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FES-Induced Torque Prediction with Evoked EMG

Sensing for Muscle Fatigue Tracking
Qin Zhang, Student Member, IEEE, Mitsuhiro Hayashibe, Member, IEEE, Philippe Fraisse, Member, IEEE,

David Guiraud, Member, IEEE

Abstract—This study investigates a torque estimation method
for muscle fatigue tracking, using stimulus evoked electromyog-
raphy (eEMG) in the context of a functional electrical stimulation
(FES) rehabilitation system. Although FES is able to effectively
restore motor function in spinal cord injured (SCI) individuals, its
application is inevitably restricted by muscle fatigue. In addition,
the sensory feedback indicating fatigue is missing in such patients.
Therefore, torque estimation is essential to provide feedback
or feedforward signal for adaptive FES control. In this work,
a fatigue-inducing protocol is conducted on five SCI subjects
via transcutaneous electrodes under isometric condition, and
eEMG signals are collected by surface electrodes. A myoelectrical
mechanical muscle model based on the Hammerstein structure
with eEMG as model input is employed to capture muscle
contraction dynamics. It is demonstrated that the correlation
between eEMG and torque is time-varying during muscle fatigue.
Compared to conventional fixed-parameter models, the adapted-
parameter model shows better torque prediction performance
in fatiguing muscles. It motivates us to use a Kalman filter
with forgetting factor for estimating the time-varying parameters
and for tracking muscle fatigue. The assessment with experi-
mental data reveals that the identified eEMG-to-torque model
properly predicts fatiguing muscle behavior. Furthermore, the
performance of the time-varying parameter estimation is efficient,
suggesting that real-time tracking is feasible with a Kalman filter
and driven by eEMG sensing in the application of FES.

Index Terms—Evoked Electromyography (eEMG), Torque Pre-
diction, Muscle Fatigue Tracking, Kalman Filter with Forgetting
Factor, Functional Electrical Stimulation (FES).

I. INTRODUCTION

A. Background

FUNCTIONAL electrical stimulation (FES) is one of the

existing solutions to partly restore lost motor function in

persons with spinal cord injury (SCI). The electrical stimulus

can artificially generate action potential on the axons of the

alpha motor neurons to drive muscle contraction in place of the

central nervous system (CNS). FES has been used in a wide

range of rehabilitation applications, including the FES-aided

support of standing, gait, grasping [1] [2], drop foot correction,

tremor compensation and bladder/bowel management.

Although FES has potential advantages for the improvement

of functional restoration in SCI subjects, it has not so far

gained widespread clinical use because of its limitations, such
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as rapid muscle fatigue and imprecise force/torque control. In

order to obtain the desired movement or trajectory for a certain

task, the electrical stimulation (ES) must produce strong, con-

sistent muscle force. It is well known, however, that the fatigue

resistance decreases in the paralyzed muscle after SCI [3], so

that muscle becomes fatigued more rapidly when artificially

stimulated than when excited by the CNS, because of the

way that the motor units are recruited: inverse size principle,

synchronized activation of motor units and constant order

of recruitment [4]. In addition, since SCI individuals have

also lost their sensory pathways, they cannot perceive muscle

fatigue as stimulation proceeds, which leads to movement

failures and sub-optimal FES parameter-tuning in practical

FES control. Furthermore, the physiological and mechanical

complexity—and nonlinearity—of the neuromuscular system

increase the difficulty for FES to precisely control muscle

force/torque output and to perform functional movements [5].

Some research has addressed the attenuation or delay of

FES-induced fatigue. Optimal stimulation patterns, such as N-

lets [6] or catch-like stimulation [7], were found to maximize

muscle performance and minimize fatigue. Random modu-

lation of FES parameters was proved to have no effect on

muscle fatigue [8]. Low frequency and long pulse duration

was reported to be capable of producing less fatigue with

constant frequency and intensity [9]. Despite these efforts, no

consensus was reached to date due to the complex, multi-

factorial and task-specific properties of muscle fatigue [10].

Therefore, muscle fatigue is still a major limiting factor for

the widespread application of FES.

Accurate torque/force signal is hence important to produce

the desired feedback or feedforward signal for adaptive FES

control in the the presence of muscle fatigue. However, the

torque/force measurement via external equipments is not con-

venient for daily use, and generally do not directly measure the

muscle output induced by stimulation. The implanted sensor

is one possible technique [11] but is not yet available for

practical use. Thus, the inadequacy of torque/force sensors is

another problem in rehabilitation application. This motivates

the development of methods to estimate muscle torque from

biosignals that can be measured or well estimated.

B. Related Work

As described above, on one hand, muscle fatigue may

result in torque/force decline and eventually movement failure

without any sensation in SCI individuals, on the other hand,

convenient and precise sensor is not available for measuring
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muscle output generated by stimulation. Therefore, estimating

the FES-induced torque/force is important for adaptive closed-

loop FES control, considering the compensation of fatigue.

