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INTRODUCTION on the 16th postconceptional week. Epithelial cells of bronchi 

Statement of the problem. RDS' due to pulmonary surfactant 
deficiency (10) remains a major cause of perinatal mortality and 
morbidity despite progress in prevention and treatment (209). 
An increased incidence of RDS in IDM was initially reported in 
1959 by Gellis and Hsia (94). Since that time, the influence of 
maternal diabetes on fetal lung development has become a field 
of intensive clinical and experimental animal research. These 
investigations have sometimes led to conflicting results and 
opinions. Whether or not maternal diabetes mellitus by itself has 
a direct effect on fetal lung maturity was the first controversial 
question to arise (80,272). Even if it is accepted that the diabetic 
state per se increases the incidence of RDS (at least in some 
defined classes of hyperglycemic mothers), the exact nature of 
the alterations in lung development and the mechanism(s) by 
which the metabolic disturbances impair the process of lung 
maturation remain poorly understood. In particular, the respec- 
tive role of increased blood glucose and of fetal hyperinsulinism 
have not been clarified. 

Clinical studies have usually been descriptive at best and have 
not provided cellular or molecular clues as to pathogenetic 
mechanisms. This is largely attributable to the limitations in 
clinical research since only observations on infants with lung 
disease and indirect studies using many different amniotic fluid 
tests have been possible. In basic research, a major limitation has 
resided in the problem of creating appropriate animal models 
that reproduce the characteristic features of human diabetic 
pregnancies. Thus, although clinical and basic information has 
led to improvements in both diagnosis and prevention, the 
abundance of sometimes contradictory data and the discrepancy 
between interpretations render the literature extremely confusing 
and call for an overall synthesis of experimental information 
dealing with both clinical and biological research. The purpose 
of this paper, therefore, is to review information from the liter- 
ature and describe the different experimental approaches being 
used at present. Recommendations are made for improvements 
in and standardization of experimental design. Whenever possi- 
ble, we present conclusions about what has been clearly estab- 
lished and what remains questionable. Additionally, we have 
proposed explicative hypotheses concerning implicated mecha- 
nisms. 

Normal process of lung development. The human lung differ- 
entiates early in gestation from a ventral bud of primitive foregut 
epithelium and surrounding mesenchyme. A series of asymmet- 
ric branching gives rise to the bronchial tree which is completed 
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and alveoli derive from the primitive-epithelium. During the 
saccular phase (from 25-26 wk until the postnatal period), the 
future alveoli are formed and the terminal epithelium differen- 
tiates into two principal cell types: 1) type I pneumocytes which 
form the thin wall of the alveolar sacs and facilitate gas exchange; 
2) type I1 pneumocytes which during the last 10% of gestation 
show increased numbers of characteristic osmiophilic lamellar 
bodies, the intracellular storage form of lung surfactant. Simul- 
taneous with appearance of lamellar bodies, the glycogen stores 
of these cells disappear. 

When the lung is mature, pulmonary surfactant appears as a 
lipoprotein complex which facilitates efficient gas exchange by 
lowering surface tension at the alveolar-air interface (159), and 
possibly by inducing water repellency in alveoli (1 33). Biochem- 
ically, the major components of surfactant are phospholipids. 
The principal constituent is PC, particularly DSPC, which is 
otherwise called disaturated lecithin (8 1). Other phospholipids 
such as PG also are thought to play a functionally important role 
(81, 120). 

Increasing amounts of phospholipids are observed in lung 
tissue in association with accumulated lipid in type I1 pneumo- 
cytes. Similar changes in phospholipid concentrations are seen 
in tracheal and amniotic fluids as pregnancy progresses to term 
(8 1). On the basis of several studies in animals (reviewed in Ref. 
8 l), the elevated concentration of phospholipids has been attrib- 
uted to increased de novo synthesis via the CDPcholine pathway. 
Biochemical changes underlying lung maturation are exceedingly 
complex, and although metabolic pathways for production of 
lipids such as PC have been identified, many important matu- 
rational processes and regulatory factors remain to be elucidated 
(8 1, 101, 104, 107, 122, 155, 204, 253). Moreover the timing of 
key biological events in lung maturation varies among species. 

To the extent that the results of Jobe et al. (148) in the rabbit 
fetus can be extended to the human species, it appears that newly 
synthesized PC reaches the alveolus after a long lag period, and 
alveolar stability would be entirely dependent during the early 
postnatal period upon phospholipids stored in anticipation of 
birth. Any impairment in phospholipid production in late ges- 
tation could, therefore, have prolonged consequences upon al- 
veolar stability, even when an underlying maternal or intrauter- 
ine abnormality has ceased to be influential because of birth. 

CLINICAL DATA 

Heterogeneity of the diabetic pregnancy. Diabetes mellitus in 
pregnancy is not a unique pathological condition but rather a 
family of conditions whose common factor is glucose intolerance. 
Included among many variables are the time of appearance of 
glucose intolerance, variation of insulin requirements, and the 
severity of metabolic disturbances and of organ damage. Various 
classifications of diabetes mellitus exist. For the diabetic preg- 
nancy, the system used widely is that of White (28 l), which takes 
into account age of onset, duration, and severity of diabetes and 
has proved useful in predicting the outcome of diabetic pregnan- 
cies and in individualizing obstetrical care (86). One condition, 
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namely gestational diabetes (class A), merits further description 
because it has been most frequently associated in the literature 
with delay of fetal lung development. It is characterized by 
abnormal glucose tolerance during pregnancy and reversal to 
normal pospartum. Its transient nature reflects the inability of 
the p cell to keep pace with the increased demands for insulin 
generated by the hormonal milieu of pregnancy associated with 
relative insulin resistance (4 1, 157); islet cell function is subse- 
quently sufficient for glucoregulation in the nongravid state. 

Lung developmental abnormalities associated with diabetic 
pregnancies. RDS may be defined as an acute restrictive pul- 
monary disease characterized by generalized atelectasis which 
develops shortly after birth in susceptible premature infants; this 
is principally due to pulmonary surfactant deficiency and often 
Ieads to progressive ventilatory failure (78). The pathophysiology 
and epidemiology of the disease has been described in detail 
elsewhere (78). In addition to prematurity, several other risk 
factors for RDS influence perinatal lung function including: 1) 
fetal sex [males more frequently develop fatal RDS (84, 188)]; 2) 
mode of delivery [higher incidence of RDS after cesarean section 
delivery without antecedent labor (85, 272)l; 3) perinatal as- 
phyxia and maternal hemorrhage [increased risk (801; 4) mater- 
nal diabetes with hyperglycemia [see below]; 5) maternal hyper- 
tension, intrauterine growth retardation, and prolonged rupture 
of membranes [(lower risk (19)l. Although humoral substances 
are potential mediators of these effects (13, 242), the precise 
mechanism(s) remain unclear. Nevertheless, these factors pro- 
vide clues as to how pulmonary surfactant synthesis may be 
regulated, particularly in utero. 

In various clinical series the incidence of RDS in IDM has 
been as high as 37% (94, 139, 140, 279). Usher et al. (272) 
pointed out that elective premature birth by cesarean section was 
the usual mode of delivery for IDM and that maternal diabetes 
was only one risk factor for these babies. Robert et al. (227) 
subsequently delineated the risk of RDS for diabetic offspring 
delivered in Boston from 1958 to 1968. According to these 
authors, who compared 805 IDM to 10,152 infants of nondi- 
abetic mothers, the uncorrected risk for RDS among IDM was 
23.7 times those of infants born to mothers without diabetes 
mellitus. Even when corrected for gestational age, maternal age, 
type of labor, route of delivery, birth weight, sex, Apgar score, 
hydramnios, prepartum hemorrhage, and maternal anemia, the 
risk remained 5.6 times as great in IDM as in the control 
population. More recent statistical studies are confirmatory (4). 
It should be recalled that increased susceptibility to respiratory 
distress is only one of numerous clinical problems encountered 
with IDM, other disorders include macrosomia and its conse- 
quences on parturition, neonatal hypoglycemia, and congenital 
malformations (42, 137, 180). 

Although the risk of lung immaturity leading to RDS at birth 
appears to vary in the different classes of diabetes, discrepancies 
exist among reported studies, probably because of the fact that 
not only RDS but a variety of biochemical and biophysical 
indices of lung maturity was used as endpoints. There is general 
agreement that inadequately controlled class A (gestational) di- 
abetes can increase the risk of RDS or at least cause delayed fetal 
lung maturation as judged by phospholipid determinations or by 
biophysical measurements on amniotic fluid samples (88, 103, 
110, 152, 161, 185, 237). 

The situation is more complicated with classes B and C dia- 
betes which have been considered to delay, to not affect, or to 
even accelerate lung maturation. Gluck and Kulovich (103) using 
the lecithin/sphingomyelin (L/S) ratio in amniotic fluid, Singh 
et al. (27) using the degree ofsaturation of amniotic fluid lecithin, 
Cruz et al. (43) considering L/S ratio and incidence of RDS, 
Goldkrand and Slattery (I 10) using globule formation from the 
amniotic fluid lipid extract, and Higuchi et al. (132) measuring 
surfactant lipoprotein concentration in amniotic fluid all con- 
cluded that delayed fetal lung maturation occurred in pregnan- 
cies with classes B and C diabetes. Delayed evolution of rising 

L/S ratios and occurrence of RDS with classes B and C diabetic 
pregnancies have also been reported by Mueller-Heubach et al. 
(190). On the other hand, Curet et al. (48) found no evidence of 
delayed maturation in carefully regulated diabetic pregnancies as 
estimated by amniotic fluid L/S data, and Kulovich and Gluck 
(161) reported even higher L/S ratios in fetuses of classes B and 
C diabetes than in age matched controls. Also, Farrell et al. (83) 
found no evidence for delayed lung maturation based on deter- 
mination of saturated lecithin in amniotic fluid; also this group 
found no increased incidence of RDS in IDM. Signs of acceler- 
ated lung maturation have been reported in some chronically 
stressed pregnancies of classes B and C with accompanying 
hypertension, preeclampsia, or premature rupture of membranes 
(284). Nevertheless, one can conclude that classes B and C 
diabetes in pregnancy can delay fetal lung maturation in some 
instances, even if some biochemical data are discrepant. The 
discrepancies probably are due to clinical variables such as the 
succeis of hySrglycemia management (i.e. insulin therapy) and 
the demee of chronic intrauterine stress. as well as to the indirect 
and imprecise nature of endpoints studied. 

