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Biaxial strain is known to induce ferroelectricity in thin films of nominally non-

ferroelectric materials such as SrTiO3. However, even strain-free SrTiO3 films and the 

paraelectric phase of strained films exhibit bulk frequency-dependent polarization 

hysteresis loops on the nanoscale at room temperature, and stable switchable domains at 

50 K. By a direct comparison of the strained and strain-free SrTiO3 films using dielectric, 

ferroelectric, Raman, nonlinear optical and nanoscale piezoelectric property 

measurements, we conclude that SrTiO3 films and bulk crystals are relaxor ferroelectrics, 

and the role of strain is to stabilize longer-range correlation of preexisting nanopolar 

regions, likely originating from minute amounts of unintentional Sr-deficiency in 

nominally stoichiometric samples. These findings highlight the sensitive role of 

stoichiometry when exploring strain and epitaxy-induced electronic phenomena in oxide 

films, heterostructures, and interfaces.  
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Pure SrTiO3 (STO) is a quantum paraelectric material where quantum fluctuations of 

atomic positions suppress a ferroelectric transition, leading to a stabilized paraelectric state at 

very low temperature [1,2]. Because the quantum paraelectric state in STO is so close to a 

ferroelectric state, the material behaves as a so-called incipient ferroelectric [3,4]. Surface 

ferroelectricity in a few monolayers of SrTiO3 has been predicted and observed [5–7]. Bulk 

piezoelectricity and ferroelectricity in the volume of SrTiO3 can be induced by Ca doping [8], the 

application of electric field [3,9], mechanical stress [10], and 18O substitution [11] in the low-

temperature regime. It has been demonstrated that tensile-strained commensurate epitaxial STO 

films can be ferroelectric at room temperature [12,13]. However, a recent study shows that 

strained STO films on DyScO3 are not normal ferroelectric but relaxor ferroelectric likely due to 

Sc doping [14]. Furthermore, STO films grown on (001) STO substrates under low oxygen 

pressures have been observed to be ferroelectric at room temperature owing to the unusual 

tetragonality and increased unit cell volume [15]. Therefore, the precise nature of strain-induced 

ferroelectricity in STO films is still unclear, with variously cited roles of strain, doping, 

abnormal cell volumes in a range of films deposited on different substrates and under different 

conditions.    

In this Letter, we shed light on the nature of strain-induced ferroelectricity in well-

controlled, normal unit cell volume, STO single crystal films. A direct comparison between 

1.18%-compressively strained and strain-free STO epitaxial thin films has been performed 

through temperature-dependent capacitance, ferroelectric polarization, optical  Raman and 

second harmonic generation, and piezoresponse force microscopy (PFM) measurements. Both 

strained and strain-free films show polarization hysteresis at room temperature; however, the 

ferroelectricity is unstable without an applied field, and decays away with time within seconds. 

The decay of PFM signals of the strain-free and strained STO films follows Vogel-Fulcher 
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behavior indicating that both STO films are relaxor ferroelectrics, by analogy with 

Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) films [16]. Raman studies show polar modes present in all 

SrTiO3 films as well as in single crystals, and increasing in amplitude in films with intentionally 

increasing Sr-deficiency. We conclude that the apparent role of strain is to stabilize long-range 

correlation between nanopolar regions in the volume of the film, likely arising from Sr-

deficiency.   

(001) STO films were grown on (110) NdGaO3 (NGO) and (001) STO substrates using 

pulsed-laser deposition (PLD) with in-situ reflection high-energy electron diffraction. The 

pseudocubic in-plane lattice parameters of the NGO substrate are 3.8630.0015 Å and 

3.8540.0015 Å. This corresponds to an average biaxial compressive strain of ~1.18% in a fully 

commensurate STO film on the substrate. We used lattice-matched Sr0.2Ca0.8RuO3 (SCRO) 

bottom and top electrodes on NGO [17]. On SCRO/NGO substrates, 60 nm thick strained STO 

films were grown, which were thick enough for electrical measurements. The full width at half 

maximum (FWHM) of the strained STO films is as small as 0.0030.0005°, which is much 

narrower than that of the bulk STO single crystal. For strain-free STO films on STO with a 50 

nm thick SrRuO3 (SRO) bottom electrode, the volume of the films is measured to be same as that 

of the substrate, which provides evidence that the PLD-grown STO films are free from excessive 

point defects as is likely the case in the previous report [15]. The surface of films was atomically 

smooth with single unit cell height steps measured by atomic force microscopy (AFM).  

