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Abstract: Glioma is the most common intracranial malignant tumor, and the current main standard
treatment option is a combination of tumor surgical resection, chemotherapy and radiotherapy. Due
to the terribly poor five-year survival rate of patients with gliomas and the high recurrence rate
of gliomas, some new and efficient therapeutic strategies are expected. Recently, ferroptosis, as
a new form of cell death, has played a significant role in the treatment of gliomas. Specifically,
studies have revealed key processes of ferroptosis, including iron overload in cells, occurrence of
lipid peroxidation, inactivation of cysteine/glutathione antiporter system Xc− (xCT) and glutathione
peroxidase 4 (GPX4). In the present review, we summarized the molecular mechanisms of ferroptosis
and introduced the application and challenges of ferroptosis in the development and treatment of
gliomas. Moreover, we highlighted the therapeutic opportunities of manipulating ferroptosis to
improve glioma treatments, which may improve the clinical outcome.
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1. Introduction

Glioma is the most common primary malignant tumor of the brain, accounting for
approximately 50–60% of the central nervous system (CNS) tumors [1] and approximately
81% of intracranial malignancies [2,3]. Patients with gliomas have significantly higher
recurrence rates than those with other tumors of the CNS [4]. Gliomas have been classified
by the World Health Organization (WHO) grading system into four grades, where gliomas
of grade 1 and grade 2 indicate low-grade gliomas, and gliomas of grade 3 and grade 4
reveal high-grade gliomas [5]. The median overall survival (OS) time of low-grade glioma
patients is approximately 11.6 years [6]. However, patients with grade 3 glioma have
a median OS time of approximately three years, and the median OS time of grade 4
glioma patients is approximately 15 months [7]. While current clinical treatments for
glioma consist of surgical resection, radiotherapy, chemotherapy, novel molecular targeted
therapy and immunotherapy [8], these treatments have not brought desirable benefits to
patients, and the prognosis of patients remains extremely poor [9,10]. Therefore, there is
a great need to develop new therapeutic strategies, including novel therapeutic targets
inhibiting glioma cells, to improve OS time and the quality of life for these patients. The
common deaths of different cells in the body include necrosis, apoptosis, autophagy and
pyroptosis [11]. Recently, ferroptosis, as a new nonapoptotic cell death pattern resulting
from iron-dependent lipid peroxidation injury, has attracted more attention [12–14].

Ferroptosis is a new type of programmed cell death triggered by cell membrane dam-
age arising from these processes, including intracellular iron accumulation, production of
reactive oxygen species (ROS), lipid peroxidation, failure activity of glutathione peroxi-
dase (GPX) and xCT [15,16]. Cells undergoing ferroptosis not only have changes in cell
composition, but also in cell morphology. When cells undergo ferroptosis, although the
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morphology of the nucleus does not change significantly, the morphology of mitochondria
shows increased bilayer membrane density, reduction or disappearance of cristae, and
reduced volume [16,17]. Many recent studies have shown that significant progress has been
made on the impacts of ferroptosis on glioma. Ferroptosis inducers, as compounds from
plants and others, have certain effects on the treatment of glioma by affecting ferroptosis
processes.

Herein, we will mainly focused on the essential molecular mechanisms of ferroptosis,
as well as the potential impact of ferroptosis on glioma growth and treatment. We also
provided an overview of the challenges of ferroptosis in glioma therapy and discussed the
therapeutic opportunities of manipulating ferroptosis to improve treatment.

2. Molecular Mechanisms of Ferroptosis

J.M. Gutteridge found in 1984 that iron salts could induce lipid peroxidation by
breaking down lipid peroxides into alkoxyl and peroxyl radicals, and iron complexed
with ethylene diamine tetraacetic acid (EDTA) could also initiate lipid peroxidation by
reacting with hydrogen peroxide (H2O2) to form hydroxyl radicals (•OH), which may
lay the foundation for iron-dependent cell death [18]. In addition, it has been reported
that exogenous glutamate could induce cell death by inhibiting cystine uptake through
xCT to lead to decreased glutathione production, and a unique programmed cell death
pathway called oxytosis, which was dependent on oxidative stress and ROS production
and was introduced [19]. This laid the prior groundwork for the discovery and proposal of
ferroptosis. Ferroptosis was defined as a new form of programmed cell death by Brent R.
Stockwell in 2012 that expresses the process of iron-dependent cell death in cancer cells [13].
Molecular mechanisms of ferroptosis differ from other major forms of regulated cell death
(RCD) (Table 1). The main biochemical processes of ferroptosis consist of excess iron and
accumulation of ROS in cells, lipid peroxidation, inactivation of xCT and depletion of
glutathione and lipid repair enzyme [20–22].

Table 1. The features of different forms of RCD.