For diabetes classes D, E, F, and R, conflicting results have 
also been reported. In these instances, accelerated rather than 
delayed fetal lung maturation was reported by most ofthe authors 
who studied L/S ratio or phosphatidylglycerol in amniotic fluid 
(36, 100, 103, 16 1, 186,240). This acceleration was contested by 
Curet et al. (48) on the basis of L/S ratio determinations. 
Additionally, Lowensohn and Gabbe (168) found a similar in- 
cidence of RDS in classes B through R and in nondiabetic 
pregnancies when the L/S ratio was considered as mature, which 
would argue for an absence of differences between these classes 
and normal pregnancies with respect to fetal lung maturation. 

Available data suggest that the worse the control of maternal 
blood glucose, the higher the risk of RDS and other morbidities 
(1 52). This also argues for the direct role of the maternal meta- 
bolic disturbances upon fetal lung development. Consequently, 
the incidence of RDS in diabetic pregnancies appears to be 
decreasing with improvements in maternal care during preg- 
nancy (48, 83, 92). Nevertheless, RDS continues to occur (with 
significantly greater frequency) in pregnancies with gestational 
diabetes (88). Because this class of diabetes appears to be most 
associated with delayed fetal lung maturation, it is possible that 
these patients may not be as carefully managed as those known 
to be diabetic prior to pregnancy. Thus, their diabetic state could 
possibly be less well controlled or disclosed too late in pregnancy 
for optimal treatment. This risk of RDS also might be slightly 
higher in infants of prediabetic mothers whose diabetes develops 
later in life (4). These observations indicate the importance of 
screening for glucose intolerance during pregnancy. 

In conclusion, a potentially increased risk of RDS due to 
delayed fetal pulmonary maturation appears associated with 
recent diabetic conditions without severe complications, i.e. class 
A and sometimes classes B and C, whereas longstanding, more 
complicated diabetic states, especially with accompanying vas- 
cular disease (i.e. classes D through R or classes B and C with 
stress), appear more often associated with accelerated matura- 
tion. It may be inferred, therefore, that maternal hyperglycemia 
per se, that is to say with elevated blood glucose as the sole 
pathological feature, can cause a delay in fetal pulmonary func- 
tional maturation. On the other hand, when diabetes is long- 
standing and/or when severe complications occur either before 
(vascular disease of classes E, F, and R) or during (classes B, C, 
and D) pregnancy, chronic intrauterine stress occurs whose ef- 
fects can potentially counteract those of maternal hyperglycemia 
and lead to accelerated fetal lung maturation. This is in keeping 
with data from studies of animals indicating that stress hormones 
stimulate lung maturation (242). 

Antenatal predic!ion of RDS in diabetic pregnancies by am- 
nioticfluid analysis. Because of the lack of direct access to human 
fetal lung, amniotic fluid has been used extensively to assess lung 
maturation and to schedule elective deliveries to minimize the 
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risk of neonatal respiratory disease. Although this approach 
allows only an indirect and crude reflection of what is actually 
happening within the developing fetal lung, its reliability is 
generally well established (270). Various methods for measuring 
amniotic fluid surfactant have been reviewed recently (89, 202, 
270). The L/S ratio in amniotic fluid has been widely accepted 
for 15 yr as a valid test for pulmonary maturity (105, 106) and 
is now supplemented with other determinations such as meas- 
urement of PG (1 18-120,211), PI (121, 122), and DSPC (83)- 
all of which show characteristic changes during late gestation. 

The reliability of the L/S ratio in diabetic pregnancies has 
been a source of controversy. A lower amniotic fluid L/S ratio 
in late gestation as cumpared to normal pregnancies of the same 
duration was mentioned by several investigators, especially in 
early studies (103, 127, 190, 216, 217, 237). More recently, 
others observed no significant difference (48, 83, 91, 123, 161, 
22 1). Among the possible causes of these conflicting results are 
the large variations of L/S ratio in normal as well as in abnormal 
pregnancies, and technical factors which vary from study to 
study such as acetone precipitation (106), centrifugation (203), 
the use of one or two dimensional chromatography (47), and the 
method of phospholipid quantitation (202). Also, the degree of 
diabetic control may be an important factor affecting L/S ratio, 
which would explain why early observations reported differences 
which are no longer evident in more recent series with better 
control (48, 83). Therefore, whether maternal diabetes actually 
impairs the rise of amniotic fluid lecithin, remains an unsolved 
question. Moreover, a higher incidence of false-positive predic- 
tions of fetal lung maturity using L/S ratio has been reported for 
diabetic pregnancies (43, 49, 64, 79, 186, 190, 237), although a 
few investigators considered the test as reliable as in normal 
pregnancies (6 1, 9 1, 1 68, 263). 

Diabetes mellitus in pregnancy has been shown to cause a 
marked reduction, or even an absence, of PG in amniotic fluid 
when compared with age-matched nondiabetic pregnancies (45, 
46, 1 16, 1 17, 123, 124, 241, 268). According to Kulovich and 
Gluck (161) this was true only in class A diabetes, but Hallman 
and Teramo (1  23) also reported PG/PI ratios significantly lower 
than normal in diabetic pregnancies of classes B, C, D, and F. In 
the series of patients reported by Cunningham et al. (45) and of 
Hallman and Teramo (123), when RDS occurred with a L/S 
ratio over 2, PG was absent. 

TOWARD THE UNDERSTANDING OF MECHANISMS, THE 
EXPERIMENTAL APPROACHES 

Need for animal models. Understanding the mechanism(s) of 
impaired fetal lung biochemical development associated with 
maternal diabetes mellitus probably cannot be achieved solely 
with the aid of clinical data for several related reasons: 1) direct 
access to the lung is possible only postmortem, which allows 
study of only fatal cases in which secondary alterations are certain 
to be present; 2) generally only collection and analysis of am- 
niotic fluid, or at the most of bronchopulmonary fluid at birth, 
is possible in humans; 3) it is impossible to control completely 
the important clinical variables in human pregnancies (e.g. 
changing care practices make the diabetic pregnancy of this era 
much different than 10-20 yr ago). 

Use of animal models is necessary for control of the involved 
metabolic factors and a systematic analysis of their mode of 
action. Thus there is a crucial need to design animal models 
reproducing features of the fetal environment in the diabetic 
pregnancy. This would make it possible to determine conclu- 
sively if fetal lung surfactant is developmentally abnormal and, 
if so, what metabolic factors account for the disturbances asso- 
ciated with maternal diabetes. 

Maternal hyperglycemia appears to be the precipitating cause 
of most the characteristic features of the fetus of diabetic mother 
(206). The most prominent feature of the "milieu interieur" of 
fetuses of diabetic mothers is the unique association between 

hyperglycemia and hyperinsulinemia. It seems reasonable to 
presume that these factors are primarily involved in the process 
leading to the potential delay of fetal lung maturation. 

Hyperglycemia due to increased placental transfer of glucose 
has long been recognized in the fetus of the diabetic pregnant 
woman, and was proposed in the early years of relevant research 
to induce a hyperinsulinemic fetal state (63, 205). Direct dem- 
onstration of hyperinsulinemia in infants born to insulin-treated 
mothers has been difficult because of the interference in the 
radioimmunoassay for insulin caused by placentally transferred 
endogenous insulin antibodies (146). Because of this analytical 
problem, only indirect evidence of the fetal hyperinsulinemic 
state was available at first, including: 1) /3 cell hyperplasia and 
increased pancreatic insulin in fetuses of diabetic pregnancies 
(254), and 2) an increased rate of circulating glucose disappear- 
ance in newborn infants of diabetic mothers (1 45). More recently, 
direct demonstration of hypersecretion of insulin by the fetal 
pancreas in diabetic pregnancies has been obtained by measure- 
ment of cord blood C-peptide levels (250). Placental transfer of 
maternal insulin (endogenous or exogenous) is not involved in 
the increase of fetal blood insulin levels since insulin does not 
cross the human placenta (150). A primate animal model of 
maternal-fetal glucose relationships was used by Chez et al. (37) 
to show a rapid increase of fetal blood glucose and insulin, with 
a linear relationship between maternal and fetal plasma glucose, 
within minutes following maternal glucose loading (injection 
plus infusion). The insulin response of the fetal pancreas after 
the 12th wk of human gestation is thought to be induced by the 
increased blood glucose stimulating the @ cell; this is reinforced 
by the ingestion of glucose from the amniotic fluid and its 
insulinogenic action on the fetal digestive tract (1 34). 

To investigate the effects of high fetal serum glucose and/or 
insulin concentrations on fetal lung maturation, investigators 
have used both in vitro and in vivo approaches. In vitro experi- 
ments have been based on the property of lung cells, either in 
organ culture or in cell culture, to pursue their differentiation 
and maturation in relatively simple systems. These studies were 
initiated before in vivo experimentation of this problem with the 
observation by Smith et al. (243) that insulin inhibits the stim- 
ulatory effect of cortisol on DSPC synthesis in rabbit fetal lung 
cell cultures. In vitro studies subsequently focused attention on 
hyperinsulinemia as the major factor delaying fetal lung devel- 
opment. It was proposed (9,259) that the increased insulin levels 
in the fetus of the diabetic pregnant woman retard the normal 
glucocorticoid-regulated stimulation of lung maturation. In vivo 
studies have included animal models of induced diabetes in 
pregnancy. They have led, on the contrary, to the conclusion 
that increased blood glucose is the main factor for the delay of 
lung maturation. The results of in vitro and in vivo studies need 
to be reviewed in detail for one to understand the basis of these 
conclusions. 

