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Abstract

Manipulating electronic and magnetic properties of two-dimensional (2D) transitional-metal dichalcogenides
(TMDs) MX2 by doping has raised a lot of attention recently. By performing the first-principles calculations, we
have investigated the structural, electronic, and magnetic properties of transitional metal (TM)-doped MoS2 at
low and high impurity concentrations. Our calculation result indicates that the five elements of V-, Mn-, Fe-, Co-, and
Cu-doped monolayer MoS2 at low impurity concentration all give rise to the good diluted magnetic semiconductors.
By studying various configurations with different TM-TM separations, we found that the impurity atoms prefer to stay
together in the nearest neighboring (NN) configuration, in which the doped TM atoms are FM coupling except
for Fe doping at 12 % concentration. For V, Mn, and Fe doping, the total magnetic moment is smaller than the
local magnetic moment of the dopants because the induced spins on the nearby host atoms are antiparallel to
that of the doped atoms. In contrast, Co and Cu doping both give the higher total magnetic moment. Especially,
Cu doping induces strong ferromagnetism relative to the local spins. However, the atomic structures of Co- and
Cu-doped MoS2 deviate from the original prismatic configuration, and the magnetic moments of the doped
systems decrease at 12 % impurity concentration although both elements give higher magnetic moments at 8 %
impurity concentration. Our calculations indicate that V and Mn are promising candidates for engineering and
manipulating the magnetism of the 2D TMDs.
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Background

Research on two-dimensional (2D) transitional metal
dichalcogenides (TMDs) has attracted considerable at-
tention due to their distinct electronic, optical, and cata-
lytic properties [1–5]. Group 6 TMDs (MX2, M =Mo,
W, and X = S, Se, Te) hold promise for flexible and
transparent electronics applications owing to their
sizeable band gaps ranging from 1 to 2 eV. Current re-
sults have indeed revealed that MoS2 and WS2 form an
exciting family of transistors [6–11]. On the other side,
MoS2 and WS2 are nonmagnetic semiconductors. Ac-
cordingly, extensive studies have been performed to in-
vestigate the feasible ways to introduce magnetism to
MoS2, such as morphology fabricating [12–14], external
strain, [15–17] and impurity doping [18–28].

Developing approaches to effectively induce and
manipulate magnetism are critical to the use of the
magnetic nanostructures in quantum information de-
vices. Among kinds of magnetic property engineering
methods, doping attracts more attentions [18–28]. On
the basis of previous studies, transitional metal (TM)
atom doping can effectively induce magnetism into
MoS2. For example, magnetism is observed for Mn
[18, 20, 22, 24, 26, 28], Fe [18, 22, 24, 26, 28], Co
[18, 22, 24, 26, 28, 29], Cr [18, 24], Zn [22, 24], Cd
[24], and Hg [24] doping. And the magnetic moment
of the 3d TM-doped MoS2 increases with the d-band fill-
ing of the TM dopants [18]. Additional, spin polarization
was found in MoS2 with S atoms replaced by incomplete
d-band atoms, such as Fe and V [30], and Group VA and
III elements, such as N, P, As, B, Al, and Ga [28]. More-
over, adsorption of various atoms, such as H, B, C, N, and
F, is also effective to turn MoS2 from nonmagnetic to
magnetism [31]. It is worth noting that no magnetism is
observed in V-doped MoS2 based on Ref [24], but
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according to Ref [18] and [28], V doping induces more
than 1-μB magnetic moments into monolayer MoS2. And
based on Lee’s study [22], the nonmagnetic element Cu
doping brings strong magnetism into the doped MoS2.
More recently, substitutional doping MoS2 monolayer