Several techniques have been developed for force/torque pre-

diction in fatiguing muscle. Some mathematical fatigue models

were developed from physiological knowledge or experimental

analysis. A fatigue function was introduced into a biomechani-

cal model to predict FES-induced shank motion [12]. A fatigue

recovery function, based on metabolic profiles, was introduced

into a musculotendon model [13]. A four-parameter fatigue

model, coupled with a mathematic isometric force model, that

predicts the fatigue induced by different stimulation patterns

under isometric contractions, was reported in [14]. However, in

the above works, the complex model parameters remain diffi-

cult to be identified in application, because of high nonlinearity

and dynamic complexities. Moreover, the fatigue models can

work only when the stimulation scheme can be predetermined.

But in practice, the stimulation pattern is unknown in advance,

so the fatigue model cannot work.

Some researchers proposed to use FES-evoked electromyo-

graphy (eEMG) for torque/force prediction, as ES-induced

muscle contraction represents both electrical and mechanical

behavior, respectively manifested by eEMG and torque/force.

Moreover, the eEMG signal permits noninvasive and reliable

measurement of muscle activity. Under continuous stimulation,

eEMG was found to be highly correlated with FES-induced

torque in different muscle conditions, suggesting its use as

a fatigue indicator [15] [16]. An exponential function was

used to express the electrical and mechanical relationship of

the stimulated muscle in SCI patients [17] [18]. A predictive

model based on eEMG instead of stimulation was developed,

allowing the use of eEMG as a synthetic torque sensor [19].

One possible explanation is that eEMG can capture most

time-variations due to the effects of fatigue, which cannot be

captured by a stimulation-to-torque model. Combining time-

domain and frequency-domain variables was suggested for

better prediction of force [18]. In these works, a fixed relation-

ship between eEMG and muscle force/torque during sustained

stimulation was assumed. Nevertheless, this correlation was

presented to be time-variant during different muscle-fatigue

levels [20] and during recovery process [21]. Such evidence

indicates that the relationship between eEMG and muscle

force/torque is not constant but time-varying, and also implies

the limitations of previous force/torque prediction strategies

based on fixed-parameter models. [21] suggested an adaptive

tuning of the parameters of eEMG for predicting the stimulated

force. However, they did not propose a feasible and effective

method to do this.

The present work aims to develop an online estimation

method of FES-induced torque based on eEMG in the presence

of muscle fatigue. This paper is organized as follows. The

relevant experiment is introduced in Section II. The muscle

modeling is presented in Section III. The proposed estimation

method, Kalman filter with forgetting factor, is presented in

Section IV. In Section V, we show the identification and

prediction results with the ordinary least squares method and

the Kalman filter technique. Discussions and conclusions can

be found in Sections VI and VII, respectively.

II. EXPERIMENTAL METHODS

A. Experimental set-up

The experiments were conducted on five SCI subjects (see

TABLE I) in the PROPARA rehabilitation center, Montpellier,

France. All subjects were classified as the American Spinal

Injury Association (ASIA) A, where no motor or sensory

function is preserved. The experimental set-up is depicted in

Fig. 1. This study was approved by the ethical committee of

France and all subjects signed informed consent forms.

TABLE I
PATIENT CONFIGURATIONS

Test Age Weight Height Level Months
Subject (years) (kg) (cm) of injury* post injury

S1 39 50 169 T6 3

S2 22 54 172 C7 30

S3 26 64 192 T6 36

S4 32 61.5 177 C5 8

S5 48 76 177 T6 18

* Level of injury corresponds to the injured location in vertebral segments.
T6 means the 6th thoracic (chest) vertebra while C represents cervical (neck)
vertebra.

Fig. 1. Experimental set-up for electrical stimulation and ankle torque
measurement.

The subjects were seated on the chair with the ankle at 90o,

while the joint center was aligned with the axis of a calibrated

dynamometer (Biodex 3, Shirley corp., NY, USA). The shank

was adjusted to be horizontal to the ground with the knee

joint at 40o. The foot was strapped to the pedal to transmit

ankle torque to the dynamometer and to allow the optimal

recording of isometric ankle torque. Electrical current pulses

were delivered to the right triceps surae muscle group via

surface electrodes (10cm×3cm) to induce muscle contractions

and to plantarflex the ankle joint. One electrode was placed

5cm beneath the popliteal cavity and the other beneath the

insertion point of the medial and lateral gastrocnemius on

the Achilles tendon. The muscle group was stimulated with

amplitude modulation at a constant frequency (30Hz) and

constant pulse-width (450µs), under isometric conditions, by

a portable stimulator (Cefar physio 4, Cefar Medical, Lund,

Sweden).

EEMG activity of soleus in triceps surae muscle group

was recorded, amplified (gain 1000) and sampled at 4KHz by

an acquisition system (Biopac MP100, Biopac Systems Inc.,

Santa Barbara, CA, USA). The bipolar AgCl EMG electrodes

were positioned over the muscle belly in the direction of

muscle fiber with 20mm interelectrode spacing. The reference

electrode was placed on the patella of another leg. The skin
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under the electrodes was shaved to minimize the impedance.

Isometric ankle plantar-flexion torque was measured using the

dynamometer (Biodex 3), sampled at 2KHz, and interfaced

with the acquisition system (Biopac MP100).