Before examining fetal lung studies, it is useful to review the 
consequences of diabetes mellitus upon adult lung in order to 
help one better understand what makes fetal lung development 
in the diabetic pregnancy a special problem. 

Experimental insulin deprivation in adult animals treated with 
STZ or alloxan results in lung abnormalities whose final conse- 
quence is a reduction of lung surfactant phospholipid production 
(188, 189, 283). Although the degree of lung lipid alterations 
varies, Engle et al. (70) recently found that decreases in DSPC 
concentration correlated with the severity of hyperglycemia. The 
reduction in pulmonary phospholipid levels is probably related 
to a decreased capacity of de novo fatty acid synthesis (32,33,52) 
and incorporation into PC. Surfactant phospholipids are also 
decreased in lung lavage fluid (260). Insulin was found by Sharp 
et al. (234) to directly stimulate PC synthesis in granular epithe- 
lial lung cells. The effects of insulin could be mediated, at least 
in part, through thyroid hormone action since chemically in- 
duced diabetes reduces nuclear triiodothyroine binding capacity 
of rat lung nuclei, according to Das and Ganguly (51). In the 
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adult lung, therefore, insulin appears to be a regulatory factor 
necessary for normal surfactant synthesis. On the contrary, an 
excess of insulin, as in the fetus of the diabetic pregnancy, may 
have an adverse consequence on surfactant production, as re- 
viewed subsequently. 

Insulin and fetal lung development-in vitro studies. Mono- 
layer cultures prepared from fetal rabbit lungs of 28 days gesta- 
tion (mixed population of lung cells) were first reported as insulin 
responsive in 1975 (243). Earlier, corticosteroids, whose stimu- 
lating effects on fetal lung maturation are well established (160, 
164, 165), were shown to increase 3H-choline incorporation into 
PC (244,245). Although, insulin alone had a slight positive effect 
on choline incorporation, insulin added to cultures with cortisol 
significantly reduced the corticosteroid-stimulated PC synthesis 
(243). 

In another isolated cell system used by Engle et al. (69), i.e. 
organotypic cultures of fetal rat type I1 pneumocytes, the pres- 
ence of low concentrations of insulin (10-25 pU/ml) caused an 
increase in the incorporation of glucose into surfactant PC, but 
higher levels (100, 250, or 400 pU/ml) significantly decreased 
incorporation of both glucose and choline. Elevating the media 
glucose concentration from 5.6 to 20 mM caused a 2- to 2.5-fold 
increase in glucose utilization for phospholipid synthesis, but did 
not produce any changes in choline incorporation and thus 
apparently did not alter de novo synthesis of PC as assessed with 
an isolated surfactant fraction. On the other hand, addition of 
400 pU/ml of insulin to media containing 20 mM glucose did 
result in significantly lowered choline incorporation into surfac- 
tant PC. These data suggest that insulin is an important hormone 
regulating fetal lung phospholipid metabolism, that its effects are 
dose (concentration) dependent, and that high levels of insulin 
predominate over glucose in causing an inhibition of surfactant 
formation. 

Exposure of fetal rat lung explants to insulin for 24 h by Gross 
et al. (1 12) resulted in a significant increase in the glycogen 
content and the rate of glucose oxidation to COz (1 12). No effect 
of insulin was observed on the rate of labeled choline incorpo- 
ration into PC or DSPC, which conflicts with the results of Smith 
et al. (243). Insulin did reduce significantly the incorporation of 
acetate into DSPC, but increased the incorporation of acetate 
into general membrane phospholipids, namely phosphatidyle- 
thanolamine, phosphatidylinositol, phosphatidylserine, and 
sphingomyelin. This argues for a specific inhibiting action on 
the synthesis of DSPC which reflects surfactant phospholipid. 
One of the most interesting observations of that study was the 
delay of morphological maturation of the lung cells induced by 
insulin: the number of type I1 cells and lamellar bodies was 
significantly decreased in insulin-treated explants as compared 
with control explants cultivated without insulin. As a whole, this 
study suggests that insulin stimulates cellular growth and inhibits 
cellular differentiation and maturation of the fetal lung in vitro. 
In another study, insulin was shown to prevent in part the 
dexamethasone-induced stimulation of choline phosphate cyti- 
dylyltransferase in cultured fetal rat lung explants (230). This 
suggests that the apparent antagonism of insulin on corticoste- 
roid-induced stimulation of fetal lung PC synthesis may be at 
least partly expressed at the level of this key enzyme of the 
CDPcholine pathway. 

Bourbon et al. (29) recently reported a direct precursor-product 
relationship between fetal lung glycogen and phospholipids, a 
relationship that had long been postulated on the basis of mor- 
phological and biochemical observations (2 1, 3 1, 99, 159, 17 1). 
In this in vitro study, glycogen, which accumulates before the 
surge of surfactant production, appeared from their data to be 
used preferentially as a precursor for DSPC and PG, the phos- 
pholipids most characteristic of surfactant, while free glucose 
served as a precursor of many lipids including membrane pho- 
pholipids. Insulin both reduced DSPC and PG synthesis and 
decreased the transfer of radioactivity from previously in vivo 
labeled glycogen to DSPC and PG. Although a high glucose 

concentration in the medium had the same effects in the absence 
of insulin the effects of insulin and glucose were additive. 

Other data on in vitro insulin effects have come from experi- 
ments with lung slices incubated directly (without culture) in the 
presence of labeled precursors. Neufeld et a/. (199) studied the 
effects of insulin on the incorporation of labeled glucose and 
fatty acid residues into total PC and DSPC in lung slices of rabbit 
fetuses. When labeled glucose was used, the incorporation into 
PC and DSPC was reduced by insulin despite an increase in 
overall glucose utilization by lung tissue. Insulin also decreased 
labeled palmitate incorporation into DSPC. 

Considered together, these in vitro studies suggest that insulin 
is capable of impairing fetal lung maturation both structurally 
and biochemically. This appears contrary to the situation in the 
adult lung in which insulin seems to favor the biosynthesis of 
surfactant phospholipids; however, the evidence for a dose-re- 
sponse relationship identified in fetal lung cells (69) must be kept 
in mind as the probable explanation for this apparent discrep 
ancy. Nevertheless, the following criticisms suggest caution in 
the extrapolation of in vitro results to the clinical situation and 
indicate that more experimental data are needed. 

1) The insulin concentrations used in the culture media gen- 
erally range from 10 to 1000 pU/ml and are probably not 
representative of those in the lung environment in vivo. 

2) In studies reporting measurement of the rate of incorpora- 
tion of radiolabeled precursors added to the medium, there is 
uncertainty as to the exact significance of the observed rate of 
net surfactant PC or DSPC synthesis. In most studies, except for 
that of Engle et al. (69), total pulmonary PC or DSPC rather 
than that in surfactant PC or DSPC was measured. 

3) Studies to date report measurement of radiochemical rather 
than biochemical rates because the pool sizes of the various 
precursors inside the cells and in the various subcellular com- 
partments are not known. Tokmakjian and coworkers (265,266) 
showed that because of the marked decrease in the pool size of 
cholinephosphate during development (demonstrated at least for 
the rat and rabbit fetus), a change in the incorporation of 
radioactive choline into PC may not be indicative of a change in 
PC production by the de novo biosynthetic pathway. 

4) Incorporation of a precursor into a substance in vitro can 
be observed without net accumulation of this substance because 
of turnover processes with equal synthesis and degradation. This 
has been observed for instance in liver cells that incorporate 
labeled glucose into glycogen proportional to time with no 
change in glycogen concentration in the tissue (J. Bourbon, 
unpublished data). Thus an insulin-induced decrease of precursor 
incorporation into lung phospholipids does not definitely dem- 
onstrate that insulin affected the net synthesis of these phospho- 
lipids to the same magnitude. The ultrastructural observation of 
Gross et al. (1 12) that insulin decreased the number of lamellar 
bodies in fetal lung explants and the observation of Bourbon et 
al. (29) that insulin reduced the accretion of tissue DSPC during 
the culture period provide more convincing evidence. 

5) Regarding the significance of the insulin-cortisol antagonism 
in isolated fetal lung cells by Smith et al. (243), it should be 
reiterated that Gross et al. (1 12) failed to observe this antagonism. 
Also, considering that antgonism as an explanation of the mode 
of action of insulin in vivo presupposes that endogenous corti- 
costeroids effectively control fetal lung maturation. This point is 
controversial since studies in fetal lambs (14, 178) and monkeys 
(208) clearly showed that surfactant-related phospholipids appear 
in increased amounts before the rise in fetal corticosteroid levels. 
The same could also be true for the human fetus (35). Addition- 
ally, there seems to be little correlation between the level of 
amniotic fluid cortisol and the degree of fetal lung maturation 
in human neonates (22 l), although the late increase of amniotic 
fluid palmitratelstearate ratio seems to correlate with the level 
of conjugated corticosteroids (194). One can wonder if the pos- 
tulated insulin-cortisol antagonism is not of a pharmacological 
nature. 
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Animal models of diabetes for in vivo study of fetal lung 
development. Animal models for human diabetes mellitus, their 
appropriateness, and their availability have recently been re- 
viewed extensively by an NIH Task Force (230). In brief, these 
models can be classified into two main categories: 1) animal 
strains with spontaneously occumng, genetically induced diabe- 
tes; 2) animals (rodents, dogs, or monkeys) with chemically 
induced diabetes due to infusion of pancreatic &cell toxic agents 
such as alloxan or streptozotocin (STZ). In addition to these 
widely used models, studies on fetal development also have used 
nondiabetic animals chronically infused with glucose when preg- 
nant, fetuses with reactional hyperinsulinism, and fetuses chron- 
ically infused with insulin. 

