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We have investigated magnetically tunable Feshbach resonances in ultracold collisions of Rb with
Yb in its metastable 3P2 and 3P0 states, using coupled-channel scattering and bound-state calcu-
lations. For the 3P2 state, we find sharp resonances when both atoms are in their lowest Zeeman
sublevels. However, these resonances are decayed by inelastic processes that produce Yb atoms in
3P1 and 3P0 states. The molecules that might be produced by magnetoassociation at the 3P2 thresh-
olds can decay by similar pathways and would have lifetimes no more than a few microseconds. For
the 3P0 state, by contrast, there are resonances that are promising for magnetoassociation. There
are resonances due to both rotating and non-rotating molecular states that are significantly stronger
than the analogous resonances for Yb(1S). The ones due to rotating states are denser in magnetic
field; in contrast to Yb(1S), they exist even for bosonic isotopes of Yb(3P0).

I. INTRODUCTION

There is great interest in forming ultracold molecules
containing an alkali-metal atom and a closed-shell atom
such as Sr or Yb. Such molecules have 2Σ electronic
ground states with both electric and magnetic dipole mo-
ments. Potential applications include the study of lattice
spin models in many-body physics [1] and searches for
the electric dipole moment of the electron [2].

Ultracold molecules such as the alkali-metal diatomics
are commonly formed by magnetoassociation, in which
pairs of atoms are converted to molecules by tuning
a magnetic field across a zero-energy Feshbach reso-
nance. Such resonances exist when high-lying molecular
bound states cross an atomic threshold, and are coupled
to it to form an avoided crossing. In the alkali-metal
pairs, there are two main coupling mechanisms that can
cause Feshbach resonances. First, the existence of sin-
glet and triplet spin states of the molecule, with dif-
ferent potential-energy curves, provides a coupling be-
tween different atomic hyperfine states. This coupling
can cause resonances in s-wave scattering due to s-wave
bound states, with relative angular momentum L = 0.
Secondly, magnetic dipole-dipole coupling between un-
paired electrons on the two atoms can cause resonances in
s-wave scattering due to d-wave and higher-wave bound
states with L ≥ 2. Both types of resonance have been
extensively used, both to tune scattering lengths and in-
teraction strengths and to form molecules by magnetoas-
sociation.

Neither of the mechanisms that dominate for alkali-
metal pairs exists for mixtures of alkali metals with
closed-shell atoms. A closed-shell atom in a 1S state in-
teracts with an alkali-metal atom in a 2S state to form
only a single molecular state, of 2Σ symmetry. This pro-
vides no couplings between hyperfine states. In addi-
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tion, a closed-shell atom has no magnetic dipole (except
possibly a nuclear dipole) to provide a dipole-dipole in-
teraction. The only resonances that exist for mixtures
of alkali-metal and closed-shell atoms are due to weaker
interactions, and are much narrower. In particular, the
hyperfine coupling of the alkali-metal atom is modified
by the presence of the closed-shell atom, and this pro-
duces a weak coupling that can produce resonances due
to s-wave bound states [3, 4]. This can occur even for
spin-zero (bosonic) isotopes of the closed-shell atom. In
addition, if the closed-shell atom has non-zero nuclear
spin, there are resonances due to its scalar and tensor in-
teractions with the electron spin of the alkali-metal atom
[5, 6].

Much experimental work has been devoted to locating
and observing Feshbach resonances in these systems [7–
18]. Resonances have now been observed for both bosonic
and fermionic isotopes of Sr interacting with Rb [18], for
fermionic 173Yb interacting with 6Li [19] and for 173Yb
interacting with Cs [20]. However, the resonances are
very narrow. In addition, the ones for bosonic isotopes
of Sr and Yb are very sparse in magnetic field [3, 4, 21],
and for many isotopic combinations exist only at mag-
netic fields that are hard to achieve in experiments. At-
tempts to form ultracold molecules by magnetoassocia-
tion at these resonances have so far been unsuccessful.

A possible alternative is to use atoms in excited states.
In particular, ultracold samples of Sr and Yb can be pre-
pared in the metastable 3P2 and 3P0 states. An atom in
a 3P state combines with one in a 2S state to form multi-
ple molecular electronic states, so broader Feshbach res-
onances might be expected. However, molecules formed
at the 3P2 threshold have finite lifetimes, due to predis-
sociation by spin recoupling to form atoms in the lower
3P1 and 3P0 states. Previous work on Li+Yb(3P2) has
shown that the resulting resonances are strongly decayed
by these inelastic processes [22–24], and are unlikely to
be suitable for molecule formation. It is not immediately
clear whether this will remain true for heavier alkali-
metal atoms, since inelastic processes that release sub-
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stantial kinetic energy are often suppressed when the re-
duced mass is large [25, 26].

The purpose of the present work is to investigate Fesh-
bach resonances for Yb(3Pj) interacting with Rb(2S). We
find that resonances for Yb(3P2) remain significantly de-
cayed, and even in favorable cases the molecules formed
at them predissociate on a microsecond timescale. How-
ever, the 3P0 threshold is more promising. Molecules
formed at this threshold cannot decay by spin recoupling.
The predicted resonances are narrow, because they rely
on indirect couplings between the bound state and the
threshold, but they can be substantially wider than for
Yb(1S).

The structure of the paper is as follows. Section II
describes the theoretical methods we use, including the
interaction potential for Yb(3Pj) interacting with Rb(2S)
and the specific form of the coupled-channel equations.
Section III describes results for Feshbach resonances at
the Yb(3P2) thresholds, including their dependence on
the interaction potential, and discusses the lifetimes of
molecules that would be produced by magnetoassocia-
tion. Section IV describes results for Feshbach resonances
at the Yb(3P0) thresholds. Section V presents conclu-
sions and perspectives.

II. THEORY

A. Coupled-channel methods

We carry out coupled-channel scattering and bound-
state calculations. The total wavefunction is expanded

Ψ(R, ξ) = R−1
∑
j

Φj(ξ)ψj(R), (1)

where R is the internuclear distance and the functions
Φj(ξ) form a complete orthonormal basis set for motion
in all other coordinates, collectively labeled ξ. For inter-
action of Rb(2S) with Yb(3P), ξ includes the electron and
nuclear spins on both atoms, the orbital angular momen-
tum of Yb, and the relative angular momentum L. The
factor R−1 serves to simplify the form of the radial ki-
netic energy operator. The wavefunction in each channel
j is described by a radial channel function ψj(R).

The Hamiltonian of the interacting pair is

Ĥ = − ~2

2µ
R−1 d

2

dR2
R+

~2L̂2

2µR2
+ĤRb+ĤYb+V̂ (R, ξ). (2)

Here ĤRb and ĤYb are the Hamiltonians of the iso-
lated Rb and Yb atoms, and depend on ξ but not R,
and V̂ (R, ξ) is an interaction operator described below.

The operator ~2L̂2/2µR2 is the centrifugal term that de-
scribes the end-over-end rotational energy of the inter-
acting pair.