B. Experimental Protocol

For each subject, the experiment consists of three test

sessions: a fatigue-inducing test, a fatigue-recovery test and

a random test, as shown in Fig. 2. The maximum stimulation

amplitude was found for each subject at the beginning, by

gradually increasing stimulation amplitude until torque satu-

ration. The fatigue-inducing test includes several sequences

(named as fatigue1-fatigue5). Each sequence contains five

trapezoidal trains with each trapezoidal train consisting of 4s

stimulation (1s ramp-up, 2s plateau and 1s ramp-down) and

2s rest. The stimulation amplitude during plateau is chosen

at 50% of the maximum stimulation amplitude with constant

stimulation frequency 30Hz and constant stimulation pulse

width 450µs. In order to induce muscle fatigue, three such

stimulation sequences were applied to subjects S1 and S2,

four sequences to S3, and five sequences to S4 and S5. In

fatigue-recovery test, one trapezoidal train (indicated by pre,

postA, ..., postE and recovery1, ... recovery3) at maximum

stimulation amplitude was delivered to the muscle just before

and after each fatigue-inducing sequence. After the stimulation

train postE, the same stimulation train was applied every 5

minutes, up to 15 minutes. At the end, a sequence including

several trapezoidal trains was applied. In this case, the stim-

ulation amplitude in each train was increased from zero to a

randomly determined value below the maximum value, and

then symmetrically decreased, during two minutes in total.

Fig. 2. Schematic representation of the experimental sessions.

C. Torque and eEMG Data Processing

During electrically elicited contractions, the detected surface

eEMG signal is contaminated by stimulation artifacts due

to the stimulation current which is recorded by the eEMG

amplifier. For the preparation of model identification and

torque prediction based on eEMG, the measured eEMG and

torque were processed in the following steps. An example of

the processed results is illustrated in Fig. 3.

1) The blanking window method [22] is used to remove

stimulation artifacts from the raw eEMG signal and

extract muscle response (Mwave).

2) A lowpass filter is applied to measured ankle torque (6th-

order, cutoff frequency 100Hz) and measured eEMG

(6th-order, cutoff frequency 300Hz).

3) The filtered eEMG signal is divided into epochs with

each epoch containing one Mwave, and the mean ab-

solute value (MAV) of eEMG is calculated every five

epochs. The average torque is calculated within the same

time window.

4) The MAV and average torque are normalized with

respect to their maximum values.

The normalized MAV and normalized torque are prepared

to be the system input and output for model identification.
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Fig. 3. An example of processed eEMG and torque. The raw eEMG
signal and Mwave were zoomed in (0.5s ∼ 1.1s) to show the details
during stimulation increase. The raw eEMG was contaminated by stimulation
artifacts. Blanking window was applied to remove artifacts so that Mwave
was effectively extracted.

III. CONTRACTION DYNAMICS MODEL OF ELECTRICALLY

STIMULATED MUSCLE

A. Model Structure

The discrete-time Hammerstein structure was used to model

the muscle contraction dynamics as shown in Fig. 4. This

model consists of a memoryless nonlinear part followed by

a dynamic linear part. It is popularly used to represent

highly nonlinear systems, and particularly useful for modeling

biomechanical systems, such as stretch reflex EMG signal

[23] and electrically-stimulated muscles, relating stimulation

to muscle force under isometric conditions [24]. It has been

shown to extend to dynamic conditions [25], which is essential

for developing stable adaptive controllers for applications in

FES. In this study, the MAV of eEMG and FES-induced ankle

torque are system input u(t) and output y(t), respectively.
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Fig. 4. Muscle model structure. The present work focuses on the contraction
dynamics model contained in the rectangle within the dashed line. The
memoryless nonlinearity is modeled by an nth-order polynomial function.
The linear dynamics is chosen as an ARX model.

The memoryless nonlinear function maps the system input

u(t), to the intermediate variable h(t), which represents the

activation level of the stimulated muscle. It is traditionally

modeled by an nth-order polynomial of u(t) [23] as follows:

h(t) =

n∑

i=1

γiu
i(t) (1)

where γi is a model coefficient.

The linear time-variant system is described by an au-

toregressive model with exogenous input (ARX), which has

been shown experimentally to yield good prediction of output

torque/force in isometric situation [26]. It can be described as

A(z)y(t) = B(z)h(t) + e(t) (2)

with transfer function G(z) = B(z)/A(z) and

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + alz
−l

B(z) = b1z
−1 + b2z

−2 + · · · + bmz−m (3)

where z−1 is the backward shift operator which makes

z−1y(t) = y(t − 1). In (2), y(t) is the system output at time

t, e(t) is zero mean and Gaussian white noise affecting the

system. The h(t) is the output of the nonlinear element, and

the input of the linear element as seen in Fig. 4.

