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Abstract

Existing approaches to federated learning suf-

fer from a communication bottleneck as well as

convergence issues due to sparse client participa-

tion. In this paper we introduce a novel algorithm,

called FetchSGD, to overcome these challenges.

FetchSGD compresses model updates using a

Count Sketch, and then takes advantage of the

mergeability of sketches to combine model up-

dates from many workers. A key insight in the

design of FetchSGD is that, because the Count

Sketch is linear, momentum and error accumu-

lation can both be carried out within the sketch.

This allows the algorithm to move momentum

and error accumulation from clients to the central

aggregator, overcoming the challenges of sparse

client participation while still achieving high com-

pression rates and good convergence. We prove

that FetchSGD has favorable convergence guar-

antees, and we demonstrate its empirical effec-

tiveness by training two residual networks and a

transformer model.

1. Introduction

Federated learning has recently emerged as an important set-

ting for training machine learning models. In the federated

setting, training data is distributed across a large number

of edge devices, such as consumer smartphones, personal

computers, or smart home devices. These devices have

data that is useful for training a variety of models – for text

prediction, speech modeling, facial recognition, document

identification, and other tasks (Shi et al., 2016; Brisimi et al.,

2018; Leroy et al., 2019; Tomlinson et al., 2009). However,

data privacy, liability, or regulatory concerns may make it

difficult to move this data to the cloud for training (EU,
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2018). Even without these concerns, training machine learn-

ing models in the cloud can be expensive, and an effective

way to train the same models on the edge has the potential

to eliminate this expense.

When training machine learning models in the federated

setting, participating clients do not send their local data to

a central server; instead, a central aggregator coordinates

an optimization procedure among the clients. At each it-

eration of this procedure, clients compute gradient-based

updates to the current model using their local data, and they

communicate only these updates to a central aggregator.

A number of challenges arise when training models in the

federated setting. Active areas of research in federated learn-

ing include solving systems challenges, such as handling

stragglers and unreliable network connections (Bonawitz

et al., 2016; Wang et al., 2019), tolerating adversaries (Bag-

dasaryan et al., 2018; Bhagoji et al., 2018), and ensuring

privacy of user data (Geyer et al., 2017; Hardy et al., 2017).

In this work we address a different challenge, namely that of

training high-quality models under the constraints imposed

by the federated setting.

There are three main constraints unique to the federated set-

ting that make training high-quality models difficult. First,

communication-efficiency is a necessity when training on

the edge (Li et al., 2018), since clients typically connect to

the central aggregator over slow connections (∼ 1Mbps)

(Lee et al., 2010). Second, clients must be stateless, since

it is often the case that no client participates more than once

during all of training (Kairouz et al., 2019). Third, the data

collected across clients is typically not independent and

identically distributed. For example, when training a next-

word prediction model on the typing data of smartphone

users, clients located in geographically distinct regions gen-

erate data from different distributions, but enough common-

ality exists between the distributions that we may still want

to train a single model (Hard et al., 2018; Yang et al., 2018).

In this paper, we propose a new optimization algorithm for

federated learning, called FetchSGD, that can train high-

quality models under all three of these constraints. The crux

of the algorithm is simple: at each round, clients compute

a gradient based on their local data, then compress the gra-

dient using a data structure called a Count Sketch before
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sending it to the central aggregator. The aggregator main-

tains momentum and error accumulation Count Sketches,

and the weight update applied at each round is extracted

from the error accumulation sketch. See Figure 1 for an

overview of FetchSGD.

FetchSGD requires no local state on the clients, and we

prove that it is communication efficient, and that it con-

verges in the non-i.i.d. setting for L-smooth non-convex

functions at rates O
(

T−1/2
)

and O
(

T−1/3
)

respectively

under two alternative assumptions – the first opaque and the

second more intuitive. Furthermore, even without maintain-

ing any local state, FetchSGD can carry out momentum –

a technique that is essential for attaining high accuracy in

the non-federated setting – as if on local gradients before

compression (Sutskever et al., 2013). Lastly, due to prop-

erties of the Count Sketch, FetchSGD scales seamlessly

to small local datasets, an important regime for federated

learning, since user interaction with online services tends

to follow a power law distribution, meaning that most users

will have relatively little data to contribute (Muchnik et al.,

2013).

We empirically validate our method with two image recog-

nition tasks and one language modeling task. Using models

with between 6 and 125 million parameters, we train on

non-i.i.d. datasets that range in size from 50,000 – 800,000

examples.