Substituting the expansion (1) into the total
Schrödinger equation, and projecting onto a basis func-

tion Φi(ξ), produces a set of coupled differential equa-
tions for the channel functions ψi(R),

d2ψi
dR2

=
∑
j

[Wij(R)− Eδij ]ψj(R), (3)

where δij is the Kronecker delta, E = 2µE/~2, E is the
total energy, and

Wij(R) =
2µ

~2

∫
Φ∗i (ξ)

[
~2L̂2

2µR2
+ ĤRb + ĤYb

+ V̂ (R, ξ)

]
Φj(ξ) dξ. (4)

The different equations are coupled by the off-diagonal
terms Wij(R) with i 6= j.

The atomic Hamiltonian of Rb(2S) is

ĤRb = ζRbîRb · ŝRb +
(
gs,RbŝRb,z + giîRb,z

)
µBB, (5)

where ŝRb and îRb are vector operators for the electron
and nuclear spin, ŝRb,z and îRb,z are their components
along the z axis defined by the magnetic field, ζRb is the
hyperfine coupling constant, and gs,Rb and gi are the g-
factors for the electron and nuclear spins [27]. The atomic
Hamiltonian of Yb(3P), neglecting any nuclear spin, is

ĤYb = aYb l̂Yb · ŝYb + a1δj1 +
(
l̂Yb,z + gs,YbŝYb,z

)
µBB,

(6)

where l̂Yb and ŝYb are vector operators for the electron

orbital angular momentum and spin, l̂Yb,z and ŝYb,z are
their components along the z axis. The atomic spin-orbit
coupling constant aYb/hc = 807.3163 cm−1 is chosen to
reproduce the splitting between the 3P0 and 3P2 states
and a1/hc = −103.7483 cm−1 shifts the 3P1 state down
in energy to account for the effects of jj coupling. gs,Yb

is the g-factor for the electron spin; here we use the free-
electron value, which is very slightly different from gs,Rb.

In the present work, we solve the coupled-channel
equations subject to both scattering and bound-state
boundary conditions. Scattering calculations are per-
formed with the molscat package [28, 29], with purpose-
written plug-in routines to implement the basis sets and
interaction operators described here. Such calculations
produce the scattering matrix S, for a single value of
the collision energy and magnetic field each time. The
complex s-wave scattering length a is obtained from the
diagonal element of S in the incoming channel, S00, using
the identity [30]

a(k0) =
1

ik0

(
1− S00(k0)

1 + S00(k0)

)
, (7)

where k0 is the incoming wavenumber, related to the col-
lision energy Ecoll by Ecoll = ~2k2

0/(2µ). The scattering
length a(k0) becomes constant at sufficiently low Ecoll,
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and in the present work calculations are performed at
Ecoll/kB = 100 nK.

Coupled-channel bound-state calculations are per-
formed using the packages bound and field [29, 31],
which converge upon bound-state energies at fixed field,
or bound-state fields at fixed energy, respectively. These
packages use the same plug-in routines for basis sets and
interaction operators as molscat. The methods used
are described in Ref. [32].

molscat, bound and field implement many different
propagators for solving the coupled-channel equations.
In the present work, the coupled equations for both scat-
tering and bound-state calculations are solved using the
fixed-step symplectic propagator of Manolopoulos and
Gray [33] from Rmin = 3 Å to Rmid = 18 Å, with an
interval size of 0.001 Å, and the variable-step Airy prop-
agator of Alexander and Manolopoulos [34] from Rmid to
Rmax. We used Rmax = 2000 Å and 100 Å for scattering
and bound-state calculations, respectively.

B. Basis sets

The many different angular momenta may be coupled
together in several different ways, and different coupling
schemes are useful when discussing different aspects of
the problem. The separated atoms are best represented
by quantum numbers (sRb, iRb)f,mf and (lYb, sYb)j,mj ,
where the notation (a, b)c indicates that c is the resultant
of a and b and mc is the projection of c onto the z axis.
Here f and j are not strictly conserved quantum num-
bers in a magnetic field, but serve to identify states by
adiabatic correlation as a function of field.

At shorter range, the couplings change in important
ways. lYb decouples from sYb, and in the absence of spin-
orbit coupling would quantize along the internuclear axis
with body-fixed projection λ. sRb decouples from iRb and
couples to sYb with resultant S, which can be considered
either with projection MS along z or with projection Σ
onto the molecular axis. Finally, molecular spin-orbit
coupling mixes states with different λ, S, and Σ but the
same Ω = λ + Σ. Despite the mixing, S and λ have
some useful meaning around the potential minimum and
the electronic states are conventionally described with
labels such as 2Π3/2, indicating 2S + 1 = 2 (so S = 1

2 ),

|λ| = 1 and |Ω| = 3
2 . Ω is conserved with respect to the

electronic parts of the Hamiltonian, but different values
of Ω are nevertheless mixed by Coriolis terms arising from
the centrifugal operator ~2L̂2/2µR2 and the hyperfine
Hamiltonian.

To carry out coupled-channel calculations, we need a
basis set that spans the complete space, including rela-
tive rotation and nuclear spin. We do not require a basis
set where ĤRb and ĤYb are diagonal, because molscat
transforms the solutions of the coupled equations into an
asymptotically diagonal basis set before applying scat-
tering boundary conditions. We therefore choose to use

the basis set

|sRb,ms,Rb〉|iRb,mi,Rb〉|(lYb, sYb)j,mj〉|L,ML〉 (8)

The only conserved quantities in a magnetic field are
Mtot = ms,Rb +mi,Rb +mj +ML and parity (−1)L+lYb .
We take advantage of this to perform calculations for
each Mtot and parity separately. In each calculation, we
include all basis functions of the required Mtot and parity
for sRb = 1

2 , iRb = 3
2 for 87Rb, lYb = 1, sYb = 1, subject

to the limitation L ≤ Lmax.

C. The interaction operator

If spin-orbit coupling is neglected, a Yb atom in its 3P
state interacts with an alkali-metal atom in a 2S state to
form four molecular electronic states, 2Σ, 2Π, 4Σ and 4Π.
There are additional molecular states arising from 2P and
higher states of the alkali-metal atom, from the 1P state
of Yb, and even from ion-pair states. In the present work
we make the approximation that only the four electronic
states arising from 3P+2S contribute significantly and
that the effects of other states can be included through
perturbative effects on the potential curves.

Spin-orbit coupling splits the 3P state of Yb into three
fine-structure components 3Pj , where j = 0, 1, 2 is the
total atomic electronic angular momentum. At short
range it splits the 2Π molecular state into components
with |Ω| = 1

2 and 3
2 and the 4Π state into four compo-

nents, two with |Ω| = 1
2 and others with |Ω| = 3

2 and 5
2 .

Here Ω is the projection of all the electronic orbital and
spin angular momenta onto the molecular axis. However,
only |Ω| is conserved in the electronic Hamiltonian, and
states with Ω = + 1

2 and − 1
2 can mix.

Shundalau and Minko [35] have carried out electronic
structure calculations on the ground and low-lying ex-
cited states of RbYb, using complete-active-space self-
consistent-field (CASSCF) methods with perturbative
corrections. They presented Born-Oppenheimer poten-
tial curves for all the relevant electronic states, including
spin-orbit coupling, as a function of internuclear distance
R. However, the Born-Oppenheimer curves are not suf-
ficient to carry out coupled-channel calculations of the
bound states and scattering, as are needed to predict ul-
tracold experiments. We need both the potential energy
curves and the couplings between them, in either an adi-
abatic or (preferably) a diabatic representation.

