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Abstract

Background: Ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced magnetic resonance imaging

(MRI) can detect tissue-resident macrophage activity and identify cellular inflammation. Clinical studies using this

technique are now emerging. We aimed to report a range of normal R2* values at 1.5 and 3 T in the myocardium

and other tissues following ferumoxytol administration, outline the methodology used and suggest solutions to

commonly encountered analysis problems.

Methods: Twenty volunteers were recruited: 10 imaged each at 1.5 T and 3 T. T2* and late gadolinium enhanced

(LGE) MRI was conducted at baseline with further T2* imaging conducted approximately 24 h after USPIO infusion

(ferumoxytol, 4 mg/kg). Regions of interest were selected in the myocardium and compared to other tissues.

Results: Following administration, USPIO was detected by changes in R2* from baseline (1/T2*) at 24 h in myocardium,

skeletal muscle, kidney, liver, spleen and blood at 1.5 T, and myocardium, kidney, liver, spleen, blood and bone at 3 T

(p < 0.05 for all). Myocardial changes in R2* due to USPIO were 26.5 ± 7.3 s-1 at 1.5 T, and 37.2 ± 9.6 s-1 at 3 T (p < 0.0001

for both). Tissues showing greatest ferumoxytol enhancement were the reticuloendothelial system: the liver, spleen and

bone marrow (216.3 ± 32.6 s-1, 336.3 ± 60.3 s-1, 69.9 ± 79.9 s-1; p < 0.0001, p < 0.0001, p = ns respectively at 1.5 T, and

275.6 ± 69.9 s-1, 463.9 ± 136.7 s-1, 417.9 ± 370.3 s-1; p < 0.0001, p < 0.0001, p < 0.01 respectively at 3 T).

Conclusion: Ferumoxytol-enhanced MRI is feasible at both 1.5 T and 3 T. Careful data selection and dose administration,

along with refinements to echo-time acquisition, post-processing and analysis techniques are essential to ensure reliable

and robust quantification of tissue enhancement.

Trial registration: ClinicalTrials.gov Identifier - NCT02319278. Registered 03.12.2014.
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Background

Iron oxide nanoparticles are a class of magnetic reson-

ance imaging (MRI) contrast agents that are generating

interest as a method of detecting tissue inflammation.

Historically, these nanoparticles were initially used for

gastrointestinal, reticuloendothelial system and lymph

node imaging [1–3], and subsequently in hepatic and

cardiac imaging [4–7]. Recently however, it is in their

use as an MRI contrast agent for detecting tissue-

resident macrophages that clinical applications are now

emerging [8–15].

T2* MRI has been successfully used for over a decade

in diagnosing and grading severity of iron accumulation

in transfusion-dependent thalassaemia major, and has

been instrumental in guiding therapy that improves

prognosis, and allows serial disease monitoring [16, 17].

T2* MRI in the assessment of iron accumulation is easily

quantifiable, well validated, highly reproducible, clinically

robust, and is achievable in a single breath hold [18–22].
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Ultrasmall superparamagnetic particles of iron oxide

(USPIO) consist of an iron oxide core surrounded by a

carbohydrate or polymer coating. These particles can ex-

travasate through damaged capillaries, where they are

engulfed and concentrated by tissue-resident macrophages

[23]. Gradient echo T2*-weighted (T2*W) sequences are

highly sensitive to magnetic field inhomogeneities such as

susceptibility artifacts due to the presence of iron, includ-

ing USPIO. Accumulation of USPIOs in macrophages can

be quantified and visualized using T2*W MRI [8, 9] and

calculation of, and observing the reduction in, T2*

relaxation time due to the presence of iron. Thus USPIO-

enhanced MRI can detect tissue-resident macrophage ac-

tivity and identify localized cellular inflammation within

tissues.

In this present study we aimed to observe and quantify

the distribution ferumoxytol enhancement following

intravenous administration at 1.5 and 3 T MRI and es-

tablish a range of normal values for healthy myocardium

and other tissue. We also aimed to develop our method-

ology and describe commonly encountered problems in

T2* image analysis of USPIO.