The enhancement of ferroelectric transition temperature by epitaxial strain can be 

evaluated by temperature-dependent capacitance measurements as shown in Fig. 1(a). The strain 

free STO capacitance data are well fit by the Curie–Weiss law, ε(T)  (T - TC)-1 where ε is the 

dielectric constant, consistent with bulk single crystals. The 60 nm thick strained film on NGO 
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exhibits maximum capacitances at 120–140 K, well within the theoretically predicted 

temperature range of 80–230 K [12]. The temperature Tm of the ε maximum is shifted to higher 

values at higher frequencies. This strong dielectric dispersion is evidence leading to a Vogel-

Fulcher behavior described by f = f0exp[-Ea/kB(Tm − Tf)] where f0 is the attempt frequency, Ea the 

activation energy, kB the Boltzmann constant, and Tf the static freezing temperature. Tm(f) of the 

strained STO is well fit with Tf  = 85 K, Ea = 0.081 eV, and f0 = 4.0  1012 Hz. The Ea and f0 are 

reasonable values for typical relaxor behavior [18].  

The temperature-dependent polarization of both the strained and strain-free STO films is 

plotted in Fig. 1(b). Negligible remanent polarization (Pr) is detected in the strain-free film, 

whereas the strained film displays a ferroelectric polarization-electric field (P-E) hysteresis loop 

with the Pr of ~9.5 µC/cm2 at 7 K. The gradual decease of Pr below Tm is different from normal 

ferroelectrics including BiFeO3 (BFO) which shows an abrupt drop in polarization at the 

ferroelectric transition [19]. The ferroelectric transition of the strained STO films can also be 

evaluated by temperature-dependent optical second harmonic generation (SHG) measurements 

as shown in Fig. 1(c). For the strained film, no SHG was observed from the NGO substrate or the 

SCRO bottom electrode. The SHG signal was thus attributed only to the STO film. Compared 

with a STO single crystal, the strained STO film shows stronger SHG signal at room 

temperature and a strong temperature dependence. Similar to Pr, the SHG signal decreases 

gradually with increasing temperature, which is significantly different from normal ferroelectric 

BaTiO3 that shows a sharp decrease of SHG signal at the ferroelectric transition temperature [20]. 

An important thing to note is that finite SHG signal still exists even at room temperature for both 

the film and bulk single crystal, indicating the presence of nanopolar regions in both [21].  

Domain writing/reading or hysteresis loops by PFM are widely used to check whether 

thin films are ferroelectric [22]. Since PFM signal arises from a ~100 nm volume under the tip, 
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these measurements on our 50 nm thick films are volume responses. Figure 2(a) shows 

amplitude-contrast PFM image after applying -12 V to 2.5  2.5 µm2 area for a strained STO 

film on NGO at room temperature. The larger piezoresponse signal of the poled region clearly 

indicates the feasibility of domain writing/reading by PFM even at room temperature well above 

Tm. For strain-free STO films, there was no signature of poling observed in the slow domain 

writing and subsequent reading process which typically takes 1030 minutes each. However, the 

PFM contrast for the strained STO film gets weaker with time [Fig. 2(a)] and completely 

disappeared after 10 hours. This suggests that the field induced long-range correlation between 

preexisting nanopolar regions thermally decays with time in the strained STO film. 

Autocorrelation maps of these images were calculated following a procedure outlined earlier [23]. 

The average autocorrelation function versus distance in Fig. 2(b) shows that the correlation 

length, , under electric fields can extend up to > 1000 nm at room temperature (similar to the 

size of the written domain pattern), and it collapses to < 100 nm (noise floor) over 10 hours after 

the removal of the field.  