It is therefore necessary to model the CASSCF po-
tential curves in a representation that provides both di-
agonal and off-diagonal matrix elements. We initially
hoped that we could fit the curves of ref. [35] using a
set of diabatic curves for the spin-orbit-free 2Σ, 2Π, 4Σ
and 4Π states, together with an R-independent spin-orbit
coupling operator for the Yb atom, to provide a rep-
resentation analogous to that used for Li+Yb(3P) [22].
However, this representation proved unsatisfactory for
Rb+Yb(3P). To reproduce the CASSCF curves, it was
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FIG. 1. (a) Adiabatic potential energy curves, including spin-orbit coupling; (b) spin-orbit-free potential curves; (c) spin-orbit
coupling functions; (d) spin-averaged and spin-difference potential curves.

necessary to use a more complicated R-dependent spin-
orbit coupling operator. We choose the form

V̂so(R, ξ) = ∆aYb(R)l̂Yb · ŝYb + ∆aRb(R)l̂Yb · ŝRb, (9)

where the second term accounts for the interaction be-
tween the spin originally on Rb with the orbital angular
momentum. The potential curves for the spin-orbit-free
states are described by Hulburt-Hirschfelder curves [36],
supplemented by damped dispersion terms at long range.
The spin-orbit-free curves, spin-orbit functions and the
resulting adiabatic curves including spin-orbit coupling
are shown in Fig. 1. The fitted parameters for the po-
tential curves and spin-orbit matrix are described in Ap-
pendix A.

In addition to couplings due to electrostatic and spin-
orbit interactions, there is a magnetic dipole-dipole in-
teraction between the electron spin on the Rb and the
orbital and spin angular momenta on the Yb atom [37].
However, Rb(2S) + Yb(3P) contrasts with the alkali-
metal pairs, where the magnetic dipole-dipole interac-
tion, although weak, is the dominant anisotropic term
capable of mixing channels of different L. In the present
system, there are far stronger terms off-diagonal in L that
arise from electrostatic interactions, so that the dipole-
dipole term is less important in comparison.

The complete interaction operator may be written

V̂ (R) =
∑
S,λ

V Sλ (R)V̂Sλ + V̂so(R, ξ) + V̂ d (10)

where the operator V̂Sλ = |2S+1λ〉〈2S+1λ| projects onto a
single orbital projection λ and spin multiplicity 2S + 1.

The matrix elements of the spin-free interaction poten-

tials, l̂Yb · ŝYb, the Zeeman interaction and the magnetic
dipole-dipole interaction in the basis set (8) have been

given previously [37]. The matrix elements of l̂Yb · ŝRb

are given in Appendix B.

D. Selection rules

It is helpful to think of the terms in the interaction op-
erator in terms of their spherical tensor character, since
this determines the selection rules that govern their ma-
trix elements. Any term in the interaction must be un-
changed by overall rotations of the system in space, so
must be scalar (rank 0) in the total angular momentum
F . However, it may have internal structure, and non-zero
rank with respect to some of the component angular mo-
menta.

To describe the tensor character, we represent the po-
tential operators for Σ and Π states in terms of isotropic
and anisotropic components, V0 and V2, for each total
spin, S = 1/2 (doublet) and S = 3/2 (quartet) [38],

V S0 (R) =
1

3

(
V SΣ (R) + 2V SΠ (R)

)
(11)

V S2 (R) =
5

3

(
V SΣ (R)− V SΠ (R)

)
. (12)
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We then define averages and differences of the potentials
for the two spins,

V ±κ (R) =
1

2

(
V 1/2
κ (R)± V 3/2

κ (R)
)
. (13)

The resulting potential curves are shown in Fig. 1(d). We

represent the corresponding operators as V̂±κ , so that the
complete interaction operator is

V̂ (R) =
∑
±,κ

V ±κ (R)V̂±κ + V̂so(R, ξ) + V̂ d. (14)

This is equivalent to Eq. (10), but written in terms of the
average and difference potentials of Eqs. (11) to (14).

The spherical tensor character of the operators is most
simply expressed in a representation where sRb and sYb

couple to give resultant S, and lYb and L couple to give
resultant N , which is the spin-free angular momentum.
N and S then couple to give J , the total angular mo-
mentum excluding nuclear spin. We represent the tensor
rank by a superscript integer for each component angular
momentum.

In this representation, V̂+
0 is a scalar operator in all

the component angular momenta, whose matrix repre-
sentation is a unit matrix in any basis set. V̂−0 has tensor

character
(
s

(1)
Rb⊗s

(1)
Yb

)(0)
, so has matrix elements that can

changems,Rb andms,Yb by 1 in opposite directions, while
conserving their sum. It is worth noting that exactly the
same tensor character and selection rules apply to the dif-
ference between the singlet and triplet potentials in the
alkali-metal pairs, where V −0 (R) = 1

2

(
V 0(R) − V 1(R)

)
.

V̂+
2 has tensor character

(
l
(2)
Yb ⊗ L(2)

)(0)
, so has matrix

elements that can change ml,Yb and mL by 1 or 2 in

opposite directions, while conserving their sum. V̂−2 has

tensor character
(
s

(1)
Rb ⊗ s

(1)
Yb

)(0) ⊗
(
l
(2)
Yb ⊗ L(2)

)(0)
, so has

matrix elements with selection rules that are a com-
bination of those for V̂−0 and V̂+

2 . The atomic spin-

orbit operators l̂Yb · ŝYb and l̂Yb · ŝRb have tensor char-

acters
(
l
(1)
Yb ⊗ s

(1)
Yb

)(0)
and

(
l
(1)
Yb ⊗ s

(1)
Rb

)(0)
, respectively.

The magnetic dipole-dipole operator has tensor character[(
s

(1)
Rb ⊗ s

(1)
Yb

)(2) ⊗ L(2)
](0)

.
In the discussion below, we often need matrix elements

in basis sets that are coupled in a different sequence to
those used for the operators above. These are obtained
using standard equations for the recoupling of tensor op-
erators [39]. For example, in a representation labeled by
j and mj instead of ml,Yb and ms,Yb, the tensor charac-

ter of V̂−0 may be expanded as
[
s

(1)
Rb ⊗

(
l
(0)
Yb ⊗ s

(1)
Yb

)(1)](0)
,

so it has matrix elements that can change j by 0 or 1 and
mj and ms,Rb by 1 in opposite directions, while conserv-
ing their sum. In such a basis set the selection rules may
be summarized

j 2 1 0( )
2 V +

0 , V −0 , V +
2 , V −2 V −0 , V +

2 , V −2 V +
2 , V −2

1 V −0 , V +
2 , V −2 V +

0 , V −0 , V +
2 , V −2 V −0

0 V +
2 , V −2 V −0 V +

0

(15)

Operators with superscript − can change mj and ms,Rb

(and thus f and mf ), while those with κ = 2 can change
L and ML as well as j and mj . The Yb spin-orbit oper-

ator is diagonal in this representation, but l̂Yb · ŝRb can
change mj and ms,Rb by 1 in opposite directions (and
can thus change j and/or f by 1).

III. EFFECT OF INELASTIC DECAY ON
QUASIBOUND STATES AND FESHBACH

RESONANCES

The following sections need an understanding of how
inelastic decay affects the properties of bound states and
resonances, so here we give a brief summary of the key
results.