with magnetic atom and the interactions between the
doped atoms has draw intensive attentions. Ramasubra-
maniam [20] have studied the Mn-doped monolayer
MoS2 at concentration of 10–15 % by performing the
density functional theory calculations and Monte Carlo
simulations, which shows that the doped Mn atoms
couple ferromagnetically. Schwingenschlögl et al. [24]
predict that the doped TM atoms are ferromagnetic
(FM) ordering for Mn, Zn, Cd, and Hg doping at 6.25 %
impurity concentration and antiferromagnetic (AFM) or-
dering for Fe and Co doping. Similarly, Mishra et al. [26]
predict the FM ordering in fairly diluted Mn doping
MoS2, MoSe2, MoTe2, and WS2 and AFM coupling for
Fe and Co doping at large separations. In contrast, a
later study [18] found the ground states of Mn-, Fe-, and
Co-doped MoS2 are all FM.
Clearly, current studies on the magnetic interactions

in Mn-, Fe-, and Co-doped MoS2 disagree with each
other. However, the magnetic ordering of the dopants as
well as the orientations of the induced spins on the host
atoms are critical factors to determine the magnetic
property of the doped system. In this context, we exam-
ined the cases of different impurity concentrations and
separations of the doped atoms to study the electronic
and magnetic properties of TM-doped monolayer MoS2
and to find out the magnetic feature of the TM-doped
2D TMDs. Five 3d TM elements including V, Mn, Fe,
Co, and Cu doping were studied in the present work by
accurate calculations. Our calculations result indicates
that the doped TM atoms prefer to stay in the nearest
neighboring configurations and ferromagnetic coupling
with each other. Additionally, we found that at high im-
purity concentrations, the local structures around the
dopants were deformed from the original prismatic con-
figurations. More importantly, it was found that V and
Mn doping are the good candidate to induce and ma-
nipulate the magnetism into 2D TMDs, but Cu is not
although it can induce strong magnetism.

Methods

The first-principles calculations were carried out by
using the Vienna ab initio simulation package (VASP)
based on the density functional theory (DFT) [32].
The electron-ion interactions were described by the
projector-augmented wave (PAW) method [33, 34].
The generalized gradient approximation of the Perdew-
Burke-Ernzerhof (PBE-GGA) [35] formula was used for
the electronic exchange-correlation potential. In addition,
Hubbard-U parameterization method with a common

U value of 3.0 eV was assigned to all the 3d impurities.
The U parameterization was not used for the host mate-
rials since there little impact on the magnetic ordering
[18, 26, 36]. The substitutional TM doping was calculated
with a 5 × 5 × 1 supercell. A vacuum region of 15 Å was
added to avoid interactions between adjacent images. The
Brillouin zone was sampled by the Monkhorst-Pack
method [37] with a 2 × 2 × 1 k-point grid. The wave func-
tions were expanded in a plane wave basis with an energy
cutoff of 600 eV. The convergence criterion for the self-
consistency process was set to 10−5 eV between two ionic
steps, and the convergence criteria of 0.02 eV/Å were
adopted for total energy calculations.

Results and Discussions

The fully relaxed lattice constants are a = b = 3.18 Å for
single layer MoS2, and the distance between Mo and S
atoms are 2.41 Å. Figure 1 shows the atomic structure
and density of states for monolayer MoS2, which is non-
magnetic semiconductor. Our calculated band gap is
1.70 eV with the valence band maximum and conduc-
tion band minimum both locating at Κ point. Morph-
ology fabricating such as atomic defects is a useful way
to bring ferromagnetism into the low-dimensional mate-
rials [38, 39]. But according to previous study [17, 40],
neither Mo vacancy nor S vacancy changes the nonmag-
netic property of monolayer MoS2. Also, Si vacancy does
not bring magnetism into silicene [41, 42]. As shown in
Fig. 1, our calculation shows the same results.
We firstly studied the doping at low impurity concen-

tration. The doping concentration is defined as the num-
ber of doped TM atoms divides by the total number of
Mo atoms. Hence, if one Mo atom is replaced by one
TM atom in a 5 × 5 × 1 supercell, the corresponding
impurity concentration should be 4 %. The formation
energies of TM substitutional doping MoS2 are calcu-
lated via the following formula:

