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Monte Carlo simulations are used to investigate the effect of surface anisotropy on the spin configurations

and hysteresis loops of ferromagnetic nanoparticles. Spherical particles of radius �a are composed of N atoms

located on a simple cubic lattice with interatomic spacing a. The particles have 2���13. A classical Heisen-

berg model is assumed, with surface and bulk anisotropy. When surface anisotropy is positive there are two

types of ground states separated by a large energy barrier: a “throttled” configuration with reduced magneti-

zation for intermediate values of surface anisotropy and a “hedgehog” configuration with zero magnetization in

the strong surface anisotropy limit. Beyond a threshold, surface anisotropy of either sign induces �111� easy

axes for the net magnetization. Easy-axis hysteresis loops are then square, with a continuous approach to

saturation, and the effective anisotropy is deduced either from the switching field or from the initial slope of the

perpendicular magnetization curve. The hedgehog state shows a stepwise magnetization curve involving �

discrete configurations, and it passes to a throttled configuration before saturating. The hysteresis loop has the

unusual feature that it involves a state in the first quadrant, which lies on the reversible initial magnetization

curve; it is possible to recover the zero-field cooled state after saturation. A survey of the exchange and

anisotropy parameters for a range of ferromagnetic materials indicates that the effects of surface anisotropy on

the spin configuration should be most evident in nanoparticles of ferromagnetic actinide compounds such as

US, and rare-earth metals and alloys with Curie points below room temperature; the effects in nanoparticles of

3d ferromagnets and their alloys are usually insignificant, with the possible exception of FePt.

DOI: 10.1103/PhysRevB.77.104431 PACS number�s�: 75.70.Rf, 75.30.Gw, 05.10.Ln, 75.40.Mg

I. INTRODUCTION

Magnetic nanoparticles are of interest both for fundamen-

tal reasons, and on account of their uses as ferrofluids, cata-

lysts, and magnetic storage media. The magnetic properties

of fine particles are influenced by surface effects, which be-

come increasingly important as the particle size decreases.

The surface effects are related to the broken symmetry of the

crystal structure, whereas finite-size effects are directly at-

tributed to the nanometric dimensions of the particles.

Much attention has been devoted to systems consisting of

isolated nanoparticles for which experiments have indicated

different magnetic properties of the surface and the bulk.1–8

The principal effects observed in ferromagnetic fine particles

include the following.

�1� Ill-defined Curie temperature, which may be reduced

compared to the bulk value.

�2� Decreased �sometimes increased� saturation magneti-

zation Ms.

�3� Slow approach to magnetic saturation associated with

surface spin disorder.

�4� Superparamagnetism.

�5� Single-domain behavior. The critical single-domain ra-

dius Rsd=36�lex is of order 10 nm. Here �= �K1 /�0Ms
2�1/2 is

the dimensionless hardness parameter and lex= �A /�0Ms
2�1/2

is the exchange length which is about 2 nm for typical

ferromagnets.9

�6� Magnetization reversal by coherent rotation. The criti-

cal coherence radius Rcoh= ��24�lex.
9

�7� An effective anisotropy constant Keff which may vary
as R−1 where R is the particle radius.

A feature of magnetic fine particles is surface anisotropy.
The effect was first discussed by Néel,10 who considered a

phenomenological magnetoelastic expression and estimated

the magnitude of the anisotropy as Ks�1 mJ m−2. This cor-

responds to an anisotropy energy per surface

atom �s=Ks�
2/3 where � is the atomic volume ��1.2

�10−29 m−3 for iron� equivalent to about 4 K, which exceeds

by an order of magnitude the values of bulk anisotropy or

dipole-dipole interactions in 3d magnets. In nanoparticles,

with their large surface to volume ratio �Table I�, surface

anisotropy is expected to be second only to exchange in de-

termining the magnetic properties.