In a multichannel system, true bound states occur at
energies where all channels in the coupled equations are
asymptotically closed, E < Ei for all channels i, where
Ei is the energy of the separated particles in channel
i. At energies above the lowest threshold E0, distinct
states may still exist, but they may decay to the open
channels with Ei < E. Such states are termed quasi-
bound, and may be observed spectroscopically; they are
characterized by their energy Eres and width ΓE . A qua-
sibound state decays into the continuum with a lifetime
τ = ~/ΓE .

A quasibound state appears in a scattering calculation
as a Feshbach resonance. In the simplest case, with one
open channel, the scattering phase shift δ(E) increases
by π across the resonance according to the Breit-Wigner
formula,

δ(E) = δbg(E) + arctan

[
ΓE

2(Eres − E)

]
, (16)

where δbg(E) is a slowly varying background (non-
resonant) phase shift. Well above threshold, ΓE is al-
most independent of energy. If there is more than one
open channel, similar behavior is shown by the S-matrix
eigenphase sum S, which is the sum of the phases of the
complex eigenvalues of S(E) [40].

Ultracold collision experiments are usually carried out
as a function of magnetic field, which can shift molecular
states with respect to atomic thresholds. When a true
bound state crosses the lowest threshold as a function of
magnetic field B (or any other parameter in the Hamilto-
nian), it causes a zero-energy Feshbach resonance. This
produces a pole in the s-wave scattering length a(B),

a(B) = abg(B)

(
1− ∆

B −Bres

)
, (17)

where abg(B) is a slowly varying background (non-
resonant) scattering length, Bres is the resonance position
and ∆ is its elastic width. At sufficiently low energy, ∆
is independent of energy. At the lowest threshold, a(B),
abg(B) and ∆ are all real.
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The situation is considerably more complicated for
scattering at a higher threshold i with Ei > E0, where in-
elastic processes are possible [30]. The scattering length
is then complex, a(B) = α(B)−iβ(B) [41], and its imagi-
nary part characterizes the total inelastic scattering from
the incoming channel to all other channels that are en-
ergetically accessible. In the simple case where there is
no background inelastic scattering, abg(B) is real. How-
ever, if the quasibound state that causes the resonance
can itself decay when it is below threshold, with width
Γinel
E , the pole in the s-wave scattering length is replaced

with an oscillation: the real part α(B) shows an oscil-
lation of amplitude ±ares/2 and the negative imaginary
part β(B) shows a Lorentzian peak of height ares and
width Γinel

B = Γinel
E /∆µ; here ∆µ = d(Ei − Eres)/dB is

the difference in magnetic moments between the incom-
ing threshold and the quasibound state. The resonant
scattering length ares = −2abg∆/Γinel

B depends on the
ratio of the coupling from the resonant state to the in-
coming channel and the lower-lying (inelastic) channels.
Resonances of this type, due to quasibound states, are
referred to as decayed resonances; they range from pole-
like resonances where Γinel

B � ∆ to resonances that are
almost invisible in the scattering length where Γinel

B � ∆.
The situation is further complicated where there is

background inelastic scattering from the incoming chan-
nel, so that abg(B) is itself complex. This includes the
case of overlapping decayed resonances, where “back-
ground” inelasticity for one resonance is provided by an-
other nearby resonance. In this case ares can also be
complex, and both the real and imaginary parts of the
scattering length can show complicated lineshapes with
both peaks and troughs. The lineshapes may neverthe-
less still be characterized in terms of complex abg and
ares and real ∆ and Γinel

B [42]. If ∆µ is known, Γinel
B may

be used to extract Γinel
E and hence the lifetime τ of the

state that causes the resonance. This lifetime is impor-
tant when considering the possibility of magnetoassocia-
tion at a decayed resonance, because it is the lifetime of
the molecular state that would be produced.

Frye and Hutson [42] have developed methods for con-
verging on and characterizing Feshbach resonances from
coupled-channel calculations. The methods work effi-
ciently for isolated resonances of all three cases described
above: elastic resonances and decayed resonances with
and without background inelasticity. However, they
sometimes converge poorly in cases where resonances
overlap and interfere, as happens in some of the cases
here.

IV. RESONANCES AT Rb(2S) + Yb(3P2)
THRESHOLDS

In zero magnetic field, an 87Rb atom has two hyperfine
states, f = 1 and 2, separated by 6.835 GHz. In a mag-
netic field, each of these splits into 2f + 1 sublevels, with
adjacent sublevels separated by 0.7 MHz/G at low field.

-1800

-1200

-600

 0

 600

 1200

 1800

(a)

α
 (

Å
)

 18

 28

 38

 0  6  12  18  24  30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70  80  90  100

(b) (f,mf,mj)

β
 (

Å
)

Magnetic field B (G)

(1,1,-2)

(1,1,2)

(1,-1,-2)

(2,-2,-2)

(2,2,2)

 0

 6

 12

 18

 0  6  12  18  24  30

FIG. 2. Real (a) and negative imaginary (b) parts of the
scattering length for Rb(f,mf ) colliding with 170Yb(3P2,mj)
for different initial atomic states. The insets shows the weak
features in the spin-stretched channel at low field.

Yb(3P2) similarly splits into 5 sublevels, with adjacent
levels separated by 2.1 MHz/G at low field.

Any collision between Rb(2S) + Yb(3P2) can result in
inelastic transitions. Even for the lowest such threshold,
with (f,mf ) = (1, 1) and mj = −2, inelastic collisions to
Yb(3P0) can be driven by V +

2 (R) and V −2 (R), while in-
elastic collisions to Yb(3P1) can be driven by V −0 (R),
V +

2 (R), V −2 (R) and ∆aRb(R). For higher thresholds,
there are additional inelastic mechanisms that change f ,
mf or mj .

For alkali-metal pairs, inelastic collisions are generally
suppressed for atom pairs initially in spin-stretched and
quasi-spin-stretched channels, even when they are en-
ergetically allowed. Spin-stretched channels are those
that have the maximum values of mf for both atoms,
while quasi-spin-stretched channels are those for which
there is no lower channel with the same value of MF =
mf +mf,Yb; for bosonic Yb isotopes with nuclear spin 0,
mf,Yb = mj . Inelastic processes from such channels are
suppressed for two reasons. First, collisions that change
MF are driven only by anisotropic terms in the interac-
tion potential, which are weak for alkali-metal pairs. Sec-
ondly, for incoming s-wave collisions, an outgoing wave
for a different value of MF must have L ≥ 2; this creates
a centrifugal barrier in the outgoing channel that is of-
ten sufficient to cause further suppression of the inelastic
rate when the energy release is small.

Spin-stretched channels behave quite differently for
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Rb(2S) + Yb(3P2). V +
2 provides a strong anisotropic

interaction that can change mj and mL by 1 or 2 in op-
posite directions, while conserving their sum. Although
it can change j, it also has matrix elements diagonal in j
for j = 1 and 2. Such a term does not conserve mf +mj .
V −2 has even weaker selection rules, and can change f
and/or mf by 1 at the same time, conserving only Mtot.
For incoming s-wave collisions, there can still be some
centrifugal suppression at low fields due to the centrifu-
gal barrier in the outgoing channel, which for L = 2 is
approximately h×6 MHz high. At higher fields, inelastic
losses cause substantial damping of resonant poles, even
for quasi-spin-stretched states.

