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SUMMARY

The FETI method and its two-level extension (FETI-2) are two numerically scalable domain decomposition
methods with Lagrange multipliers for the iterative solution of second-order solid mechanics and fourth-order
beam, plate and shell structural problems, respectively.The FETI-2 method distinguishes itself from the basic
or one-level FETI method by a second set of Lagrange multipliers that are introduced at the subdomain
cross-points to enforce at each iteration the exact continuity of a subset of the displacement �eld at these
speci�c locations. In this paper, we present a dual–primal formulation of the FETI-2 concept that eliminates
the need for that second set of Lagrange multipliers, and uni�es all previously developed one-level and
two-level FETI algorithms into a single dual–primal FETI-DP method. We show that this new FETI-DP
method is numerically scalable for both second-order and fourth-order problems. We also show that it is
more robust and more computationally e�cient than existing FETI solvers, particularly when the number of
subdomains and=or processors is very large. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. BACKGROUND

The �nite element tearing and interconnecting (FETI) methods are a family of domain decompo-
sition (DD) algorithms with Lagrange multipliers that have been developed during the last decade
for the fast sequential and parallel iterative solution of large-scale systems of equations arising from
the �nite element discretization of partial di�erential equations. From a mechanical viewpoint, a
FETI method can be viewed as an iterative substructuring method where Lagrange multipliers are
introduced at the substructure interfaces to enforce the continuity of the displacement �eld. By
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construction, equilibrium is satis�ed at each iteration in each substructure. However, the continuity
condition is met only at convergence. From a mathematical viewpoint, each FETI method can
be viewed as a two-step preconditioned conjugate gradient (PCG) algorithm where subdomain
problems with Dirichlet boundary conditions are solved in the preconditioning step, and related
subdomain problems with Neumann boundary conditions are solved in a second step to compute
residuals.
The basic FETI method, also known as the one-level FETI method, or simply the FETI method,

was developed in References [1–5] together with its ‘lumped’ and ‘Dirichlet’ preconditioners, and
extended in Reference [4] to substructure problems with non-matching interfaces. Its optimal con-
vergence properties for second-order elliptic problems (i.e. thermal, structural, and solid mechanics
problems discretized by plane stress=strain and=or brick elements) were �rst exposed numerically
in Reference [5], then mathematically established in Reference [6]. More speci�cally, it was proved
in Reference [6] that when the basic FETI method is equipped with the Dirichlet preconditioner
[5] and applied to second-order elliptic problems, the condition number � of its interface problem
grows asymptotically as

�=O(1 + logm(H=h)); m63 (1)

where h and H denote, respectively, the mesh and subdomain sizes. The conditioning result (1),
which was later proved to hold also with m = 2 [7; 8], demonstrates that the FETI method is
numerically scalable with respect to both the problem size and number of subdomains. Indeed,
from Equation (1) it can be concluded that

P1. If for a �xed number of subdomains Ns (Ns=O(1=H 2) in two dimensions and Ns =
O(1=H 3) in three dimensions) the problem size is increased (O(1=h2) in two dimensions
and O(1=h3) in three dimensions), the condition number of the FETI method grows asymp-
totically only as log2 1=h. In other words, one can expect the FETI method to solve large-
scale problems in a similar number of iterations as small-scale problems.

P2. If for a �xed problem size the number of subdomains is increased—for example, for parallel
processing purposes or in order to reduce the operation count of each iteration—the iteration
count of the FETI method can be expected to decrease.

P3. If the size of the subdomain problem, which can be characterized by H=h, is kept constant
and the total size of the problem is increased by increasing the number of subdomains—
as is often done when the number of processors of a given parallel computing platform
is increased—the condition number of the FETI method remains constant. This property
makes it possible for a well-implemented FETI method to solve an n-times larger problem
on an n-times larger machine in a constant amount of CPU time.

