
Minireview

Ferroptosis-Induced Endoplasmic Reticulum
Stress: Cross-talk between Ferroptosis and
Apoptosis
Young-Sun Lee1, Dae-Hee Lee2,3, Haroon A. Choudry1, David L. Bartlett1, and
Yong J. Lee1

Abstract

Since its discovery in 2012, ferroptosis has been well char-
acterized by the accumulation of lipid peroxides due to the
failure of glutathione-dependent antioxidant defenses. It is
known as an iron-dependent form of programmed cell death,
which is distinct from other forms of cell death such as
apoptosis and necrosis. Nonetheless, little is known about the
ferroptotic agent-induced endoplasmic reticulum (ER) stress
response and its role in cell death. Recent studies reveal that the
ferroptotic agent-induced ER stress response plays an impor-
tant role in the cross-talk between ferroptosis and other types
of cell death. Ferroptotic agents induce the unfolded protein

response and subsequently ER stress–mediated activation
of the PERK–eIF2a–ATF4–CHOP pathway. CHOP (C/EBP
homologous protein) signaling pathway–mediated p53-inde-
pendent PUMA (p53 upregulated modulator of apoptosis)
expression is involved in the synergistic interaction between
ferroptosis and apoptosis. This review highlights the recent
literature on ferroptotic and apoptotic agent interactions
through the ER stress–mediated PERK–eIF2a–ATF4–CHOP–
PUMA pathway and implicates combined treatment to effec-
tively enhance tumoricidal efficacy as a novel therapeutic
strategy for cancer. Mol Cancer Res; 16(7); 1073–6. �2018 AACR.

Introduction
Ferroptosis

Ferroptosis was coined in 2012 by the laboratory ofDr. Brent R.
Stockwell (1). It is a unique iron-dependent formof nonapoptotic
regulated cell death (1). Ferroptosis is considered different from
other types of cell death in various aspects. For example, ferrop-
tosis does not result in morphologic changes like the loss of
plasma membrane integrity that occurs during necrosis, the
formation of double membrane–layered autophagic vacuoles
that occurs during autophagy, or the chromatin condensation
that occurs during apoptosis; instead, it manifests primarily as
increased mitochondrial membrane density and mitochondrial
shrinkage. Nevertheless, few studies have reported an interrela-
tionship between ferroptosis and apoptosis: switching apoptosis
to ferroptosis (2) and ferroptotic agent-mediated sensitization of
apoptosis (3).

Synthetic lethal screening studies have identified several genes
responsible for ferroptosis, including those involved in lipid and

amino acid metabolism (4–6). Chemical compounds inhibiting
these genes trigger ferroptosis: the glutathione S-transferase inhib-
itor artesunate (ART), the glutathione-dependent antioxidant
enzyme glutathione peroxidase 4 (GPX4) inhibitor (1S, 3R)-
RSL3, the glutathione (GSH) synthesis inhibitor buthionine
sulfoximine (BSO), and the Naþ-independent cystine–gluta-
mate Xc

� antiporter inhibitors sorafenib and erastin (1, 7–11).
In the presence of ferroptosis-inducing agents, the iron storage
protein ferritin and/or the ferritinophagy cargo receptor
NCOA4 (nuclear receptor coactivator 4) are degraded via ferri-
tinophagic degradation and release ferrous iron, which gener-
ates reactive oxygen species (ROS) through the Fenton reaction
and subsequently induces lipid peroxidation (12, 13). The
accumulation of lipid peroxidation and depletion of plasma
membrane polyunsaturated fatty acids have been well known
to result in this lethal event (1, 4, 14, 15). Genetic variation and
complexity of cancer cells affect the pharmacodynamic
response of ferroptosis-inducing agents. Functional p53 expres-
sion or high-level RAS–RAF–MEK pathway activity may elevate
the generation of ROS through inhibition of cystine uptake or
involvement of mitochondrial voltage-dependent anion chan-
nel 2/3 (VDAC2/3), respectively, and sensitize cancer cells to
ferroptosis (16–21). Conversely, iron chelators (e.g., desferriox-
amine mesylate and deferoxamine) and lipid peroxidation
inhibitors (e.g., zileuton, ferrostatin, and liproxstatin) are
known to suppress ferroptosis and block pathologic cell death
events in the brain, kidney, and other tissues (10, 22–25).

Ferroptosis-induced ER stress
When endoplasmic reticulum (ER) lumenal conditions are

altered or chaperone capacity is overwhelmed due to alterations
in redox state, calcium levels, or failure to posttranslationally
modify secretory proteins, the cells activate the unfolded protein
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response (UPR) to these ER stresses (26). ER stress is sensed by
three upstream signaling proteins: IRE1 (inositol requiring pro-
tein-1), ATF6 (activating transcription factor-6), and PERK
[protein kinase RNA (PKR)-like ER kinase]. The activation of
these three signaling pathways induces apoptosis (26, 27).