We have carried out coupled-channel scattering calcu-
lations on Rb+170Yb(3P2), using the molscat package
[28, 29], for a variety of incoming channels labeled by
f , mf and mj . The real and imaginary parts of the
scattering length are shown as a function of B in Fig.
2. There are many resonances, but most of them are
strongly decayed. In general, resonances with large val-
ues of ares [and thus high peaks in β(B)] are likely to
be the most promising for magnetoassociation. Only
the lowest 3P2 channel, with (f,mf ,mj) = (1, 1,−2),
shows large-amplitude features in the scattering length,
with ares ≈ 3000 Å here. The spin-stretched channel
(2,2,2) is the highest channel for Yb(3P2), so shows no
resonant features at all, except below ∼ 20 G, where
states with L > 0 confined behind their centrifugal bar-
rier can contribute. Even the quasi-spin-stretched chan-
nel (1,−1,−2) shows only weak resonant features with
ares < 400 Å.

Our calculations so far have been on a single inter-
action potential (and set of spin-orbit functions) fitted
to the electronic structure calculations of Shundalau and
Minko [35]. However, any such interaction potential has
intrinsic uncertainties, which in this case are many per-
cent. It is therefore important to investigate the sensi-
tivity of the results to the interaction potential. This is a
many-dimensional space, but to sample it in a systematic
way we investigate simple scalings of the entire interac-
tion operator by a factor λscl, which we vary over a range
of 2% around the original. Figure 3 shows the imaginary
part of the scattering length for 87Rb(2S,f = 1,mf = 1)
+ 170Yb(3P2) for 100 different values of λscl across this
range. It may be seen that different scalings of the po-
tential give quite different patterns of resonances. Never-
theless, the positions, widths and amplitudes of the res-
onances are reasonably smooth functions of λscl. With-
out detailed experiments to refine the interaction poten-
tials, there is no way of knowing where on this plot the
real system will fall. Indeed, since Fig. 3 shows only a
1-dimensional cut through a many-dimensional space of
potential parameters, it is unlikely that any single value
of λscl will reproduce the real behavior. Nevertheless, the
cuts shown give a reasonable sample of the likely behav-
iors.

The coupled equations (3) contain matrix elements of

the mass-scaled interaction operator 2µV̂ /~2. For this
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FIG. 3. (a) Negative imaginary part of scattering length, β,
for Rb(f = 1,mf = 1) colliding with 170Yb(3P2,mj = −2),
as a function of magnetic field and potential scaling; (b) same
results shown as a contour plot. The sawtooth appearance of
the ridges as a function of field is an artifact of the plotting
procedure.

reason, scaling the interaction operator V̂ by a factor λscl

has almost the same effect as scaling the reduced mass
µ by the same factor. The only difference arises because
λscl does not scale ĤRb and ĤYb in the same way; this
has a minor effect on inelastic processes, but very little
effect on elastic processes. Figure 4 shows the same plot
as Fig. 3, but for 174Yb, which has a reduced mass 0.78%
larger than 170Yb. The plots confirm that the pattern
of resonances is very similar, but shifted down in scaling
factor by the expected 0.78%.

We thus see that about 30% of potentials show fairly
sharp resonances in the scattering length for the lowest
threshold of Rb(2S) + Yb(3P2) at fields below 100 G.
This occurs for any one isotope of Yb, and there are 5
bosonic and 2 fermionic isotopes available, so there is a
good likelihood that one or more isotopes will show such
resonances for the real interaction potential.

We now turn to the question of whether such reso-
nances are likely to be useful for molecule formation. To
assess this, we pick potentials with λscl from 0.9996 to
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FIG. 4. (a) Negative imaginary part of scattering length, β,
for Rb(f = 1,mf = 1) colliding with 174Yb(3P2,mj = −2),
as a function of magnetic field and potential scaling;(b) same
results shown as a contour plot.

1.0024. These are not the highest features in Fig. 3, but
they exist over a relatively broad range of interaction po-
tentials. The resonant features in the scattering length
are shown in Fig. 5, where it may be seen that the peaks
in β(B) are up to 6000 Å high.

For each value of λscl, we characterize the sharpest res-
onance, using the regularized scattering length procedure
of Frye and Hutson [42], as implemented in molscat
[28, 29]. The parameters we obtain are the resonance
position Bres, the background scattering length abg, the
elastic width ∆, the resonant scattering length ares and
the inelastic resonance width Γinel

B . These parameters
are tabulated in Supplemental Material [43]. They show
some irregularity because of the presence of overlapping
resonances that are different for each scaling, but the key
parameter for the present purpose is Γinel

B , which is stable.
The smallest value calculated for Γinel

B is about 0.125 G.
This is related to the energy width of the molecular state
produced by magnetoassociation, Γinel

E = Γinel
B ∆µ, where

∆µ is the gradient at which the quasibound state respon-
sible for the resonance crosses threshold.

We have also characterized the resonant state just be-
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FIG. 5. Resonances in the real (a) and negative imaginary
(b) parts of the scattering length for Rb(f = 1,mf = 1)
colliding with 170Yb(3P2,mj = −2) for different scalings of
the interaction potential.

low threshold. For the case of λscl = 1.0012, the state
crosses threshold and causes a zero-energy Feshbach res-
onance near B = 13 G. At fields just below this, there
are clear Breit-Wigner signatures in the calculated eigen-
phase sum below threshold. We have characterized these
as described in Supplemental Material [43] between 9 G
and 10 G, using the method of Frye and Hutson [44]. We
obtain an energy gradient ∆µ ≈ −0.5 MHz/G and energy
widths close to threshold Γinel

E ≈ 0.06 MHz. These values
are consistent with the observed values of Γinel

B described
above. We indicate quantum numbers of the state that
crosses threshold with subscript res; the low value of ∆µ
suggests that the resonant state here has predominantly
(mf,res,mj,res) = (0,−2) and thus Lres ≥ 2.

An energy width Γinel
E ≈ 0.06 MHz corresponds to a

lifetime of the molecular state τ = ~/Γinel
E ≈ 2.5 µs.

In view of the uncertainty in the interaction potential,
this should not be considered more than an order-of-
magnitude estimate. Nevertheless it is short enough that
it is likely to be experimentally challenging to transfer
molecules made by magnetoassociation at the 3P2 thresh-
olds to a stabler state before they undergo inelastic decay.
However, even if they do not prove useful for molecule
formation, resonances at these thresholds may be used to
tune the scattering length by substantial amounts, and
may be useful in future experiments.

As mentioned above, there are two other resonances
that produce prominent ridges in Figs. 3 and 4. One
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of these has higher peaks in β(B), with smaller values
of Γinel

B and correspondingly longer molecular lifetimes.
However, it exists for only a tiny range of scaling factors
and magnetic fields, so is unlikely to be seen in the real
system. The other exists over a wider range of scaling
factor, but is more strongly decayed, with larger Γinel

B
and shorter lifetimes. Both these are described in the
Supplemental Material [43].