Ef ¼ E TMMo;MoS2ð Þ−E MoS2ð Þ−μTM þ μMo

where E(TMMo, MoS2) and E(MoS2) represent the total
energies of MoS2 with and without TM doping, respect-
ively. μTM is the chemical potential of a single-doped
TM atom in its stable bulk lattice. For Mo-rich condi-
tion, μMo is taken as the energy of a Mo atom in its
stable fcc lattice and for S-rich condition μMo is deter-
mined from the energy difference between a S2 molecule
and one MoS2 unit. Figure 2 shows our calculated for-
mation energies for TM doping MoS2 as a function of
μMo. It shows that the V and Mn doping are favorable
energetically, especially under S-rich growth conditions.
The C3v symmetry is destroyed after TM doping, and
the distances between the doped TM and the nearest S
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atoms are 2.39, 2.36 2.44, 2.30, and 2.42 Å for V, Mn, Fe,
Co and Cu doping.
Figure 3 shows our calculated DOSs for TM-doped

monolayer MoS2 at 4 % impurity concentration. As
shown in Fig. 3, defect states appear within the band gap
for all the doped systems and they are highly localized.
The defect states are mainly contributed by the doped
TM 3d states. Additionally, for the V-, Mn-, Fe-, and
Cu-doped systems, both the defect states and Fermi level
are more close to the valence band, but for the Co-
doped system, the impurity level and Fermi level are
more close to the conduction band. This is different
from previous result by Lebruton et al. [28] Based on
their DFT/PBE calculations, they have predicted that for
Mn-, Fe-, and Co-doped MoS2, the impurity level and
Fermi level both are more close to the conduction band.
However, as shown in Additional file 1: Figure S1, our
calculations result with no U parameterization which
agrees with the results of Leburton et al. [28] and Lee
et al. [22]. Moreover, all the doped systems are still

Fig. 1 Top views and density of states of monolayer MoS2 without and with Mo/S vacancy. Density of states of monolayer MoS2 (a), monolayer
MoS2 with Mo vacancy (b), monolayer MoS2 with S vacancy (c)

Fig. 2 Formation energies for TM atom substitutional doping MoS2
as a function of chemical potential of Mo (μMo)
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semiconductor although the band gaps reduce a lot rela-
tive to the original value before doping.
More importantly, Fig. 3 clearly shows the induced

spin polarization for all the five doped systems. The cor-
responding magnetic moments are 1, 1, 2, 3, and 4.9 μB
for V, Mn, Fe, Co, and Cu doping, respectively. An iso-
lated V atom has a 3d44s1 electronic configuration with
one valence electron less than Mo (4d55s1), which re-
flects the magnetic moment of the V-doped MoS2. The
electronic configurations of isolated Mn, Fe, Co, and Cu
atom are 3d54s2, 3d64s2, 3d74s2, and 3d104s1, respect-
ively; they have one, two, three, and five additional
valence electrons compared to Mo atom, which consist
with the magnetic moment of Mn-, Fe-, Co-, and Cu-
doped system. As shown in Fig. 3, the spin splitting
appears near to the Fermi level, which is contributed
by the defect states associated with the doped TM
atom, p states of the adjacent S atoms, and d states
of the nearby Mo atoms. We further calculated the
spin-resolved charge density to investigate the distri-
bution of these magnetisms.
As shown in Fig. 4, we can see the spin polarization

localized on the dopants and the nearby S and Mo
atoms, as well as the interstitial region. Strong
hybridization between the TM 3d states and the p states
of the adjacent S atoms yields spin splitting to the S
atoms. For V and Mn doping, the spins of the dopants
are antiparallel to the induced spin of the nearest three
S atoms. In V-doped MoS2, the induced spins on the
nearest six Mo atoms are parallel to that of the doped V
atom; correspondingly, the total magnetic moment is lit-
tle larger than the local magnetic moment of the dopant.
For Mn doping, the induced spins on the nearest three S
atoms and six Mo atoms are all antiparallel to the local
spin on the impurity atom, which makes the total