Morphological Features Biochemical Features Common Inspection
Indicators

Ferroptosis

cell membrane plasma membrane integrity

Iron accumulation and
lipid peroxidation

GSH, GPX4, MDA,
SLC7A11, NRF2, ACSL4,

FSP1,LPO
Cell cytoplasm

small mitochondria and
increased mitochondrial

membrane densities

Cell nucleus no obvious alteration

Apoptosis

Cell membrane plasma membrane disruption,

DNA fragmentation
Caspase, Bcl-2,

TUNEL,Annexin-V
JC-1

Cell cytoplasm cell volume reduction

Cell nucleus nuclear volume reduction
chromatin agglutination

Necroptosis

Cell membrane plasma membrane disruption,

Drop in ATP levels RIP1, RIP3
Calcein-AM

Cell cytoplasm generalized swelling of the
cytoplasm and organelles

Cell nucleus
oderate chromatin

condensation and leakage of
cellular constituents

Autophagy

Cell membrane no obvious alteration

Increased lysosomal
activity

LC3, ATG family
proteins(ATG5, ATG7)

Cell cytoplasm
formation of

double-membraned
autolysosomes

Cell nucleus no chromatin agglutination
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2.1. Iron Metabolism

Iron is a basic trace element for various cells to carry out various biological functions.
Dietary iron comes in many forms but is typically classified as either non-heme or heme
iron (Fe2+ complexed with protoporphyrin IX). Non-heme dietary iron exists largely as
ferric salts, which are reduced back to Fe2+ by iron reductase in the intestine. Fe2+ enters
intestinal epithelial cells (IECs) via the brush-border transporter divalent metal transporter
1 (DMT1) and exits through ferroportin 1 (FPN1) in the basolateral membranes [23,24].
Fe2+ is oxidized to Fe3+ by ceruloplasmin (CP) and hephaestin (HP), and Fe3+ combines
with transferrin (Tf) to be transported in the blood [25]. Tf-Fe3+ attaches to the transferrin
receptor (TfR) on the cell membrane and then internalizes to the cell as endosomes [26,27].
Fe3+ is released and reduced to Fe2+ by 6-transmembrane epithelial antigen of the prostate 3
(STEAP3) in a variety of cells; then, Fe2+ enters the cytoplasm via DMT1 on the endosomal
membrane [28,29]. Heme iron is a part of the hemoproteins hemoglobin and myoglobin.
However, the molecular mechanism of heme iron absorption is still unclear. There is some
evidence that ingested heme iron is decomposed by heme oxygenase in intestinal cells,
thus releasing free ferric iron. A large amount of Fe2+ accumulates in the cytoplasm to
form a labile iron pool, and the metabolic activity of Fe2+ has a vital impact on various
biological functions, such as ferroptosis [30,31]. Intracellular iron overload, with H2O2,
triggers the Fenton reaction, inducing the formation of ROS, such as •OH, which cause lipid
peroxidation to provoke ferroptosis [32–34] (Figure 1). Iron responsive element binding
protein 2 (IREB2), as a significant regulator of iron metabolism, may develop sensitivity
to ferroptosis [35–37]. Meanwhile, autophagy can regulate the iron pool by affecting
the recruitment of ferritin to autophagosomes for lysosomal degradation to release free
iron [38–40]. For example, ferritinophagy directly recognizes the ferritin heavy chain 1
(FTH1) by the cargo receptor nuclear receptor coactivator 4 (NCOA4) and then releases iron
by transporting the ferritin complex to autophagosomes for lysosomal degradation [41].
Conversely, reduced intracellular Fe2+ levels could impede the process of ferroptosis. For
instance, erastin-induced ferroptosis was weakened by decreased intracellular Fe2+ because
of the knockout of autophagy-related 5 (ATG5) or autophagy-related 7 (ATG7) [42]. Thus,
the metabolism of iron plays a vital role in ferroptosis.
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2.2. Lipid Metabolism

Lipid peroxidation, a hallmark feature of ferroptosis, is the ultimate executor of fer-
roptosis. ROS generated by the Fenton reaction interact with polyunsaturated fatty acids
(PUFAs) on cellular or organelle membranes to generate toxic phospholipid hydroperoxides
(PLOOHs), thereby inducing ferroptosis [43–45]. Research has shown that some factors,
such as acyl–coenzyme A synthetase long-chain family 4 (ACSL4), lysophosphatidylcholine
acyltransferase 3 (LPCAT3) and lipoxygenases (LOXs), participate in the production of lipid
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peroxidation [46–48]. ACSL4 (as a required lipid metabolism enzyme) and LPCAT3 (as a
class of key enzymes catalyzing the reacylation of lysophospholipids to phospholipids) ac-
tivate free long-chain polyunsaturated fatty acids, promote lysophosphatidylcholine (LPC)
conversion into lecithin, mediate the synthesis of oxidized cell membrane phospholipids,
and subsequently regulate ferroptosis development [49,50]. Meanwhile, ACSL4 esterifies
arachidonic acid (AA) into acyl-coenzyme A (acyl-CoA) for the biosynthesis of PUFAs,
which plays a key role in lipid peroxidation and ferroptosis [51]. LOXs, pivotal regulators
of ferroptosis, may have a vital effect on the initiation of ferroptosis by promoting lipid
autoxidation and predicting ferroptosis sensitivity [47,52]. Therefore, lipid peroxidation in
ferroptosis executes cell death by the destruction of the lipid bilayer on cellular or organelle
membranes (Figure 2a).
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2.3. The xCT and GPX4