V. RESONANCES AT Rb(2S) + Yb(3P0)
THRESHOLDS

A Yb atom in its 3P0 state is spherical. Its collisions
with Rb(2S) have many similarities to those of Yb(1S).
The scattering is governed mostly by a single effective
potential curve, the lowest in Fig. 1(a). The resulting
scattering length varies only slowly with magnetic field
B, except near narrow Feshbach resonances. Each near-
threshold bound state is almost parallel to the Rb hy-
perfine state that supports it as a function of B. All the
mechanisms that can produce Feshbach resonances for
Rb+Yb(1S) [3–6, 18] exist for Yb(3P0) as well, with cou-
pling between the bound states and thresholds provided
by the dependence of the Rb or Yb hyperfine coupling
on internuclear distance R. However, there are additional
mechanisms for Rb+Yb(3P0) due to the additional terms
in the interaction potential.

The 3P1 and 3P2 states of Yb lie 703.568 and 2421.949
cm−1, respectively, above 3P0. Any bound states that
they support will be widely separated at the energy
of 3P0, and very unlikely to cause zero-energy Fesh-
bach resonances at experimentally accessible magnetic
fields. However, as seen above, the anisotropic and spin-
dependent parts of the interaction potential are substan-
tial compared to the spin-orbit splittings, so they cause
significant mixing of the 3P0, 3P1 and 3P2 states at short
range. They also cause mixing between the f = 1 and 2
hyperfine states of Rb. Because of this, zero-energy Fesh-
bach resonances can exist where bound states supported
by both f = 1 and f = 2 states of Rb, with both L = 0
and L = 2, cross thresholds with different (f,mf ).

We have calculated scattering lengths for a variety of
thresholds for Rb(f,mf ) interacting with 174Yb(3P0), us-
ing the same methods as for Yb(3P2) above. The results
are shown in Fig. 6, initially on a coarse scale that is
not designed to show narrow Feshbach resonances. It
may be seen that the scattering lengths vary only slowly
with field, as expected, but that there are significant dif-
ferences in the values at the different thresholds. These
arise because the matrix elements involving V −0 , V −2 and
∆aRb that connect the j = 0 thresholds to j = 1 and 2
are different for different values of (f,mf ).

The scattering lengths allow us to calculate zero-field
binding energies for states below the f = 1 and f = 2
thresholds. For this we use single-channel calculations
on the lowest adiabat shown in Fig. 1(a), with small ad-
justments at short range to match the required scatter-
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ing length. We then use the zero-field binding energies
to calculate the pattern of states below each threshold,
with the initial approximation that each state is paral-
lel to the threshold that supports it. This approximation
could be improved, using the calculated B-dependence of
the scattering lengths, but it is conceptually useful. Fig-
ure 7 shows the resulting diagram for 174Yb, including
the f = 1 thresholds themselves.

Many crossings between bound states and thresholds
are visible in Fig. 7. To understand which of these can
cause Feshbach resonances, we must consider the cou-
plings due to different terms in the interaction potential.
First, V −0 can couple j = 0 to j = 1 differently for f = 1
and 2. However, it cannot change mf + mj , so even in
second order it cannot change mf at the j = 0 threshold,
where mj is always zero. A similar argument applies to
∆aRb. Bound states with fres = 1 are parallel to thresh-
olds with f = 1 and the same mf , so do not cross them.
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However, bound states with fres = 2 can cross thresholds
with f = 1 and the same mf . Figure 7 shows one cross-
ing of this type at each threshold as a red circle, and
zero-energy Feshbach resonances are expected at these
fields. These are due to a state bound by 10.9 GHz with
respect to the f = 2 threshold, with vibrational quantum
number n = −5 relative to that threshold. We refer to
such resonances as L-conserving and f -changing.

The spin-averaged anisotropic term V +
2 can couple

j = 0 to j = 2, but the couplings are independent of
f and mf . It therefore does not cause zero-energy Fesh-
bach resonances in second order, though it can do so
in higher order in combination with other terms such
as V −0 . However, the spin-difference anisotropic term
V −2 has couplings that are different for f = 1 and 2.
Moreover, it can change L and ML in addition to f and
mf . In second order, it can couple a threshold (f,mf )
to a bound state with fres = 1 or 2 and Lres = 0 or 2.
For a bound state with Lres = 2, mf,res can take values
mf ,mf ± 1,mf ± 2, compensated by ML,res = 0,∓1,∓2.
This allows resonances due to bound states with both
f = 2 and f = 1 at thresholds with f = 1, in a simi-
lar way to resonances arising from mechanism III at the
1S thresholds in fermionic isotopes of RbSr [18], CsYb
[6] and LiYb [19]. We refer to such resonances as L-
changing and either f -conserving or f -changing; the cor-
responding crossings are identified in Fig. 7 with blue and
red triangles, respectively. Since there are always bound
states with fres = 1 and Lres = 2 quite close to the
f = 1 threshold, f -conserving but L-changing Feshbach
resonances will always exist at experimentally accessible
fields, even for bosonic isotopes of Yb.

We have located all the zero-energy Feshbach reso-
nances shown in Fig. 7 at the threshold (f,mf ) = (1, 1)
by performing coupled-channel bound-state calculations
as a function of magnetic field at zero energy using the
field package [29, 31]. We have then characterized the
resonances using the elastic procedure of Frye and Hutson
[42], as implemented in molscat [28, 29]. The resulting
resonant fields and widths are given in Table I. It may
be seen that the f -changing but L-conserving resonance
has a calculated width of 76 mG, and even one of the
L-changing resonances is 10 mG wide.

There are additional resonances at higher thresholds
of Rb, as shown in Fig. 7. We have located the reso-
nances at the thresholds (f,mf ) = (1, 0) and (1,−1) and
characterized them using the weakly inelastic procedure
[42], which is appropriate when the background inelas-
ticity is weak. The results are given in Tables II and III.
Some of the resonances are strongly decayed, but others
have very small values of Γinel

B and may be suitable for
molecule formation. The L-conserving resonance at the
(1, 0) threshold is particularly notable, with a width over
100 mG.

The resonance positions and widths are sensitive to
uncertainties in the interaction potential. A small change
in the potential has a large effect on the scattering lengths
and binding energies. Figure 8(a) shows the calculated

TABLE I. Calculated parameters for resonances at the thresh-
old Rb(f = 1,mf = 1) + 174Yb(3P0) on the unscaled inter-
action potential.

Lres, fres,mf,res Bres (G) ∆ (G) abg (Å)

2, 1,−1 95 1.2 × 10−7 382

2, 1, 0 193 3.1 × 10−6 429

2, 1,−1 898 6.7 × 10−7 519

2, 2, 2 1667 1.0 × 10−2 828

2, 2, 1 1986 6.1 × 10−3 1380

0, 2, 1 2070 7.6 × 10−2 1720

2, 2, 0 2438 −4.4 × 10−3 −9100

2, 1, 0 2977 −7.2 × 10−3 −733

2, 2,−1 3119 −2.0 × 10−7 −995
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TABLE II. Calculated parameters for resonances at the threshold Rb(f = 1,mf = 0) + 174Yb(3P0) on the unscaled interaction
potential.