Fig. 3 Density of states of monolayer MoS2 with V, Mn, Fe, Co, and
Cu doping at 4 % impurity concentration. a V doping, b Mn doping,
c Fe doping, d Co doping, e Cu doping

Fig. 4 The spin-resolved charge density isosurface (isosurface value at 0.002 e/Å3) of TM-doped MoS2 monolayer at 4 % impurity concentration.
Yellow and blue colors represent the spin-up and spin-down charges, respectively
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magnetic moment much smaller than the local magnetic
moment of the dopant. Comparing to Mn doping, the
induced spins on the three nearest S atoms are parallel
to that of the Fe dopants. Plus, the local magnetic mo-
ment on Fe is larger than that on Mn. Consequently, the
total magnetic moment of Fe-doped MoS2 is larger than
that of the Mn-doped system. As for the Co and Cu
doping, the induced spins on the nearest S and Mo
atoms are all parallel to that of the doped TM, which
give rise to the much larger total magnetic moment al-
though the local magnetic moment on the dopants are
small. Particularly, the local magnetic moment on the
doped Cu is 0.5 μB, which induces 0.2–0.3 μB ferromag-
netism on the nearby S and Mo atoms, plus the intersti-
tial region; the consequent total magnetic moment of
doped system is 4.9 μB.
In the last part, we have studied TM doping at 4 % im-

purity concentration by calculating one TM atom re-
placing one Mo atom in a 5 × 5 × 1 supercell, in which
the distance between the dopants is around 16 Å. We
further calculated two TM atoms replacing two Mo
atoms in a 5 × 5 × 1 surpercell to investigate the TM
doping at 8 % impurity concentration. There configura-
tions with different TM-TM separations were consid-
ered: NN configurations in which the two TM atoms are
in the nearest neighboring position with TM-TM dis-
tance of 3.2 Å, the second NN configurations in which
the two TM atoms are in the next nearest-neighboring
position with TM-TM distance of 5.5 Å, and the third
NN configuration in which the distance between the two
doped TM atoms are 6.5 Å.
Figure 5 summarized our calculated results on the en-

ergy differences between the FM and AFM states for the

three configurations of NN, second NN, and third NN.
For the four elements of V, Mn, Fe, and Co doping, the
energy differences between the FM and AFM states are
negative for all the three configurations, which means
the FM states are more favorable energetically. Our re-
sults on the NN configuration for Mn, Fe, and Co dop-
ing agree with previous result [31, 33, 39], and our
results on the third configuration agree with Ref [37]. As
for Cu doping, the FM states are more favorable for the
NN configurations, but for the second NN and third NN
configurations, the AFM states are more stable. Table 1
lists the calculated total magnetic moments of the doped
system and the local magnetic moments on the impur-
ities for the ground states of the three configurations,
and the spin-resolved charge density for the ground
states is shown in Fig. 6.
As shown in Fig. 6, the spins of the two nearest neigh-

bored dopants are parallel to each other for all the five
doped systems. For V, Mn, and Fe doping, the induced
spins on the nearby S and Mo atoms are antiparallel to
that of the dopants. Thus, the total magnetic moments
of the V-, Mn-, and Fe-doped system are smaller than
the local magnetic moments on the dopants. As for Co
and Cu doping, the total magnetic moments of the
doped system are much larger than the local magnetic
moments of the impurities because the spin polariza-
tions on the nearby S and Mo atoms are all parallel to
that of the dopants. Particularly, the total magnetic
moment of the Cu-doped MoS2 in NN configuration
at impurity concentration of 8 % is 3.6 μB although the
local magnetic moments on the two Cu atoms are only
0.5 μB.
Figure 6 also shows that for V, Mn, Fe, and Co doping

in the second NN and third NN configurations, the two
dopants are FM coupling or even weakly AFM coupling
(the energy difference between the FM and AFM states
is 6 meV for V doping in the second configuration). This
is similar with the NN configuration. Additionally, the