Methods

This was an open-label observational multi-centre

cohort study using human volunteers recruited as part

of a larger trial, recruiting patients with cardiac inflam-

mation. The study was performed in accordance with

the declaration of Helsinki, the approval of the Scotland

A research ethics committee, and the written informed

consent of all participants.

Subjects

Participants were aged over 18 years of age. Exclusion

criteria were contraindication to MRI or ferumoxytol

infusion, any systemic inflammatory comorbidity (eg

rheumatoid arthritis), renal failure (estimated glomerular

filtration rate <30 mL/min), pregnancy, breastfeeding

and women of child-bearing age not ensuring reliable

contraception.

Magnetic resonance imaging

MRI was performed using 3 T and 1.5 T scanners (Magne-

tom Verio and Avanto respectively, Siemens Healthcare

GmbH, Erlangen, Germany), with dedicated cardiac array

coils. All images were acquired using electrocardiogram-

gated breath-hold imaging. Routine steady state free preces-

sion (TrueFISP) sequences were used to acquire long-axis

and short-axis images of the heart. Standard cardiac slice

widths (6-mm width with 4-mm gap) and 8 echo times

(2.1–17.1 ms range) with matrix size of 256 × 115 were ac-

quired in order to generate T2* maps. The in-plane reso-

lution differed as required for larger or smaller subjects;

generally, a field of view of 400 × 300 mm was used with an

in-plane resolution of 2.6 × 1.6 mm. T2* relaxation maps

were generated before and approximately 24 h after admin-

istration of USPIO.

Immediately after the baseline T2* and SSFP cine im-

aging, breath-held inversion enhancement images were

acquired following an intravenous administration of gado-

linium contrast medium (0.1 and 0.15 mmol/kg at 3 T and

1.5 T respectively; Gadovist, Bayer Plc, Germany).

Fig. 1 MRI protocol

Table 1 Participant characteristics

1.5 T 3 T

Number 9 10

Male;Female 3:6 4:6

Age (years) 52 [45.5–61.5] 50 [45.25–53]

Body-mass Index (kg/m2) 22.9 [20.1–26.9] 25.9 [22.5–29.4]

Ejection Fraction (%) 63.6 ± 4.9 61.1 ± 4.1

N (%), mean ± SD, or median [interquartile range]
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Optimal inversion time (TI) was determined on a slice-by-

slice basis using standard late-enhancement TI-scout

protocols. The inversion-recovery late-enhancement

short-axis slices were acquired using similar slice positions

to the myocardial T2* imaging. The T2* acquisitions also

included imaging of the liver, spleen and spine to allow

quantification of USPIO accumulation within organs of

the reticuloendothelial system.

USPIO

Intravenous infusion of USPIO (ferumoxytol, 4 mg/kg;

Rienso®, Takeda Italia, Italy) was performed immediately

following the baseline magnetic resonance scan over at

least 15-min using a concentration of 2–8 mg/mL, di-

luted in 0.9 % saline or 5 % dextrose. Hemodynamic

monitoring was conducted throughout.

Study protocol

Volunteers received 2 MRI scans approximately 24 h

apart (Fig. 1).

Image analysis

All T2*-weighted multi-gradient-echo images for each pa-

tient were analyzed using Circle CVI software (Circle

CVI42, Canada). Regions of interest (ROI) were drawn in

the heart using standard cardiac segmentation [24], and

panmyocardial values averaged using segments 1–16. Fur-

ther ROI were drawn in skeletal muscle, kidney, liver,

spleen, blood pool (from LV cavity) and bone marrow.

An experimentally determined threshold used in previ-

ous work [8] for the coefficient of determination (r2 >

0.85) was used to exclude data that did not have an ac-

ceptable exponential decay when signal intensity (SI) was

plotted against echo time. The inverse of the mean T2*

(R2*) for each ROI was then calculated to assess the up-

take of USPIO, where the higher the value, the greater the

USPIO accumulation.

Late gadolinium enhancement (LGE), ventricular vol-

ume and functional analyses were performed using Circle

CVI software (Circle CVI42, Calgary, Canada). T2* data

were collected immediately prior to USPIO administra-

tion. USPIO-enhanced T2* data were collected 24–25 h

following ferumoxytol administration.

Statistical analysis

All statistical analysis was performed with GraphPad

Prism, version 6 (GraphPad Software, San Diego, CA).