2. Related Work

Broadly speaking, there are two optimization strategies that

have been proposed to address the constraints of federated

learning: Federated Averaging (FedAvg) and extensions

thereof, and gradient compression methods. We explore

these two strategies in detail in Sections 2.1 and 2.2, but as a

brief summary, FedAvg does not require local state, but it

also does not reduce communication from the standpoint of

a client that participates once, and it struggles with non-i.i.d.

data and small local datasets because it takes many local

gradient steps. Gradient compression methods, on the other

hand, can achieve high communication efficiency. However,

it has been shown both theoretically and empirically that

these methods must maintain error accumulation vectors on

the clients in order to achieve high accuracy. This is ineffec-

tive in federated learning, since clients typically participate

in optimization only once, so the accumulated error has no

chance to be re-introduced (Karimireddy et al., 2019b).

2.1. FedAvg

FedAvg reduces the total number of bytes transferred dur-

ing training by carrying out multiple steps of stochastic

gradient descent (SGD) locally before sending the aggre-

gate model update back to the aggregator. This technique,

often referred to as local/parallel SGD, has been studied

since the early days of distributed model training in the data

center (Dean et al., 2012), and is referred to as FedAvg

when applied to federated learning (McMahan et al., 2016).

FedAvg has been successfully deployed in a number of

domains (Hard et al., 2018; Li et al., 2019), and is the most

commonly used optimization algorithm in the federated set-

ting (Yang et al., 2018). In FedAvg, every participating

client first downloads and trains the global model on their

local dataset for a number of epochs using SGD. The clients

upload the difference between their initial and final model

to the parameter server, which averages the local updates

weighted according to the magnitude of the corresponding

local dataset.

One major advantage of FedAvg is that it requires no lo-

cal state, which is necessary for the common case where

clients participate only once in training. FedAvg is also

communication-efficient in that it can reduce the total num-

ber of bytes transferred during training while achieving the

same overall performance. However, from an individual

client’s perspective, there is no communication savings if

the client participates in training only once. Achieving high

accuracy on a task often requires using a large model, but

clients’ network connections may be too slow or unreliable

to transmit such a large amount of data at once (Yang et al.,

2010).

Another disadvantage of FedAvg is that taking many local

steps can lead to degraded convergence on non-i.i.d. data.

Intuitively, taking many local steps of gradient descent on

local data that is not representative of the overall data dis-

tribution will lead to local over-fitting, which will hinder

convergence (Karimireddy et al., 2019a). When training a

model on non-i.i.d. local datasets, the goal is to minimize

the average test error across clients. If clients are chosen

randomly, SGD naturally has convergence guarantees on

non-i.i.d. data, since the average test error is an expectation

over which clients participate. However, although FedAvg

has convergence guarantees for the i.i.d. setting (Wang

and Joshi, 2018), these guarantees do not apply directly

to the non-i.i.d. setting as they do with SGD. Zhao et al.

(2018) show that FedAvg, using K local steps, converges

as O (K/T) on non-i.i.d. data for strongly convex smooth

functions, with additional assumptions. In other words, con-

vergence on non-i.i.d. data could slow down as much as

proportionally to the number of local steps taken.

Variants of FedAvg have been proposed to improve its per-

formance on non-i.i.d. data. Sahu et al. (2018) propose

constraining the local gradient update steps in FedAvg by

penalizing the L2 distance between local models and the cur-

rent global model. Under the assumption that every client’s

loss is minimized wherever the overall loss function is mini-

mized, they recover the convergence rate of SGD. Karim-
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Figure 1. Algorithm Overview. The FetchSGD algorithm (1) computes gradients locally, and then send sketches (2) of the gradients to

the cloud. In the cloud, gradient sketches are aggregated (3), and then (4) momentum and (5) error accumulation are applied to the sketch.

The approximate top-k values are then (6) extracted and (7) broadcast as sparse updates to devices participating in next round.

ireddy et al. (2019a) modify the local updates in FedAvg to

make them point closer to the consensus gradient direction

from all clients. They achieve good convergence at the cost

of making the clients stateful.

2.2. Gradient Compression

A limitation of FedAvg is that, in each communication

round, clients must download an entire model and upload an

entire model update. Because federated clients are typically

on slow and unreliable network connections, this require-

ment makes training large models with FedAvg difficult.

Uploading model updates is particularly challenging, since

residential Internet connections tend to be asymmetric, with

far higher download speeds than upload speeds (Goga and

Teixeira, 2012).

An alternative to FedAvg that helps address this problem

is regular distributed SGD with gradient compression. It

is possible to compress stochastic gradients such that the

result is still an unbiased estimate of the true gradient, for

example by stochastic quantization (Alistarh et al., 2017)

or stochastic sparsification (Wangni et al., 2018). However,

there is a fundamental tradeoff between increasing compres-

sion and increasing the variance of the stochastic gradient,

which slows convergence. The requirement that gradients re-

main unbiased after compression is too stringent, and these

methods have had limited empirical success.