Substituting (1) and (3) into (2) and expanding, the output

of a polynomial Hammerstein model (PHM) at a given time t
can be parameterized as:

y(t, θ) =

l∑

i=1

aiy(t − i) +

m∑

i=1

n∑

j=1

µij(u(t − i))j (4)

where µij = biγj , θ = [a1, · · · , al, µ11, · · · , µmn]T is a

parameter vector containing the model coefficients. The size

of θ depends on model complexity. Therefore, the selection

of model order (l, m, n) is a key step in the estimation of the

unknown parameters in θ. We chose to model the recruitment

curve of the muscle as a 3rd-order polynomial of instantaneous

MAV of eEMG, (n = 3), as in [24]. Linear model order

determination was determined by comparing the Rissanen’s

minimum description length (MDL) [27][28] obtained for

different model orders, since the MDL principle provides a

criterion for tradeoff between the simplicity of the model and

the model’s applicability to the data. Model-order parameters

ranging from 2 ≤ l ≤ 6, and from 2 ≤ m ≤ 6 were

considered. Finally, model order (l = 3, m = 4) was chosen

with relatively less MDL value and a simpler model as shown

in Fig. 5. The stimulated muscle model has l+m×n unknown

parameters in all. The elements of θ as well as the eEMG-to-

torque features are time-varying due to the effects of fatigue

and the associated biochemistry. At a given time t, the model

estimates are predicted using (4) by assuming the system

is stationary, or slowly time-varying, during the prediction

horizon.
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’·’- - - S1, ’*’- - - S2, ’o’- - - S3, ’⋄’- - - S4, ’+’- - - S5. The vertical line indicates
the selected model order (3, 4).

The computation of past torque y(t − i) in (4) has two

possible versions: (i) past measured torque ym(t − i) and (ii)

past predicted torque ŷp(t − i). For model identification, the

former approach is preferred, as measured torque is favorable

for model fitting. For torque prediction, both can be employed,

while from a practical point of view, the former is inappropri-

ate, since measured torque is not available. Accordingly, the

corresponding predicted output ŷ(t) based on identified model

has two versions, ŷm(t) and ŷp(t), which can be computed as

a function of past measured MAV of eEMG, past measured

torque or past predicted torque in this way:

ŷm(t) =func[u(t− 1), u(t − 2), ...u(t − m),

ym(t − 1), ym(t − 2), ...ym(t − l)]
(5)

ŷp(t) =func[u(t− 1), u(t − 2), ...u(t − m),

ŷp(t − 1), ŷp(t − 2), ...ŷp(t − l)]
(6)

When torque measurement is not available, the second

approach as shown in (6) makes it possible to use eEMG as

a synthetic torque sensor. In this case, we can initialize the

predicted torque at zero when no stimulation is delivered to

the muscle.

B. State-Space Model Representation

State-space form is basically required for the implementa-

tion of Kalman filter. Considering a PHM (l, m, n) as in (4),

its state-space form can be compactly written as:

1) process equation

xk = f(xk−1, uk−1) = Axk−1 +

n∑

i=1

Bi[uk−1]
i (7)

2) measurement equation

yk = Cxk (8)
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where the subscript k indicates the current time step. In (7),

the current state vector xk =
[
x1,k, x2,k, · · · , xq,k

]T
, q =

max{l, m}, and uk−1 is the previous model input. A ∈ R
q×q

relates the previous state xk−1 to the current state xk . Bi ∈
R

q×1 relates the previous model input [uk−1]
i to the current

state xk. They can be represented as following:

A =

⎡

⎢⎢⎢⎢⎢⎣

a1 1 0 · · · 0 0
a2 0 1 · · · 0 0
...

...
...

. . .
...

...

aq−1 0 0 · · · 0 1
aq 0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎦
, Bi =

⎡

⎢⎢⎢⎢⎢⎣

µ1,i

µ2,i

...

µq−1,i

µq,i

⎤

⎥⎥⎥⎥⎥⎦
.

The yk in (8) is the measurement of system output. C ∈
R

1×q relates the current state xk to the current measurement

yk with the following expression:

C =
[
1 0 · · · 0 0

]
.

Note that, in practice matrices A,Bi and C might change

with each time step or measurement, but here we assume they

are constant for simplifying the expression.

IV. IDENTIFICATION USING KALMAN FILTER WITH

FORGETTING FACTOR

Recursive estimates are important when parameter identifi-

cation is needed in real-time, such as when the information is

used in adaptive control or real-time diagnosis. The Kalman

filter is an efficient recursive filter that estimates the internal

states and parameters of a discrete-time system from a series of

noisy measurements. Online estimation of the states in x and

of the model parameters in θ is investigated simultaneously

in this work. Model parameters to be identified are the coef-

ficients relating to both the past measured torque and the past

measured MAV of eEMG in (4). A Kalman filter for state and

parameter estimation is performed by regarding the unknown

model parameters as elements of the state vector. In this way,

the basic Kalman filter algorithm does not need to be modified,

except that the state vector x will be augmented with the

unknown parameters in θ. That is, the meta-state vector wk has

the expression wk = [xk; θk], with subscription k indicating

the time step and used in the subsequent explanation. The

parameters in θ are assumed to be locally time-invariant or

slowly varying compared to the process. Accordingly, the

augmented system is described by

wk = F(wk−1, uk−1) (9)

yk = Hwk (10)

where

F(wk−1, uk−1) =

[
f(xk−1, uk−1)

θk−1

]
,

H = [C 01×[l+m×n]].