Figure 2(c) shows PFM hysteresis loops with short and long pulse-off duration times for 

strain-free and strained STO films. The strained film shows significantly enhanced ferroelectric 

hysteresis loops, but even the strain-free film shows ferroelectric hysteresis loops. With longer 

pulse-off duration, the loops degrade. Thus, a time-dependent decay of the PFM signal, which is 

proportional to the net polarization, is observed in both the PFM domain writing/reading and 

hysteresis loop measurements. To confirm the decay of the PFM signals, we have measured the 

PFM signal as a function of time after poling at -25 V for both films, as plotted in Fig. 2(d). The 

strained film shows a larger signal and a much slower decay, whereas the unstrained STO shows 

a rapid decay of the PFM signal. The lack of PFM signal from a mica sample, for example, 

implies that the behavior is not due to charge injection or other artifacts from surface interaction.    
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The gradual decay of the PFM signals has been fit to the power-law decay equation, P(t) 

= P0t
- where P0 is the magnitude of the initial PFM signal and  the decay exponent. The linear 

behavior in log[P(t)] versus log[t] plots in Fig. 2(e) verifies that the decay of the PFM signals in 

both STO films on NGO and STO follow the power-law behavior at room temperature, meaning 

that the decay of the PFM signals is a thermal process. The smaller slope, , of the strain-free 

film corresponds to the higher stability of the field-induced local ferroelectricity. We have also 

measured the PFM signal as a function of time after poling for a typical normal ferroelectric film 

(BFO) and a typical relaxor ferroelectric film (PMN-PT). The normal ferroelectric BFO film on 

(001) STO (with a TC of 830 °C) [24] shows no decay in PFM signal for the measured time 

period. In contrast, the relaxor PMN-PT film on (001) STO [25] shows decay, and its behavior is 

analogous to that of the strained STO film. The smaller α and the higher P0 values in the PMN-

PT film is attributed to its higher ferroelectric transition temperature than that of the STO film. 

These results, as well as the observation of the gradual decay of local contrast (as opposed to the 

domain-wall driven contraction), suggest that the decay of the PFM signal reflects the relaxor 

nature of the material. Since the PFM signal is free from polarization relaxation by 

backswitching due to the depolarization effect [26,27], the P0 and  values are intrinsic 

properties. The P0 value represents the magnitude of the spontaneous polarization of the material 

and whether the material is a normal ferroelectric or a relaxor is reflected by the  value.  

In order to rule out extrinsic effects of surface electrochemistry [28] or charge injection 

(electret effect) mediated by mobile ions in the ambient atmosphere, we have carried out control 

PFM measurements under ultra-high vacuum (2  10-10 Torr) at 50 K−300 K. The measurements 

confirm the presence of switchable polarization on the strained film, and very weak ferroelectric 

hysteresis on the strain-free film, in qualitative agreement with the ambient measurements in Fig. 
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2. At a low temperature of 50 K, we have been able to pole both STO films [Figs. 3(a) and 3(b)] 

and the polarization domain patterns were stable on at least 30 min time-scale. The vacuum PFM 

has confirmed the presence of electric-field induced spontaneous polarization in the strained 

film, and revealed that the strain-free film also attains such a behavior at low temperatures.  

Our experimental results strongly indicate that both strain-free and strained STO films 

exhibit relaxor behavior at low temperatures. The origin of the relaxor behavior should be 

nanopolar regions as suggested by Fig. 1(c). Figure 4(a) shows the Raman spectra of five 

different material systems based on STO.  The key result is the appearance of first order Raman 

scattering by polar modes (TO2, LO3, TO4, and LO4) in all the film systems. The SrTiO3 single 

crystal also shows weak signatures of TO2 and TO4 modes, which is consistent with the SHG 

signal and indicates weak polar nature. The polar modes are weak in the nearly stoichiometric 

MBE film, and are the strongest in the nonstoichiometric (Sr0.9TiO3-x) film, which has 

intentionally introduced large Sr deficiency. The 50 nm thick STO film of this study also exhibit 

strong polar modes. Nearly identical behavior is observed in the 1 μm thick film. The 

temperature dependence of the polar modes in the 50 nm thick film is shown in Fig. 4(b). It 

clearly indicates that the film remains polar up to 350−400K, which is consistent with the optical 

and PFM observations. Chemical composition analysis by wavelength dispersive x-ray 

spectroscopy (WDS) on the 1 μm thick STO film indicates that the film has a Sr/Ti ratio of ~0.97, 

which is stoichiometric within experimental error. These findings indicate that the most likely 

reason for the ferroelectricity is a small amount of Sr-deficiency in our nominally stoichiometric 