Biased gradient compression methods, such as top-k spar-

sification (Lin et al., 2017) or signSGD (Bernstein et al.,

2018), have been more successful in practice. These meth-

ods rely, both in theory and in practice, on the ability to

locally accumulate the error introduced by the compression

scheme, such that the error can be re-introduced the next

time the client participates (Karimireddy et al., 2019b). Un-

fortunately, carrying out error accumulation requires local

client state, which is often infeasible in federated learning.

2.3. Optimization with Sketching

This work advances the growing body of research applying

sketching techniques to optimization. Jiang et al. (2018) pro-

pose using sketches for gradient compression in data center

training. Their method achieves empirical success when gra-

dients are sparse, but it has no convergence guarantees, and

it achieves little compression on dense gradients (Jiang et al.,

2018, §B.3). The method also does not make use of error

accumulation, which more recent work has demonstrated

is necessary for biased gradient compression schemes to be

successful (Karimireddy et al., 2019b). Ivkin et al. (2019b)

also propose using sketches for gradient compression in data

center training. However, their method requires a second

round of communication between the clients and the param-

eter server, after the first round of transmitting compressed

gradients completes. Using a second round is not practical

in federated learning, since stragglers would delay comple-

tion of the first round, at which point a number of clients

that had participated in the first round would no longer be

available (Bonawitz et al., 2016). Furthermore, the method

in (Ivkin et al., 2019b) requires local client state for both

momentum and error accumulation, which is not possible

in federated learning. Spring et al. (2019) also propose

using sketches for distributed optimization. Their method

compresses auxiliary variables such as momentum and per-

parameter learning rates, without compressing the gradients

themselves. In contrast, our method compresses the gradi-

ents, and it does not require any additional communication

at all to carry out momentum.

Konecny et al. (2016) propose using sketched updates to

achieve communication efficiency in federated learning.

However, the family of sketches they use differs from the

techniques we propose in this paper: they apply a combina-

tion of subsampling, quantization and random rotations.
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3. FetchSGD

3.1. Federated Learning Setup

Consider a federated learning scenario with C clients. Let

Z be the data domain and let {Pi}C
i=1 be C possibly un-

related probability distributions over Z . For supervised

learning, Z = X × Y , where X is the feature space and

Y is the label space; for unsupervised learning, Z = X is

the feature space. The ith client has Di samples drawn i.i.d.

from the Pi. Let W be the hypothesis class parametrized

by d dimensional vectors. Let L : W ×Z → R be a loss

function. The goal is to minimize the weighted average Ê

of client risks:

f (w)= Ê fi(w)=
1

∑
C
i=1 Di

C

∑
i=1

Di E
z∼Pi

L(w, z) (1)

Assuming that all clients have an equal number of data

points, this simplifies to the average of client risks:

f (w) = Ê fi(w) =
1

C

C

∑
i=1

E
z∼Pi

L(w, z). (2)

For simplicity of presentation, we consider this unweighted

average (eqn. 2), but our theoretical results directly extend

to the the more general setting (eqn. 1).

In federated learning, a central aggregator coordinates an

iterative optimization procedure to minimize f with respect

to the model parameters w. In every iteration, the aggre-

gator chooses W clients uniformly at random,1 and these

clients download the current model, determine how to best

update the model based on their local data, and upload a

model update to the aggregator. The aggregator then com-

bines these model updates to update the model for the next

iteration. Different federated optimization algorithms use

different model updates and different aggregation schemes

to combine these updates.

3.2. Algorithm

At each iteration in FetchSGD, the ith participating client

computes a stochastic gradient gt
i using a batch of (or all

of) its local data, then compresses gt
i using a data structure

called a Count Sketch. Each client then sends the sketch

S(gt
i) to the aggregator as its model update.

A Count Sketch is a randomized data structure that can com-

press a vector by randomly projecting it several times to

lower dimensional spaces, such that high-magnitude ele-

ments can later be approximately recovered. We provide

more details on the Count Sketch in Appendix C, but here

1In practice, the clients may not be chosen randomly, since
often only devices that are on wifi, charging, and idle are allowed
to participate.

we treat it simply as a compression operator S(·), with the

special property that it is linear:

S(g1 + g2) = S(g1) + S(g2).

Using linearity, the server can exactly compute the sketch

of the true minibatch gradient gt = ∑i gt
i given only the

S(gt
i):

∑
i

S(gt
i) = S

(

∑
i

gt
i

)
= S(gt).