Fig. 5 Energy differences of the FM ordering over AFM ordering for
V-, Mn-, Fe-, Co-, and Cu-doped MoS2 as a function of the distance
between the two doped TM atoms. The corresponding impurity
concentration is 8 %

Table 1 The magnetic moments (Σμi/μtotal) for V-, Mn-, Fe-,
Co-, and Cu-doped MoS2 with impurity concentration at 4, 8,
and 12 %

4 % 8 % 12 %

NN 2nd NN 3rd NN NN

V 0.9/1.0 2.2/2.0 1.9/0.0 1.8/2.0 3.6/3.0

Mn 2.9/1.0 5.8/2.0 5.8/2.0 6.4/2.0 6.3/5.0

Fe 3.4/2.0 3.6/2.0 4.4/4.0 6.4/4.0 7.3/2.0

Co 1.1/3.0 3.0/4.0 4.6/6.0 4.3/6.0 0.8/1.0

Cu 0.5/4.9 0.5/3.6 0.6/0.2 0.5/0.0 0.6/3.0

Both the local magnetic moments of the doped atoms (Σμi) and the total

magnetic moments of the doped system (μtotal) are presented. Three

configurations with different TM-TM distances were listed for 8 %

impurity concentration
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magnetic orderings among the dopants and the nearby
host atoms in second and third NN configuration for
the four elements are similar with the situation in the
NN configuration. In detail, the induced spins on the
nearby S and Mo atoms are antiparallel to the impurities
for V, Mn, and Fe doping, which leads to the smaller
total magnetic moment relative to the local magnetic

moments on the dopants, while the FM coupling be-
tween the doped Co atoms and the nearby S and Mo
atoms makes the total magnetic moment larger than the
local ones on the dopants. Moreover, the local magnetic
moments of the Fe and Co dopants in second and third
NN configurations are larger than those in the NN con-
figuration; thus, the total magnetic moments of second

Fig. 6 The spin-resolved charge density isosurface (isosurface value at 0.002 e/Å3) of TM-doped MoS2 monolayer at 8 % impurity concentration.
The first, second, third, fourth, and fifth rows are the results for V-, Mn-, Fe-, Co-, and Cu-doped systems, respectively. And the first, second, and
third columns correspond to the NN, second NN, and third NN configurations. Yellow and blue colors represent the spin-up and spin-down
charges, respectively
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and third NN configurations are larger than those in the
NN configuration. For Cu doping in the second and
third NN configurations, the AFM states are energetic-
ally more stable than the FM states; this is differing from
the NN configuration. Figure 6 shows the AFM coupling
between the two doped Cu atoms with large separations
and the FM exchange with the nearby host S and Mo
atoms like the NN configuration. Hence, the total mag-
netic moments for Cu doping in the second and third
NN configurations are very close to 0.
According to our calculations, for the five elements

except for Cu doping, the magnetic ordering between
the doped atoms and host atoms in the second and third
configurations is similar with those in the NN configu-
rations. In contrast, Mishra et al. [39] predicted AFM
coupling for the dopants with large separations and FM
coupling for the dopants in NN configurations for Fe and
Co doping. Additionally, according to Schwigenschlogal et
al.’s study [37], Fe and Co doping also lead to AFM
ground state in large separations. In this situation, we
recalculated the NN, second and third configurations
without U parameterizations. The energy differences
between the FM and AFM states are summarized in
Additional file 1: Figure S2. It shows that for Fe and
Co doping in large separations, the AFM states are
more favorable energetically, which agrees with previ-
ous results [37, 39]. More importantly, we found that
the NN configurations are more favorable than the
other two configurations with large separations. The
total energy of the NN configuration is less than the
second and third configurations by 0.2, 0.5, 0.8, 1.0,
and 1.3 eV for V, Mn, Fe, Co, and Cu doping, re-
spectively. This is consistent with Liu’s study which
shows that the V atoms prefer to stay together in
MoS2 monolayer.