Lres, fres,mf,res Bres (G) ∆ (G) abg (Å) ares (Å) Γinel
B (G)

2, 1,−1 186 1.0 × 10−6 438 24449 −3.60 × 10−8

2, 1,−1 1840 2.9 × 10−3 981 1.16 × 107 −4.84 × 10−7

2, 2, 2 2059 5.3 × 10−5 1480 30.9 −5.12 × 10−3

2, 2, 1 2447 −0.562 −18100 5.61 × 105 −3.63 × 10−2

2, 2, 0 2965 −1.2 × 10−2 −801 18400 −1.06 × 10−3

0, 2, 0 3056 −0.110 −674 4.98 × 106 −2.98 × 10−5

2, 2,−1 3689 −3.5 × 10−4 −294 1.49 × 106 −1.36 × 10−7

2, 2,−2 4322 6.1 × 10−6 −119 7.70 × 105 1.90 × 10−9

TABLE III. Calculated parameters for resonances at the threshold Rb(f = 1,mf = −1) + 174Yb(3P0) on the unscaled
interaction potential.

Lres, fres,mf,res Bres (G) ∆ (G) abg (Å) ares (Å) Γinel
B (G)

2, 2,−2 1463 −3.1 × 10−3 629 3.98 × 105 9.92 × 10−6

2, 2, 1 3139 −3.8 × 10−5 −628 2.09 −2.24 × 10−2

2, 2, 0 3700 −2.4 × 10−2 −302 118 −0.122

2, 2,−1 4427 −4.8 × 10−3 −162 4440 −3.53 × 10−4

0, 2,−1 4511 −5.3 × 10−2 −153 2.78 × 105 −5.85 × 10−5

binding energies of zero-field bound states for Rb(f =
1,mf = 1) + 174Yb(3P0) for L = 0 and 2 as a function of
the overall scaling λscl of the interaction potential. It may
be seen that the state with vibrational quantum number
n = −4 relative to the f = 2 threshold lies just below
the f = 1 threshold when λscl is slightly greater than
0.993. This same state is labeled n = −5 at λscl = 1 and
above, because another state enters the well just below
λscl = 1. An increase of 1.2% in λscl is sufficient to shift
this state from the f = 1 threshold to 8 GHz below it.
At this point a new vibrational state crosses the f = 1
threshold from above, and the cycle repeats. The states
supported by the f = 1 threshold will show similar cyclic
behavior, but the variation in energy is much less because
they are much more shallowly bound with respect to the
thresholds that support them.

The calculated widths are close to cyclic with the same
cycle length, but additional effects operate. In particular
they are moderated by the background scattering length
abg in the incoming channel, which passes through poles
and zeroes with the same cycle length of 1.2%. The res-
onance widths are greatly enhanced when |abg| is large
[4]. They are also artificially enhanced near a zero in abg,
though here abg∆ varies smoothly. They are reduced for
bound states very close to threshold, which have smaller
amplitudes at short range [4], and for resonances at low
magnetic fields.

It is useful to compare the typical strengths of the reso-
nances for Yb(3P0) with those for Yb(1S) [4, 6]. For this
we consider the quantity ∆̄ = abg∆/ā [6], where ā is the
mean scattering length of Gribakin and Flambaum [45];
this is 43.8 Å for Rb174Yb and quite similar for other iso-
topes. ∆̄ is a better measure of resonance strength than

TABLE IV. Calculated parameters for resonances at the
threshold Rb(f = 1,mf = 1) + 174Yb(3P0) on the interaction
potential with scaling factor λscl = 0.996.

Lres, fres,mf,res Bres (G) abg (Å) ∆ (G) ∆̄ (G)

0, 2, 1 905 13 3.8 × 10−3 1.1 × 10−3

2, 2, 2 622 12 4.4 × 10−4 1.2 × 10−4

2, 2, 1 812 13 3.7 × 10−4 1.1 × 10−4

2, 2, 0 1140 13 1.1 × 10−4 3.3 × 10−5

2, 1,−1 489 11 2.6 × 10−7 6.5 × 10−8

2, 1, 0 1162 14 1.4 × 10−4 4.5 × 10−5

∆ itself, because it accounts for the artificially large val-
ues of ∆ that occur when abg is small. Table IV gives val-
ues of Bres, abg, ∆ and ∆̄ for λscl = 0.996, which is chosen
to give resonances at moderate fields (Bres . 1000 G),
with |abg| . ā to avoid widths enhanced by atypically
large values of |abg|. For resonances due to states with
Lres = 0 supported by the thresholds with f = 2, we find
values of ∆̄ somewhat larger (by up to a factor of 10)
than those for resonances at similar fields due to Mech-
anism I for Rb+Yb(1S) [4] and Cs+Yb(1S) [6]. Some
of the resonances due to states with Lres = 2 have ∆̄
much larger (by a factor of 10 or more) than those due
to Mechanism III for Cs+171Yb(1S) and Cs+173Yb(1S)
[6], and exist for bosonic as well as fermionic isotopes of
Yb.

Changing the reduced mass has a very similar effect
to scaling the interaction potential by the same fraction.
The bosonic isotopes from 168Yb to 176Yb, in combina-
tion with 87Rb, offer a set of reduced masses that are ap-
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proximately equally spaced across a range of 1.6%. These
effectively encompass almost the entire range of behavior
shown in Fig. 8. However, calibration of the interaction
potential, using experimental binding energies or scat-
tering lengths, will be needed to predict which specific
isotope will produce bound states at a particular depth
or resonances at a particular field.

VI. CONCLUSIONS

Magnetically tunable Feshbach resonances exist in ul-
tracold collisions of closed-shell atoms such as Sr (1S) and
Yb(1S) with alkali-metal atoms, but they are sparse in
magnetic field and usually very narrow. Here we have in-
vestigated the analogous resonances for Yb atoms in their
excited 3P2 and 3P0 states in collision with Rb atoms,
using coupled-channel scattering and bound-state calcu-
lations.

We have obtained spin-free potential-energy curves
and spin-orbit coupling functions by fitting to ab initio
electronic structure calculations based on multireference
perturbation theory [35]. There are 4 spin-free potential
curves labelled 2Σ, 2Π, 4Σ and 4Π. These are mixed by
spin-orbit coupling to produce 9 spin-coupled potential
curves. In contrast to previous work, it proved insuffi-
cient to use the atomic spin-orbit operator for Yb(3P) at
all internuclear distances R. Instead we need separate R-
dependent spin-orbit operators involving the spins that
are asymptotically on the Yb and Rb atoms.

The 3P2 state of Yb lies energetically far above the 3P1

and 3P0 states. A Yb atom in its 3P2 state can there-
fore undergo inelastic collisions with Rb, even when both
atoms are in their lowest Zeeman sublevels. Because of
this, Feshbach resonances that exist at Yb(3P2) thresh-
olds are decayed, with resonant signatures that show os-
cillations rather than poles in the scattering length as
a function of magnetic field. The molecular states that
might be formed by magnetoassociation at these reso-
nances have finite lifetimes. We have explored the reso-
nance structure at several thresholds corresponding to
different Zeeman sublevels of Yb(3P2) and Rb. The
sharpest resonances (with the largest-amplitude varia-
tions in scattering length) occur when both atoms are
in their lowest sublevels, mj = −2 for Yb and f = 1,
mf = 1 for 87Rb. In some cases the scattering length

varies by more than ±6000 Å around the sharp reso-
nances. This contrasts with Li + Yb(3P2), where the
variations were previously found to be less than ±1000 Å
[22].

The interaction potential we have used is not accurate
enough to make absolute predictions of bound-state ener-
gies and resonance positions. To account for this, we have
considered a range of interaction potentials sufficient to
tune the least-bound state in each channel over a com-
plete cycle of possible energies. We have characterized
the sharpest resonances observed to obtain both elastic
and inelastic widths. The inelastic widths allow us to es-

timate the lifetimes of the molecular states that could be
formed by magnetoassociation, which are at most a few
microseconds for RbYb molecules formed at the Yb(3P2)
thresholds.