Another useful property of the Count Sketch is that, for a

sketching operator S(·), there is a corresponding decom-

pression operator U (·) that returns an unbiased estimate of

the original vector, such that the high-magnitude elements

of the vector are approximated well (see Appendix C for

details):

Top-k(U (S(g))) ≈ Top-k(g).

Briefly, U (·) approximately “undoes” the projections com-

puted by S(·), and then uses these reconstructions to esti-

mate the original vector. See Appendix C for more details.

With the S(gt
i) in hand, the central aggregator could update

the global model with Top-k
(
U (∑i S(gt

i))
)
≈ Top-k

(
gt
)
.

However, Top-k(gt) is not an unbiased estimate of gt, so

the normal convergence of SGD does not apply. Fortunately,

Karimireddy et al. (2019b) show that biased gradient com-

pression methods can converge if they accumulate the error

incurred by the biased gradient compression operator and

re-introduce the error later in optimization. In FetchSGD,

the bias is introduced by Top-k rather than by S(·), so the

aggregator, instead of the clients, can accumulate the error,

and it can do so into a zero-initialized sketch Se instead of

into a gradient-like vector:

St =
1

W

W

∑
i=1

S(gt
i )

∆t = Top-k(U (ηSt + St
e)))

St+1
e = ηSt + St

e − S(∆t)

wt+1 = wt − ∆t,

where η is the learning rate and ∆t ∈ R
d is k-sparse.

In contrast, other biased gradient compression methods in-

troduce bias on the clients when compressing the gradients,

so the clients themselves must maintain individual error

accumulation vectors. This becomes a problem in federated

learning, where clients may participate only once, giving

the error no chance to be reintroduced in a later round.

Viewed another way, because S(·) is linear, and because er-

ror accumulation consists only of linear operations, carrying

out error accumulation on the server within Se is equivalent
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to carrying out error accumulation on each client, and up-

loading sketches of the result to the server. (Computing the

model update from the accumulated error is not linear, but

only the server does this, whether the error is accumulated

on the clients or on the server.) Taking this a step further, we

note that momentum also consists of only linear operations,

and so momentum can be equivalently carried out on the

clients or on the server. Extending the above equations with

momentum yields

St =
1

W

W

∑
i=1

S(gt
i )

St+1
u = ρSt

u + St

∆ = Top-k(U (ηSt+1
u + St

e)))

St+1
e = ηSt+1

u + St
e − S(∆)

wt+1 = wt − ∆.

FetchSGD is presented in full in Algorithm 1.

Algorithm 1 FetchSGD

Input: number of model weights to update each round k
Input: learning rate η
Input: number of timesteps T
Input: momentum parameter ρ, local batch size ℓ
Input: Number of clients selected per round W
Input: Sketching and unsketching functions S , U

1: Initialize S0
u and S0

e to zero sketches

2: Initialize w0 using the same random seed on the clients and
aggregator

3: for t = 1, 2, · · · T do
4: Randomly select W clients c1, . . . cW

5: loop {In parallel on clients {ci}W
i=1}

6: Download (possibly sparse) new model weights wt −
w0

7: Compute stochastic gradient gt
i on batch Bi of size ℓ:

gt
i =

1
ℓ ∑

l
j=1 ∇wL(wt, zj)

8: Sketch gt
i : St

i = S(gt
i ) and send it to the Aggregator

9: end loop

10: Aggregate sketches St = 1
W ∑

W
i=1 St

i

11: Momentum: St
u = ρSt−1

u + St

12: Error feedback: St
e = ηSt

u + St
e

13: Unsketch: ∆t = Top-k(U (St
e))

14: Error accumulation: St+1
e = St

e − S(∆t)
15: Update wt+1 = wt − ∆t

16: end for

Output:
{

wt
}T

t=1

4. Theory

This section presents convergence guarantees for

FetchSGD. First, Section 4.1 gives the convergence of

FetchSGD when making a strong and opaque assumption

about the sequence of gradients. Section 4.2 instead makes

a more interpretable assumption about the gradients, and

arrives at a weaker convergence guarantee.

4.1. Scenario 1: Contraction Holds

To show that compressed SGD converges when using some

biased gradient compression operator C(·), existing meth-

ods (Karimireddy et al., 2019b; Zheng et al., 2019; Ivkin

et al., 2019b) appeal to Stich et al. (2018), who show that

compressed SGD converges when C is a τ-contraction:

‖C(x)− x‖ ≤ (1 − τ) ‖x‖
Ivkin et al. (2019b) show that it is possible to satisfy this con-

traction property using Count Sketches to compress gradi-

ents. However, their compression method includes a second

round of communication: if there are no high-magnitude

elements in et, as computed from S(et), the server can

query clients for random entries of et. On the other hand,

FetchSGD never computes the et
i , or et, so this second

round of communication is not possible, and the analysis of

Ivkin et al. (2019b) does not apply. In this section, we as-

sume that the updates have heavy hitters, which ensures that

the contraction property holds along the optimization path.