On the basis of the study on doping at 8 % impurity
concentration, we further studied the TM doping at
higher impurity concentration in NN configurations.
Three TM atoms replace three nearest neighboring Mo
atoms in a 5 × 5 × 1 supercell; the corresponding impur-
ity concentration is 12 %. As shown in Fig. 7, for the five
elements except for Fe, the doped TM atoms are FM
coupling with each other. For Fe doping, one of the
three dopants is AFM coupling with the other two dop-
ants. The reason making the spin polarization of this Fe
atom (Fe1) differs from the other two Fe atoms (Fe2 and
Fe3) mainly lies in atomic structure. Figure 8 shows the
relaxed atomic structures for the five elements doped
MoS2 monolayer at 12 % impurity concentration. As
shown in Fig. 8, the Mn–S bond lengths for the three
doped Mn atoms are close, which give rise to the similar
spin polarization on the three Mn atoms. The respective
local magnetic moments on Mn1, Mn2, and Mn3 are
2.9, 3.1 and 3.1 μB, respectively. Additionally, Fig. 8
shows that the Mn2–S2 and Mn3–S3 bond lengths are
little larger than the other Mn–S bond lengths which
makes the spin polarization on Mo* atom differs from
the other nearby Mo atoms as shown in Fig. 7. As for Fe
doping, the Fe–S bond lengths of the Fe1 atom are dif-
ferent from those of the Fe2 and Fe3 atoms. Particularly,
the Fe1–S* bond length is larger than the Fe2–S* and
Fe3–S* bond lengths, which makes the hybridization of
Fe1 3d and S* 4p differs from the counterparts of Fe2
and Fe3 atoms. Consequently, spin of Fe1 is antiparallel
to that of Fe2 and Fe3. More importantly, Fig. 8 shows
that the atomic structures of V- and Mn-doped MoS2
maintain the original prismatic configuration, but the
atomic structures of Co- and Cu-doped MoS2 deviate
from the prismatic configuration, which is not good for
applications in 2D materials.

Fig. 7 The spin-resolved charge density isosurface (isosurface value at 0.002 e/Å3) of TM-doped MoS2 monolayer at 12 % impurity concentration.
Yellow and blue colors represent the spin-up and spin-down charges, respectively
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Figure 7 shows that the magnetic ordering among the
dopants and the nearby host atoms at 12 % impurity
concentration is similar with the situation at 8 % impur-
ity concentration; for V and Mn (Co and Cu) doping,
the induced spins on the nearby host atoms are antipar-
allel (parallel) to those of the dopants. Thus, the total
magnetic moment of V and Mn (Co and Cu) doping
is less (larger) than the local magnetic moments of
the three dopants. Additionally, our calculations result

indicates that for V and Mn doping, the magnetic
moments of the doped MoS2 increase as the increas-
ing impurity concentration, whereas the magnetisms
of Co- and Cu-doped system decrease when impurity
concentration increases from 8 to 12 %.

Conclusions
Our study on MoS2 with TM doping at 4 % concentra-
tion tells us all the five 3d elements of V, Mn, Fe, Co,

Fig. 8 Atomic structures of TM-doped monolayer MoS2 at 12 % impurity concentration. a V doping. b Mn doping. c Fe doping. d Co doping.
e Cu doping (top and side views)
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and Cu doping which give rise to the good diluted mag-
netic semiconductors. Additionally, we have found that
the doped TM atoms prefer to stay in the nearest neigh-
boring positions at high concentrations and couple with
each other ferromagnetically. For V, Mn, and Fe doping,
the induced spins on the nearby host atoms are antipar-
allel to that of the impurities, whereas for Co and Cu
doping, they are parallel to that of the dopants. It indi-
cates that the local structures around the impurities are
deformed from the original prismatic configurations for
Co and Cu doping at high impurity concentration al-
though both doping induce strong ferromagnetism into
the doped system. Our calculations show that, besides
Mn, V is also good candidate to induce and manipulate
the magnetism in 2D TMDs.

Additional files

Additional file 1: Supplemental information. Ferromagnetism in
Transitional-Metal Doped MoS2 Monolayer. (DOC 228 kb)
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