The recursive estimation of the state-space model with

Kalman filter consists of two phases, prediction and correction.

The main equations are given by:

1) prediction phase:

ŵ−

k = F(ŵk−1, uk−1) (11)

P−

k = DkPk−1D
T
k + Qk−1 (12)

2) correction phase:

Kk = P−

k HT
k (HkP

−

k HT
k + Rk)−1 (13)

ŵk = ŵ−

k + Kk(yk − Hkŵ
−

k ) (14)

Pk = (I − KkHk)P−

k (15)

In the prediction phase, at step k, the a priori estimate of

the state ŵ−

k , is given by the a posteriori state at the previous

step, ŵk−1, as shown in (11). The estimate error covariance

Pk is propagated according to (12), wherein Qk is a diagonal

matrix containing the process noise covariance, and Dk is the

process Jacobian with respect to the variables involved, with

each element D[i,j] computed by:

D[i,j] =
∂F[i]

∂w[j]
(ŵk−1, uk−1)

In the correction phase, Kk in (13) is called Kalman filter

gain, wherein Rk is a scalar measurement noise covariance.

The updated state is computed in (14), and the updated

estimate error covariance is given by (15).

Although the Kalman filter is an effective way of estimating

the state and parameters of a discrete-time controlled process,

its performance in estimating the time-varying parameters is

degraded by the fact that it refers to the entire history of past

measurements [29]. This is particularly troublesome since the

activity of stimulated muscles may vary, with prolonged or

repetitive stimulation leading to different muscle states. In

order to track the time-varying muscle condition, a forget-

ting factor λ is deliberately introduced as proposed in [30].

Consequently, equation (12) and (13) can be rewritten as

P−

k = DkPk−1D
T
k /λ (16)

Kk = P−

k HT
k (HkP

−

k HT
k + λ)−1 (17)

Choosing forgetting factor λ ∈ [0, 1] depends on how

much we hope the filter to forget the past measurements. The

forgetting factor is closer to 1, the filter will forget fewer past

measurements. A tradeoff between the smoothness of tracking

and lag in detecting the changes in model parameters should

be considered when forgetting factor is introduced to a Kalman

filter. Usually λ ∈ [0.9, 1] is suitable for most application.

V. RESULTS

A. Muscle Fatigue and Recovery Process

The data from fatigue-recovery tests were used to observe

the relationship between torque and MAV of eEMG during

intermittent stimulation and recovery. The data during stim-

ulation plateau was used for analysis. The data were firstly

treated as the processing step (1) (2) described in section II. C.

Then the average torque, MAV and standard deviations were

computed simultaneously. The results are depicted in Fig. 6.

The torque of ankle plantar-flexion gradually declined after

each fatigue-inducing sequence, until around 90% of initial

torque in all subjects. After 5 minutes rest, the average torque
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recovered less than 5% and then remained at the same level

in all subjects. Except in subject S1, the torque recovered

after 10 minutes rest. As a whole, torque transition in fatigue

generally showed a similar tendency in all subjects. The

MAV of eEMG represented different transitions among these

subjects as depicted in Fig. 6 (b). Although the same tendency

can be found in subjects S3 and S5, different tendencies are

found among the five subjects. The results in S3, S5 show a

simple decline of MAV due to fatigue, S4 shows potentiation

phenomenon, while S1, S2 represent somewhat combined

characteristics of potentiation and fatigue. Here, we do not

focus on the understanding of the different characteristics.

However, we were able to confirm that the eEMG-to-torque

relationship was not constant as most prior works assumed,

but gradually varying, in this intermittent fatigue protocol.
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Fig. 6. (a) Average torque and (b) MAV of eEMG in all subjects during
the fatigue-recovery process. The results were represented as mean±standard
deviation.

B. Model Identification and Validation Using the Ordinary

Least Squares (OLS) Method

The torque was predicted based on past measured torque

and past predicted torque as described in section III. A, using

random test data. OLS method was performed for model

identification. Fig. 7 illustrates the prediction result in subject

S5. The data during 97s of random stimulation were separated

into two parts at 68s. The model parameters in (4) were

identified using the data before 68s. Then torque prediction

was calculated using two different methods, as expressed

in (5) and (6) respectively, with the data before and after

68s. It means that the torque prediction after 68s is only

driven by eEMG information. The corresponding prediction

errors, root-mean-square (RMS) error, are also shown in

this figure. From the result of the random stimulation test,

we can confirm the feasibility of model identification and

its prediction performance. For the next step, we need to

investigate this in different muscle fatigue states to verify the

model predictability.
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         MSE = 0.0713
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Fig. 7. The measured and predicted torque obtained by eEMG-to-torque
model in random test in subject S5. The vertical dotted line is shown to
separate the data into two parts. The model was identified by OLS method
using the data in the left part. (1) The torque was predicted based on the
past measured MAV of eEMG and past measured torque. (2) The torque was
predicted based on the past measured MAV of eEMG and past predicted
torque, where the prediction was calculated only by eEMG.