Environmental pressure (such as high temperature and hypoxia) can cause iron reac-
tion, so the cell also needs to establish an appropriate mechanism of defense ferroptosis.
The most classic defense way of ferroptosis is the antioxidant axis formed by xCT, glu-
tathione (GSH), and GPX4. The xCT, as a transmembrane protein, consists of light-chain
solute carrier family 7 member 11 (SLC7A11) and heavy-chain solute carrier family 3
member 2 (SLC3A2, CD98hc or 4F2hc). SLC7A11, which is a main functional subunit
of xCT, aims to regulate extracellular cysteine (Cys) into cells and intracellular glutamic
acid (Glu) out of cells, and SLC3A2, as an important subunit, maintains the stability of
xCT by anchoring and stabilizing SLC7A11 [53,54]. Then, Cys generates reduced GSH
with Glu and glycine (Gly) under the catalysis of glutamate cysteine ligase (GCL) and
glutamylcysteine synthetase (GCS) [55,56]. Beclin 1 suppresses xCT activity to promote
ferroptosis by adhering to SLC7A11 directly [57]. GPX4, as a key enzyme in ferroptosis,
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reduces PLOOH to nontoxic phospholipid alcohols (PLOHs) in membranes with GSH to
prevent ferroptosis [58]. The inhibitor 2-cyano-3,12-dioxooleana-1,9 (11)-dien-28-oic acid
(CDDO) prevents the specific degradation of GPX4 via chaperone-mediated autophagy
(CMA) by affecting the interaction between heat shock protein 90 (HSP90) and lysosomes,
which inhibits the ferroptosis of cells [59]. However, the inhibition of CMA is relieved by
inhibiting the mammalian target of rapamycin (MTOR) pathway [60], which may involve
the degradation of GPX4 to promote ferroptosis. Therefore, xCT, GPX4 and GSH could be
regulated and have an important effect on ferroptosis (Figure 2b).

2.4. FSP1 and DHODH

In addition to the classic GPX4 defense pathway, recent studies have identified fer-
roptosis suppressor protein 1 (FSP1) and dihydroorotate dehydrogenase (DHODH) in-
dependent of the GPX4 signaling pathway. They all involve ubiquinone, a metabolite
molecule that exists in both chemically reduced and oxidized states. Ubiquinone (or CoQ)
is a lipid that functions on cell membranes and mitochondrial membranes. FSP1 in the cell
membrane inhibits ferroptosis by reducing ubiquitin to ubiquinol (CoQH2), which acts as a
free radical trapping antioxidant to prevent lipid peroxidation at the cell membrane [61,62].
Similar to the FSP1 system mechanism, DHODH-mediated regulation of panthenol pro-
duction is an effective system that is specifically designed to alleviate lipid peroxidation in
the mitochondria. Mitochondria produce a large amount of ROS in the electron transport
chain located in the inner membrane during oxidative phosphorylation. Lipid peroxidation
occurs when the mitochondrial antioxidant system is damaged and unable to remove ROS.
DHODH is a flavin-dependent enzyme located in the mitochondrial inner membrane and
its main function is to catalyze the fourth step of the pyrimidine biosynthesis pathway [63].
The oxidation of dihydroorotate (DHO) to orotate (OA) simultaneously transfers electrons
to the ubiquitin in the inner mitochondrial membrane for its reduction to ubiquinol. Gan’s
team found that when cells were treated with GPX4 inhibitors, such as RSL3, metabolomic
analysis revealed a significant decrease in N-aminoformyl-aspartate (C-Asp), increase in
Uridine and increase in the synthesis of uridine 5′-monophosphate (UMP) [64]. This sug-
gests a possible relationship between ferroptosis and pyrimidine nucleotide synthesis. By
supplementing intermediate metabolites for pyrimidine synthesis, the authors found that
dihydroorotic acid inhibited RSL3-induced ferroptosis, whereas orotic acid made cells more
sensitive to RSL3. Since DHO and OA are substrates and products of DHODH, respec-
tively, this further confirms that DHODH may be involved in the regulation of ferroptosis.
Interestingly, further studies have revealed the use of the DHODH inhibitor Brequinar
(BQR) to induce ferroptosis in GPX4 low-expression cells, while the high expression of
GPX4, BQR treatment significantly increased the sensitivity of cells to ferroptosis inducers.
As is known, most GBM cell lines have higher expression levels of DHODH and GPX4
compared to normal human astrocyte cytoplasm (NHA) [65]. The research also confirms
that, in the solid tumor with a high expression of GPX4, the combination of ferroptosis
inducer sulfasalazine and DHODH inhibitor can have good therapeutic effect. This finding
provides a new strategy for how to target ferroptosis in glioma therapy.