The three numerical scalability properties highlighted above are also veri�ed in practice for
complex problems (for example, see References [5; 9; 10] and the references cited therein). For a
su�ciently large problem, the parallel scalability of the FETI method—that is, its ability to deliver
a speed-up that grows reasonably well with the number of processors (almost linearly)—depends
on the parallel implementation of some key computational kernels of this DD method, particularly
the solution of the associated ‘coarse’ problems [10], and some key characteristics of the target
parallel hardware such as memory bandwidth and cache management. The parallel scalability of the
FETI method, and its ability to solve an n-times larger problem on an n-times larger machine in a
constant amount of CPU time have been recently demonstrated on a 1000-processor con�guration
of the ASCI Option Red massively parallel machine installed at the Sandia National Laboratories.
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The FETI method has been successfully extended to problems with multiple and=or repeated
right-hand sides [11; 12], component mode synthesis [13], transient response analysis [14], non-
linear solution strategies [15–17], free-vibration analysis [18], problems with multipoint constraints
[19], problems with severe heterogeneities such as large discontinuities in material properties [20],
and most recently acoustic scattering problems [21; 22]. It has also inspired many variants, and
other extensions and applications, among which we note those described in [23–28]. All these vari-
ants share the same lumped and Dirichlet preconditioners and the same coarse problem constructed
with the rigid body modes of the 
oating subdomains, all of which were originally developed for
the FETI method.
A distinctive feature of the FETI method is its rigid-body-based auxiliary problem that is nat-

urally derived from the subdomain equations of equilibrium [1–3]. This auxiliary problem must
be solved twice at each PCG iteration. Because its size is in general as small as 3Ns in two
dimensions and 6Ns in three dimensions, this problem is referred to as a ‘coarse’ problem. In Ref-
erences [5; 6], it was shown that for second-order partial di�erential equations, this coarse problem
is the main reason why the FETI method is numerically scalable with respect to the number of
subdomains. The inexpensive solution at each PCG iteration of this coarse problem propagates the
error globally and accelerates convergence.
For transient dynamics applications, a 
oating subdomain has a singular static sti�ness matrix but

a non-singular dynamic sti�ness matrix. Hence, the subdomain equations of dynamic equilibrium
do not naturally lead to any coarse problem. For this reason, a new coarsening procedure was
designed in Reference [14] for addressing the solution of second-order transient dynamic problems
by a numerically scalable FETI method. This procedure had led to a new FETI coarse problem for
time-dependent applications that is also based on the null spaces of the subdomain static sti�ness
matrices, but which has a di�erent expression than the FETI coarse problem for static applications
and therefore requires a di�erent computer implementation.
For fourth-order plate and shell problems, the basic FETI method is not numerically scalable, and

therefore is not as performing as for second-order problems. However, it was shown in References
[29–31] that if at each PCG iteration the exact continuity of the (transverse) displacement �eld
is enforced at the subdomain crosspoints, the FETI method becomes numerically scalable also for
fourth-order (plate) and shell problems. Such a condition can be satis�ed by introducing a set
of additional Lagrange multipliers at the subdomain crosspoints, and determining their values at
each PCG iteration by solving another coarse problem that is based on both the subdomain rigid
body and ‘corner’ modes. Because this new coarse problem can be expressed as the projection
on a subspace of the interface problem associated with the basic FETI method, the resulting DD
method was called in References [30; 31] the two-level FETI method (FETI-2). In Reference [32],
it was proved that for fourth-order plate problems, the optimal conditioning result (1) holds also
for the interface problem of the FETI-2 method equipped with the Dirichlet preconditioner. In
Reference [33], the FETI-2 method developed in References [30; 31] was further expanded into a
mathematical framework for unifying all previously developed FETI coarse problems, and paving
the way for new ones. Nevertheless, for the same reason as stated above, the two-level FETI
framework cannot unify the static and dynamic FETI methods.
For a given uniform mesh partition with Ns subdomains, the size of the coarse problem of the

FETI-2 method, which contains both the subdomain rigid body and corner modes, is of the order
of 6Ns for plate bending problems, and 15Ns for shell problems. Hence, this coarse problem is
at least twice as large as that of the basic FETI method, but the latter method is optimal only
for second-order problems. For this and other reasons, while the basic FETI method applied to
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the solution of three-dimensional problems discretized by solid elements outperforms sparse direct
solvers on both sequential and parallel machines by a factor typically ranging between three and
a full-order of magnitude, the FETI-2 method equipped with the corner modes and applied to the
solution of shell problems is twice slower than a sparse direct solver on sequential machines, and
only 25 per cent faster on parallel processors [17; 34].
From the above summary of the history of the development of the FETI methodology, it follows

that improving the computational performance of the FETI-2 algorithm for plate and shell problems
and unifying static and dynamic FETI solvers remain two desirable objectives. The purpose of this
paper is to report on recent progress towards achieving these goals. The paper is organized as
follows.
In Section 2, we present a new substructuring approach that is based on a dual–primal formu-

lation of the FETI-2 concept, and which replaces the one- and two-level static and transient FETI
algorithms by a single dual–primal FETI-DP method. We point out a few interesting features of
this new DD method and discuss their impact on robustness and computational complexity. In
Section 3, we demonstrate numerically the scalability of the FETI-DP method for both second-
and fourth-order problems. In Section 4, we highlight its superior CPU performance for realis-
tic structural applications. In Section 5, we point out an outstanding issue, and in Section 6 we
conclude this paper.