Previous simulations of the magnetic ground state and

hysteresis in ferromagnetic nanoparticles have been based on

the Landau–Lifschitz–Gilbert equation11–13 using a Runge–

Kutta algorithm. The elements are shrunk to the point where

they represent only a few atoms, or even a single atom,14 and

are treated as classical vectors. An alternative approach is to

exploit the power of computer clusters to access the ground

state and trace the field and time dependences of the spin

configurations. We adopted the second approach in an earlier

study of a ferromagnetic nanoparticles, where we were able

to show that two types of spin structure develop in response

to surface anisotropy.15 When the value of �s is negligible in

comparison to the exchange energy J, the particles adopt a

collinear ferromagnetic configuration �Fig. 1�a��. As �s be-

comes increasingly positive, easy axes for the surface atoms
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which are normal to the surface cause the ferromagnetic con-

figuration to deform into a “throttled” structure �Fig. 1�b��,
also sometimes known as the “flower” structure. However,

beyond a critical value �s�J, there is an abrupt transition to

a “hedgehog” structure with no net moment �Fig. 1�c��.15,16

The singularity at the heart of the hedgehog is modified by

dipole-dipole interactions. On the other hand, when �s is

negative, the easy directions lie parallel to the surface, and

the spins adopt an “artichoke” configuration �Fig. 1�d��.
There are also reports of Monte Carlo simulations of two-

dimensional magnetic nanodots with surface anisotropy.17,18

Here the focus is on three-dimensional particles with posi-

tive �s. We investigate the magnetization processes and hys-

teresis for the throttled and hedgehog states. We examine the

size dependence of the coercivity and consider the problem

of evaluating the surface anisotropy from data on nanopar-

ticle systems. Then we investigate the energy barriers be-

tween different spin states by simulating the magnetic relax-

ation. Finally, we review the magnitude of exchange, surface,

and bulk anisotropy for a range of ferromagnetic materials,

and suggest where to look for some of the predicted effects.

II. METHODS

Our model system is a spherical nanoparticle composed of

atoms forming a simple cubic lattice with interatomic spac-

ing a. The radius R=�a is varied from �=2 to �=13, corre-

sponding in practice to particles smaller than about 5 nm. It

is important to emphasize, as illustrated in Fig. 1, that the

center of the spherical particle is not located on an atomic

site, but at the centroid of the eight central atoms. Each mag-

netic site has Z=6 nearest neighbors in the volume and 3, 4,

or 5 at the surface; the missing neighbors lead to the surface

anisotropy. The sphere contains N atoms with Ns of them

located on the surface. Values of N and Ns, and the numbers

of atoms with different coordinations are listed in Table I. A

typical particle with �=5 is illustrated in Fig. 2.

A vector spin 	S	=1 is associated with each atom. The

system is described by a classical Heisenberg Hamiltonian,

which includes terms denoting the nearest-neighbor ex-

change interaction, the anisotropy energy, the dipole interac-

tion, and the Zeeman energy. For a given site i it may be

expressed as

Hi = − � j=1
6

JSi · S j − �i�Si · ni�
2 − �i�Bdip + B� · Si, �1�

where the sum is over the j nearest neighbors. J is the ex-

change coupling constant, Si and S j are the spins on sites i

and j, and �i is the anisotropy constant, taken as �
v

for all the

sites with six nearest neighbors, or as �s for the sites belong-

ing to the surface. We take the bulk anisotropy �
v

to be

uniaxial along the Oz axis. The surface anisotropy direction

is defined as

TABLE I. Numbers of bulk and surface atoms for simple cubic particles.

� Z=3 Z=4 Z=5 Z=6 �Z� Ns N Ns /N

2 24 0 0 8 3.75 24 32 0.75

3 56 0 24 56 4.57 80 136 0.59

4 72 24 48 136 4.89 144 280 0.51

5 72 96 72 312 5.13 240 552 0.43

6 120 96 120 576 5.26 336 912 0.37

7 168 144 144 1016 5.36 456 1472 0.31

8 248 120 264 1544 5.43 632 2176 0.29

9 240 264 288 2320 5.51 792 3112 0.25

10 320 288 360 3256 5.55 968 4224 0.23

11 408 288 504 4416 5.59 1200 5616 0.21

12 408 456 552 5792 5.63 1416 7208 0.20

13 560 432 696 7640 5.65 1688 9328 0.18

(a)

(c)

(b)

(d)

FIG. 1. �Color online� Spin configurations for a particle with a

simple cubic structure and a radius �=5 �in units of interatomic

spacing�. �a� Collinear ferromagnetic configuration with surface an-

isotropy, �s=0; �b� throttled configuration; �s=500; �c� hedgehog

configuration, �s=2000; and �d� artichoke configuration, �s=

−1500.
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�i = � jrij/	� jrij	 . �2�

These directions are �111� for sites with Z=3, �110� for Z

=4, and �100� for Z=5. They lie close to the surface normal

at every site. Bdip is the dipole field, B is the external applied

field, and �i is the atomic magnetic moment in Bohr magne-

tons. For convenience in our simulation, we set J=1000 �fer-

romagnetic coupling� and choose �
v
=0, 10, or 50 and �s

=1–1200. Having set the value of J, all the other interactions

can be normalized to the exchange. When passing from the

single-site Hamiltonian �1� to the Hamiltonian for the whole

system, factors of 1 /2 appear in the exchange and dipole

terms to avoid double counting. Noting that the maximum

value of the dipole interaction for the particles studied does

not exceed unity, we neglect this term in the following cal-

culations.

