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Ferromagnetism in Mn-implanted ZnO:Sn single crystals
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We have investigated the magnetic properties of Mn-implantgge ZnO single crystals that are
codoped with Sn. Theory predicts that room-temperature carrier-mediated ferromagnetism should be
possible in manganese-dopgdtype ZnO, although Mn-dopedh-type ZnO should not be
ferromagnetic. While previous efforts report only low-temperature ferromagnetism in Mn-doped
ZnO that isn type via shallow donors, we find evidence for ferromagnetism with a Curie
temperature 0f~250 K in ZnO that is codoped with Mn and Sn. As & #alence cation, Sn should
behave as a doubly ionized donor, thus introducing states deep in the gap. Hysteresis is clearly
observed in magnetization versus field curves. Differences in zero-field-cooled and field-cooled
magnetization persists up t6250 K for Sn-doped ZnO crystals implanted with 3 at.% Mn.
Increasing the Mn concentration to 5 at. % significantly reduces the magnetic hysteresis. This latter
observation is inconsistent with the origin for ferromagnetism being due to segregated secondary
phases, and strongly suggests that a near-room-temperature dilute magnetic semiconducting oxide
has been realized. Based on these results, ZnO doped with Mn and Sn may prove promising as a
ferromagnetic semiconductor for spintronics. 2003 American Institute of Physics.
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In recent years, ferromagnetism in semiconductors haso ferromagnetism is detected. The model suggests that
received significant attention, partly due to interest in spin-carrier-mediated ferromagnetism mtype material is rel-
tronic device concepts.® Much of the recent effort has fo- egated to low temperatures, as seen for example-type
cused on conventional 11-VI and Ill—-V semiconductor ma- GaMnN}" while it is predicted at higher temperatures for
terials. Low-temperature epitaxial growth has been used witl-type materials® It has been reasonably successful in ex-
Mn-doped GaAsRef. 6 in achieving ferromagnetism with a Plaining the high transition temperature observed (@g,
transition temperature of 110 K, which is remarkably highMMAS.
compared to traditional dilute magnetic semiconductor mate- 1he theoretical treatment presents several interesting

rial. More recently, ferromagnetism has been reported at tendrends and predictions. For the materials considered in detail
peratures abové 300 K for (ggMngodGeR 7 (semiconductors with zinc-blende structyrmagnetic inter-

Zn_Mn.GeR 8° GaMnN1% GaMnPL Co-Ti0, 13,4  actions are favored in hole-doped materials due to the inter-
antljéns:lA§ & ’ ’ ’ action of Mt ions with the valence band. This is consistent

5 S . . with previous calculations for the exchange interaction be-
The origin of ferromagnetism in semiconductors remains

L . _ ,19,20 ;

an issue of debat®.Dietl et al. have applied Zener’s model tween Mﬁ lons In . .Vl _compound§, showing that .

for ferromagnetism, driven by exchange interaction betweert1he dominant contribution is from two-hole processes. This
. g ! ' Dy ge - superexchange mechanism can be viewed as an indirect ex-

carriers and localized spins, to explain the ferromagneti

" . i %hange interaction mediated by the anions, thus involving the
transition temperature in IlI-V and 11-VI compound semi-

- valence band. Note that valence-band properties are prima-
conductors. The theory assumes that the ferromagnetic COﬁ-ly determined by anions in II-VI compounds. The model