In general, there are at least three types of iron-death defense systems in cells based
on different subcellular localization: GPX4 in the cytosol and mitochondria, FSP1 in the cell
membrane, and DHODH in mitochondria.

3. Targeting Ferroptosis to Treat Glioma
3.1. Metabolic Pathway

Iron in the brain plays a crucial role in maintaining proper functioning of the central
nervous system through its participation in many cellular activities, such as myelination,
neurotransmitter synthesis, and energy production. The maintenance of this homeostasis
depends on the function of the blood–brain barrier (BBB), which is composed of brain
microvascular endothelial cells (BMVEC), astrocytes, microglia and pericytes. It has long
been thought that the development of the BBB leads to a reduction in iron absorption in
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infancy. However, some evidence has revealed that iron levels in the brain increase with
ageing [66,67]. Additionally, the mechanism of iron uptake into BMVEC is thought to be
primarily via the Tf/TfR1 pathway. Iron was first uptake into BMVEC from blood by TfR1-
mediated endocytosis. Then, the action of an H+-ATPase, the membrane of endocytosomes
reduced the pH of the endocytosomes, resulting in the dissociation of Fe3+ from Tf and
their reduction to Fe2+, which will cross the endosomal membrane by a process mediated
by DMT1. When the PH rises to 7.4, the non-iron-bound Tf (apo-Tf) and TfR1 return to
the luminal membrane where apo-Tf-TfR1 is released into the blood for the next round
of iron uptake [68]. Interestingly, after iron was released into the brain interstitial fluid, it
was unevenly distributed among different cell types in different regions of the brain [69].
Almost all iron transport-related proteins are expressed in glial cells, but not in neurons.

As is known, iron is a cofactor for many enzymes, including ribonucleic acid reductase
(RR), which is an enzyme involved in DNA synthesis. To maintain proliferation, GBM
cells need to increase iron uptake, thereby regulating the expression of proteins involved
in iron uptake. Recently, studies have reported that there are higher free iron levels in
glioma than in other brain tumors, such as meningioma cells and glioblastoma cancer stem
cells [70]. Iron-related gene expression in gliomas, such as TfR1 and TfR2, is different from
that in other brain tumors and normal human brain tissue [71,72]. TfR levels in glioma
sample tissues appear higher than those in meningiomas and other brain tumors in general,
which may be correlated with the high levels of iron in gliomas [73]. In addition, the high
expression of TfR2 not only promotes glioma cell proliferation, but also contributes to the
better sensitivity to temozolomide. The proliferation of glioma cells is attributed to TfR2,
which could be localized in lipid rafts and stimulate the ERK1/ERK2 phosphorylation by
combining with Tf, but the mechanism of TfR2-induced glioma hypersensitivity to temo-
zolomide remains unclear [74]. Therefore, the effect of TfR2 on glioma is still controversial,
and more reports are needed to verify this. Several recent studies have indicated that iron
homeostasis and ferroptosis are also affected by iron-sulfur cluster (ISC) proteins. Loss of
ISC could induce ferroptosis by initiating iron-starvation responses to lead to iron overload
in tumor cells. This mechanism is that ISC synthesis inhibition could activate the iron
regulatory protein (IRP); IRP increases TfR levels and reduces FPN1 production by binding
to target mRNAs, which promotes intracellular excessive iron accumulation [75]. However,
whether ISC has a similar role in glioma requires more evidence.