The simulations have been performed in three steps: �i�
First we analyze, as a function of particle size �, the spin

structure and magnetization of the ground state, which is

strongly dependent on surface anisotropy �s. �ii� The second

step is to describe the initial magnetization curves and hys-

teresis loops for particles with a particular spin configuration

and a chosen value of �s. �iii� Finally, the energy barriers

separating hedgehog and throttled configurations are de-

duced from the Monte Carlo simulations, and analyzed as a

function of the applied field.

All the simulations were performed on a Beowulf-class

cluster composed of 35 PCs with dual Pentium III 600 MHz

processors.19 Starting from a random spin configuration at

high temperature, the energy is minimized by simulated an-

nealing using the Metropolis algorithm with a decreasing

exponential law for temperature T� with �=0.985. We used

unrestricted classical angular dynamics �the spin directions

�	 ,
� are chosen randomly�. The simulations were started at

T=2000, well above TC. The final temperature is normally

�1. The number of Monte Carlo steps per spin was 104. The

time to reach the local equilibrium state for typical simula-

tions was 1–100 h, depending on particle size.

For an extended simple cubic lattice the relation between

exchange and Curie temperature TC is20

TC = 1.44JS2. �3�

Hence J=1000 gives TC=1440. This is approximately TC for

Co.

III. RESULTS

A. Ground state configuration

We first determine the magnetic phase diagram as a func-

tion of particle radius � with N�4 /3��3 atoms in the par-

ticle and Ns�4��2 of them are lying on surface where they

have surface anisotropy �s. The volume anisotropy �
v

is var-

ied �0, 10, 50�, while keeping the exchange coupling J

=1000. Energies of the hedgehog and throttled states are

evaluated, and the lower energy state is the stable one. En-

ergies calculated from the Monte Carlo simulation are com-

pared to those of an approximate analytical calculation, de-

scribed below. Results are presented in Fig. 3.

The energy of the hedgehog configuration can be evalu-

ated approximately, assuming that the magnetic moment Si at

site i is given by ri / 	ri	. Surface anisotropy energy Es, vol-

ume anisotropy energy E
v
, and exchange energy Eex are

given, respectively, by −4��2�s, −4��2�� /3−1��
v
/3, and

−�2 /3��3�Z�J�
1+3 arctan�2�� / �4�3�−3 / �2�2��, where �Z�
is the average number of nearest neighbors which is listed in

Table I. The exchange term is obtained by considering the

interaction of a pair of neighboring spins at a distance 
 from

the center of the particle, J cos
2 arctan�1 / �2
���. Integrating

over spherical shells which contain 4�
2d
 such spins gives

the expression for the exchange energy. As far as we know,

no analytical expression exists for Si in the throttled configu-

ration, so we base an approximate analysis on a uniaxial

ferromagnetic configuration �Fig. 1�a��. In this case Si=ez,

where ez is the unit vector in the z direction. The surface

anisotropy, volume anisotropy, and exchange energies are

FIG. 2. �Color online� A particle with radius �=5. 43% of the

atoms lies at the surface. Those with 3, 4, and 5 neighbors are

colored green �light gray�, dark blue �dark gray�, red �medium light

gray�, and inner atoms are white.

FIG. 3. Phase boundary between the hedgehog and throttled

configurations when the exchange parameter J=1000 and K
v
=50.

Results of Monte Carlo simulations are indicated by the solid

points. The lines are for an approximate analytical calculation de-

scribed in the text. Error bars are smaller than the plot symbols.
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−4�2�2�s /3, −4��2�� /3−1��
v
, and −2 /3��3�Z�J, respec-

tively. The phase boundary versus radius for given values of

�
v

and J is obtained by equating the sum of these energies

E=Es+E
v
+Eex for each configuration. This leads to

�s = �
v
��/3 − 1� − 3�Z�J/4�arctan�2��/�4�2� − 1/�2��� .