Assumption 1 (Scenario 1). Let {wt}T
t=1 be the sequence

of models generated by FetchSGD. Fixing this model se-

quence, let {ut}T
t=1 and {et}T

t=1 be the momentum and

error accumulation vectors generated using this model se-

quence, had we not used sketching for gradient compression

(i.e. if S and U are identity maps). There exists a con-

stant 0 < τ < 1 such that for any t ∈ [T], the quantity

qt := η(ρut−1 + gt−1) + et−1 has at least one coordinate

i s.t. (qt
i)

2 ≥ τ
∥∥qt

i

∥∥2
.

Theorem 1 (Scenario 1). Let f be an L-smooth 2 non-

convex function and let the norm of stochastic gradients of f
be upper bounded by G. Under Assumption 1, FetchSGD,

with step size η = 1−ρ

2L
√

T
, in T iterations, returns {wt}T

t=1,

such that, with probability at least 1 − δ over the sketching

randomness:

1. min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ 4L( f (w0)− f ∗) + G2)√
T

+ 2(1+τ)2G2

(1−τ)τ2T
.

2. The sketch uploaded from each participating client to

the parameter server is O (log (dT/δ) /τ) bytes per

round.

The expectation in part 1 of the theorem is over the random-

ness of sampling minibatches. For large T, the first term

dominates, so the convergence rate in Theorem 1 matches

that of uncompressed SGD.

Intuitively, Assumption 1 states that, at each time step, the

descent direction – i.e., the scaled negative gradient, in-

cluding momentum – and the error accumulation vector

must point in sufficiently the same direction. This assump-

tion is rather opaque, since it involves all of the gradient,

2A differentiable function f is L-smooth if
‖∇ f (x)−∇ f (y)‖ ≤ L ‖x − y‖ ∀ x, y ∈ dom( f ).
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momentum, and error accumulation vectors, and it is not

immediately obvious that we should expect it to hold. To

remedy this, the next section analyzes FetchSGD under a

simpler assumption that involves only the gradients. Note

that this is still an assumption on the algorithmic path, but it

presents a clearer understanding.

4.2. Scenario 2: Sliding Window Heavy Hitters

Gradients taken along the optimization path have been ob-

served to contain heavy coordinates (Shi et al., 2019; Li

et al., 2019). However, it would be overly optimistic to

assume that all gradients contain heavy coordinates, since

this might not be the case in some flat regions of parameter

space. Instead, we introduce a much milder assumption:

namely that there exist heavy coordinates in a sliding sum

of gradient vectors:

Definition 1. [(I, τ)-sliding heavy3 ]

A stochastic process
{

gt
}

t∈N
is (I, τ)-sliding heavy if with

probability at least 1 − δ, at every iteration t, the gradient

vector gt can be decomposed as gt = gt
N + gt

S, where gt
S

is “signal” and gt
N is “noise” with the following properties:

1. [Signal] For every non-zero coordinate j of vector gt
S,

∃t1, t2 with t1 ≤ t ≤ t2, t2 − t1 ≤ I s.t.|∑
t2
t1

gt
j | >

τ‖∑
t2
t1

gt‖.

2. [Noise] gt
N is mean zero, symmetric and when nor-

malized by its norm, its second moment bounded as

E
‖gt

N‖2

‖gt‖2 ≤ β.

Intuitively, this definition states that, if we sum up to I con-

secutive gradients, every coordinate in the result will either

be an τ-heavy hitter, or will be drawn from some mean-zero

symmetric noise. When I = 1, part 1 of the definition re-

duces to the assumption that gradients always contain heavy

coordinates. Our assumption for general, constant I is sig-

nificantly weaker, as it requires the gradients to have heavy

coordinates in a sequence of I iterations rather than in every

iteration. The existence of heavy coordinates spread across

consecutive updates helps to explains the success of error

feedback techniques, which extract signal from a sequence

of gradients that may be indistinguishable from noise in any

one iteration. Note that both the signal and the noise scale

with the norm of the gradient, so both adjust accordingly as

gradients become smaller later in optimization.