DMT1 may be related to increased iron levels in glioma cells and is currently a molec-
ular marker in neurodegenerative diseases [76]. In an experimental rat model with C6
glioma cells, propofol inhibits DMT1 expression, tumor cell proliferation and eventually
decreased glioma weight [77]. Additionally, this tumor suppressive effect was further
found to be associated with a significant reduction in the GSH and ROS. However, a study
showed that temozolomide (TMZ) may suppress tumor growth by inducing ferroptosis
by targeting DMT1 expression in glioblastoma cells [78]. These results suggest that DMT1
may affect glioma proliferation by regulating ferroptosis and ROS levels and has been
investigated as a potential therapeutic target. While the STEAP3 protein plays a vital role
in other processes, such as affecting the inflammatory response by regulating the Toll-like
receptor 4-mediated macrophage production of chemoattractant protein-5, interferon-beta
and interferon-induced protein-10 [79,80], it could also have an essential impact on ferrop-
tosis by reducing Fe3+ to Fe2+ [81]. The expression of STEAP3 in glioma cells is higher than
that in normal brain tissues, which could be regarded as a potential prognostic marker and
reduce the overall survival of patients with glioma [82,83]. In addition, STEAP3 not only
regulates ferroptosis by enhancing TfR expression and inducing mesenchymal transition,
but also has a direct influence on glioma cell proliferation, invasion, and sphere formation
in vitro and on glioma growth in vivo [84]. Poly(C)-binding protein 2 (PCBP2), as a signifi-
cant factor in iron metabolism and posttranscriptional and translational regulation, possibly
affects the process of ferroptosis. While PCBP2 is upregulated in glioma tissues and cell
lines, the development and proliferation of glioma are suppressed when it is knocked
down or when its inhibitor microRNA-214 is applied [85]. The higher levels of ferritin
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detected in the serum of patients with tumors possibly predict that the prognosis of these
patients will deteriorate more, which indicates that iron metabolism plays a necessary role
in the progression and therapy of tumors. Ferritins in the serum and cerebrospinal fluid
of patients with gliomas, which could come from glioma cells, were higher than those
of patients without gliomas [86]. Significant evidence has suggested that nuclear factor
erythroid-related factor 2 (NRF2) acts as a key regulator of antioxidant responses, which
favors cancer cell growth and leads to increased drug resistance in tumor cells [87–89].
NRF2 mainly targets heme oxygenase-1 (HO-1) to reduce the levels of ROS and degrade
prooxidants [90]. Research has shown that neuronal precursor cell-expressed developmen-
tally downregulated 4-1 (NEDD4-1) induces resistance to TMZ treatment in gliomas via
activating the AKT/NRF2/HO-1 axis [91]. TMZ also induces ferroptosis by inhibiting
the NRF2/HO-1 signaling pathway in gliomas [78]. NRF2/HO-1axis appears to play an
important role in glioma therapy. In addition, triptolide and brusatol, as NRF2 inhibitors,
suppresses potently IDH1-mutated glioma cells by targeting the NRF2-driven glutathione
synthesis pathway to induce lipid peroxidation [92,93]. The upregulated cystathionine-
γ-lyase (CSE) in IDH1-mutant astrocytomas promotes cell survival by maintaining GSH
to drive antioxidant defense, and whether it is related to the NRF2 needs further verifi-
cation [94]. Therefore, ferroptosis in gliomas could be associated with the regulation of
NRF2.

3.2. The xCT Pathway

Cysteine deprivation is an important inducer of ferroptosis and greatly contributes
to the ferroptosis in GBM [95,96]. The study conducted by Takeuchi et al., including
40 patients with gliomas, concluded that high levels of xCT could predict a short progression-
free survival and a low overall survival [97]. Specifically, the high levels of xCT possibly
promote glioma cells to grow and survive by enhancing mitochondrial biogenesis and
adenosine tri-phosphate (ATP) generation, as well as by reducing the accumulation of
ROS [98]. These findings suggest that we can inhibit system Xc-induces ferroptosis in
glioma. Radiation, chemotherapy (such as TMZ) and immunotherapy could lead to the
activation of ferroptosis by downregulating the expression of xCT to induce the death
of glioma cells [99–101]. Some widely used clinical drugs have also been applied to the
treatment of gliomas by managing xCT and sequentially regulating ferroptosis. Gao et al.
found that ibuprofen could enhance ferroptosis by depleting the expression of xCT and
GPX4 to inhibit the growth of glioma cells [102]. Another study found that sulfasalazine
could stimulate ferroptosis by inhibiting the activity of xCT and sequentially decreasing
the formation of GSH strengthened the effect of radiation therapy to increase the overall
survival of mice [103]. In addition, tumor suppressor P53 is a frequently mutated gene
in various cancers, including glioma. P53 suppresses glioma growth by the induction of
ferroptosis [104]. Notably, P53 possibly inhibits the activity of xCT by directly depleting
the level of SLC7A11, thus promoting the ability of ferroptosis to suppress the growth of
glioma cells [105]. However, an interesting phenomenon is that, in glucose deprivation
environments, the treatment of epidermal growth factor will upregulate xCT in glioma cell
lines, leading to tumor death [106–109].

In summary, xCT could play a dual role in the development and treatment of gliomas,
so further studies are needed to express the practical effect of xCT in gliomas.