relations among the Mn ions are mediated by holes fronyy pie et al. predicts that the transition temperature will
shallow acceptors. Specifically, Mn ions substituted on thecaje with a reduction in the atomic mass of the constituent
group [l or Il site provide the Iopal spin. In the case of IlI-V elements due to an increasepr-d hybridization and a re-
semiconductors, Mn also provides the acceptor dopant. Diguction in spin-orbit coupling. Most importantly, the theory
rect exchange among Mn is antiferromagnetic as observed iBredicts aT, greater than 300 K fop-type GaN and ZnO,
fully compensatedGa, MnAs that is donor doped. In the with T, dependent on the concentration of magnetic ions and
case of electron-doped or heavily Mn-doped GaAs materialholes. However, it also predicts that ferromagnetism will not
be observed at high temperature for electron-doped ZnO, at
@Author to whom correspondence should be addressed; electronic mail€@St for dopants that introduce shallow donor levels.
dnort@mse.ufl.edu Magnetically doped ZnO has also been theoretically in-
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vestigated byab initio calculations based on local density 1000 17 Zn
approximatiorf® Again, the results suggest that ferromag- ]
netic ordering of Mn is favored when mediated by hole dop-
ing. For V, Cr, Fe, Co, and Ni dopants, ferromagnetic order-
ing in ZnO is predicted to occur without additional charge 0 3 10
carriers. Recently, the rr;agnetic properties of Ni-doped ZnO Energy (keV)
th.m films were Iteportea. For films doped with 3-25 at. % FIG. 1. Energy dispersive spectrometffDS) data for a Mn-implanted
Ni, ferromagnetism was observed at 2 K. Above 30 K, SUzno single crystal. The EDS intensity for the Mn peak is consistent with a
perparamagnetic behavior was observed. The ZnO materi@in concentration of a few atomic percent.
was n type. Fukumureet al. have shown that epitaxial thin
films of Mn-doped ZnO can be obtained by pulsed-laseimagnetization versus field behavior at 10 K for Sn-doped
deposition, with Mn substitution as high as 35% while main-z0 samples implanted with 3 and 5 at. % Mn. Hysteretic
taining the wurtzite Structul@. This is well above the equi' behavior is C|ear|y observed, consistent with ferromag_
librium solubility limit of ~13%, and illustrates the utility of netism. At 10 K, the coercive field in the 3 at. % Mn-doped
low-temperature epitaxial growth in achieving metastablesample is 250 Oe. It must be noted that other possible expla-
solubility in thin films. Codoping with Al resulted in-type  nations for hysteretidl vs H behavior that are remotely
material with carrier concentration in excess ofllém 3. possible include superparamagnetism and spin-glass
Large magnetoresistance was observed in the films, but neffects®192” Magnetization measurements were also per-
evidence for ferromagnetism was reported. However, Jungbrmed on Sn:ZnO crystals that were not subjected to the Mn
et al. recently reported ferromagnetism in Mn-doped ZnOimplant. This was done to eliminate the possibility that spu-
epitaxial films, with a Curie temperature of 45°kThe dis-  rious transition metal impurities might be responsible for the
crepancy appears to lie in differing film-growth conditions. magnetic response. The Sn-doped ZnO crystals exhibit no
In this letter, we report evidence for ferromagnetism inhysteresis, showing that the Mn doping is responsible for the
ZnO with a Curie temperature approaching 250 K. For theséehavior. To track the hysteretic behavior in the implanted
materials, Mn serves as the transition metal and Sn as asamples as a function of temperature, both field-cooled and
apparent doubly ionized donor dopant. ZnO is a direct-bandzero-field-cooled magnetization measurements were per-
gap semiconductor with E;=3.35eV. The room- formed from 4.2 to 300 K. By taking the difference between
temperature Hall mobility in ZnO single crystals is on the these two quantities, the para- and diamagnetic contributions
order of 200 crAV s 1% Electron doping via defects to the magnetization can be subtracted, leaving only a mea-
originates from Zn interstitials in the ZnO lattié®The in-  sure of the hysteretic ferromagnetic regime. Figure 3 shows
trinsic defect levels that lead to-type doping lie approxi- the difference between field-cooled and zero-field-cooled
mately 0.05 eV below the conduction band. High electronmagnetization as a function of temperature for both the 3
carrier density can also be realized via group Il substitu-at. % Mn-and 5 at. % Mn-doped samples. For the 3 at. % Mn
tional doping. As a group IV cation, Sn can exist in either thesample, in particular, a robust ferromagnetic signature is ob-
4+ or 2+ valence state, although the-4valence is the most served to persist up to-250 K, as seen in Fig. 4.
common. As such, it can serve either as a doubly ionized When assigning the origin of ferromagnetism one must
donor or as an isoelectronic impurity. carefully consider the possibility that secondary phase for-
In the experiments reported here, Mn ions were im-mation is responsible. High-resolution transmission electron

planted at elevated temperature into Sn-doped ZnO single

Counts

500 J
Mn I} Zn

crystals. The ZnO substrates were grown via vapor transport. 8x10-5

Hall measurements performed prior to implantation yielded a ’é ZnOiSnMndate | et

carrier density on the order of ¥cm™ 3. The Sn-doped & 4xl10% e (@)

ZnO crystals exhibit a blue tint in color and ameype. The § 0' )

Sn content was approximately 1%0cm 3. Mn* ions were kS| ]

implanted at a dose of 5x10' cm~? and energy of 250 g axlos| .

keV into the(110) ZnO growth face, with substrates held at S . 105' 10K
8x10-

350 °C to avoid amorphization. The projected range of Mn 1000500 O 500 1000
ions was estimated to be 150 nm with the implant designed H(Oe)

to yield a Gaussian profile. The targeted peak Mn concentra- ’85 1X105 | Jnpsnwvnsats i
tions investigated in this study were 3 and 5 at. %. Following \;i ._:555“;. (b)
implantation, the samples were subjectedit5 min, 700 °C % 0 g

rapid thermal anneal in flowing nitrogen. Figure 1 shows B

EDS spectra for a Mn-implanted sample. The Mn peak in- %’D Ip*g::'.' o
tensity is consistent with a doping concentration of a few S 1x105 |

atomic percent. Note that no evidence for nitride formation is , .
observed, nor is it expected based on the bonding energy of -1000 0 1000
N,. H(Oe)

The magr?etlc properties of Mlj-lmplanted samp!es Wer%IG. 2. M vs H curve for Mn-implanted ZnO:Sn single crystals, showing
measured using a Quantum Design SUpercondUCt'ng quafb’rromagnetic behavior ifa) 3 at. % Mn and(b) 5 at. % Mn implantation

tum interference device magnetometer. Figure 2 shows theéoses.
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2,0x10-5 oo @ netic behavior, an increase in Mn concentration would pre-
50000 sumably increase the secondary phase volume fraction and
related magnetization signature. Instead, the opposite behav-
ior is observed.
One must explain why the behavior depends on the spe-
ob—— e . I}‘ cific cation dopant specie chosé&dn vs Al, Ga. Doping via
L a multi-ionized impurity introduces relatively deep donor
0 106 200 300 levels in the energy gap. Conduction from deep donors is due
Temperature (K) to impurity band and/or hopping conduction, as opposed to
conventional free electrons excited to the conduction band.
1.0x10-6 | 50000 Any carrier-mediated processes would be dependent on the
; relevant conduction mechanisms. Future work will focus on
L.0x10- By understanding the effect of carrier density and transition
imﬂi”imlmlﬂnh metal concentration on magnetization behavior.
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