We have also investigated Feshbach resonances in col-
lisions of Yb(3P0) with Rb. The patterns of the bound
states that cause resonances here are closely analogous
to those for Yb(1S) [6]. However, there are additional
couplings for Yb(3P0) that arise directly from the elec-
trostatic potential-energy curves and spin-orbit coupling,
and do not rely on the distance-dependence of the hy-
perfine coupling. These couplings produce resonances
due to non-rotating bound states (Lres = 0) that are
typically somewhat stronger (by up to a factor of 10)
than the corresponding resonances for Yb(1S). These L-
conserving resonances are quite sparse in magnetic field,
as for 1S. In addition, there are L-changing resonances,
due to bound states with Lres = 2. These are denser as a
function of magnetic field. For Yb(3P0) they exist even
for bosonic (spin-zero) isotopes of Yb; this contrast with
Yb(1S), where the analogous resonances exist only for
fermionic Yb. Some of them are considerably stronger
(by a factor of 10 or more) than the L-changing reso-
nances that exist for 171Yb and 173Yb(1S) [6] and 87Sr
(1S) [18]. Molecules formed by magnetoassociation of
Yb(3P0) can decay only by processes that form Yb(1S),
with or without excitation of Rb to its 2P state, so are
expected to be long-lived.

The data presented in this work are available from
Durham University [46].
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Appendix A: Fitted parameters for potential curves
and spin-orbit matrix

The spin-orbit-free potential curves are represented by
Hulburt-Hirschfelder potentials [36] supplemented with
damped dispersion terms,

V (R) = De

[
e−2x − 2e−x + px3e−2x(1 + qx)

]
−
∑
n=6,8

Dn(αR)CnR
−n. (A1)

Here x = β(R − Re), where Re is the equilibrium dis-
tance, and De is the well depth. Both Re and De ex-
clude the dispersion terms. The functions Dn(αR) are
Tang-Toennies damping functions [47],

Dn(αR) = 1− e−αR
n∑

m=0

(αR)m

m!
. (A2)
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The dispersion coefficients C6 and C8 are the same for
doublet and quartet curves but different for Σ and Π
curves. We obtain the average value C0

6 = (1/3)(CΣ
6 +

2CΠ
6 ) = 4265.6 Eha

6
0 for Rb(2S) + Yb(3P) using Tang’s

combination rule [48] with the values of the static po-
larizability and dispersion coefficients for Rb [49] and
Yb(3P) [50]. The difference CΣ

6 − CΠ
6 is not known for

Rb + Yb, so we use the ratio CΣ
6 /C

Π
6 = 1.146 that was

used for Li(2S) + Yb(3P) [22]. This gives CΣ
6 = 4661.5

and CΠ
6 = 4067.6 Eha

6
0 for Rb(2S) + Yb(3P). For each

spin-free curve, we use a value of C8 related to C6 by
C8/C6 = 80a2

0.
From Equations (6) and (9) of Sec. II, we write the

total spin-orbit Hamiltonian for Rb(2S) + Yb(3P) as

Ĥso(R, ξ) = aYb l̂Yb.ŝYb + ∆aYb(R)l̂Yb · ŝYb

+ ∆aRb(R)l̂Yb · ŝRb + a1δj1. (A3)

The functions ∆aYb(R) and ∆aRb(R) are represented
with switching functions,

∆aYb(R) = −aYbε[1− tanh{σ(R−R0)}] (A4)

∆aRb(R) = aRbε[1− tanh{σ(R−R0)}] (A5)

We have fitted the parameters of Eqs. (A1) to (A5) to
the spin-orbit-coupled ab initio potential curves of Shun-
dalau and Minko [35], obtained using multireference per-
turbation theory. At this stage we used atomic spin-orbit
coupling constants chosen to match the ab initio curves,
aYb = 807 cm−1 and a1 = 0 [51]. The fitted parameters
are given in Tables V and VI.

TABLE V. Parameters of the spin-free interaction potentials.

V De (cm−1) Re (Å) β (Å−1) p q α (Å−1)
2Π 4460.00 4.45 0.64 0.38 0.80 0.70
2Σ 3500.00 4.90 0.61 0.40 0.50 0.70
4Π 1812.12 4.47 0.89 0.20 0.84 0.70
4Σ 157.79 6.75 0.69 0.15 0.49 0.90

TABLE VI. Parameters of the spin-orbit coupling.

aYb (cm−1) aRb (cm−1) ε σ (Å−1) R0 (Å) a1 (cm−1)

806.612 524.283 0.20 0.88 6.66 0

In our coupled-channel calculations, we replace the
values of aYb and a1 from the ab initio calculations
with those that reproduce the experimental splittings of
Yb(3P), aYb = 807.3163 and a1 = −103.7483 cm−1.

Appendix B: Matrix elements of l̂Yb.ŝRb

The matrix elements of the operator l̂Yb.ŝRb in the ba-
sis set |sRbms,Rb〉|iRbmi,Rb〉|(lYbsYb)jmj〉|LML〉 are di-
agonal in L, ML, iRb and mi,Rb. The remaining factors
are

〈(lYbsYb)jmj |〈sRbms,Rb|l̂Yb.ŝRb|sRbm
′
s,Rb〉|(lYbsYb)j′m′j〉

= (−1)(1+sYb+lYb+j+3j′)[sRb(sRb + 1)(2sRb + 1)]
1
2 [lYb(lYb + 1)(2lYb + 1)]

1
2 [(2j + 1)(2j′ + 1)]

1
2

{
j j′ 1

lYb lYb sYb

}

×
∑
Jm

(−1)sRb+Jm(2Jm + 1)

(
j sRb Jm

mj ms,Rb −MJ,m

)(
j′ sRb Jm

m′j m′s,Rb −MJ,m

){
j j′ 1

sRb sRb Jm

}
. (B1)

Here (:::) and {:::} are Wigner 3-j and 6-j symbols. Jm

is the resultant of j and sRb, so the three of these must
satisfy triangle conditions, and MJ,m = mj + ms,Rb =
m′j +m′s,Rb.
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F. Schreck, P. S. Żuchowski, and J. M. Hutson. “Obser-
vation of Feshbach resonances between alkali and closed-
shell atoms.” Nature Physics, 14, 881 (2018).

[19] A. Green, H. Li, J. H. S. Toh, X. Tang, K. C. McCor-
mack, M. Li, E. Tiesinga, S. Kotochigova, and S. Gupta.
“Feshbach resonances in p-wave three-body recombina-
tion within Fermi-Fermi mixtures of open-shell 6Li and
closed-shell 173Yb atoms.” Phys. Rev. X, 10, 031037
(2020).

[20] A. Guttridge, K. E. Wilson, J. Segall, M. D. Frye, J. M.
Hutson, and S. L. Cornish. “Observation of a magnetic
Feshbach resonance between Cs and 173Yb.” (2021). Un-
published work.

[21] F. Münchow. 2-photon photoassociation spectroscopy in

a mixture of Ytterbium and Rubidium. Ph.D. thesis,
Heinrich-Heine-Universität, Düsseldorf (2012).
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