3.3. GPX4 Expression

Recently, a study revealed that when GPX4 is knocked down or reacts with its in-
hibitors, ferroptosis is activated to induce the death of glioma cells by accumulating lipid
peroxides to damage the cell membrane and organelle membrane [110]. Some ferroptosis in-
ducers, such as plumbagin, triggers ferroptosis by inducing GPX4 degradation via the lyso-
some pathway and inhibiting glioma growth [111]. In addition, it has been demonstrated
that certain traditional Chinese herbs induce ferroptosis in glioma. For instance, capsaicin,
as a potential anticancer ferroptosis inducer, suppresses the proliferative effects of glioma
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cells by increasing ACSL4 levels and decreasing GPX4 levels to induce ferroptosis [112].
Dihydrotanshinone I (DHI), which boosted ferroptosis by decreasing the expression level
of GPX4 and increasing that of ACSL4, inhibited the growth and proliferation of glioma
cells [113]. The curcumin analog ALZ003 inhibited the development and growth of glioma
cells and enhanced their sensitivity to temozolomide treatment by promoting the androgen
receptor (AR) ubiquitination and downregulating GPX4 to highlight ferroptosis in vitro,
which improved the survival of experimental rodents in vivo [114]. Additionally, the natu-
ral compound artesunate (ART), as an antimalarial drug, was previously demonstrated
and ART also exhibited an anti-tumor effect and was a specific inducer of ferroptosis in
a number of different types of cancer, including glioma. It inhibits the proliferation of
glioma cells in vitro and in vivo by promoting GSH depletion and low GPX4 expression
to increase ferroptosis [115]. In another study, dihydroartemisinin (DHA), as an inhibitor,
could have the prospect of treating glioma because of its role in promoting apoptosis and
autophagy and reducing the invasion ability of glioma cells [116,117]. Specifically, DHA
could promote the development of ACSL4 and xCT, but significantly downregulated GPX4
levels, initiating the death of glioma cells by maintaining ferroptosis [118]. Beyond the
above stated aspects, there are many new nanomaterials involved. It was reported that
the biomimetic nanoparticles (PIOC@CM NPs) increased the level of ROS, depleted GSH
upon ultrasonic irradiation and attenuated the activity of GPX4 to kill glioma C6 cells by
activating ferroptosis [119]. Iron oxide nanoparticles loaded with paclitaxel (IONP@PTX)
not only inhibited the migration and invasion of glioma cells by enhancing ions, ROS
and lipid peroxidation, but also promoted the autophagy-dependent ferroptosis pathway
by decreasing the levels of GPX4 in vitro [120]. Above all, these findings provide some
new drug treatment options for glioma and demonstrate that GPX4 degradation promotes
ferroptosis in glioma.

3.4. Tumor Immune Microenvironment

As key regulatory components, immune cells and immune-related molecules have
been shown to play pivotal roles in the development and treatment of glioma cells. Accu-
mulating evidence indicates that ferroptosis not only promotes tumor cell death, but also
affects the tumor immune microenvironment (TIME) [121,122] (Figure 3). As key regula-
tory components, immune cells and immune-related molecules have been shown to play
pivotal roles in the development and treatment of glioma cells. The main tumor-associated
macrophages (TAMs) are the M1-polarized subtype with proinflammatory and antitu-
moral functions and the M2-polarized subtype with anti-inflammatory and protumoral
effects [123–125]. The M2 subtype plays a vital role in the TIME by excreting extracellular
matrix (ECM) components, promoting T-cell anergy and stimulating angiogenesis [126,127].
In addition, TAMs may increase the tumorigenicity and chemoresistance of glioma cells
by revising the stromal and blood vessel architecture [128]. Myeloid-derived suppressor
cells (MDSCs), as myeloid-derived progenitor cells that accumulate in the TIME of glioma,
suppress the proliferation and activity of T cells by releasing inducible nitric oxide synthase,
ROS, cyclooxygenase-2 and transforming growth factor-β [129,130]. The regulatory T (Treg)
cells accumulating in the TIME of glioma could inhibit immune surveillance and attack by
excreting IL-10, IL-35 and TGF-β, which possibly predicts the poor prognosis of patients
with gliomas [131–133]. Neutrophils are able to not only inhibit the antiangiogenic therapy
of other tumors, but also predict the poor prognosis of patients with gliomas [134].
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Figure 3. Role of ferroptosis in glioma immunity. (a) CD8+ T cells release IFNγ to activate INFR
(which inhibits SLC7A11 transcription through STAT1) to promote tumour cell ferroptosis. TGFβ1
released by macrophages induces the downregulation of system xCT mediated by SMAD proteins,
thereby triggering lipid ROS-mediated ferroptosis via the GSH-GPX4 axis. In turn, ferroptotic
glioma cells release DAMPs (such as HMGB1 and AA) to promote the recruitment and activation
of immune cells. (b) In contrast, DAMPs, such as HMGB1, KRAS-G12D and 8-OHG, could affect
the function of macrophages in the tumour microenvironment. In particular, KRAS-G12D binds
AGER on the cell surface of macrophages to trigger M2 macrophage polarization, which might limit
antitumour immunity. IFN-γ, interferon-γ; INFR, interferon receptor; STAT1, signal transducer and
activator of transcription 1; GSH, glutathione; GPX4, glutathione peroxidase 4; DAMPs, damage-
associated molecular patterns; HMGB1, high mobility group protein B1; AA, arachidonic acid; 8-OHG,
8-hydroxyguanosine; AGER, advanced glycosylation end productspecific receptor.