System Xc
� is an amino acid antiporter that typically med-

iates the exchange of extracellular cystine for intracellular
glutamate (28). Previous studies have shown that inhibition
of cystine-glutamate exchange by ferroptotic agents leads to
activation of an ER stress response and upregulation of the
CHAC1 (glutathione-specific gamma-glutamylcyclotransferase
1) gene (29, 30). The ER stress indicator ATF4 (activating
transcription factor 4) is known to be a basic leucine zipper
transcription factor that regulates several UPR target genes (31).
It is well known that the ER stress response mediated by the
PERK–eIF2a (eukaryotic initiation factor 2a)–ATF4 pathway is
involved in the regulation of the expression of several target
genes such as CHOP [C/EBP (CCAAT-enhancer-binding pro-
tein) homologous protein; ref. 32]. Data from microassay
studies reveal that the ferroptotic agent ART promotes the
expression of ATF4-dependent genes such as CHOP, TRIB3,
and ASNS (Fig. 1). Previous studies show that CHOP binds to
the promoter of the proapoptotic protein PUMA (p53 upregu-
lated modulator of apoptosis) during ER stress and induces
PUMA expression (33). CHOP also induces several other proa-
poptotic proteins such as GADD34 (growth arrest and DNA
damage–inducible protein), ERO1a (ER, oxidoreductin-1a),
Bim [Bcl-2 (B-cell lymphoma 2)-like protein 11], and NOXA
(Latin for damage; ref. 34). The ferroptotic agent ART induces
PUMA expression, but not NOXA or BIM expression (3).
Interestingly, ferroptotic agent–induced PUMA expression does
not induce apoptosis (3). These studies suggest that ferroptosis
and apoptosis are antagonistic.

When ferroptosis meets apoptosis: TRAIL-induced apoptosis
and synergistic interaction between ferroptotic agent and
TRAIL

Tumor necrosis factor–related apoptosis-inducing ligand
(TRAIL) induces apoptosis through initiating the extrinsic path-
way by binding to its respective death receptors (DR) such as DR4
andDR5 (Fig. 2). Ligation of TRAIL toDRs results in trimerization
ofDRs and leads to the recruitment of Fas-associating proteinwith
death domain (FADD) and procaspase-8 and then the formation
of the death-inducing signaling complex (DISC; ref. 35). Procas-
pase-8 is activated through two cleavage events at the DISC (36).
Activated caspase-8 leads to further activation of downstream
executioner caspase-3, -6, and -7, which culminates in apoptotic
death (37). Activated caspase-8 also cleaves a proapoptotic Bcl-2
homology (BH3) interacting-domain death agonist (Bid) into
truncated Bid (tBid), which translocates to the mitochondria and
induces insertion and oligomerization of Bax (Bcl-2–associated X
protein) and Bak (Bcl-2 homologous antagonist killer; refs. 38,
39). Insertion of homo-/hetero-oligomerized Bax and Bak into
the mitochondrial outer membrane culminates in pore forma-
tion, membrane permeabilization, and depolarization of the
mitochondria, which leads to cytochrome c release (40, 41).
Released cytochrome c binds to Apaf1 (apoptosis signal-regulat-
ing kinase) and facilitates the formation of the apoptosome,
which activates caspase-9 and subsequently caspase-3 (42).
Recent studies reveal that TRAIL-induced cytotoxicity can be
modulated by various agents—not only chemotherapeutic drugs
(43–45), ionizing radiation (46), other cytokines (47), andmatrix
metalloprotease inhibitors (48), but also ferroptotic agents (3).
Synergistic interaction between ferroptotic agents and the apo-
ptotic agent TRAIL may be mediated through ER stress–induced
p53-independent PUMA expression (ref. 3; Fig. 2). Previous
biochemical studies indicate that PUMA induces apoptosis by

Figure 1.

Microarray assay for detection of ART-induced gene
expression. Human colon cancer HCT116 cells were treated
with 50 mmol/L ART for 24 hours and triplicate Illumina gene
expression microarrays were performed with BeadArray
microarray technology.
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activating the multidomain proapoptotic protein Bax and/or Bak
through its interaction with antiapoptotic Bcl-2 family members
such as Bcl-2 (B-cell lymphoma 2) and Bcl-xL (B-cell lymphoma-
extra-large), thereby triggering mitochondrial dysfunction, cyto-
chrome c release, and caspase activation (49).

Conclusion
Ferroptosis is a recently recognized form of programmed cell

death that is dependent on iron and characterized by the accu-
mulation of lipid peroxidation through generation of ROS by the
Fenton reaction. It is considered genetically and biochemically
distinct from other forms of regulated cell death. However,
emerging evidence suggests that ferroptosis often shares common
pathways with other types of cell death. In light of recent studies,
ferroptotic agents induce ER stress and elevate expression of the
proapoptotic molecule PUMA through the ER stress–mediated
PERK–eIF2a–ATF4–CHOP pathway without inducing apoptosis.
Ferroptotic agent–induced PUMA plays an important role in the
cross-talk between ferroptosis and apoptosis. Much work is still

needed to understand how ferroptotic agent–induced PUMA
sustains a biochemically inactive state during treatment with
ferroptotic agent alone. Furthermore, such studies should exam-
ine how PUMA switches from an inactive to an activate state
during combinatorial treatment with ferroptotic agent and the
apoptotic agent TRAIL.
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Figure 2.

Schematic diagram of ferroptotic agent–induced ER stress and its role in the interplay between ferroptosis and apoptosis.
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