The torque prediction was conducted using the OLS method

with the fatigue-inducing data in 5 subjects. Two different

models, the fixed-parameter model and the adapted-parameter

model, were tested. The fixed-parameter model can be ex-

plained as follows: the model parameters were identified with

the data of the first sequence (fatigue1), and were then cross-

validated for all the remaining sequences (fatigue2-fatigue5).

The prediction errors are shown in TABLE II. We found that

with the fixed-parameter model, the prediction error became

higher and higher as the muscle was more and more fatigued.

We then supposed that if the model was identified again

with the data in the latest sequence, the prediction could

be improved. Therefore, the second method, the adapted-

parameter model, was proposed. In this approach, the latest

data were used to re-identify the model. That is, the torque

prediction of fatigue3 was based on the model parameters

obtained from fatigue2, and so on. The prediction errors with

the adapted-parameter model in all subjects are compared in

TABLE II. For example, for fatigue3 of subject S3, the RMS

error with the adapted model is 0.0345, as compared to 0.0639

with the fixed model. The average prediction of the adapted

model was superior by 16.7-50.8% compared to the fixed

model in all subjects.

In Fig. 8, the predictions with the two methods (fixed and

adapted model) and in different fatigue conditions are shown

in subject S3. Fatigue3 was not plotted in this figure, as there

was only a small difference between fatigue3 and fatigue4.

Obviously, FES-generated torque declined with the same stim-

ulation as a result of muscle fatigue. The fixed model could be

still used for torque prediction. However, in comparison with

fatigue1 and fatigue2, the prediction of fatigue4 became less

precise based on the fixed model, whereas the adapted model

contributed to improve torque prediction accuracy, as the
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TABLE II
SUMMARY OF THE PREDICTION ERROR OBTAINED WITH FIXED OR

ADAPTED EEMG-TO-TORQUE MODEL

Subject Model
Average RMS Error

F1 F2 F3 F4 F5

S1
Fixed 0.0381 0.1009 0.2037 / /

Adapted / / 0.1272 / /

S2
Fixed 0.0642 0.0767 0.1559 / /

Adapted / / 0.1298 / /

S3
Fixed 0.0253 0.0467 0.0639 0.0572 /

Adapted / / 0.0345 0.0254 /

S4
Fixed 0.0511 0.0520 0.0575 0.0702 0.0631

Adapted / / 0.0480 0.0447 0.0438

S5
Fixed 0.0594 0.0641 0.0591 0.0597 0.0715

Adapted / / 0.0457 0.0447 0.0476

* F1-F5 respectively denotes the sequence fatigue1-fatigue5 in fatigue-
inducing test session.

dashdotted black line shown. Therefore, we can conclude that

the muscle model parameters are time-varying and gradually

change with the effect of fatigue, suggesting that online model

estimation can improve torque prediction in fatiguing muscles.

This finding motivate us to apply a Kalman filter for online

estimation in order to track muscle fatigue.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 T
o

rq
u

e

Time(s)

fatigue1

fatigue2

fatigue4

Fig. 8. The measured and predicted torque obtained by eEMG-to-torque
model in fatigue-inducing protocol in subject S3. The solid blue lines indicate
the measured torques. The dotted red lines represent the corresponding
predicted torques based on fixed model which was identified using the data of
fatigue1. The dashdotted black lines represent the torque prediction of fatigue4
based on adapted model which was identified using the data of fatigue3. All
the torques were normalized by the maximum measured torque in fatigue1.

C. Validation of Time-Varying Model Estimation with Kalman

Filter

In this part, the time-varying parameter estimation per-

formed by the Kalman filter was evaluated in simulations and

with experimental data. The outlines of the muscle model and

Kalman filter were described previously. For a PHM (l, m, n)
model, we need to estimate the r = max(l, m)+ (l +m×n)
dimensional meta-state. The max(l, m) parameters relate to

the internal states, the rest relate to the past torque and the past

MAV of eEMG. The elements of the meta-state vector were

initialized as ŵi(0) = 0, i = 1, 2 · · · , r. The initial output

estimate ŷ0 was set at zero. The estimate error covariance was

initialized as P0 = I, where I is an identity matrix.

1) Time-Variant Parameter Tracking in Simulation: In sim-

ulation, invariant parameter tracking was evaluated first with

the Kalman filter to investigate the stability of the muscle

model. Secondly, in order to investigate the filter’s robustness

to the time-varying fatigue phenomenon, we slowly changed

the model parameters at different instants to imitate changes in

muscle condition. The advantage of simulation is that the true

parameters are known to be compared with the estimated ones.

The simulation model order was chosen as l = 2, m = 2, n =
1 to reduce model complexity, as it is difficult to know how

the model output changes when too many parameters change.

Thus, four parameters, a1, a2, µ11, µ21, were estimated via

the Kalman filter algorithm in simulation. At the beginning, all

the parameters were kept constant. After 33s or 50s, they were

changed linearly (a1 and µ21) or in steps (a2 and µ11). The

pseudorandom binary sequence (PRBS), which is commonly

used in muscle identification [25], was chosen as model input.