The intrauterine injection of long-acting insulin into rat fetuses 
has been shown to reproduce some of the features of IDM, i.e. 
increased length and body weight, increased organ weight, higher 
fat, and nitrogen content (6, 213). In the fetal rhesus monkey, 
chronic fetal hyperinsulinemia achieved with aid of subcu- 
taneously implanted, osmotically driven minipumps confirmed 
that several characteristics of IDM such as fetal overgrowth may 
be attributed to fetal hyperinsulinism (l75,26 1). The same group 
(3) and Rooney et al. (229) failed to observe any effect of chronic 
hyperinsulinemia u on morphological development and phos- 
pholipid content o f fetal lung, but the time of gestation (141 + 
2 days and 134-148 days, respectively) chosen to study lung 
tissue was too early. Warburton et al. (277) using the same 
experimental approach in fetal lambs from 112 to 135 days of 
gestation observed a markedly decreased flux (about 26 times 
less) of surface active material into the tracheal fluid of insulin- 
infused fetuses as compared to controls. This finding is supported 
by the recent report of diminished L/S ratio values in amniotic 
fluid of rabbit fetuses rendered hyperinsulinemic by litter reduc- 
tion in utero (163). Thus, chronic hyperinsulinism without ac- 
companying hyperglycemia delays the secretion of surface active 
material by fetal lung. When secondary hyperinsulinemia was 
induced by chronic glucose infusion to fetal lambs, it inhibited 
the maturational response of fetal lungs to cortisol (276a). 

There is little information regarding fetal development in 
genetically diabetic animals. Large for gestational age newborns 
have been observed in some pregnancies in the BB/W rat (166) 
but nothing is known about lung function at birth in these 
strains. On the contrary, animals with drug-induced glucose 
intolerance have been widely used to investigate the influence of 
the diabetic pregnancy state upon fetal lung development. It is 
unclear, however, which of the animal models of chemically 
induced diabetes reviewed below will prove most useful in elu- 
cidating the mechanisms of delayed fetal lung maturation. Ide- 
ally, an experimental model of diabetes in pregnancy would have 
to reproduce the characteristic features of the human fetus of the 
diabetic mother: hyperglycemia, hyperinsulinemia, and macro- 
somia. Hyperglycemia should not be extreme since this is un- 
likely to be encountered routinely in human pregnancies. Pitkin 
and Van Orden (25) observed that in STZ-treated pregnant rats, 
fetal hyperinsulinemia was present only when glycosuria was 
minimal. Such a model appears closer to human diabetic preg- 
nancies than models with very marked glycosuria and no fetal 
hyperinsulinism. If fetal hyperinsulinemia is not present, the 
model is not a proper model of human diabetes but rather a 
model of chronically increased fetal blood glucose, with probable 
severe toxicity for the @ cell which does not appear able to 
respond to glucose over-load. As for macrosomia, it should be 
noted that IDM may in fact be either oversized, small for dates, 
or normal, i.e. appropriate in size for gestational age. Oversized 
infants are usually observed in those forms of maternal diabetes 
associated with delayed lung maturation, i.e. in patients with 
hyperglycemia appearing during pregnancy (gestational diabetes) 
but without severe com~lications, whereas small for date infants 
are observed in those diabetic conditions with vascular disease 
(54) in which acceleration of lung maturation often occurs. Fetal 
hypertrophy has been directly correlated with fetal hyperinsulin- 

ism in humans (250), as well as experimentally in rhesus mon- 
keys (3, 26 1). A model of diabetes most suitable for the study of 
lung development retardation would, therefore, include macro- 
somia of the fetus. 

In fact, the rodent models used commonly for studies of lung 
development have generally failed to reproduce the features 
described above. Maternal hyperglycemia has frequently been 
quite pronounced (up to 35 mmol/liter or 640 mg/dl), while 
fetal hyperinsulinemia and macrosomia have generally been 
absent. The relevance of the animals to clinical situations is 
therefore questionable. However, models devoid of fetal hyper- 
insulinism present the potential advantage of dissociating the 
putative effects of high glucose and high insulin. 

Another point of controversy is the time for administration of 
the P-cell toxic agent. Since STZ crosses the rhesus monkey 
placenta (234) and can alter the fetal rat pancreas (17), a direct 
effect of the drug on fetal organs is possible, independently of 
maternal metabolic disorders, when the drug is given to already 
pregnant animals. It was recommended by the NIH Task Force 
to infuse the toxic agent before mating (82). Nevertheless, it must 
be mentioned that STZ has not been associated with fetal lung 
toxicity thus far. In those studies in which animals were rendered 
diabetic prior to mating or immediately after mating, the con- 
sequences upon fetal lung development were similar to those in 
studies with drug injection during the course of pregnancy. Both 
types of experiments can therefore be compared. 

The first studies of fetal lungs were performed using rhesus 
monkeys (term = 165 days) injected with STZ when 40-75 days 
pregnant. Gluck et al. (102) found elevated amniotic fluid L/S 
ratios in diabetic macaque pregnancies compared to matched 
controls. Epstein and Farre11 (73) and Epstein et al. (74) reported 
no change in lung PC concentration but an increase in I4C- 
choline incorporation into PC in lung slices prepared from fetuses 
of STZ-treated mothers as compared to control fetuses at 140- 
146 days gestation despite the presence of fetal macrosomia and 
P-cell hyperplasia. More recently, Kemnitz et al. (153) studied 
lung development in a small number of 145day-old rhesus 
fetuses whose mothers were infused with STZ before mating. 
Observations on lung biochemistry and physiology have been 
inconclusive thus far. However, fetal lung glycogen concentra- 
tions were 28% higher in diabetic animals compared to normo- 
glycemic controls. These results in monkeys are difficult to 
interpret. The stage for lung study was not ideal since the major 
changes occur between 145 and 165 days (208). Further investi- 
gation will be necessary to delineate the possible abnormalities 
in the process of fetal lung maturation in this model. 

In rats (term = 22 days), inducing maternal diabetes at mid- 
gestation with STZ led to increased glycogen, DNA, and lipid 
contents of the lungs of neonates, no change in PC content, but 
a decrease in the percentage of DSPC (225). The neonatal body 
weights were reduced in the litters of diabetic rats. Serum glucose 
was increased 3-fold in the STZ-treated mothers at delivery, but 
no information was given regarding fetal blood glucose and 
insulin in this study. 

In fetuses of rats made diabetic with STZ on day five of 
gestation, Boutwell and Goldman (30) observed significantly 
decreased labeled choline incorporation into PC in lung slices, 
as compared with control fetuses on day 20 of gestation. More- 
over, the in vivo uptake of 'H-dexamethasone by lung nuclei was 
significantly diminished in fetuses of STZ-treated mothers. This 
suggests the possibility of a decreased fetal pulmonary receptivity 
for corticosteroids in experimental diabetes. Tyden et a[. (27 1) 
also used the STZ-diabetic rat, with mating being performed 2 
to 4 wk after induction of hyperglycemia. Morphologically, the 
fetal lungs at day 20 of gestation were less developed in the STZ 
group compared to controls with more abundant mesenchyme, 
less completely developed alveolar ducts, and less welldifferen- 
tiated pulmonary epithelium. Labeled choline incorporation by 
fetal lung slices was decreased in the diabetic group compared to 
controls; insulin treatment of the mothers abolished this dimi- 
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nution of choline incorporation. In this model, the fetuses were 
profoundly hyperglycemic but not hyperinsulinemic and their 
body weights were reduced. 

Garcia-Miranda ef a[. (93) observed an absence of differentia- 
tion in alveolar lining stem cells to type I and I1 pneumocytes in 
the lungs of 15- to 2 1-day-old rat fetuses of alloxan diabetic 
mothers; however, no indication was given about the severity of 
the diabetic state. Gewolb ef al. (95) reported a delay in degra- 
dation of previously stored pulmonary glycogen in fetuses of 
STZ diabetic rats studied from 16 through 22 days of gestation. 
This occurred in association with decreased amounts of PC and 
DSPC in fetal lung tissue on day 2 1 of diabetic gestations but 
not before or after that time. They suggested that substrate 
availability may be related to the delay in lung maturation in 
fetuses of diabetic mothers, in particular for phospholipid syn- 
thesis, which is consistent with the conclusions of Bourbon ef al. 
(29). More recently, Gewolb ef al. (96) reported that this decrease 
of PC and DSPC content occurred without any alteration in the 
activity of the enzymes involved in phospholipid synthesis, which 
may support the concept of an impairment in utilization of a 
precursor pool. However, this is in contradiction with decreased 
activity reported by others for choline phosphate cytidylyltrans- 
ferase, choline phosphotransferase, and the acyltransferases in 
the lungs of fetuses or newborns from rats with STZ-induced 
diabetes (1 9 1,239). 

The decreased availability of glycogen and substrates derived 
from glycogenolysis for DSPC biosynthesis is still suggested by 
the findings of Bourbon ef al. (28), Erickson ef al. (73 ,  Mulay 
and McNaughton (1 9 l), and Singh and Feigelson (238). It should 
be emphasized that increased fetal blood insulin was present in 
most of the rat models used in these studies (28, 19 1 ,  238). 