�4�

To better approximate the throttled energy configuration, we

need to reduce the surface anisotropy energy of the uniaxial

configuration. This is done with a configuration which has a

uniaxial ferromagnetic core and a surface with radially ori-

ented spins. The expression for �s then becomes

�s = �2��/3 − 1��
v
/3

− �Z�J/2
arctan�2��/�4�2� − 1/�2����/�2/3 − �� , �5�

with � ranging from 0 for the uniaxial configuration to 2 /3

for radial spins on the surface. The �s��� curves obtained

from Eq. �5� with �=0.4 are similar to those of the Monte

Carlo simulations. The discrepancy between curves is cer-

tainly due to the approximation involved in assuming a

quasiuniaxial configuration instead of the true throttled con-

figuration.

The energy difference between the throttled and hedgehog

states in the phase diagram of Fig. 3 is remarkably small.

The dominant energy is the exchange, which is roughly

−�Z�J /2 or �2500 per site. Figure 4 shows the energy per

site �=E /N as a function of �s for the �=5 particle. The

crossover occurs at �s�800. To obtain the curves, �s was

varied in the course of the simulation. At �s=0 the energy

difference is about 100, or 4% of the exchange energy.

The hedgehog state is obviously twofold degenerate, in

the sense that Si→−Si gives an inverted hedgehog with the

same energy. In small particles, there is no continuous rota-

tion symmetry on account of the stepped nature of the par-

ticle surface, which has the symmetry of a cube.

The throttled state is also twofold degenerate in the sense

that Si→−Si gives a throttled state with the same energy.

Since there is a net moment, there should be an easy axis.

Our simulations, carried out in this case by cooling from

temperature 2000 to 0.15, show clearly the existence of �111�

easy axes when �s�450. A convenient way to represent the
easy axis � is to take the scalar product � of � with
�1 / �3���1, �1, �1� in such a way that each component of

the scalar product is positive. This gives �=1 for �111�, �
=2 / �6 �0.82� for �110�, and �=1 / �3 �0.58� for �100�. From

Fig. 5 it is evident that a �111� direction is easy when �s

�450, but the orientation appears to be random for smaller

values of �s. This is probably because the base temperature

of the simulations is higher than the effective anisotropy per

site �eff.

Easy axes arise wherever the surface anisotropy is able to

deform the collinear ferromagnetic structure. The easy direc-

tion was also determined by fixing the direction of magneti-

zation of a nucleus of eight atoms at the center of the particle

and then carrying out a Monte Carlo simulation, cooling

from T=2000, down to T=0.15. The energy is minimum for

a �111� direction �i.e., 	=54.7°�, as shown in Fig. 6. The

average anisotropy energy per site for the particle with �
=5 and �s=500 is only 1.4.

Finally, we mention the case �s�0, which corresponds to

easy-plane anisotropy of the surface sites. The effect of the

FIG. 4. Energy difference between the throttled and hedgehog

states for a particle with radius �=5. Error bars are smaller than the

plot symbols. FIG. 5. Results of multiple Monte Carlo simulations to deter-

mine the easy axis of a particle with radius �=5. �111� is easy when

surface anisotropy �s�450. � is defined in the text.

FIG. 6. Energy as a function of magnetization direction 	 de-

duced by Monte Carlo simulations for a particle with radius �=5

and surface anisotropy �s=500. Error bars are smaller than the plot

symbols.
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planar anisotropy is to induce an artichokelike spin structure,

where the surface spins tend to lie parallel to the surface.

Increasing the value of 	�s	 leads to a continuous deformation

of the ferromagnetic state. The easy axis is again �111�.

B. Hysteresis loops

Next we study the virgin magnetization curve and the

complete hysteresis loop for particles with J=1000 and val-

ues of �s which give either a throttled or a hedgehog con-

figuration. For smaller values of �s the rotation is coherent,

and the nanoparticles behave like macrospins, as in the

Stoner–Wohlfarth model.21–24 From the ground state, the

magnetic field is increased in constant steps and the energy is

minimized at each step using 80 000 Monte Carlo iterations,

after rejecting the first 10 000 to allow for the approach to

thermal equilibrium. The hysteresis is traced out by increas-

ing the magnetic field B from zero up to Bmax �60�Bmax

�500�, then reducing it to −Bmax and again increasing Bmax

in order to describe a complete loop. The moment � in Eq.

�1� is taken as unity, so B corresponds to the field in units of

kB /�B�1.5 T. In one case ��=5, �s=1050, �
v
=10� this pro-

cess was repeated ten times to be sure of the reproducibility

of the results. In addition, minor loops have been investi-

gated, where the maximum field is less than Bmax.