To assess uptake of USPIO in tissues following single

administration, R2* increase from pre to 24 h following

USPIO were compared using repeated measures one-

way ANOVA. Statistical significance was defined as two-

sided p < 0.05.

Results

Twenty volunteer patients were recruited in total (10 at

1.5 T, 10 at 3 T). Forty MRI scans and 20 infusions of

ferumoxytol were completed over the course of the

study. Data from one participant at 1.5 T has been re-

moved due to the presence of LGE, (which was included

Table 2 Normal values

1.5 T Pre-USPIO
R2*(s-1)

1.5 T Post-USPIO
R2*(s-1)

1.5 T Change
R2*(s-1)

3 T Pre-USPIO
R2*(s-1)

3 T Post-USPIO
R2*(s-1)

1.5 T Change
R2*(s-1)

Panmyocardial average 33.5 ± 5.4 60.5 ± 7.2 26.5 ± 7.3 46.9 ± 4.1 84.2 ± 12.4 37.2 ± 9.6

Skeletal muscle 34.7 ± 4.2 44.9 ± 4.7 10.2 ± 5.8 55.5 ± 17.1 59.8 ± 6.6 4.3 ± 16.3

Kidney 16.6 ± 2.0 81.2 ± 15.2 64.6 ± 16.1 43.5 ± 39.1 115.2 ± 28.1 71.8 ± 48.8

Liver 36.0 ± 7.2 252.3 ± 34.3 216.3 ± 32.6 65.3 ± 21.2 340.9 ± 57.8 275.6 ± 69.9

Spleen 22.0 ± 7.7 358.3 ± 59.5 336.3 ± 60.3 51.2 ± 21.1 515.1 ± 137.4 463.9 ± 136.7

Blood 11.3 ± 4.1 96.0 ± 26.6 84.7 ± 27.2 18.8 ± 5.3 91.5 ± 20.9 72.6 ± 18.3

Bone 84.4 ± 29.2 154.3 ± 62.0 69.9 ± 79.9 330 ± 168.7 747.9 ± 277.8 417.9 ± 370.3

Mean ± SD

Fig. 2 Myocardial R2* pre- and post-USPIO administration at 1.5 and

3 T. Following administration, USPIO was detected by an increase in

R2* at 24 h in the myocardium at both 1.5 and 3 T.

(**** = p < 0.0001, ** = p < 0.01)
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in the cardiac MR protocol so that we could exclude vol-

unteers with any detectable cardiac MR abnormalities

according to standard cardiac MR protocols). All other

volunteers that were included had structurally normal

hearts. One participant was prescribed antihypertensive

medication but had a normal cardiac MR study and was

normotensive so the data was retained for analysis. Ad-

ministration of ferumoxytol was well tolerated with no

adverse reactions reported during or immediately after

administration in any of the participants.

Participants were predominantly middle aged, with

greater numbers of women in both groups (Table 1).

There were no differences between 1.5 T and 3 T groups

in BMI or ejection fraction at baseline.

A summary of results is shown in Table 2. At baseline,

panmyocardial R2* values were greater at 3 T than 1.5 T

(46.9 ± 4.1 versus 33.5 ± 5.4 s-1, Fig. 2, p < 0.01) as ex-

pected. Baseline R2* values were also greater at 3 T in

bone (P < 0.0001) but no baseline differences were seen

between magnetic field strength in all other tissues (Fig. 3,

p > 0.05 for all). USPIO increased panmyocardial R2*

values at 24 h in both 1.5 T and 3 T scanners (p < 0.0001

for both). Post-USPIO panmyocardial R2* values were

again greater at 3 T than 1.5 T, as expected (84.2 ± 12.4

Fig. 3 Tissue R2* pre- and post-USPIO administration at 1.5 and 3 T. Following administration, USPIO was detected by an increase in R2*, 24 h

after administration in skeletal muscle, kidney, liver, spleen and blood at 1.5 T, and kidney, liver, spleen, blood and bone at 3 T. (**** = p < 0.0001,

*** = p < 0.001, ** = p < 0.01, * = p < 0.05)
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versus 60.5 ± 7.2 s-1, p < 0.0001). Panmyocardial change in

R2* between baseline and 24 h post USPIO at 1.5 T was

26.5 ± 7.3 s-1 and at 3 T was 37.2 ± 9.6 s-1 (p < 0.0001 for

both). Detectable increases in R2* were also observed at

24 h post-USPIO in skeletal muscle, kidney, liver, spleen

and blood at 1.5 T, and kidney, liver, spleen, blood and

bone at 3 T. (Fig. 3, p < 0.05 for all). BMI correlated with

the panmyocardial R2* changes due to USPIO contrast

(Fig. 4; r = 0.72, p < 0.001).