However, the regulation of ferroptosis in the TIME appears to show the treatment limi-
tations of glioma. Due to the reducing supply of oxygen and nutrients, as well as promoting
acidosis in the TIME [135,136], glioma cells will survive due to their own tremendous plas-
ticity [137–139], but immune cells cannot adapt and lose the effect [140,141]. In addition,
the function of immune cells could be inhibited due to the cytokines secreted by glioma
cells and immune cells, which may express ferroptosis [142,143]. The Treg cells that im-
pede immune surveillance of tumors, an immunosuppressive subset of CD4+ T cells, are
resistant to ferroptosis, which is likely due to GPX4 induction in activated Treg cells [144].
A study has shown that KRAS-G12D can be released into exosomes by pancreatic cancer
cells upon ferroptosis and taken up by macrophages via advanced glycation end products
(AGEs), which ultimately stimulate tumor growth through the polarization of macrophages
to the M2 phenotype. In addition, conditional deletion of Gpx4 in the pancreas of mice
promoted mutant Kras-driven tumorigenesis through ferroptotic injury-induced DNA
release and subsequent STING-activated inflammation in macrophages [12]. Previous ex-
periments and database analysis showed that the infiltration of Treg cells, neutrophils, and
M2-polarized subtype macrophages in the TIME was significantly increased at high levels
of ferroptosis [121]. Similarly, MDSCs with immunosuppressive functions exhibit resis-
tance to ferroptosis due to an inhibitory drive on the p53-heme oxygenase 1 (HMOX1) axis
mediated by N-acylsphingosine aminohydrolase 2 (ASAH2). In addition, large amounts
of lipid peroxides were detected in tumor-derived CD8+ T cells, but not in lymph node-
derived CD8+ T cells, which suggested that ferroptosis may be the metabolic vulnerability
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of tumor-specific CD8+ T cells. In addition, ferroptosis inducers (especially GPX4 inhibitors)
may reduce antitumour immunity and promote tumor development by impairing CD8+

T cells and follicular helper T cells (Tfhs) [144]. Under these conditions, ferroptosis may
promote tumor growth by suppressing antitumour immunity. These advances indicate that
ferroptosis has great potential to enhance the immunotherapy in cancer treatment [145,146].

4. Challenges of Ferroptosis in Glioma

While ferroptosis has a significant effect on the growth and treatment of gliomas,
the mechanism needs to be further explored [147]. Most RCD effector molecules are pro-
teases or porins, for example, caspases as well as mixed lineage kinase domain-like protein
(MLKL) are involved in apoptosis and necrosis, respectively, and GasderminD partici-
pates in pyroptosis [148–150]. PLOOH is currently regarded as the ultimate executor of
ferroptosis; however, whether effector molecules still exist downstream of PLOOH requires
more exploration. [145]. Cytoplasmic GPX4 detoxifying lipid peroxides accumulated at
the plasma membrane were unable to inhibit mitochondrial lipid peroxidation-induced
ferroptosis in GPX4 knockout cells treated with DHODH inhibitors, which indicated that
additional ferroptosis enforcement mechanisms may exist downstream of cytoplasmic lipid
peroxidation [144]. The interaction between ferroptosis and other RCDs is also unclear.
Some features of ferroptosis compared to other RCDs are not unique; for example, ferrop-
tosis signals such as lipid peroxidation and regulators such as GPX4 and SLC7A11 can
also regulate other types of RCDs. Ferroptosis may also modulate the TIME by interacting
with other RCDs, thereby affecting the development and treatment of gliomas. In addition,
ferroptosis currently has limitations in the diagnosis and treatment of gliomas. Currently,
some targets, especially GPX4, ACSL4, P53 and FTH1 [151,152], are regarded as biomarkers,
but they are not still a gold standard. Some significant biomarkers that can accurately
predict the tumor response to ferroptosis induction are urgently needed, especially those
that can be detected directly in patient blood, urine, feces and tumor tissue. It is also
not clear what types of patients with gliomas are more sensitive to ferroptosis treatments.
Three criteria, including iron levels, gene expression and mutations, can be combined to
assess which patients are most likely to benefit from ferroptosis; for example, SLC7A11
inhibitors may be particularly effective against certain types of gliomas that overexpress
this target. Finally, ferroptosis plays a dual role in the development and treatment of tumors.
Ferroptosis promoted glioma cell death, but also reduced the treatment effect of gliomas by
enhancing the levels of Treg cells, neutrophils, and M2-polarized subtype macrophages in
the TIME to suppress antitumour immunity [121]. Tumor cells sacrificing themselves could
also get the surrounding tumor cells to be in a stress state and finally avoid ferroptosis by
secreting cytokines [145]. What substances are released by tumor cells after ferroptosis and
the effects of these signals need to be further studied [153,154]. More evidence is needed
to confirm whether the cytokines released by cells after ferroptosis enable surrounding
glioma cells to evade immune surveillance by regulating TIME [155,156].