Model input, output and the a posteriori estimate of the output

are shown in Fig. 9.
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Fig. 9. Data set for model identification. Data were generated by simulation
using a PHM (2, 2, 1). A Kalman filter with forgetting factor 0.97 was used
to identify the model.

The corresponding parameter estimates of the model are de-

picted in Fig. 10. The solid lines indicate the true parameters,

while the dotted lines indicate parameter estimates. All the

parameters converge steadily after 5s when the parameters are

static. After 33s or 50s, the model parameters gradually vary,

and the estimates track the changes well, which implies that

the estimation method is suitable for time-variant parameter

tracking with a PHM model.

2) Fatigue Tracking Based on Experimental Data: In the

model identification described in section V. B, the adapted-

parameter model was proved to be able to improve torque

prediction, but identification was performed without auto-

matic tracking function. In this section, the identification

and validation of time-varying parameters are considered and

performed automatically using the Kalman filter. The model

order is chosen at (3, 4, 3) as described above. The data from

successive series of fatigue-inducing tests were concatenated



IEEE/ASME TRANSACTIONS ON MECHATRONICS 8

0 20 40 60 80 100
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

M
o
d
el

 p
ar

am
et

er
s

 

 
a1
a2
µ11

µ21

Fig. 10. Convergence and tracking of both static and time-variant parameters.
Solid lines indicate true parameters. Dotted lines indicate parameter estimates.
All the initial estimates were set at zero.

for estimation. During 100s of intermittent stimulation, the

torque of each subject decreased to a different level, because

of different muscle fatigue level. The time-varying relationship

between MAV of eEMG and torque was revealed in Fig. 6.

Fatigue Dynamics: The estimation of the muscle contraction

process can be used to explore the dynamics of fatigue

phenomena. The PHM (3, 4, 3) of the contraction dynamics

was fitted to the measured torque collected in the fatigue-

inducing test session. A Kalman filter with forgetting factor

(λ = 0.997) was used for model estimation. The locations of

these poles in subject S1 and S3 are indicated in Fig. 11. The

unit circles are also plotted in this figure. All the poles are

located within the unit circles, which is of significance in en-

suring the model stability under our stimulation protocol. The

arrows denote the direction of movement of the z-plane poles.

The time-varying property of the poles may also interpret

the resulting time-varying model parameters. Moreover, the

locations and movements of the z-plane poles in all subjects

present similar characteristics, suggesting that it is possible

to assess muscle fatigue dynamics from such information. In

general, the damping ratio increases when the muscle is highly

fatigued. This matches our intuition concerning the effect of

muscle fatigue.

Fig. 11. The changes in the contraction dynamics of muscle behavior due
to fatigue during intermittent stimulation in subjects S1 (left) and S3 (right).
The arrows denote the direction of ”movement” of the z-plane pole. The plot
color was changed every 16s to show the time transition.

Torque Prediction Performance: To investigate the torque

40 45 50 55 60 65 70 75 80

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t0 t1 t2 t3

Time (s)

N
o
rm

al
iz

ed
 t

o
rq

u
e

 

 
Measured
Estimated

Fig. 12. Measured and estimated torque at time instant t0. For evaluating
prediction performance, the prediction errors for prediction horizons t1, t2,
and t3 (6s, 18s and 30s respectively) are measured. A Kalman filter with
forgetting factor 0.997 was used to estimate the model.

TABLE III
PREDICTION FILTER PERFORMANCE WITH EXPERIMENTAL DATA

Subject Average error
Prediction horizon

6s 18s 30s

S1
RMS 0.0638 0.0974 0.1282
Peak 0.1616 0.2990 0.3414

S2
RMS 0.0763 0.0925 0.1110
Peak 0.2466 0.3402 0.4230

S3
RMS 0.0278 0.0314 0.0366
Peak 0.0743 0.0962 0.1146

S4
RMS 0.0524 0.0534 0.0556
Peak 0.1208 0.1523 0.1697

S5
RMS 0.0387 0.0418 0.0437
Peak 0.1036 0.1360 0.1510

prediction performance in time, different prediction horizons,

6s, 18s and 30s, were tested. The idea is illustrated in Fig.

12, which features the estimated model at time instant t0. The

torque predictions were computed using (4) and only driven by

the eEMG, considering a static system within the prediction

horizon. At every torque sample for a given prediction horizon,

the RMS error and peak error were evaluated. The prediction

errors in all subjects are quantified in Table III. Eighteen

seconds was considered to be an appropriate prediction hori-

zon, as it provided a tradeoff between sufficient interval for

measurement update in Kalman filter and satisfactory predic-

tion performance. The prediction errors for the 18s prediction

horizon in subject S3 are plotted in Fig. 13. The solid blue

line indicates RMS error, while the dotted black line indicates

peak error.
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Fig. 13. RMS and peak prediction error of 18s prediction horizon in S3.

Predictive Performance in Sensing Failure: In order to
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evaluate tracking robustness in the event of interruption in

recording or failure, torque prediction was integrated into the

fatigue tracking task. Any event such as a missing torque

measurement, was assumed to result in tracking failure. Fig.