Only recent studies of rats have included assessment of PG. 
Erickson ef al. (76) and Tsai el al. (267) reported that fetal lung 
slices of STZ-treated rat pregnancies incorporated less radioactive 
glucose or glycerol into PG than controls at 20 and 21 days of 
gestation. Insulin treatment of the pregnant rats restored PG 
labeling (76) and dexamethasone treatment enhanced the label- 
ing of PG but not to the same extent as noted in controls (267). 
In both of these studies, PG concentrations in fetal lung have 
not been established, but Pignol el al. (214) reported a 55% 
decrease of PG content in the lung of fetuses in manifest STZ- 
diabetic rat pregnancies at term; additionally, they found a 
concomitant 60% rise in PI content. In the model used for these 
three studies, maternal blood glucose levels were at least three 
times the normal value and fetuses were consistently small for 
gestational age; however, fetal blood insulin was below the nor- 
mal level (214). The impairment of PG biosynthesis therefore 
appears as a direct consequence of raised blood glucose. The 
possible molecular mechanisms are considered subsequently. 

Grant ef a[. (1 10) reported on a profound remodeling of lung 
basement membrane during type I1 cell development, with basal 
cytoplasmic foot processes extending through discontinuities of 
the basement membrane. The number of these foot processes 
was diminished in fetuses of diabetic rats (1 11) but the signifi- 
cance of these changes is thus far unclear. 

Models of diabetes in the rabbit (term = 3 1 days) have led to 
similar observations as in rats. Bose ef al. (26) induced diabetes 
in pregnant rabbits with alloxan, and studied lungs of fetuses 
that were hyperglycemic but had neither hyperinsulinemia nor 
macrosomia. On day 28 of gestation, fetal pulmonary maturity 
was assessed by measurement of pressure-volume relationships 
to determine deflation stability. Interpretation of the data is 
based on the fact that mature fetal lungs with adequate surfactant 
retain more air on deflation than immature ones, reflecting 
greater alveolar stability. Fetuses of diabetic rabbits demonstrated 
less retention of air on deflation than control fetuses of the same 
gestational age, but it has been suggested recently that the results 
of pressure-volume measurements in immature lungs are ques- 
tionable because of the trapping of air by liquid which alters the 

air spaces on deflation (23 1). Additionally, levels of DSPC were 
diminished in the fluid obtained from lavage of the lungs in 
fetuses of diabetic mothers. 

The rabbit with alloxan-induced diabetes was also the model 
used by Sosenko ef al. (247,25 1 ,  252) with the drug injected 24 
h after mating. Pressure-volume curves at 27.5 days demonstra- 
ted less deflation stability in the fetuses of diabetic pregnancies 
compared to controls, but the difference was no longer observed 
on day 29.5 (25 1,252). The surface activity of lung lavage liquid 
measured on a surface balance was less in fetuses of diabetic 
mothers at both 27.5 and 29.5 days of gestation, despite the 
observation that DSPC and L/S ratio in lung wash and DSPC in 
lung tissue were not significantly different in fetuses of diabetic 
mothers. The reason for this discordance is unclear. From a 
morphological point of view (247), the lungs of the fetuses of 
hyperglycemic mothers appeared less mature than control lungs 
with a decrease of air space density and a higher glycogen content 
of type I1 cells. However, the proportion of type I1 cells and the 
number of lamellar bodies per type I1 cell were similar in control 
and in alloxan fetuses. 

Ultrastructural examination of capillaries demonstrated (247) 
that their migration and the fusion of their basement membrane 
with that of alveolar epithelium did not occur as frequently in 
fetuses of alloxan-treated does as in controls. This observation is 
of considerable potential significance since it implies the possi- 
bility of lesser substrate supply to the type I1 cells in the alloxan 
fetuses at the time of intense synthesis of surfactant material. In 
this model, no differences were observed in the incorporation of 
labeled choline into PC and DSPC in lung slices of fetuses from 
diabetic mothers in comparison to control fetuses (56,25 1). The 
authors concluded that the previously observed functional ab- 
normalities were not due to a defect of DSPC synthesis, which is 
consistent with the results of lung wash analyses. However, 
besides being in contradiction with other studies in rats and 
rabbits (26, 30, 225, 27 l), this result does not imply that in vivo 
incorporation of choline occurred at the same rate as in vifro. 
Placing the tissue in vitro in a metabolic and hormonal environ- 
ment (Krebs-Ringer solution free of glucose and insulin) mark- 
edly different from that in vivo could have modified its metabolic 
behavior. It should also be noted that in these studies with alloxan 
diabetic rabbits, the animals were severely hyperglycemic 
throughout gestation, the fetuses were small for gestational age, 
and there were no measurements of blood insulin levels. Mac- 
Fadyen (176) also studied phospholipids in the lungs of fetuses 
from alloxan diabetic rabbit pregnancies accompanied by re- 
duced fetal body weight; the L/S ratio was lower than in controls, 
but phospholipid content was similar. 

Sosenko ef al. (248, 249) reversed the functional delay of lung 
maturation in fetuses of diabetic rabbits with cortisol. This does 
not imply that alloxan diabetes acts through an impairment of 
endogenous cortisol effects, but it could have clinical conse- 
quences as to the potential usefulness of corticosteroid treatment 
to prevent lung immaturity in diabetic pregnancies. 

In two studies with rabbit models, the fetuses exhibited not 
only hyperglycemia but also hyperinsulinemia. One was reported 
by Memt ef al. (177) with rabbits rendered diabetic prior to 
gestation with STZ. Fetal weight on day 29 was normal, and the 
fetuses were only slightly hyperglycemic. Lung phosphatidylinos- 
it01 metabolism was altered, but the significance for lung func- 
tional maturation is unclear since decreased phosphatidylinositol 
content has been proposed to signify an accelerated lung matu- 
ration. On the other hand, the observed increase of plasma 
myoinositol appears unfavorable to fetal lung maturation since 
in normal development the decrease of the percentage of phos- 
phatidylinositol in surfactant has been correlated with a gesta- 
tional decline in plasma myoinositol concentration (25). It is 
regrettable not to have information about DSPC and PG in this 
interesting model of diabetes. 

Neufeld ef al. (196, 198) also obtained hyperinsulinemic fe- 
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tuses with pregnant rabbits made diabetic with alloxan on day 
14 of pregnancy. The lung concentrations of sphingomyelin, 
phosphatidylcholine (total and disaturated), and phosphatidyl- 
serine were significantly lower in fetuses of diabetic rabbits than 
in controls. For PG, the difference was not significant which 
contrasts with most of the clinical data concerning human dia- 
betic pregnancies (based on amniotic fluid analyses). Treatment 
of the diabetic rabbits with 3,5-dimethyl 3'-isopropyl-L-thyro- 
nine, a thyroid hormone analogue, restored the phospholipids of 
fetal lung to normal (198). 

Changes in fetal lung receptivity to insulin are also possibly 
involved, although contradictory data have been reported. An 
increased number of apparent receptors has been observed by 
some (196) in the lungs of fetuses from diabetic rabbits, as 
previously observed for mcnocytes and erythrocytes in humans 
(1 97,207), whereas others found this number diminished in fetal 
lungs from rat diabetic pregnancies (193). 

In conclusion, the fetal lungs in animals with induced diabetes 
showed some characteristics consistent with a delay of matura- 
tion including less deflation stability, reduced incorporation of 
precursors into PC and PG, immature cellular or ultrastructural 
aspects of lung parenchyma, delay in glycogenolysis, and some- 
times decreased DSPC and/or PG content of lung tissue or lung 
fluid. Despite the criticisms which can be made about the signif- 
icance of some of these measurements, all the studies suggest 
that some impairment of lung maturation occurred in these 
models. Since increased blood insulin in the fetus was often not 
observed in these induced diabetic pregnancies, one must con- 
clude that fetal hyperglycemia alone can delay lung maturation. 

Hyperglycemia versus hyperinsulinemia. From the above re- 
ported experiments, either excessive blood glucose or excessive 
insulin alone appear sufficient to cause a delay of fetal lung 
maturation. The question, therefore, arises as to which of them 
is effectively responsible for the impairment in lung development 
encountered in some human diabetic pregnancies. 

It is clear that the adverse effects of excessive insulin upon 
lung development have been deduced mainly by in vitro experi- 
ments, often with greater than physiological concentrations of 
insulin. However, Engle et al. (69) demonstrated inhibition of 
surfactant phospholipid synthesis by organotypic cultures of fetal 
lung cells in the presence of 100-400 jd.J/ml, a level of insuli- 
nemia found in fetuses of diabetic pregnancies (153). On the 
other hand, the experimental animal models of diabetes suggest 
that fetal hyperinsulinism need not accompany hyperglycemia 
to cause a delayed lung maturation in vivo. It is therefore tempt- 
ing to ascribe the important role to hyperglycemia. In most of 
the models of induced diabetes, however, maternal blood glucose 
was quite high (up to 35 mmol/liter or 640 mg/dl). The delete- 
rious effects of hyperglycemia on fetal lung maturation could be 
less in humans who are not likely to reach such levels. Addition- 
ally, in those models of the diabetic pregnancy with fetal hyper- 
insulinemia (1 77, 198, 239), abnormalities in fetal lung devel- 
opment were observed in the presence of rather moderate hyper- 
glycemia. 

The putative implication of fetal hyperinsulinism is still sup- 
ported by two additional kinds of indirect evidence. First, in a 
clinical study, Draisey et al. (62) found a reverse correlation 
between insulin concentration and lecithin concentration and 
degree of saturation in human amniotic fluid beyond 35 wk of 
gestation. Also, Beck et a[. (20) observed a dramatic increase in 
maternal and fetal plasma insulin values when the pregnant 
rhesus monkey was treated with betamethasone. Contrary to 
previous reports in other species (55, 160, 164, 187) the cortico- 
steroid in this model failed to stimulate the fetal lung surfactant 
system. The authors suggested that the betamethasone-induced 
hyperinsulinemia could have impaired the acceleration of surfac- 
tant production by the steroid. Further research is needed on 
this interesting proposal. 