2. A DUAL-PRIMAL DOMAIN DECOMPOSITION METHOD

2.1. Formulation

Let 
 denote the computational support of a structural problem, and {
s}s=Nss=1 its decomposition
into Ns subdomains with matching interfaces. We denote by Ks; us, and fs the sti�ness matrix,
and displacement and force vectors associated with subdomain 
s, respectively. These quantities
can be partitioned as follows:

Ks=

[
Ksii Ksib

Ks
T

ib Ksbb

]
; u s=

[
usi
u sb

]
; fs=

[
fsi
f sb

]
(2)

where the subscripts i and b designate the subdomain internal and interface boundary degrees of
freedom (d.o.f.), and the superscript T designates the transpose operation. We furthermore partition
the component usb as follows:

usb=

[
usbr
u sbc

]
(3)

where the additional subscript c designates the d.o.f. attached to some ‘corners’ of the mesh
decomposition, and the additional subscript r designates the remainder of the interface boundary
d.o.f. Here, we de�ne the corners of a mesh partition either as

D1. its crosspoints—that is, the points belonging to more than two subdomains (Figure 1), or
D2. the set of nodes located at the beginning and end of each edge of each subdomain

(Figure 2).

De�nition D1 is valid for both two- and three-dimensional meshes, but produces a large num-
ber of corner points in three dimensions. De�nition D2 holds only for two- and two-and-a-half
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FETI-DP: A DUAL–PRIMAL UNIFIED FETI METHOD—PART I 1527

Figure 1. De�nition D1 of a corner point. Figure 2. De�nition D2 of a corner point.

dimensional problems. When de�nition D2 is adopted, a signi�cant number of corner points can
belong to two and only two subdomains.
The continuity of the displacement �eld at the subdomain interfaces can be written as

usb − uqb=0 on 
s ∩
q

or
s=Ns∑
s=1

Bsus=0 (4)

where Bs is a signed boolean matrix de�ned by

Bsus= ± usb (5)

and the sign of this equality is determined by a suitable convention. Following the FETI method-
ology, we seek to introduce Lagrange multipliers � for enforcing the continuity condition (4), and
employ a PCG algorithm for determining the values of these multipliers.
More speci�cally, we are interested in developing a FETI-2-like method where at each PCG

iteration, the continuity of some or all components of the displacement �eld at the corner nodes
is exactly satis�ed. In References [29–32], this requirement was shown to play a crucial role in
ensuring the numerical scalability of the FETI method for fourth-order plate and shell problems,
and was enforced by correcting at each PCG iteration the Lagrange multipliers to achieve this
objective.
In this paper, we adopt an alternative approach for ensuring that at each PCG iteration some

or all components of the displacement �eld are continuous at the corner nodes. Basically, we
formulate a DD method where these unknowns are de�ned only at the global level, whereas all
other generalized displacement unknowns are de�ned at the subdomain level.
For this purpose, we re-partition Ks; us and fs as

Ks=

[
Ksrr Ksrc

Ks
T

rc Kscc

]
; us=

[
usr
usbc

]
; fs=

[
fsr
fsbc

]
(6)

where

usr =

[
usi
usbr

]
and fsr =

[
fsi
fsbr

]
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and introduce the global vector of corner d.o.f.

uc=




u1c
...

ujc
...

uNcc




(7)

where ujc denotes a subset or all of the displacement d.o.f. attached to the jth global node that
is also a corner node of the mesh decomposition, and Nc denotes the total number of selected
corner nodes. For each subdomain 
s, we also de�ne two additional boolean matrices Bsr and B

s
c

by

Bsr u
s
r = ± usbr and Bscuc= u

s
bc (8)

Using the notation of Equations (6)–(8), the subdomain equations of equilibrium can be
written as

Ksrru
s
r + K

s
rcB

s
cuc =f

s
r − BsTr �

s=Ns∑
s=1

Bs
T

c K
sT
rc u

s
r +

s=Ns∑
s=1

Bs
T

c K
s
ccB

s
cuc =

s=Ns∑
s=1

Bs
T

c f
s
bc =fc

(9)

and the interface continuity condition (4) can be re-written as

s=Ns∑
s=1

Bsr u
s
r =0 (10)

