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Abstract

The out-of-plane angular dependence of the ferromagnetic resonance

linewidth, ∆H, has been measured for thin magnetic films coupled to NiO

and for uncoupled control films. In the control films, ∆H is described by

nearly angle-independent damping parameters. In the NiO-coupled films,

however, the damping was found to depend strongly on magnetization ori-

entation, with linewidth values comparable to the control samples at normal

orientation, but several times larger when the magnetization lies in plane. The

additional linewidth in the NiO-coupled films follows the angular dependence

of the number of nearly degenerate spin wave modes, in agreement with the

predictions of a two-magnon scattering model of damping which incorporates

a spin wave dispersion relation suitable for ultra-thin films.

I. INTRODUCTION

Increased ferromagnetic resonance linewidth1,2 is a part of the complex phenomenology

of exchange anisotropy that includes shifted hysteresis loops3, rotational hysteresis4 and

shifts in the Brillouin scattering frequency5 and ferromagnetic resonance (FMR) field1,2,6.

Explanations of the increased linewidth in ferromagnet/antiferromagnet bilayers have been

based on a dispersion of resonance fields due to dispersion of the exchange bias1,2. This
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FIG. 1. Coordinate system used in to describe the orientation of M, H, and k with respect to

the film.

paper presents, for the first time, measurements of the FMR linewidth, ∆H, as a function

of the magnetization orientation from in-plane to film normal. These results are compared

with the predictions of a two-magnon model of FMR damping.

II. EXPERIMENTAL

The samples in this study were deposited by DC magnetron sputtering in 0.25 Pa

(2 mTorr) Ar. The base pressure before depositing a film was approximately 10−6 Pa

(10−8 Torr) of which 90% was hydrogen. The films consisted of Ni80Fe20, Co, and

Co30Ni35Fe35 deposited on 50 nm NiO and capped with Au or Ta, and the magnetic film

thickness ranged from 4.0 nm to 10.0 nm. These films were deposited in a field which set

the direction of the exchange anisotropy field, Hex. The corresponding control films were

deposited with 2.0 nm layers of Ta separating the magnetic films from the NiO.

Ferromagnetic resonance spectra were taken using an X-band spectrometer operating at

9.78 GHz. The samples were mounted on the side of a quartz rod passing through the center

of the TE102 microwave cavity, and sample orientation was controlled by a goniometer with

a precision of ±0.12◦. Samples were mounted with Hex directed parallel to the rotation axis,

along the z direction (see Fig. 1) so that the applied field, H was always perpendicular to

Hex. Resonance fields and peak-to-peak field linewidths of 10 nm thick Ni80Fe20 films on

NiO and on Ta are shown in Fig. 2.
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FIG. 2. Resonance fields and linewidths (inset) for 10 nm thick films of Ni80Fe20 on NiO and

on Ta. The solid lines are fits to the Hres data.

The free energy, F , of the magnetization is modeled by

F = Ku sin2 θ sin2 φ+Ka sin2 θ cos2 φ

−µ0M ·H− µ0M ·Hex − µ0M ·Hra (1)

where Ku and Ka are uniaxial anisotropies with hard axes directed along the y and x

directions respectively. H is the applied field and Hra is a rotatable anisotropy field, Hra ‖

M, included to model an isotropic negative resonance field shift6. The angles are defined in

Fig. 1. The resonance condition is given by

(ω/γ)2 = (M2 sin2 θ)−1[F θθFφφ −F
2
θφ] (2)

where the subscripts indicate partial derivatives, evaluated at values of θ and φ which min-

imize F , and γ = gµb/h̄ ≈ 1.76× 1011T−1s−1.

The Hres data was fit using an orthogonal least-squares algorithm7 to obtain values for

the parameters in (1). The fit parameters are then used to calculate φ and values of dω/dH

corresponding to each data point.

While the measurements were made by sweeping H at fixed ω, theoretical linewidth

calculations are simpler at fixed H. To make comparisons with theoretical results, values for

∆ω are obtained from the ∆H data using ∆ω = (dω/dH)∆H where dω/dH is calculated

numerically using parameters obtained from the Hres fit described above. Plots of ∆ω/γ vs.
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FIG. 3. Frequency linewidth, ∆ω/γ for 10 nm thick Ni80Fe20 films on NiO and Ta plotted as

a function of magnetization orientation. The solid line

φ for the 10 nm thick Ni80Fe20 samples are shown in Fig. 3. There is a smooth increase in

∆ω in the NiO coupled film as M is rotated from the sample normal (90◦) to in-plane (0◦).

In contrast, ∆ω does not depend strongly on φ for the Ni80Fe20 film on Ta . Other films

with different thicknesses and compositions described above were measured, and the results

show very similar linewidth behavior.

III. TWO-MAGNON THEORY

The ferromagnetic film is modeled as a Nx × Ny × Nz rectangular array of spins with

lattice parameter a. The thickness of the film, d, is given by d = Nya. The coordinate

system used to describe the orientation of M, H, and the spin wave propagation vector, k,

is shown in Fig. 1.

In a uniform film, the normal modes can be described as a uniform precession mode,

which couples to the microwave excitation field, and a manifold of spin wave modes which

are not directly excited. Nonuniformities will induce coupling between the normal modes,

leading to a broadening of the resonance.

The two-magnon model of FMR damping8–10 treats nonuniformities as perturbations.