Discussion

For the first time, we report a range of normal T2*

values in the healthy human heart and other tissues 24 h

after ferumoxytol administration at 1.5 and 3 T. We also

report problems, solutions and guidance in ferumoxytol-

enhanced T2* image analysis.

Following administration, USPIO is detectable by T2*

imaging in the myocardium and other tissues at both 1.5

and 3 T. Tissues with small increases in R2* (less than

the blood pool) are likely to represent detection of

USPIOs within the intravascular space and include skel-

etal muscle (at 1.5 T only), myocardium and kidney. In

contrast, R2* changes that are greater than the blood

pool must be due to accumulation of USPIO, either

through iron storage, uptake by macrophages or other

phagocytes, or sequestered within tissue interstitium. In

the absence of tissue biopsies, we cannot be certain, but

as the most pronounced R2* changes were seen in the

spleen, liver and bone marrow - organs of the reticulo-

endothelial system - it would appear likely that USPIO is

incorporated quickly into tissue-resident phagocytes and

macrophages.

Detection of USPIO enhancement in skeletal muscle at

1.5 T but not 3 T is due to generally noisier data seen

across all tissues at 3 T. Due to wider data confidence inter-

vals, a larger sample size would be required to detected the

same mean change in R2*. The variation in data at 3 T is

partly artifact in the images, but also because of the lower

values at 3 T (USPIO has a faster T2* decay time at 3 T).

With the same sampling echo times, there are fewer data

points to construct the decay curve at 3 T than 1.5 T so

our error in estimation also increases.

We chose 24 h post USPIO to re-image participants as

myocardial signal attenuation at 24 h has shown to be

optimal in the myocardium compared to later time

points [8, 9]. In view of this, scanning appointments

were generally separated by 25 h, and in practice, this re-

gime worked well for both participants and MRI plan-

ning. According to previous work [8], we chose a

weight-adjusted USPIO dose of 4 mg Fe/kg body weight.

However acknowledging that the distribution of USPIO

following administration is predominantly in the organs

of the reticuloendothelial system and blood pool, this

may not be the optimum administration strategy as

blood volume does not increase linearly with weight. We

found a correlation between BMI and myocardial R2*

change, probably due to increased blood pool USPIO

concentration in those with higher BMI. We therefore

suggest that a fixed dose approach may also be appropri-

ate depending on the application.

Artifacts were commonly encountered with USPIO-

enhanced T2* imaging and made data analysis challenging.

Post contrast artifacts at the blood-pool to myocardial

interface were commonly seen and needed careful exclu-

sion when selecting myocardial ROI. (Fig. 5A) This limited

the assessment of USPIO accumulation at the endocar-

dium. Similarly, blooming artifacts from nearby organs with

high iron or blood pool USPIO content, such as lung and

liver, commonly created signal deficits within the myocar-

dium. In this situation, examination of T2* decay curves

and excluding echo times influenced by artifact aided T2*

decay curve fitting (Fig. 5).

The advantage of MRI mapping techniques is that visual

assessment and objective quantification can be made using

the same image, and these are now entering clinical prac-

tice. It seems likely that if UPSIO-enhanced MRI is adopted

into clinical practice to detect tissue inflammation, T2*

mapping would be used for image interpretation. However

based on our experiences, we would recommend caution in

interpreting maps alone. Signal attenuation seen on the T2*

map may be interpreted as tissue USPIO accumulation, but

may be due to blooming artifact from nearby susceptibility

effects, and close examination of the T2* decay curve, and

individual echoes if possible is suggested in order to distin-

guish accurately between tissue USPIO accumulation and

artifact. In theory, setting an r2 threshold as we did helps to

exclude areas grossly affected by artifact. In practice how-

ever, regions with a seemingly acceptable R2 may still be in-

fluenced by artifact (Fig. 5). Manual exclusion of later

echoes (influenced by artifact) from the curve may result in

an improvement in R2 (a measure of how well the data

Fig. 4 Body-mass Index vs Panmyocardial R2* change at 1.5 and

3 T. Body-mass index correlates with panmyocardial R2* change

pre- and post-USPIO
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Fig. 5 (See legend on next page.)
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points fit the curve), however there is the danger that redu-