Under this definition, we can use Count Sketches to capture

the signal, since Count Sketches can approximate heavy

hitters. Because the signal is spread over sliding windows

of size I, we need a sliding window error accumulation

3Technically, this definition is also parametrized by δ and β.
However, in the interest of brevity, we use the simpler term “(I, τ)-
sliding heavy” throughout the manuscript. Note that δ in Theorem
2 refers to the same δ as in Definition 1.

1       2       3      4       5       6      7 

S4

error 
accumulation 

clean up

S3

S2

S1

                                e
                     e
          e
e

Figure 2. Sliding window error accumulation

scheme to ensure that we capture whatever signal is present.

Vanilla error accumulation is not sufficient to show conver-

gence, since vanilla error accumulation sums up all prior

gradients, so signal that is present only in a sum of I consec-

utive gradients (but not in I + 1, or I + 2, etc.) will not be

captured with vanilla error accumulation. Instead, we can

use a sliding window error accumulation scheme, which can

capture any signal that is spread over a sequence of at most I
gradients. One simple way to accomplish this is to maintain

I error accumulation Count Sketches, as shown in Figure

2 for I = 4. Each sketch accumulates new gradients every

iteration, and beginning at offset iterations, each sketch is ze-

roed out every I iterations before continuing to accumulate

gradients (this happens after line 15 of Algorithm 1). Under

this scheme, at every iteration there is a sketch available that

contains the sketched sum of the prior I′ gradients, for all

I′ ≤ I. We prove convergence in Theorem 2 when using

this sort of sliding window error accumulation scheme.

In practice, it is too expensive to maintain I error accumula-

tion sketches. Fortunately, this “sliding window” problem

is well studied (Datar et al., 2002; Braverman and Ostro-

vsky, 2007; Braverman et al., 2014; 2015; 2018b;a), and it is

possible to identify heavy hitters with only log (I) error ac-

cumulation sketches. Additional details on sliding window

Count Sketch are in Appendix D. Although we use a sliding

window error accumulation scheme to prove convergence,

in all experiments we use a single error accumulation sketch,

since we find that doing so still leads to good convergence.

Assumption 2 (Scenario 2). The sequence of gradients en-

countered during optimization form an (I, τ)-sliding heavy

stochastic process.

Theorem 2 (Scenario 2). Let f be an L-smooth non-convex

function and let gi denote stochastic gradients of fi such

that ‖gi‖2 ≤ G2. Under Assumption 2, FetchSGD, using

a sketch size Θ
(

log(dT/δ)
τ2

)
, with step size η = 1

G
√

LT2/3

and ρ = 0 (no momentum), in T iterations, with probability

at least 1 − 2δ, returns {wt}T
t=1 such that

1. min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ G
√

L( f (w0)− f ∗)+2(2−τ)
T1/3 +G

√
L

T2/3 +
2I2

T4/3

2. The sketch uploaded from each participating client to

the parameter server is Θ
(

log(dT/δ)
τ2

)
bytes per round.

As in Theorem 1, the expectation in part 1 of the theorem is

over the randomness of sampling minibatches.
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Remarks:

1. These guarantees are for the non-i.i.d. setting – i.e. f
is the average risk with respect to potentially unrelated

distributions (see eqn. 2).

2. The convergence rates bound the objective gradient norm

rather than the objective itself.

3. The convergence rate in Theorem 1 matches that of un-

compressed SGD, while the rate in Theorem 2 is worse.

4. The proof uses the virtual sequence idea of Stich et al.

(2018), and can be generalized to other class of functions

like smooth, (strongly) convex etc. by careful averaging

(proof in Appendix B.2).

5. Evaluation

We implement and compare FetchSGD, gradient sparsifi-

cation (local top-k), and FedAvg using PyTorch (Paszke

et al., 2019).4 In contrast to our theoretical assumptions,

we use neural networks with ReLU activations, whose loss

surfaces are not L-smooth. In addition, although Theorem 2

uses a sliding window Count Sketch for error accumulation,

in practice we use a vanilla Count Sketch. Lastly, we use

non-zero momentum, which Theorem 1 allows but Theorem

2 does not. We also make two changes to Algorithm 1. For

all methods, we employ momentum factor masking (Lin

et al., 2017). And on line 14 of Algorithm 1, we zero out the

nonzero coordinates of S(∆t) in St
e instead of subtracting

S(∆t); empirically, doing so stabilizes the optimization.

We focus our experiments on the regime of small local

datasets and non-i.i.d. data, since we view this as both an

important and relatively unsolved regime in federated learn-

ing. Gradient sparsification methods, which sum together

the local top-k gradient elements from each worker, do a

worse job approximating the true top-k of the global gra-

dient as local datasets get smaller and more unlike each

other. And taking many steps on each client’s local data,

which is how FedAvg achieves communication efficiency,

is unproductive since it leads to immediate local overfitting.