For the time being it does not seem possible to reach a 

judgment as to the relative importance of hyperglycemia and 
hyperinsulinemia. It is likely that both are implicated in human 
diabetic pregnancies, and that they act either synergistically or 
on different but additive mechanisms. 

THE POSSIBLE BIOCHEMICAL MECHANISMS 

General considerations. Unquestionably, both clinical and bi- 
ological approaches indicate that the etiology of fetal lung devel- 
opmental retardation due to diabetes in pregnancy relates in 
some way to altered pulmonary surfactant metabolism. What- 
ever the cause, hyperglycemia or hyperinsulinemia, the diabetic 
pregnancy must lead to biochemical disturbances in the devel- 
oping lung which translate into a delayed functional maturation. 
Both the major surface active constituents of surfactant, DSPC 
and PG, appear to be present in inadequate amounts at birth. 
Although the pathogenetic mechanisms at the molecular level 
leading to this situation are not yet elucidated, available experi- 
mental data allow us to propose several hypotheses. 

Figure 1 summarizes the putative mechanisms of abnormal 
fetal lung development due to the metabolic changes in diabetic 
pregnancies. The impairment may be either direct, i.e. at the 
levels of DSPC and PG biosynthetic pathway and/or secretion, 
or indirect, i.e. being the consequence of an inadequate substrate 
availability or utilization for surfactant synthesis. 

Direct impairment of surfactant biosynthesis and/or secretion 
by insulin or glucose. Nothing is known about the activity of 
phospholipid biosynthetic pathways in the lung of human fetuses 
of diabetic mothers. In animals with induced diabetes, decreased 
enzyme activities have been observed in fetal lung only when the 
mother was severely diabetic (200, 253), a condition in which 
the fetuses are generally not hyperinsulinemic. Indications of a 
possible adverse effect of excessive insulin upon lung phospho- 
lipid biosynthesis have been gained exclusively from in vitro 
experiments. Insulin was shown to prevent the corticosteroid- 
induced increase of choline phosphate cytidylyltransferase activ- 
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Fig. 1. Possible mechanisms of the impairment of fetal lung func- 
tional maturation in the diabetic pregnancy. 
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ity in fetal rat lung explants (230). However, decreased incorpo- 
ration of choline into PC in vitro was not caused by insulin alone 
(1 12, 243). On the contrary, a decreased incorporation into 
DSPC (but not into membrane phospholipids) induced by insulin 
was observed for glucose, acetate, and palmitate (1 12, 199). 

The effect of insulin on palmitate incorporation into PC 
suggests that one defect could take place at the level of the 
phosphatidylcholine-lysophosphatidylcholine remodeling mech- 
anism described in Figure 2. The observations of Ishidate and 
Weinhold (144) strongly suggest that synthesis of disaturated PC 
from unsaturated PC and the disaturated species of diacylglycerol 
is a major route for the synthesis of surfactant dipalmitoylphos- 
phatidylcholine via PC remodeling in fetal lung, and that diacyl- 
glycerols would represent obligatory donors of saturated fatty 
acids (mainly palmitate) in the transacylation remodeling path- 
way. Additionally the pool of 1,2-diacyl-sn-glycerol increases 5- 
fold during the fetal and neonatal periods in the rat (265, 266). 
However, it must be kept in mind that the acyltransferase activ- 
ities were not decreased in the lung of hyperinsulinemic rat 
fetuses of the mildly diabetic rat (238). On the other hand, insulin 
is known to stimulate the uptake of FFA from fetal blood (2 13a) 
and their incorporation into adipose tissue triglycerides (6, 2 13). 
It therefore appears possible that high fetal blood insulin levels 
in the diabetic pregnancy could favor the incorporation of FFA 
into a fetal lung pool of triglycerides, but in opposing lipolysis, 
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Fig. 2. Pathways for synthesis and remodeling of phosphatidylcholine 
and for synthesis of phosphatidylglycerol. Abbreviations: FA, fatty acids; 
DHAP, dihydroxyacetone phosphate; LPC, lysophosphatidylcholine. 

could decrease the availability of diglycerides for PC transacyla- 
tion. As for hyperglycemia, it is unlikely to interfere with this 
process since glucose stimulated the incorporation of I4C-palmi- 
tate into PC in isolated perfused adult lung (1 8). 

In regard to the molecular mechanisms of insulin action, 
several propositions can be formulated at present. There is some 
evidence that the adrenergic system could participate in the 
control of surfactant biosynthesis (53, 179) and pulmonary mat- 
uration (2, 72, 15 l), and that this control is mediated by cyclic 
AMP (16, 17, 1 14,233). P-Adrenergic receptors are present early 
in fetal lung (97, 282) and increase near term (282). 

Not only biosynthesis but also secretion of surfactant could be 
defective in IDM as suggested by the observation of a decreased 
release of surface active material in the chronically hyperinsuli- 
nemic sheep fetus (295). Many observations suggest that surfac- 
tant release into alveoli is under P-adrenergic control. P-Sym- 
pathicomimetic agents stimulate surfactant release from fetal 
lung in vivo (2, 23, 67, 71, 72, 128), as well as from adult rat 
alveolar type I1 cells in vitro (60). Epinephrine infusion to the 
sheep fetus also increases surfactant efflux (1 62). Labor promotes 
surfactant secretion from fetal rabbit lung, probably mediated 
through P receptor stimulation since P blocking agents abolish 
this effect of labor (174). Finally, a recent study (58) established 
a significant positive correlation between human amniotic fluid 
levels of catecholamines and the L/S ratio, thus corroborating 
the results of animal experiments. 

In other tissues such as liver or muscle, the antagonist effect 
of insulin versus the stimulation of adenylate cyclase by cate- 
cholamines or glucagon is well established. In the lung it appears 
possible that insulin could impair the maturational process as 
well as surfactant secretion by opposing cyclic AMP synthesis. 
An alternative mechanism would involve a disturbance in pros- 
taglandin metabolism in the fetus of diabetic mother, as discussed 
subsequently. 

Insulin could still inhibit the production of fibroblast-pneu- 
mocyte-factor (36a), a factor produced by lung fibroblasts, which 
stimulates pneumocyte maturation and whose production is 
corticosteroid responsive (24 1 a). 

Another possible explanation at the molecular level involves 
an effect of excessive amounts of myoinositol upon PG synthesis. 
It has been reported that fetal lung biochemical maturation is 
accompanied by a change from the production of a phosphati- 
dylinositol (PI)-rich surfactant to one rich in PG (1 2 1, 122). The 
reciprocal changes in the relative proportions of PI and PG in 
broncho-alveolar surfactant suggest a regulation at the level of a 
common precursor of both these lipids, most likely CDPdiacyl- 
glycerol (see Fig. 2). This intermediary substrate is present in 
minute amounts in mammalian cells (280). There is evidence 
on one hand that limited availability of CDPdiacylglycerol may 
restrict the biosynthesis of PG and PI and, on the other hand, 
that a competition exists between the pathways of PG and PI 
biosynthesis for the amount of CDPdiacylglycerol available (66, 
77, 90, 115). An increase in the extracellular concentration of 
myoinositol in experiments with various tissues studied in vitro 
(including lung) was followed by an enhancement of PI biosyn- 
thesis at the expense of PG biosynthesis (66, 77, 115). The 
availability of myoinositol therefore appears to be a potential 
regulatory factor for surfactant composition in the developing 
lung (1 15). This is consistent with the observation that the plasma 
concentration of myoinositol is much higher in the fetus than in 
the adult and falls dramatically toward the end of gestation in 
rats (34) and rabbits (25). The activity of pulmonary myoinositol- 
1 phosphate synthase (cyclase) also is elevated in the rabbit fetus 
as compared to the adult and decreases near the end of gestation, 
i.e. between days 25 and 28 (25). 

An increase of fetal plasma myoinositol level has been reported 
in two experimental rabbit models of the diabetic pregnancy, 
both of which were accompanied by fetal hyperglycemia and 
hyperinsulinemia. One was STZ-induced diabetes (177); the 
other involved continuous glucose infusion to the pregnant rabbit 
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between days 27 and 29 (125). On the contrary, chronic hypo- 
glycemia in the pregnant rabbit and its fetuses by continuous 
insulin infusion to the doe was accompanied by a decrease of 
fetal serum myoinositol concentration and a concomitant stim- 
ulation of surfactant phospholipid production (particularly PG) 
by fetal lung (125). Moreover, glucose was shown to stimulate 
myoinositol uptake by lung slices in vitro, an active transport 
system (25). Fetal hyperglycemia and/or hyperinsulinemia there- 
fore appear able to increase myoinositol availability, uptake, and 
utilization by the developing lung. The absence, or delay in 
appearance, of PG in fetal lung surfactant reported in human 
diabetic pregnancies may therefore be the consequence of the 
presence of excessive amounts of myoinositol in fetal blood at 
the time when it normally declines. 

A last hypothesis that can be formulated for molecular mech- 
anisms concerns a possible deleterious effect of protein glycosy- 
lation by excessive glucose. One type of glycosylated proteins is 
Hb A,, whose level is abnormally high in diabetic subjects (222). 
Whether or not the presence of glycosylated proteins influences 
fetal lung maturation is unknown but cannot be excluded. Pro- 
teins other than Hb can presumably be glycosylated in the 
presence of high blood glucose concentrations, including en- 
zymes or hormone receptors and their biological activity could 
potentially be modified. Such events may intervene in the lung 
of the developing fetus of the diabetic mother and affect func- 
tional maturation. 