1. Throttled configuration

Here we choose �s=400–800 and �
v
=0, and apply the

magnetic field along a �111� easy direction. There is there-

fore already a large moment in the virgin state. Particle ra-

dius is varied from �=2 to �=13. The hysteresis loops

shown in Fig. 7 are for �s=400. The switching field Bs varies

irregularly and nonmonotonically with particle radius. The
effective anisotropy constant deduced from the anisotropy
field by the Stoner–Wohlfarth relation Ba=2�eff /� is plotted
in Fig. 8. Again we take �=1.

An alternative method to evaluate the effective anisotropy

is to apply a small magnetic field perpendicular to the easy

direction, and to determine the slope of the initial magneti-

zation curve �Fig. 9�. The first step in the perpendicular mag-

netization curves corresponds to switching to the �111� easy

axis closest to the applied field direction. The second step

corresponds to complete alignment with the applied field.

Extrapolation of the initial curve to the spontaneous magne-

tization ms of the particle gives the anisotropy field Ba which

is also related to the effective anisotropy �eff by �eff

=Bams /2. The two independent methods of determining �eff

FIG. 7. Hysteresis loops simu-

lated with the applied field along

the �111� direction for particles

with surface anisotropy �s=400

and different radii �. When error

bars are not shown, they are

smaller than the plot symbols.

FIG. 8. Effective anisotropy �eff deduced from the switching

field in the hysteresis loops. Data are for different values of surface

anisotropy �s.
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are in rather good agreement, and the irregular variation with

particle size in Fig. 8 is not an artifact. It is noteworthy that

the values of �eff are more than an order of magnitude less

than �s even though 20%–75% of the atoms in the particles

with 2���12 are surface atoms. This is because the aniso-

tropy cannot be minimized at each surface atom site in the

throttled magnetic structure.

2. Hedgehog configuration

Here we choose �s=1100, �
v
=10, and �=5. The field is

applied along �001� and is again cycled from 0 to �500. In

the virgin magnetization curve, three jumps marked a, b, and

c in Fig. 10 occur before a final jump to join the demagne-

tization curve. These jumps each correspond to a shift in the

center of symmetry of the magnetic moment distribution of

one interatomic distance in the direction opposite to the field

�Figs. 10�a�–10�d��. It is interesting that this part of the mag-

netization curve is fully reversible, and the original hedgehog

state can be recovered by reducing the field to zero. How-

ever, at a critical value of applied field �point d in Fig. 10�,
there is a jump to a throttled configuration, and the magne-

tization process becomes irreversible. On reducing B to zero

from point e in Fig. 10, the nanosphere remains in a throttled

configuration, which is a metastable state in low fields,

where the hedgehog energy is actually lower.

The virgin magnetization curve is reached again at point l

in the first quadrant in Fig. 10, after magnetization reversal

and increasing the magnetic field in the reverse direction.

Remarkably, the displaced hedgehog configuration of Fig.

10�d� is found again, and on reducing B to zero from point l

FIG. 9. Magnetization curve obtained when the field is applied

perpendicular to the �111� easy axis for a particle with radius �=5

and surface anisotropy �s=400 having a throttled spin configura-

tion. Anisotropy field Ba may be deduced from the initial slope, as

described in the text.

FIG. 10. �Color online� Hys-

teresis loop for a particle with ra-

dius �=5 and surface anisotropy

�s=1100 originally in a throttled

configuration. The magnetic con-

figurations of the central plane are

shown for the points labeled a–h

on the curve.
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it is possible to recover the initial hedgehog state with zero

magnetization. It is the nucleation of the group of four

inward-pointing spins in Fig. 10�h� that decides the inward-

pointing hedgehog. This recovery of reversible behavior after

saturation is a most unusual effect of the strong surface an-

isotropy of these nanoparticles. It is only in such nanopar-

ticles that the major loop can rejoin the initial curve.

C. Energy barriers and magnetic relaxation

Although the energies of the throttled and hedgehog con-

figurations are very similar, the existence of broad hysteresis

loops suggests that the barriers separating the two configu-

rations are greater than their difference in energy. The ener-

gies of the two configurations involved in the hysteresis loop

of Fig. 10 are shown in Fig. 11.