However, real-world users tend to generate data with sizes

that follow a power law distribution (Goyal et al., 2017), so

most users will have relatively small local datasets. Real

data in the federated setting is also typically non-i.i.d.

FetchSGD has a key advantage over prior methods in this

regime because our compression operator is linear. Small

local datasets pose no difficulties, since executing a step

using only a single client with N data points is equivalent to

executing a step using N clients, each of which has only a

single data point. By the same argument, issues arising from

non-i.i.d. data are partially mitigated by random client selec-

tion, since combining the data of participating clients leads

4Code available at https://github.com/

kiddyboots216/CommEfficient. Git commit at the
time of camera-ready: 833ca44.

to a more representative sample of the full data distribution.

For each method, we report the compression achieved rela-

tive to uncompressed SGD in terms of total bytes uploaded

and downloaded.5 One important consideration not captured

in these numbers is that in FedAvg, clients must download

an entire model immediately before participating, because

every model weight could get updated in every round. In

contrast, local top-k and FetchSGD only update a limited

number of parameters per round, so non-participating clients

can stay relatively up to date with the current model, reduc-

ing the number of new parameters that must be downloaded

immediately before participating. This makes upload com-

pression more important than download compression for

local top-k and FetchSGD. Download compression is also

less important for all three methods since residential Internet

connections tend to reach far higher download than upload

speeds (Goga and Teixeira, 2012). We include results here

of overall compression (including upload and download),

but break up the plots into separate upload and download

components in the Appendix, Figure 6.

In all our experiments, we tune standard hyperparameters

on the uncompressed runs, and we maintain these same

hyperparameters for all compression schemes. Details on

which hyperparameters were chosen for each task can be

found in Appendix A. FedAvg achieves compression by

reducing the number of iterations carried out, so for these

runs, we simply scale the learning rate schedule in the it-

eration dimension to match the total number of iterations

that FedAvg will carry out. We report results for each com-

pression method over a range of hyperparameters: for local

top-k, we adjust k; and for FetchSGD we adjust k and the

number of columns in the sketch (which controls the com-

pression rate of the sketch). We tune the number of local

epochs and federated averaging batch size for FedAvg, but

do not tune the learning rate decay for FedAvg because we

find that FedAvg does not approach the baseline accuracy

on our main tasks for even a small number of local epochs,

where the learning rate decay has very little effect.

In the non-federated setting, momentum is typically crucial

for achieving high performance, but in federating learning,

momentum can be difficult to incorporate. Each client could

carry out momentum on its local gradients, but this is inef-

fective when clients participate only once or a few times.

Instead, the central aggregator can carry out momentum

on the aggregated model updates. For FedAvg and local

top-k, we experiment with (ρg = 0.9) and without (ρg = 0)

this global momentum. For each method, neither choice

of ρg consistently performs better across our tasks, reflect-

ing the difficulty of incorporating momentum. In contrast,

5We only count non-zero weight updates when computing how
many bytes are transmitted. This makes the unrealistic assumption
that we have a zero-overhead sparse vector encoding scheme.
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Figure 3. Test accuracy achieved on CIFAR10 (left) and CIFAR100 (right). “Uncompressed” refers to runs that attain compression by

simply running for fewer epochs. FetchSGD outperforms all methods, especially at higher compression. Many FedAvg and local top-k
runs are excluded from the plot because they failed to converge or achieved very low accuracy.

FetchSGD incorporates momentum seamlessly due to the

linearity of our compression operator (see Section 3.2); we

use a momentum parameter of 0.9 in all experiments.

In all plots of performance vs. compression, each point

represents a trained model, and for clarity, we plot only

the Pareto frontier over hyperparameters for each method.

Figures 7 and 9 in the Appendix show results for all runs

that converged.

5.1. CIFAR (ResNet9)

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) are im-

age classification datasets with 60,000 32 × 32px color im-

ages distributed evenly over 10 and 100 classes respectively

(50,000/10,000 train/test split). They are benchmark com-

puter vision datasets, and although they lack a natural non-

i.i.d. partitioning, we artificially create one by giving each

client images from only a single class. For CIFAR10 (CI-

FAR100) we use 10,000 (50,000) clients, yielding 5 (1)

images per client. Our 7M-parameter model architecture,

data preprocessing, and most hyperparameters follow Page

(2019), with details in Appendix A.1. We report accuracy

on the test datasets.

Figure 3 shows test accuracy vs. compression for CIFAR10

and CIFAR100. FedAvg and local top-k both struggle to

achieve significantly better results than uncompressed SGD.