In this work, we propose to include in ujc all the displacement and rotational d.o.f. that are
attached to the jth global node that is also a corner node of the mesh decomposition. For restrained
plate and shell as well as plane stress=strain problems, this guarantees that the submatrix Ksrr is
non-singular, whether De�nition D1 or De�nition D2 is adopted for identifying the corner nodes.
The case of three-dimensional problems discretized by solid elements is discussed in Section 5. In
all cases, the matrix

Kcc=
s=Ns∑
s=1

Bs
T

c K
s
ccB

s
c (11)

is also non-singular. Hence, from Equations (9) and (11) it follows that

usr =K
s−1

rr

(
fsr − BsTr �− KsrcBscuc

)
(12)

Substituting Equation (12) into Equation (10) leads after some algebraic transformations to[
FIrr FIrc

FTIrc −K∗cc

][
�

uc

]
=

[
dr

f∗c

]
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where

FIrr =
s=Ns∑
s=1

Bsr K
s−1

rr B
sT
r

FIrc =
s=Ns∑
s=1

Bsr K
s−1

rr K
s
rcB

s
c

K∗cc =Kcc−
s=Ns∑
s=1

(KsrcB
s
c)
TKs

−1

rr (K
s
rcB

s
c) (13)

dr =
s=Ns∑
s=1

Bsr K
s−1

rr f
s
r

f∗c =fc−
s=Ns∑
s=1

Bs
T

c K
sT
rc K

s−1

rr f
s
r

The above problem is a dual–primal problem as it relates the dual Lagrange multiplier unknowns
� to the primal displacement d.o.f. uc. By eliminating uc, it can be transformed however into the
following symmetric positive de�nite dual interface problem

(
FIrr + FIrcK

∗−1

cc FTIrc

)
�=dr − FIrcK∗

−1

cc f∗c (14)

which is closely related to the original FETI interface problem [1–6]. Indeed, FIrr and dr are the
restrictions to the ‘r’ d.o.f. of the complete FI operator and d vector introduced in References [1–6],
respectively.

2.2. A uni�ed FETI-DP method and its coarse problem

We now de�ne the FETI-DP method as (a) the transformation of a given problem of the form
Ku=f into the dual interface problem (14), using the primal–dual DD method described in
Section 2.1, and (b) the solution of that interface problem by a PCG algorithm.
At each PCG iteration k, the residual must be computed by a matrix–vector product of the form(
FIrr + FIrcK

∗−1

cc FTIrc

)
�k , which can be evaluated in two steps as follows:

S1: �k =FIrr �
k =

∑s=Ns
s=1 B

s
r K

s−1

rr B
sT
r �

k

S2: �k = �k + FIrcK
∗−1

cc FTIrc�
k

Step S1 is similar to the main step of the original FETI method (FI�k) and can be imple-
mented using practically the same segments of code. It is easily parallelizable because it involves
only subdomain level computations—essentially, local solves—and requires communication only
between neighbouring subdomains.
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Step 2 can be split into the following 3 substeps:

S2-1: yk =FTIrc�
k =

∑s=Ns
s=1 B

sT
c K

sT
rc K

s−1

rr B
sT
r �

k

S2-2: Solve K∗ccxk =yk
S2-3: zk =FIrcx

k =
∑s=Ns

s=1 B
s
r K

s−1

rr K
s
rcB

s
c x
k

Steps S2-1 and S2-3 involve only local computations that can be parallelized at the subdomain
level. The product Ks

−1

rr B
sT
r �

k has already been evaluated in step S1, and the product Ks
−1

rr K
s
rc is

performed only once. Step S2-2 can be interpreted as the solution of an auxiliary problem whose
size is smaller or equal to 6Nc. Hence, this auxiliary problem is a coarse problem that we refer
to as the FETI-DP coarse problem.
Using Equations (11) and (13), step S2-2 can be re-written as

Solve
[
s=Ns∑
s=1

Bs
T

c K
s
ccB

s
c − (KsrcBsc)TKs

−1

rr (K
s
rcB

s
c)
]
xk =yk (15)

which shows that the solution of the FETI-DP coarse problem couples the subdomain computations,
and therefore propagates the error globally at each PCG iteration.
From Equation (15), it also follows that the FETI-DP coarse problem can be constructed in

parallel using subdomain-by-subdomain computations. Its governing matrix K∗cc is a sparse matrix
whose pattern is that of a sti�ness matrix obtained by considering only the superelements de�ned
by the corner nodes. In this work, we factor K∗cc by a parallel algorithm [9], and solve at each
PCG iteration the coarse problem (15) by forward and backward substitutions.
We propose the FETI-DP method as an iterative solver for both second- and fourth-order