cing the number of fitting points will in fact reduce the

overall sampling accuracy. Clearly, automated software

capable of detecting and excluding artifact would be

advantageous. This could be achieved by excluding, or ap-

plying less weight, to later echo times especially data points

at a large distance from the initial decay curve trajectory

[25, 26]. It should be noted that like all other MRI se-

quences, poor data quality heavily influenced by breathing

or movement artifact is generally non-interpretable and

post processing using automated T2* decay curve fitting

software is not likely to provide a remedy.

Echo times in this study were specific for cardiac im-

aging and were selected appropriately. Therefore they

were not optimal for imaging tissues with T2* values

substantially higher or lower than myocardium. Native

blood pool and post USPIO bone marrow (Fig. 6) pro-

vide examples of low and high T2* values respectively

that we had difficulty accurately fitting a T2* decay

curve. With high T2* values, only a short part of the

decay curve is plotted over the echo sampling time

period, and often the signal has not decayed sufficiently

for an accurate decay curve to be plotted. In contrast,

regions with particularly short T2* decay times have

decayed to a level expected from background noise be-

fore sufficient data sampling has been made. Therefore

fitting a decay curve from a small number (2–4) of echo

times is clearly difficult, and often too much emphasis is

(See figure on previous page.)

Fig. 5 Inferior Blooming artifact. Example illustrating the challenge in assessing whether the inferior myocardial signal attenuation seen arrowed

on the T2* colourmap (a, scale 0-60 ms) is true or caused by artifact. Drawing a region of interest (b) and examining the decay curve (c) along

with visualising individual echos (d1-8) helps determine that this is a ‘blooming artifact’ from outside the heart is seen to influence echos 4-8.

These can be manually removed, forming a new decay curve (e) with improvement in curve fitting (R2 value), although with fewer fitting points

Fig. 6 Example of high and low T2* values. Regions of Interest with excessively low or high T2* value (pre-contrast blood pool, a, and post

USPIO bone marrow, b, respectively) can often be difficult to generate an accurate T2* decay curve. Imaging with tissue-spcific echo times will

help generate more accurate T2* decay curves
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placed upon data decayed to the baseline level of back-

ground noise in order to generate a decay curve. Allow-

ances can be made for background noise but are of

limited value in this instance. We strongly advise apply-

ing tissue-specific echo times tailored to the expected

T2* value in order to achieve the most accurate decay

curves possible.

Limitations

There are some limitations that should be taken into ac-

count when interpreting these data. First, this study has

small numbers and a larger cohort of participants should

be studied to further validate these normal values. Fur-

thermore, due to geographical reasons, it was not feas-

ible to scan the same participants at both centres so

comparison cohorts at 1.5 T and 3 T were different. Des-

pite this, both were healthy volunteers groups and dis-

played no differences at baseline so we do not feel this

has impacted on the results. Finally, due to problems in

interpreting high and low T2* values as mentioned

above, we recommend caution in interpreting some high

non-cardiac R2* values; especially in the organs of the

reticuloendothelial system at 3 T. In these organs, the

spread of R2* data above the median value appears wide.

This is possibly caused by artifact and most evident at

3 T, and may additionally explain why these regions have

disproportionally high R2* values.

Conclusion

We have shown that ferumoxytol-enhanced MRI is feasible

at both 1.5 T and 3 T, and suggest a range of expected nor-

mal values post-ferumoxytol in a range of tissues. Refine-

ments of dose administration, optimization of acquired

echo-times, careful image analysis, and development of

post-processing and analysis software capable of excluding

common artifacts, are essential to ensure reliable and ro-

bust quantification of tissue enhancement.
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