The scattering rate, λ0,k, of uniform precession, or k = 0, magnons into other, k 6= 0 spin

wave mode is
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λ0,k =
2π

h̄

∑
k

|Ak|
2δ(h̄ω0 − h̄ωk), (3)

where Ak is the coefficient of the perturbation Hamiltonian term which couples the uniform

precession and spin wave modes. As λ represents the rate of decay of a population of k = 0

magnons, it also represents a contribution to the frequency linewidth, ∆ω = λ + δω0, of

continuously driven uniform precession.

If the inhomogeneity is restricted to the interface, the perturbation Hamiltonian can be

modeled as an exchange bias or anisotropy field, Hp(r), acting on the first layer of atoms in

the ferromagnet. This field varies randomly from grain to grain along the interface, but is

correlated over a distance, ξ, corresponding to a grain size. The expectation value of |A2
k|

is calculated using Ak = γh̄µ0√
N
Hp(k)9 under the assumption that <Hp(r)Hp(r

′)>≈<H2
p>

exp[−|r− r′|/ξ].

λ =
2πγ2µ2

0 <H
2
p>

NxNzd2

∑
k

2πξ2

[1− (kξ)2]3/2
δωk/π

[δω2
k + (ω0 − ωk)2]

(4)

In this expression, the δ-function in (3) has been replaced by a Lorentzian with δωk chosen

to represent the intrinsic spinwave linewidth.

The spinwave dispersion relation, ωk = ω(k, ψk, H, φh,M, φ, d), is the source of angular

dependence in (4). It is derived assuming uniform precession through the thickness of the

film because in the thickness range of interest, spinwaves with components of k perpendicular

to the plane of the film will have ωk > ωo and will not count in the sum. Starting with

dM/dt = −|γ|M×H and using magnetostatic fields given by

HD
y (k) = −NkMy(k) (5)

HD
x,z(k) = −k[Mx(k)kx +Mz(k)kz](1−Nk)/|k|

2 (6)

where Nk = [1− exp(−kd)]/kd,11 the resulting dispersion relation is

(ωk/µ0γ)2 =
[
Hi +Dk2 +M(1−Nk) sin2 ψk

]
×
[
Hi +Dk2 +MNk cos2 φ

+M(1−Nk) sin2 φ cos2 ψk
]

− [M(1−Nk) cosψk sinψk sinφ]2 , (7)
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FIG. 4. Spin wave manifolds calculated for a 10 nm thick Ni80Fe20 film with a) M oriented in

the plane of the film, b) at φ = 45◦, and c) normal to the film. The applied field is set to give

ω0/2π = 9.8 GHz in each case.

where Hi is the internal static magnetic field, D is the spin wave dispersion constant, and

the angles are defined in Fig. 1. Spinwave manifolds calculated from (7) are shown in Fig. 4.

The solid line in Fig. 3 is the result of the two-magnon theory for a 10 nm film of

Ni80Fe20 assuming that ξ = 40 nm, which is a typical grain size for these films. To match

the experimental data at 0◦and 90◦, the value of µ0Hpa/d was adjusted to 35 mT and an

intrinsic linewidth δω0 = δωk = 5 mT was used.

It is helpful to think about the result in (4) in terms of two parts: the terms outside

the summation having to do with the strength of the scattering of spin waves, and the

summation over magnon wavevectors which is essentially a weighted count of the number

of spin wave modes having wavevectors matching the spatial fluctuations of the perturbing

field and with frequencies close enough to ω0 to accept the scattered energy. The angular

dependence of ∆ω is contained entirely within the mode counting terms through ωk and

thickness dependence is shared by the mode counting and the scattering strength terms.

The quantity ∆ωd2/(H2
pa

2) contains only the thickness dependence of the mode counting,

with the explicit 1/d2 thickness dependence of the scattering strength factored out. This

quantity is plotted in Fig. 5 as a function of inverse film thickness for Ni80Fe20 films with M

in plane (φ = 0).

The thickness dependence of the two-magnon model, with an explicit 1/d2 dependence
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in the scattering strength and a 1/d thickness dependence in the mode counting does not

agree well with published results1,2 which show the linewidth increasing linearly with 1/d

for d > 10 nm and decreasing for a thinner sample. The 1/d2 dependence of the scattering

strength can be eliminated if the perturbing field is assumed to act on spins throughout

the thickness of the sample, rather than on the surface spins. It is interesting to note that

the thickness dependence of the mode counting part alone, without the implicit thickness

dependence of the scattering strength, is very similar to that of previously published results

(see ref. 2, Fig. 5).

IV. CONCLUSIONS

The experimental results show consistently that for magnetic films deposited on NiO,

the FMR linewidth is several times larger for M in plane than for M normal to the film, and

that the frequency linewidth changes smoothly as a function of magnetization orientation.

In agreement with the two-magnon model, these results are consistent with a proportionality

between the frequency linewidth and the number of nearly degenerate spin wave modes.

If the perturbation is restricted to the interface, the two magnon model predicts an

explicit 1/d2 dependence multiplying the ∼ 1/d dependence of the mode counting. This

result is not supported by previous experimental data1,2. However, if the perturbation is

allowed to act throughout the thickness of the film, there is no explicit thickness dependence
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FIG. 5. Thickness dependence of the number of degenerate spinwaves calculated for a Ni80Fe20

film at 34 GHz, using µ0δωk/γ = 10 mT and ξ = 40 nm.
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and the agreement with experiment is quite good.
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