5. Conclusions and Future Perspectives

Ferroptosis, as a new programmed cell death mode, is different from other RCDs and
is the result of iron-dependent lipid peroxidation accumulation. In this review, we focused
on the regulatory mechanism of ferroptosis and found that ferroptosis plays multiple
roles in the occurrence and development of glioma. Ferroptosis not only induces glioma
cell death but also promotes glioma cell growth, invasion, migration, and resistance by
regulating TAMs, MDSCs, Treg cells, neutrophils and CD8+ T cells in the TIME. Notably,
studies have shown that some new compounds (such as strychnine, dihydroartemisinin
and ibuprofen) are capable of inducing ferroptosis in gliomas, and ferroptosis-induced
chemosensitizers, including erastin, can be used in combination with various drugs (such as
cisplatin, temozolomide and cytarabine), which may provide new therapeutic opportunities
for glioma treatment. However, poor BBB penetration reduces targeting tumor ability,
and potential compensatory mechanisms hinder the effectiveness of ferroptosis agents in
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glioma therapy. It has been suggested that designing nanoengineered systems to improve
the targeted delivery of drugs can overcome these issues, which further enhances the
effectiveness of glioma treatment [157–159] (Table 2). Overall, although ferroptosis has
great advantages in glioma treatment, we still need multidisciplinary cooperation to further
explore the pros and cons of targeting ferroptosis and to evaluate its potential value in
clinical applications.

Table 2. Various NP-based drug delivery systems for the potential treatment of glioma.

Nanocarrier Coating Outcome Reference

Cisplatin-Fe3O4
/Gd2O3

LF + RGD dimer Increased accumulation in tumor
Released Fe2+ and Fe3+ [160]

Iron oxide NIR-fluorescent silica Visualized tumor-associated macrophage populations [161]
PEG Doxorubicin Increased drug diffusion across BBB [162]

PEtOz-SS-PCL micelle Doxorubicin Increased drug diffusion across BBB [163]
Liposome Temozolomide Enhanced antitumor activity [164]

OX26-PLGA Temozolomide Enhanced permeability
Improved cellular uptake [165]

Fa-PEG-PCL Luteolin Prolonged survival time
Enhanced antitumor activity [166]

Anti-miR-21-PLA Temozolomide Increased apoptotic cell death [167]
Transferrin-PEG-PLA Resveratrol Improved drug accumulation [168]

Albumin Paclitaxel and
fenretinide

Increased drug diffusion across BBB
Increased survival rate [169]
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Abbreviations

•OH Hydroxyl radicals
15-LOX 15-lipoxygenase
15-LOX-1 15-lipoxygenase-1
AA Arachidonic acid
ACSL4 Acyl–coenzyme A synthetase long-chain family 4
acyl-CoA Acyl-coenzyme A
AGEs Advanced glycation end products
ALOXE3 Arachidonate lipoxygenase 3
AR Androgen receptor
ART Artesunate
ASAH2 N-acylsphingosine aminohydrolase 2
ATG5 Autophagy related 5
ATG7 Autophagy related 7
ATP Adenosine triphosphate
BBB Blood-brain barrier
CDDO 2-cyano-3,12-dioxooleana-1,9 (11)-dien-28-oic acid
CMA Chaperone-mediated autophagy
CNS Central nervous system
CP Ceruloplasmin
Cys Cysteine
DHA Dihydroartemisinin
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DHI Dihydrotanshinone I
DHODH Dihydroorotate dehydrogenase
DMT1 Divalent metal transporter 1
ECM Extracellular matrix
Fe2+ Ferrous cations
Fe3+ Ferric cations
FTH1 Ferritin heavy chain 1
FXR1 Fragile-X mental retardation autosomal 1
GCL Glutamate cysteine ligase
GCS Glutamylcysteine synthetase
Glu Glutamic acid
Gly Glycine
GPX Glutathione peroxidase
GPX4 Glutathione peroxidase 4
GSH Glutathione
GSSG Glutathione disulfide
H2O2 Hydrogen per-oxide
HMOX1 P53-heme oxygenase 1
HP Hephaestin
HSP90 Heat shock protein 90
HSPA5 Heat shock protein family A member 5
IECs Intestinal epithelium cells
IL-13Rα2 Interleukin receptor-13alpha2
IONPs Iron oxide nanoparticles
IREB2 Iron responsive element binding protein 2
LOXs Lipoxygenases
LPC Lysophosphatidylcholine
LPCAT3 Lysophosphatidylcholine acyltransferase 3
MDSCs) Myeloid-derived suppressor cells
MLKL Mixed lineage kinase-like
MTOR Mammalian target of rapamycin
NADPH Nicotinamide adenine dinucleotide phosphate
NCOA4 Nuclear receptor coactivator 4
OS Overall survival
PCBP2 Poly(C)-binding protein 2
PE-PUFA Phosphatidylethanolamine polyunsaturated fatty acid
PLOHs Phospholipid alcohols
PLOOHs Phospholipid hydroperoxides
PUFAs Polyunsaturated fatty acids
RCD Regulated cell death
ROS Reactive oxygen species
SLC3A2 Solute carrier family 3 member 2
SLC7A11 Solute carrier family 7 member 11
STEAP3 6-transmembrane epithelial antigen of the prostate 3
STING Stimulator of interferon gene
TAMs Tumor-associated macrophages
Tf Transferrin
Tfh Follicular helper T cell
TfR Transferrin receptor
TIME Tumor immune microenvironment
TMZ Temozolomide
Treg Regulatory T
VEGF Vascular endothelial-derived growth factor
WHO World Health Organization
xCT Cysteine/glutathione antiporter system Xc−
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