Thermal fluctuations of the magnetic moment of a single-

domain ferromagnetic particle and its approach to equilib-

rium are well described by Néel–Brown model.24,25 The

main assumptions in this model are that the magnetization is

uniform and the anisotropy is uniaxial so that the relaxation

can be described by a single relaxation time �. In the case of

an isolated nanoparticle, the magnetic relaxation is given by

an Arrhenius law of the form

� = �0 exp��E/kBT� , �6�

where �0 is of order 10−9–10−11 s and depends weakly on

temperature, �E denotes the energy barrier separating the

two configurations, kB is Boltzmann’s constant, and T is tem-

perature. This model is widely used to describe the time

dependence of magnetization of multiparticle assemblies

where a logarithmic time dependence is found—for example,

in �Fe2O3,26 Ni, Co, and Dy.27 This logarithmic time depen-

dence arises from a broad distribution of relaxation times �
for the particles of different sizes.

Our objective here is to give a measure of the energy

barrier �E. Considering the relaxation from the hedgehog to

the throttled configuration in a magnetic field close to that

needed to make the jump d→e in Fig. 10, we performed

10 000 runs in a fixed field in the range 80–185 and at a fixed

temperature in the range 400–650. For each run, the switch-

ing time � for a single particle is recorded in units of Monte

Carlo steps. Some typical data are shown in Fig. 12. They are

fitted to give the average value ���. The slope of the plot of

ln��� vs 1 /T gives the energy barrier �E, and the variation of

�E with field B is shown in Fig. 13 for a particle with �s

=1100, �
v
=10, and �=5. The extrapolation of the energy

barrier to zero field gives a barrier between the throttled and

hedgehog configurations which is several times their energy

difference. The result is reasonable and it justifies our obser-

vation that the Monte Carlo simulations find the local energy

minima, which are a source of hysteresis.

When a sample contains particles with a distribution of

particle size and shape, the abrupt variations seen in Fig. 8

are washed out. Assuming a log-normal distribution of size,

the results for effective anisotropy as a function of average

particle size shown in Fig. 14 are obtained.

FIG. 11. Energies of the states traced out in the hysteresis loop

in Fig. 10. The energy barrier for the transition d→e is also shown.

Error bars are smaller than the plot symbols.

0 2000 4000 6000 8000
0

200

400

600

800

1000

N

� (MCS)

FIG. 12. Probability distribution for the switching time for a

particle with radius �=5 surface anisotropy �s=1100, uniaxial vol-

ume anisotropy �
v
=10, applied field B=185, and T=350 K.

FIG. 13. Energy barrier for the transitions between the throttled

and hedgehog configurations as function of applied field B. The

particle has radius �=5, surface anisotropy �s=1100, and uniaxial

volume anisotropy �
v
=10.
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IV. DISCUSSION

A. Evaluation of surface anisotropy

It is a common practice in the literature to evaluate the

effective anisotropy constant of ferromagnetic thin films and

nanoparticles from a formula such as

Keff = K
v

+ �Ks, �7�

where � is an inverse length. For a film of thickness t �two

surfaces� �=2 / t,28 but for a nanosphere �following Bodker et

al.2� it is taken as 3 /R, where Keff and K
v

have units J m−3,

whereas Ks has units J m−2. The basis of this formula is that

the nanosphere contains �4 /3��R3
/a3 atoms, 4�R2

/a2 of

which lie on the surface. If all the atoms contribute �
v

=K
v
a3 to the anisotropy of the particle, and the surface atoms

make an additional contribution of �s=Ksa
2, the total aniso-

tropy is �4 /3���R /a�3�
v
+4��R /a�2�s, and the effective an-

isotropy constant is therefore �eff=�
v
+ �3 /R��s.

This analysis is based on the implausible assumption that

the anisotropy axes in the bulk and at the surface are all

parallel. In fact, we have been supposing that the surface

atoms have their easy directions roughly normal to the sur-

face. In the limit of a large spherical particle with a uniform

density of surface atoms and radial surface anisotropy �s

�J, so that the surface anisotropy does not modify the col-

linear ferromagnetic spin alignment, the contribution of �s to

�eff is precisely zero. On account of their underlying crystal

structure, small particles do not present a uniform density of

surface atoms, as is illustrated in Fig. 2 for the particle with

�=5. The anisotropy energy has been calculated for our

simple cubic particles from �=2 up to �=13, and we con-

clude that �111� are usually the easy axes, in agreement with

the analysis of Garanin and Kachkachi,29 provided the sur-

face anisotropy is sufficient to deform the collinear ferro-

magnetic structure. These authors found that �111� axes are

easy, regardless of the sign of the surface anisotropy in the

Néel model.