STO films.  Although relaxor ferroelectricity is well known in other materials systems [29−32], 

an important distinction between STO and other well known relaxor systems is that they involve 

multiple A-site cations by intentional doping, while STO has only Sr on the A site with 

unintentionally present minute amounts of nonstoichiometry (Sr-deficiency).  
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In conclusion, we demonstrate relaxor ferroelectricity in the volume of strain-free STO 

films consisting of nanopolar regions with short correlation lengths. The role of strain is, in a 

sense, similar to an electric field, in that both can stabilize long-range correlation between 

preexisting nanopolar regions. The PFM results demonstrate that PFM domain writing/reading or 

hysteresis loops do not provide sufficient evidence for normal ferroelectricity in films, and their 

time-dependence has to be measured as well. We believe that the power-law exponent,  as well 

as the time dependence of the correlation length, , as measured from the decay of the PFM 

signal are good measures to evaluate the nature of ferroelectricity in thin films. There is 

tremendous interest in SrTiO3 today such as for 2-D electron gases of LaAlO3/SrTiO3, [33] and 

in strain-induced ferroelectricity [34]. This study highlights the importance of paying attention to 

relaxor ferroelectricity from minute amounts of non-sotchiometry in even nominally 

stoichiometric single crystals and unstrained films of STO arising. Finally, we propose that 

strain-induced relaxor ferroelectricity can exist in other ABO3 incipient ferroelectrics such as 

KTaO3 and CaTiO3 where the presence of A-site deficiency is probable due to the volatile nature 

of the A cation, based on a similar mechanism.  
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Figure Captions:  

 

Figure 1. (a, b) Temperature dependence of (a) dielectric constant and (b) remanent polarization 

for a 60-nm-thick STO film NGO (strained) and a 100-nm-thick STO film on STO (strain-free). 

(c) SHG signals for the strained STO film and a STO single crystal.. The SHG vs. temperature of 

a 100 nm STO film on STO is indistinguishable from the SHG of a (100) STO single crystal.  

Insets: (a) fits to the Curie-Weiss law and the Vogel-Fulcher law, (b) P-E hysteresis loops of the 

strained film, and (c) SHG signals for the strained STO film and from a STO single crystal 

magnified ~12 times. The SHG vs. temperature of a 100 nm STO film on STO is 

indistinguishable from the SHG of a (100) STO single crystal.    

 

Figure 2. (a) Amplitude-contrast PFM images as poled (0 h), after 2 h, and after 10 h for a 50-

nm-thick strained STO film on NGO. The length scale is 1 μm. (b) Correlation function, 

, calculated for (a) as a function of distance in the y-direction. The solid 

lines are fits to , where (,,h) for 0 h, 2 h, and 10 h are respectively, 

(~0.82, ~1044, ~2.25), (~0.71, ~1164, ~2.37), and (~0.11, ~100, ~0.91). (c) PFM hysteresis 

loops for 50-nm-thick strain-free and strained STO films. The loops are measured at room 

temperature in air with a 100 nm biased tip by applying voltage pulses of 40 ms for domain 

reversal, followed by variable pulse-off periods during which time the PFM signal is measured to 

avoid electrostatic contributions. (d) Change of PFM signal before and after poling with -25V. 

(e) PFM signal as a function of time after poling with -25V for BFO, PMN-PT, strained, and 

strain-free STO films. Solid black lines are fits to the power-law decay.    

 
r

rIrrIrC )()()(

)(rC  ))/(exp( 22 hr 

 

 11



Figure 3. Vacuum PFM images (left: amplitude-contrast, right: phase-contrast) of polarization 

domains recorded at 50 K by scanning the tip biased at ±8−10 V across the surface of the (a)  

strain-free and (b) strained STO films.  

 

Figure 4. (a) Ultraviolet Raman spectra of a bulk STO single crystal, a near-stoichiometric STO 

film grown on STO by molecular-beam epitaxy (MBE), an intentionally Sr-deficient film with 

composition Sr0.9TiO3-x grown on STO by MBE, and nominally stoichiometric 50 nm and 1000 

nm thick STO films grown on SRO/STO by PLD at 10 K. (b) Temperature-dependent Raman 

spectra of the 50 nm thick STO/SRO/STO film. 
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Fig. 1. Jang et al. 
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