Alterations in utilization ofprecursor pools. In comparing fetal 
to adult lung from a biochemical point of view, one major 
difference is the presence in the former of high amounts of 
reserve substances, such as glycogen (mainly in epithelial cells) 
and mono-, di-, and triglycerides in lipofibroblasts. Although the 
potential importance of this may not be immediately apparent, 
it must be kept in mind that the lung only receives about 10% 
of the cardiac output in utero, whereas the adult lung is perfused 
with virtually the entire cardiac output and thus is continuously 
presented with an abundant supply of substrates and nutrients. 
The fetal lung stores may therefore compensate for lower blood 
flow. In addition to the low proportion of the cardiac output 
perfusing fetal lung, the necessity of glycogen utilization for the 
synthesis of phospholipids of surfactant is perhaps linked to the 
environment of epithelial cells in developing lung. As shown in 
the rat fetus, the majority of type I1 epithelial cells have no 
contact until birth with capillary endothelial cells, from which 
they are separated by mesenchymal cells, namely the lipofibro- 
blasts (1 73). This is probably the cause of the rather low exchange 
between blood and fetal lung epithelium and a possible reason 
for the apparent necessity to use previously stored precursors for 
the intense synthesis of phospholipids just prior to birth in short 
gestational species. If these substrate stores are indeed necessary 
for the normal process of surfactant phospholipid elaboration, 
the effect of maternal diabetes could be exerted through inhibi- 
tion of the mobilization of stored molecules when they are 
needed to support augmented phospholipid biosynthesis. It is 
well known of course that both hyperglycemia and hyperinsuli- 
nemia inhibit glycogenolysis and lipolysis. In fact, glycogen stores 
rather than glycerides may be primarily concerned since glycogen 
in lung epithelial cells begins involution and utilization in utero 
(154, 171, 235), whereas the utilization of glycerides stored in 
lipofibroblasts appears to take place shortly after birth (39, 273). 

It should be emphasized that an impairment of glycogen 
breakdown in fetal lung was a constant finding in models of 
induced diabetes. Also obvious is the fact that insulin or high 
glucose concentration impaired glycogenolysis (29, 1 12) and 
glycogen utilization for synthesis of the phospholipids of surfac- 
tant in fetal rat lung tissue studied in vitro (29). The increased 
blood glucose might therefore stimulate lung glycogen accumu- 
lation but prevent glycogenolysis as it does in fetal rat liver (98). 

Bourbon and Jost (27) showed that the surge of corticosteroids 
of fetal origin appears tb be the primary signal controlling fetal 
lung glycogen breakdown. This confirmed previous assumptions 

of Blackburn et al. (24) and Gilden et al. (99). In fact, the effect 
of corticosteroids could be indirect. It has been shown that 
aminophylline, an inhibitor of phosphodiesterase which en- 
hances cellular cyclic AMP levels, and cyclic AMP itself, stimu- 
late both glycogenolysis and the synthesis of phospholipids in 
fetal rat or rabbit lung in vivo and in vitro (17, 172, 200, 233). 
Corticosteroids have been shown to inhibit phosphodiesterase 
activity and to increase cyclic AMP concentration in rabbit fetal 
lung (1 7), and to increase the number of P-adrenergic receptors 
in rat fetal lung explants in vitro (170). In addition, it is well 
established that corticosteroids are partly responsible for the 
maturation of the fetal adrenal medulla (228). Epinephrine in- 
creases during late gestation in fetal blood of sheep (149) and 
rats (22) and in human amniotic fluid (59, 212). For fetal lung, 
the cascade of events could therefore be: 1) surge of fetal corti- 
costeroids: 2) maturation of fetal adrenal medulla and secretion 
of epinephrine into fetal blood in increasing amounts; 3) en- 
hancement of cyclic AMP production in fetal lung; and finally 
4) glycogenolysis. Cyclic AMP would be responsible not only for 
phosphorylase activation, according to its usual mode of action, 
but also would lead to glycogen synthase inactivation (27, 172, 
178) and enhancement of autophagic activity (27). The impor- 
tance of autophagic hydrolysis of glycogen for surfactant synthe- 
sis is also suggested by the existence of numerous lysosomal 
structures in fetal lung epithelium (12) and by the fact that 
lamellar bodies in type I1 pneumocytes are related to lysosomal 
structures and possess acid hydrolases (57, 109, 136). 

Sodoyez-Goffaux et al. (246) observed a high concentration of 
insulin receptors in rat lung at the pseudoglandular stage (day 17 
of gestation) but a much lower concentration later (days 19 and 
21). They speculated that insulin receptors may modulate lung 
glycogen metabolism, their presence favoring accumulation of 
glycogen during the pseudoglandular stage, whereas their partial 
disappearance would later allow glycogen breakdown and surfac- 
tant synthesis. The same is true in the rabbit fetus in which the 
maximzl insulin receptor number of lung tissue was observed on 
day 29 of gestation with an abrupt fall the day after (56a), 
although glycogen breakdown in rabbit fetal lung is already 
detectable on day 28 of gestation (27). Taking into account the 
increase of blood insulin and the subsequent prevention of decay 
of lung insulin receptors in the fetus of diabetic mother, this 
would explain the delay of lung glycogenolysis. 

Bourbon et al. (28) reported a much more impaired glycogen 
utilization in the lung of fetuses of mildly diabetic rats than in 
the lung of fetuses of severely diabetic rats despite the fact that 
DSPC biosynthesis was impaired to the same extent in both 
cases. Since enzyme activities of phospholipid biosynthesis are 
decreased in severe but not in mild diabetes (253), it appears that 
the mechanisms leading to delayed lung maturation could be 
different according to the severity of diabetes. Impaired glycogen 
utilization seems directly related to fetal hyperinsulinemia and 
is present in mild but not in severe diabetes. This suggests that 
this mechanism could be predominant in the human fetus of 
diabetic mothers with reactional hyperinsulinemia. 

Alterations in the intermediary metabolism of glucose also 
have been suggested by Stubbs and Stubbs (259) who proposed 
that stimulation of pyruvate dehydrogenase by hyperinsulinism 
in the lung of the fetus of the diabetic mother may increase the 
conversion of glucose into lactate and acetyl-CoA, thus decreas- 
ing the availability of glycerol-3-phosphate for phospholipid syn- 
thesis. This assumption has not received demonstration but is 
supported by the following observations. The rate of lipid pro- 
duction in the lung could be partially regulated by the availability 
of two intermediates of glycolysis, glycerol-3-phosphate, and 
dihydroxyacetone phosphate (see Fig. 2). If insulin increases 
lactate production in the fetal lung as in the adult lung (258), 
this means that hyperinsulinemia in the fetus of diabetic mother 
may stimulate the glycolytic pathway increasing lactate produc- 
tion, and thus decreasing the accumulation of glycerol-3-phos- 
phate for lipid synthesis. 
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The impairment of biosynthesis of surfactant phospholipids 
could still be an indirect consequence of altered lipid metabolism, 
particularly lipogenesis. It has been shown that both adult rat 
lung (224, 264) and fetal rabbit lung (126) take up FFA from 
blood and incorporate them into neutral lipids and phospho- 
lipids. The availability of FFA could potentially influence pul- 
monary maturation, since alterations in maternal dietary fat 
affect the concentration of saturated PC in fetal rat lung tissue 
(1 87). However, recent investigations in rats (147, 169) suggest 
that in late fetal life de novo fatty acid synthesis is the major 
source of saturated fatty acids for phospholipid biosynthesis in 
fetal lung, and that exogenous palmitate inhibits de novo FFA 
synthesis. Any increase of fetal blood FFA, which might at first 
glance appear favorable for fatty acid incorporation into newly 
synthesized phospholipids, could in fact inhibit the necessary de 
novo fatty acid synthesis in type I1 pneumocytes and finally lead 
to decreased DSPC and PG production. 

In insulin-dependent diabetics, plasma FFA and triglycerides 
often are elevated. If this is reflected in fetal plasma in the 
diabetic pregnancy, it could conceivably affect fetal lung phos- 
pholipid metabolism. Although fatty acids can cross the placenta 
readily from mother to fetus in most species [including rat (141), 
rabbit (68, 274), guinea pig (129), sheep (275), monkey (218), 
and man (50,262)], the quantitative importance of this placental 
transfer is not clear (201). In the pregnant rat, the work of Koren 
and Shafrir (158) indicated that the transfer of palmitate, stearate, 
and linoleate is very small and that the maternal circulation 
cannot be an important source for direct transfer of FFA. In 
other species, such as rabbit and guinea pig, a much greater 
proportion of FFA seems to be transfered from mother to fetus 
(65, 129). The case of the human placenta is unclear. Measure- 
ment of plasma fatty acids in human cord blood suggest that 
there is limited transfer of FFA throughout the last trimester of 
pregnancy ( 1 35). 

The situation is complicated by the fact that not only maternal 
plasma FFA but also plasma triglycerides (as very low-density 
lipoproteins) seem to be a source of fetal fatty acids, at least in 
the rat (142). Recent examination of triglyceride levels in cord 
blood of human newborns (38) however, seems to indicate that 
it is independent of the maternal serum triglyceride concentra- 
tion. In the pregnant diabetic rat, on the contrary, placental 
transfer of triglycerides and/or FFA is clearly increased (233a). 

The consequence of the elevation of plasma lipids in the 
pregnant diabetic upon fetal lipidemia is therefore an unsolved 
question. Systematic examination of lipid levels in cord blood 
and cord arteriovenous differences at birth could perhaps help 
to answer this question. 