From the plot of our size-averaged data for �s=500 as a

function of 1 /� in Fig. 14, we find that the slope is not 3�s

=1500 but it is very much smaller. The procedure for deter-

mining �s from �eff therefore underestimates its value by an

order of magnitude. More serious is the absence of any com-

pelling indication of a trend indicating a 1 /� variation. It is

the specific surface structure of a nanoparticle that deter-

mines �eff, not simply its radius.

B. Other models of surface anisotropy

We have chosen an algorithm for defining surface aniso-

tropy, which places the local anisotropy axes roughly normal

to the surface and assumes easy-axis anisotropy. The effect

of the algorithm is similar to radially directed anisotropy,

transverse to the surface.30 The original Néel10 model was

somewhat different. Néel assumed that the contribution of

each nearest neighbor is E= l /2 cos2 	 where 	 is the angle

between the direction of the local magnetization and the

bond with the neighboring atom. His model gives the follow-

ing results if l, which is the product of magnetostriction and

elastic constants, is positive: for a surface perpendicular to

�111� there is no easy axis, for a surface perpendicular to

�100� the easy axis is �100�, and for a surface perpendicular

to �011�, �101�, or �110� there is an easy plane perpendicular

to x, y, and z, respectively, as shown in Fig. 15.

C. Comparison with real ferromagnets

The surface atoms have reduced symmetry where the axis

of the electric field gradient �the leading crystal field term

A2
0� tends to lie perpendicular to the surface. In principle, this

can lead to anisotropy which is perpendicular to the surface,

or else lies in a plane parallel to the surface, depending on

the sign of the crystal-field interaction. In the parallel case,

other crystal-field terms such as A2
2 will determine an easy

direction in the plane. We therefore anticipate that among the

rare earths, atoms with a positive quadrupole moment �Sm,

Er, Tm, and Yb� will show perpendicular-to-surface aniso-

tropy, and those with a negative quadrupole moment �Pr, Nd,

Tb, Dy, and Ho� will show a parallel-to-surface anisotropy.

Among the 3d atoms, similar arguments suggest that Co may

show perpendicular anisotropy in a crystal field where the

FIG. 14. Variation of �eff, the average anisotropy per site, for

surface anisotropy �s=500, uniaxial volume anisotropy �
v
=0, and a

log-normal distribution of particle size.

FIG. 15. �Color online� Comparison of the local easy directions

for a simple cubic lattice in the Néel model �top row�, and in the

model used in this paper.
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anisotropy of Fe is parallel, but another factor intervenes in
the case of these metals, namely, the orbital moment associ-
ated with 3d band electrons. Here the symmetry of the sur-
face, which allows orbits to develop in the plane of the sur-
face, but not in the perpendicular direction, suggests that the
anisotropy due to spin-orbit coupling will inevitably be per-

pendicular to the surface.31 The magnetization of thin films

indicates that surface anisotropy is usually perpendicular to

the surface.32

It is important to relate the physical parameters J, �
v
, and

�s used in the Monte Carlo simulations to the values that

characterize real materials. The numbers for a given simula-

tion can all be scaled by a constant factor, without changing

the magnetic ground state.

For the exchange, the bulk Curie temperature is used to

determine J, using Eq. �3�. With our definition of the Heisen-

berg Hamiltonian �Eq. �1�, which differs by a factor of 2

from another common definition�, Monte Carlo simulations

with classical spins represented by S=1 give kBTC /ZJ

=0.24. With Z=6, . Values of J in Kelvin for a selection of

ferromagnetic materials are listed in Table II.

For the bulk anisotropy, the measured uniaxial anisotropy

constant K1 �or K1
c for cubic materials� is converted to �

v
in

units of Kelvin by multiplying by the volume v per magnetic

ion, and dividing by Boltzmann’s constant kB.

