{-M}(k, r) \sim r^{\frac{d}{2}-\nu^{+}} \overline{\mathbf{u}}_{-M} \Gamma_{\hat{\xi}}, \\
\mathbf{Z}_{C F T}=\left\langle\exp \left[\int d^{d} x\left(\bar{\psi}_{-M} \Gamma_{\xi^{\prime} \mathbf{v}_{M}}+\overline{\mathbf{u}}_{-M} \Gamma_{\xi} \psi_{M}\right)\right]\right\rangle . \\
I_{A d S}=\int d \xi d t d^{d-1} x \sqrt{g} \bar{\Psi}(t, x, r, \xi) \Psi(t, x, r, \xi) . \\
{\left[\bar{\Psi}_{-M}^{+}(k, \epsilon) \Psi_{M}^{+}(k, \epsilon)+\bar{\Psi}_{-M}^{-}(k, \epsilon) \Psi_{M}^{-}(k, \epsilon)\right] \approx i \mu^{2} C \epsilon^{d+1-2 \nu^{+}} k^{-2 \nu^{+}} \overline{\mathbf{u}}_{-M}(k) \Gamma_{\hat{\xi}^{\prime} \mathbf{v}_{M}}(k),} \\
\left\langle\psi_{M}(x, t) \bar{\psi}_{-M}(0,0)\right\rangle=C \epsilon^{-2 \nu^{+}}\left(i M \Gamma_{\hat{t}}+\Gamma_{\hat{\xi}} \partial_{t}+\Gamma_{\hat{i}} \partial_{i}\right)\left(t^{-\Delta} e^{\frac{i u L_{2}}{2 t}}\right)
\end{gathered}
$$