14 reveals fatigue tracking performance in subject S3 when

muscle torque declined to 76% of the maximum torque

during the 100s-stimulation. Assuming measurement was not

available from time instant t0 to t1, the estimated model at t0
was used to predict torque until instant t1. When prediction

was executed, the model was only driven by the eEMG,

while the online model estimation was suspended. To evaluate

prediction performance in different muscle fatigue states, this

process was repeated until the end of stimulation, where the

measurement update in Kalman filter was switched off for 18s.

The prediction tracks the measured torque well, suggesting

that if torque measurement is unavailable or unreliable, the

predicted torque based on eEMG can be used to bridge such

gaps for the prolonged application of FES.

Some of the estimated parameters are also depicted in

Fig. 14. The middle plot shows the parameters of the past

torque, while the parameters of the 3rd power of the past

MAV are shown in the lower plot. Although the parameters

gradually vary, representing varying myoelectrical mechanical

correlation during muscle fatigue, the proposed muscle model

and Kalman filter algorithm with forgetting factor provide

good prediction performance, as shown in the upper plot.

VI. DISCUSSION

Stimulus-evoked EMG has been previously proposed for

the prediction of the mechanical behavior of muscles in

FES rehabilitation systems [18] [19]. These prediction meth-

ods were investigated on the hypothesis of a fixed eEMG-

to-torque model during ES. Some other researchers found

that this relationship was time-variant under different muscle

conditions [20] [21]. However, they have not proposed a

feasible, effective method for torque prediction. The time-

varying property of myoelectrical and mechanical muscle

behavior is shown in Fig. 6. It implies the limitations of the

torque prediction method based on the fixed eEMG-to-torque

model and increases the difficulties of torque estimation. The

present work proposes the use of the Hammerstein structure to

represent muscle contraction dynamics with MAV of eEMG

as input, where model estimation is performed by a Kalman

filter for fatigue tracking.

The prediction result presented in Fig. 12 reveals good

performance of the predictive filter, successively acquiring the

mechanical behavior of the muscle under FES. In addition,

the error values given in Table III indicate that neither RMS

error nor peak error increases significantly when the prediction

horizon is extended. It indicates that the proposed eEMG-

to-torque model properly fits muscle behavior. If prediction

quality diminishes when an expanded prediction horizon is

selected, this is probably due to the variations of muscle fa-

tigue levels during the horizon. This can occur when prolonged

or repetitive stimulation is delivered to the muscle. In this

application, 18s prediction horizon is considered as the optimal

choice.

The muscle contraction dynamics model has been described

in a previous work [19], in continuous stimulation, with

the recursive least squares method used for identification.

However, there was no significant consideration of different

fatigue conditions in intermittent stimulation, as illustrated in

Fig. 14. In this study, the proposed estimation method was

validated for ankle torque prediction and fatigue tracking using

eEMG under isometric condition, it would be promising to

verify it in dynamic conditions by introducing a torque-joint

angle function to the proposed muscle model as in [25].

In this work, we did not consider the effect of day-to-day

changes, but as the online identification is able to identify

parameters for different subjects, which implies that this

method itself can work even if there are day-to-day changes

if we do not care about how the parameters change depending

on the experimental set-up, for example, electrode position.

Of course, it is important to investigate the effect of different

experimental set-ups. In this case, we may introduce a tuning

function to offset the day-to-day variances.

VII. CONCLUSION

The objective of this work is to develop a torque estimation

method which can be used to track FES-induced muscle

fatigue. In this work, we confirmed that muscle contraction

model parameters were time-varying during intermittent stim-

ulation in five SCI subjects. An estimation method of FES-

induced torque based on eEMG signals was evaluated in

its prediction performance. A time-varying eEMG-to-torque

model was employed to represent the myoelectrical and me-

chanical behavior of stimulated muscles, where the model

parameters were estimated by a Kalman filter with forgetting

factor. The results of the proposed method for the fatigue track-

ing task represent a feasible and effective torque prediction

performance in isometric condition in all subjects. In terms of

improvements in fatigue tracking, when the measurement of

torque sensor suffers from recording interruption, the proposed

method can bridge these problems and provide sufficiently

accurate fatigue tracking only on eEMG measurement. There-

fore, we conclude that the proposed estimation method can

contribute to precise torque prediction in presence of muscle

fatigue. The predicted torque can be further used for adaptive

closed-loop FES control, considering the compensation of

muscle fatigue. Future work will be extended to adaptive FES

control for muscle fatigue compensation in SCI patients. We

will also endeavor to further improve the identification by

means of multiple eEMG measurements and more selective

stimulation. By introducing a joint dynamics model and joint

angle sensors along with the proposed method, we will work

on FES close-loop control based on eEMG sensing without

the use of torque sensors.
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Fig. 14. Fatigue tracking based on eEMG-to-torque model and Kalman filter in subject S3. The model estimated at t0 was used to predict the torque from t0
to t1, while the online estimation was switched off for 18s (with green background color in upper plot). This process was repeated until the end of stimulation.
Upper: The solid blue line indicates the measured torque, while the dotted red line indicates the predicted torque. Middle: The estimated model parameters
of the past torque. Lower: The estimated model parameters of the 3rd power of the past MAV.
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