The surface anisotropy is trickier to estimate. Evaluations

based on Eq. �4� will tend to underestimate �s for nanopar-

ticles by as much as an order of magnitude for the reasons

discussed in Sec. IV A. For cobalt, as an example, estimates

from studies of nanoparticles have given values of �s in

the range 0.2–0.9 mJ m−3,5 which correspond to �s

=0.7–3.2 K, whereas studies of ultrathin films give values of

the surface anisotropy of order 0.7 mJ m−2 which corre-

sponds to �s=2.5 K.33 Another approach is to take the bulk

anisotropy in the most anisotropic cobalt-based alloys as a

lower limit on the surface anisotropy. For example, CoPt and

YCo5 have K1=4.9 and 6.5 MJ m−3, respectively, which cor-

respond to values of �s of at least 9.8 or 7.9 K. Much larger

anisotropy, �s=100 K, is reported for a single cobalt atom on

Pt.34 However, in any case, it is clear that cobalt and cobalt-

rich alloys with their high TC values lie far below the

throttled and/or hedgehog boundary at �s /J�1. The value of

�s /J is such that surface anisotropy will not significantly

perturb the collinear ferromagnetic ground state. A similar

expectation applies to FePt. Although TC is lower than it is

for Co �Table II�, the value of J=520 K is still much greater

than the bulk anisotropy �
v
=13.4 K, which is a lower limit

on �s. Even if the ratio of surface to bulk anisotropy is simi-

lar to that in cobalt, we are in the region �s /J�0.5 �Table

II�,35 where the ferromagnetic saturation is reduced by only

about 10% by the throttled spin configuration.

The interesting effects we have found in our Monte Carlo

simulations when �s /J�1 are most likely to be manifest in

compounds with strong surface anisotropy and weak ex-

change. The best candidates are rare-earth metals and alloys,

and also some actinide-based ferromagnetic compounds. Er-

bium, for example, has a magnetic ordering temperature of

85 K, which corresponds to J=57 K, and the anisotropy con-

stant K1=7 MJ m−3 corresponds to �
v
=15.4 K. For the rare

earths, ab initio calculations36 suggest that the surface aniso-

tropy is approximately twice as large as the bulk value;

hence, for Er we expect that �s�100 K. Erbium nanopar-

ticles should therefore adopt a hedgehog state. Terbium,

however, has TC=221 K, which corresponds to J=124 K,

and the hard-axis anisotropy constant K1=−56 MJ m−3 cor-

responds to �
v
=−130 K. The surface anisotropy expected is

�s=−1000 K.36 Since the surface anisotropy is negative, and

considerably larger than the exchange, it will lead to an ar-

tichoke configuration like that of Fig. 1�d�.
More extreme examples with huge positive anisotropy are

provided by TmNi5, where the exchange is weak, and by US,

where the uranium anisotropy is exceptionally strong, as

seen in Table II. A factor of 2 is used to estimate the surface

anisotropy of the actinide, by analogy with the rare earths.

Both these materials can be expected to exhibit hedgehog

configurations.

V. CONCLUSION

Atomic-scale Monte Carlo simulations with classical

spins indicate that significant modifications of the collinear

ferromagnetic spin configuration can be expected in certain

ferromagnetic nanoparticles due to surface anisotropy. There

are interesting steps in the hysteresis loops, which resemble

those found in larger nanoparticles,37,38 in molecular

magnets,39,40 or in rare-earth alloy thin films,41 but which

have a quite different physical explanation. In these small

particles it is possible to associate the steps on the hysteresis

loop with jumps between identifiable spin configurations.

The reversibility of the steps in the first quadrant, after de-

TABLE II. Typical values of physical parameters for selected ferromagnetic materials.

v
a �nm3� Tc �K� J �K� K1

b �MJ m−3� �
v

�K� Ks �mJ m−2� �s �K�

Co 0.011 1390 959 0.5 0.4 �1 4

YCo5 0.017 987 684 6.5 7.9 �20 95

FePt 0.028 750 520 6.6 13.4 �34 227

Er 0.031 85 57 7 15.4 14 100

Tb 0.031 221 153 −56 −130 −140 −1000

TmNi5 0.085 4.5 3 70 300 55 774

US 0.041 177 162 1000 3000 428 6000

aVolume per magnetic atom.
bLeading term in the anisotropy energy.
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scribing an almost complete loop, is a signature of a hedge-

hog. These effects should be sought in nanoparticles of ma-

terials such as actinide or rare-earth compounds having

�s /J�1. We have suggested some examples.

There is no clear relation between particle radius and the

effective surface anisotropy, but the approach of deducing �s

from Eq. �4� is inappropriate. It will tend to underestimate

the surface anisotropy by an order of magnitude.

The commonly studied nanoparticles of the 3d ferromag-

netic elements and their alloys usually have �s /J�1, and

their spin configurations are barely modified by surface an-

isotropy. FePt is a case, however, where some measurable

reduction in saturation magnetization due to a throttled spin

configuration could be expected. The surface anisotropy in

this case can also influence coercivity42 and precessional

switching of magnetization.43
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