Although we ran a large hyperparameter sweep, many runs

simply diverge, especially for higher compression (local top-

k) or more local iterations (FedAvg). We expect this setting

to be challenging for FedAvg, since running multiple gra-

dient steps on only one or a few data points, especially

points that are not representative of the overall distribution,

is unlikely to be productive. And although local top-k can

achieve high upload compression, download compression

is reduced to almost 1×, since summing sparse gradients
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Figure 4. Test accuracy on FEMNIST. The dataset is not very non-

i.i.d., and has relatively large local datasets, but FetchSGD is still

competitive with FedAvg and local top-k for lower compression.

from many workers, each with very different data, leads to

a nearly dense model update each round.

5.2. FEMNIST (ResNet101)

The experiments above show that FetchSGD significantly

outperforms competing methods in the regime of very small

local datasets and non-i.i.d. data. In this section we intro-

duce a task designed to be more favorable for FedAvg, and

show that FetchSGD still performs competitively.

Federated EMNIST is an image classification dataset with

62 classes (upper- and lower-case letters, plus digits) (Cal-

das et al., 2018), which is formed by partitioning the EM-

NIST dataset (Cohen et al., 2017) such that each client in

FEMNIST contains characters written by a single person.

Experimental details, including our 40M-parameter model

architecture, can be found Appendix A.2. We report final

accuracies on the validation dataset. The baseline run trains

for a single epoch (i.e., each client participates once).
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Figure 5. Left: Validation perplexity achieved by finetuning GPT2-small on PersonaChat. FetchSGD achieves 3.9× compression

without loss in accuracy over uncompressed SGD, and it consistently achieves lower perplexity than FedAvg and top-k runs with similar

compression. Right: Training loss curves for representative runs. Global momentum hinders local top-k in this case, so local top-k runs

with ρg = 0.9 are omitted here to increase legibility.

FEMNIST was introduced as a benchmark dataset for

FedAvg, and it has relatively large local datasets (∼ 200
images per client). The clients are split according to the

person who wrote the character, yielding a data distribution

closer to i.i.d. than our per-class splits of CIFAR10. To main-

tain a reasonable overall batch size, only three clients partic-

ipate each round, reducing the need for a linear compression

operator. Despite this, FetchSGD performs competitively

with both FedAvg and local top-k for some compression

values, as shown in Figure 4.

For low compression, FetchSGD actually outperforms the

uncompressed baseline, likely because updating only k pa-

rameters per round regularizes the model. Interestingly,

local top-k using global momentum significantly outper-

forms other methods on this task, though we are not aware

of prior work suggesting this method for federated learning.

Despite this surprising observation, local top-k with global

momentum suffers from divergence and low accuracy on

our other tasks, and it lacks any theoretical guarantees.

5.3. PersonaChat (GPT2)

In this section we consider GPT2-small (Radford et al.,

2019), a transformer model with 124M parameters that is

used for language modeling. We finetune a pretrained GPT2

on the PersonaChat dataset, a chit-chat dataset consisting

of conversations between Amazon Mechanical Turk work-

ers who were assigned faux personalities to act out (Zhang

et al., 2018). The dataset has a natural non-i.i.d. partition-

ing into 17,568 clients based on the personality that was

assigned. Our experimental procedure follows Wolf (2019).

The baseline model trains for a single epoch, meaning that

no local state is possible, and we report the final perplexity

(a standard metric for language models; lower is better) on

the validation dataset in Figure 5.

Figure 5 also plots loss curves (negative log likelihood)

achieved during training for some representative runs. Some-

what surprisingly, all the compression techniques outper-

form the uncompressed baseline early in training, but most

saturate too early, when the error introduced by the com-

pression starts to hinder training.

Sketching outperforms local top-k for all but the highest

levels of compression, because local top-k relies on local

state for error feedback, which is impossible in this setting.

We expect this setting to be challenging for FedAvg, since

running multiple gradient steps on a single conversation

which is not representative of the overall distribution is

unlikely to be productive.

6. Discussion

Federated learning has seen a great deal of research interest

recently, particularly in the domain of communication effi-

ciency. A considerable amount of prior work focuses on de-

creasing the total number of communication rounds required

to converge, without reducing the communication required

in each round. In this work, we complement this body of

work by introducing FetchSGD, an algorithm that reduces

the amount of communication required each round, while

still conforming to the other constraints of the federated

setting. We particularly want to emphasize that FetchSGD

easily addresses the setting of non-i.i.d. data, which often

complicates other methods. The optimal algorithm for many

federated learning settings will no doubt combine efficiency

in number of rounds and efficiency within each round, and

we leave an investigation into optimal ways of combining

these approaches to future work.
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