Circulating glycerol is also a precursor for pulmonary PC in 
the developing mammalian lung (182). The concentration of 
blood glycerol is increased in diabetic states (167) and also seems 
elevated in umbilical venous blood of IDM (2 10). Although this 
situation would appear rather favorable for phospholipid synthe- 
sis, Scholz et al. (232) have shown that glucose decreased the 
apparent utilization of glycerol by the isolated-perfused adult rat 
lung, suggesting that glucose and glycerol share a common met- 
abolic pool in rat lung. In the presence of hyperglycemia, the use 
of circulating glycerol for phospholipid synthesis could therefore 
be reduced despite its higher availability. Additionally, because 
the common metabolite in the metabolic fate of glucose and 
glycerol is glycerol-3-phosphate, the use of circulating glycerol 
could also be affected at this level by the previously described 
possibility of pyruvate dehydrogenase stimulation in the presence 
of high insulin. 

Endocrine or humoral abnormalities. The probable implica- 
tion of the /3 adrenergic system (mediated by cyclic AMP) in 
lung biochemical maturation and surfactant release also allows 
one to propose another possible cause of impaired fetal lung 
development in the diabetic pregnancy, namely altered fetal (and 
neonatal) sympathoadrenal status. Any impairment of epineph- 
rine secretion or of norepinephrine activity in the fetus would 
have consequences upon surfactant biosynthesis and/or secre- 

tion. Conflicting reports have been published in the literature as 
to the level of sympathoadrenal activity in IDM. Blood cate- 
cholamines have been reported to be elevated at birth by some 
observers (8, 13 1, 285), while others observed reduced catechol- 
amine secretion in the first days of life (1 30,255). Metanephrine, 
a metabolite of epinephrine, is present in lower amounts in 
amniotic fluid in some diabetic pregnancies (7). Artal el al. (7, 
8) proposed a synthesis of these findings, namely that there 
would be a decreased sympathoadrenal activity or a delayed 
maturation of the system in fetuses of diabetic mothers, while at 
birth these infants would react excessivelv to the stress of labor 
and delivery, thus secreting excessive amoints of catecholamines; 
this would temporarily deplete them of catecholamines in the . - 

subsequent period. 
It is difficult to reach a judgment about the possible conse- 

quences of this situation upon lung surfactant synthesis and 
release. Lower sympathoadrenal activity during pregnancy could 
be unfavorable to lung maturation through several mechanisms 
(activation of enzyme activities for surfactant biosynthesis, avail- 
ability of diacylglycerol, glycogen breakdown and utilization, 
etc.). High levels of catecholamines at birth would appear rather 
favorable for surfactant secretion. Catecholamine depletion, 
however, could thereafter cause an inadequate surfactant secre- 
tion in the next several hours after birth. On the other hand, 
reabsorption of lung liquid, which is controlled in part by in- 
creased fetal epinephrine secretion in the perinatal period (276), 
would be enhanced by high catecholamine levels at birth. This 
appears contradictory to reports of transient tachypnea of the 
newborn in IDM and with Strang's (256) proposal of impaired 
lung liquid reabsorption at birth in the etiology of respiratory 
distress. These aspects of lung physiology in IDM remain to be 
clarified by further clinical and physiological investigations. 

Many other hormones including corticosteroids, estrogens, 
prolactin, and thyroxin are able to stimulate fetal lung matura- 
tion (242), although the exact role of endogenous hormones is 
still unclear. Low plasma concentrations of estrogens, prolactin, 
and thyroid hormones have been reported in infants with RDS 
(40,44 108, 138) as compared with age-matched controls, which 
suggests that fetal lung immaturity could be attributable to an 
insufficient action of stimulating hormones. 

Unfortunately, the potential role of maternal diabetes in fetal 
hormone abnormalities is unknown, since in the pertinent clin- 
ical studies either there were no indications about maternal 
diabetes in the cases studied or maternal diabetes was a criterion 
for exclusion and the differences compared to controls were 
clearer after exclusion of IDM. Very little is known about the 
hormonal status of IDM for hormones other than insulin, glu- 
cagon, and catecholamines. Aarskog (1) found no difference in 
cortisol production rate between IDM and newborns of normal 
mothers. Cortisol levels in amniotic fluid increase normally in 
diabetic pregnancies (22 1). Measurement of adrenal and thyroid 
gland weights at autopsy revealed no difference between IDM 
and controls but pituitary weight was slightly reduced in IDM 
(143). However, in fetuses of experimentally diabetic rabbits, 
plasma cortisol was lower than in normal fetuses (1 13). Corti- 
costerone was similarly diminished in fetuses of STZ diabetic 
rats (192). Further documentation on this point appears neces- 
sary. 

In one case report (5), RDS occurred in an IDM in the presence 
of a mature amniotic fluid phospholipid profile, including the 
presence of phosphatidylglycerol.~hisbaby also had congenital 
hvvothvroidism and suvvlemental thvroxine led to normaliza- 
tion.   he re~resentativik of that case.-however. is auestionable. 

~ecen t l~ , - an  involvekent of pros~glandin'meiabolism has 
been implicated in the delay of lung maturation associated with 
the diabetic pregnancy. prostaglandins are known to regulate 
cyclic AMP levels in many tissues and the lung is an active organ 
of arachidonic acid metabolism for prostaglandin synthesis (1 83). 
It is therefore possible that cyclic AMP levels in fetal lung and 
their developmental consequences were modulated by prosta- 
glandin production in fetal lung. This assumption is reinforced 
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by the existence of a high capacity for prostaglandin E2 biosyn- 
thesis beginning around 23 days of gestation and peaking at 28 
days in fetal rabbit lung (219), i.e. at the very time of fetal lung 
biochemical maturation. Moreover, prostaglandins seem to be 
involved in the increased flux of surfactant occumng in late 
gestation ( 156). 

The observation of an altered vascular arachindonic acid me- 
tabolism in IDM (257) raises a question about maternal diabetes 
impairing lung maturation, at least partly, through altered fetal 
lung production of prostaglandins. Tsai et al. (269) assessed 
arachidonic acid metabolism in lung homogenates of fetuses 
from alloxan diabetic rabbits. They observed a decreased con- 
version of arachidonic acid to prostaglandin E2 as compared with 
control fetuses, whereas all other metabolites were produced in 
similar quantities. The authors suggested that the decreased 
production of prostaglandin E2 could be partially responsible for 
the functional delay of lung maturation in offspring of alloxan 
diabetic rabbit. However, it must be pointed out that the degree 
of difference from controls, although significant, was small and 
that the consequence of this reduction upon cyclic AMP biosyn- 
thesis are unknown. It does not seem likely that this reduced 
prostaglandin E2 production may account for the totality of the 
features which characterize the delay of fetal lung maturation 
observed in diabetic rabbits. 

SUMMARY AND FINAL PERSPECTIVE 

It seems quite likely that the normal process of fetal lung 
biochemical maturation is delayed by maternal diabetes and that 
abnormalities in the pulmonary surfactant system are involved. 
The appearance of PG in amniotic fluid and possibly in fetal 
lung is impaired or at least delayed. The same is possibly true 
for DSPC, the main constituent of surfactant, but recent discrep- 
ant data call for further clarification of this specific point. 

Careful determination of the fetal lung phospholipid profile 
by amniotic fluid analysis helps predict and prevent RDS in 
IDM, along with a careful control of the maternal diabetic 
condition. A study of alveolar surfactant at birth, if it could be 
performed in addition to amniotic fluid analysis, would help to 
better characterize surfactant deficiency in IDM. 

On the basis of both in vivo and in vitro experimental ap- 
proaches, it seems clear that hyperglycemia and fetal reactional 
hyperinsulinism are both involved in the processes delaying fetal 
lung maturation. Further advances in the understanding of cel- 
lular and molecular mechanisms leading to this delay will be 
conditional on the availability of animal models reproducing the 
features of the metabolic and hormonal environment of human 
fetuses in diabetic pregnancies. The appropriateness of in vivo 
models needs to be defined by two kinds of criteria: 1) presence 
of simultaneous hyperglycemia and hyperinsulinemia in the 
fetus; 2) the presence of delayed fetal lung maturation as judged 
by morphology and morphometry of epithelial lung cells, by 
physiological assessment of surfactant, and by the phospholipid 
composition of the lung (and including lung tissue per se, bron- 
choalveolar lavage fluid, lamellar bodies, and/or isolated surfac- 
tant fractions). Therefore, future studies must necessarily be 
comprehensive in scope and include information indicating that 
fetal growth, blood glucose, and circulating insulin are all in- 
creased. 

Such models already exist in rats and rabbits. Rat models are 
possibly not the best because of the high basal level of fetal blood 
insulin in this species and the relatively rapid rate of lung 
maturation that is not analogous to the human. Monkey models 
are of interest, because of their close relationship with the human 
pregnancy, and need to be studied further. They are particularly 
attractive also because primary fetal hyperinsulinism can be 
studied (268), as well as the combination of hyperglycemia and 
hyperinsulinemia in pregnancies of STZ-treated monkeys (1 52). 

An appropriate model of the diabetic pregnancy could provide 
answers to the following questions. 

1)  Are the biosynthetic pathways of surfactant phospholipids 
directly impaired? 

2) If so, what step(s) is (are) impaired and what molecular 
mechanism(s) is (are) involved? 

3) Alternatively, or concomitantly, is the availability of sub- 
strates for phospholipid biosynthesis insufficient? 

4) If so, what precursor is involved: glycogen, glycerol, de novo 
synthesized fatty acids, etc? 

5) Is surfactant secretion into fetal and newborn terminal 
respiratory spaces impaired? 

Other models would have to be studied to determine more 
precisely what fetal alterations (hyperglycemia, hyperinsulinism, 
increased blood FFA, or other metabolic or hormonal abnor- 
malities) cause the delay in lung maturation, and if several 
alterations are involved together, what are their roles and relative 
imvortance. 

Many investigations have already been reported that indicate 
the direction for furture research, but the understanding of 
mechanisms is only at its very beginning. Undoubtedly, much 
progress will be achieved in the next several years in the under- 
standing and management of this important problem of neonatal 
biology and medicine. 
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