problems—that is for all of plane stress=strain, three-dimensional solid, and beam, plate and shell
problems. The FETI-DP coarse problem is the same in all cases. Only its size changes. For plane
stress=strain problem, its size is equal to 2Nc, and for three-dimensional solid problems it is equal
to 3Nc. For beam, plate, and shell problems, the rotational d.o.f. are included in the de�nition of
uc, which increases the size of the FETI-DP coarse problem to 6Nc.
An important observation is that unlike in the original one- and two-level FETI methods, the

subdomain problems associated with the FETI-DP method described in this paper are always non-
singular. For this reason, the FETI-DP coarse problem (14) does not rely on the null spaces of the
subdomain problem matrices, and therefore the same FETI-DP solver can be equally applied to the
solution of static and transient dynamics problems. This is in sharp contrast with the original FETI
methods that have di�erent coarse problems for static and transient dynamics applications [14; 33].
In summary, we propose the FETI-DP method as a single FETI solver for static and dynamic

second- and fourth-order structural problems.

2.3. Preconditioners

In this work, we do not develop a truly new preconditioner for the FETI-DP method. Rather,
we extend the well-known lumped [1–4] and Dirichlet [5] preconditioners to the dual-primal DD
formulation described in Section 2.1.
Hence, we de�ne the FETI-DP Dirichlet preconditioner as

�FD
−1

Irr =
Ns∑
s=1
WsBsr

[
0 0

0 S sbrbr

]
Bs

T

r W
s (16)
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where

S sbrbr =K
s
brbr − Ks

T

ibrK
s−1

ii K
s
ibr

and the FETI-DP lumped preconditioner as

�FL
−1

Irr =
Ns∑
s=1
WsBsr

[
0 0

0 Ksbrbr

]
Bs

T

r W
s (17)

where the subscripts r; br and i designate the d.o.f. partitionings implied by Equations (6), (3)
and (2), respectively, and Ws is a scaling diagonal subdomain matrix that accounts for eventual
subdomain heterogeneities [20]. Note that Ksii is non-singular because it is the sti�ness matrix of

s with all interface boundary d.o.f. �xed, and thus Ks

−1

ii exists.
The reader can observe that the lumped preconditioner is obtained by simplifying the primal

Schur complement Ssbrbr of the Dirichlet preconditioner to its leading term K
s
brbr . This simpli�cation

reduces the arithmetic complexity of the preconditioning step.
We also remind the reader that in the context of the original FETI methods, the Dirichlet

preconditioner is mathematically optimal. It is more computationally expensive than the lumped
preconditioner, but is more computationally e�cient for plate and shell problems. On the other
hand, the lumped preconditioner is not mathematically optimal, but is more computationally e�-
cient than the Dirichlet preconditioner for second-order problems.

2.4. Some comments on complexity and robustness

Consider a two-dimensional uniform mesh partitioned into 1=H × 1=H subdomains (Ns=1=H 2),
and a three-dimensional uniform mesh partitioned into 1=H × 1=H × 1=H subdomains (Ns=1=H 3).
For second-order problems, the size of the rigid-body-mode-based coarse problem of the one-

level FETI method is in general equal to 3Ns=3=H 2 in the two-dimensional case, and to 6Ns
=6=H 3 in the three-dimensional one. On the other hand, the size of the coarse problem of the
FETI-DP method is equal to 2Nc≈ 2=H 2 in the two-dimensional case, and 3Nc≈ 3=H 3 in the
three-dimensional one. Hence, for second-order problems, the coarse problem of the FETI-DP
method is 1.5 times smaller than that of the one-level FETI method in two dimensions, and
2 times smaller in the three dimensions. Both coarse problems are sparse. However, at each
PCG iteration, the coarse problem of the one-level FETI method must be solved twice for sym-
metry reasons, whereas the coarse problem of the FETI-DP method needs to be solved only
once.
For fourth-order problems de�ned on the two-dimensional mesh considered above (or a simi-

lar two-and-a-half dimensional mesh), the size of the corner mode based coarse problem of the
FETI-2 method is of the order 6Ns=6=H 2 for plate bending problems, and 15Ns=15=H 2 for shell
problems. The coarse problem of the FETI-DP method is smaller: it is equal to 3Nc≈ 3=H 2 for
plate bending problems, and 6Nc≈ 6=H 2 for shell problems. The corner mode based coarse prob-
lem of the FETI-2 method is sparse but inde�nite; its solution deserves special attention. On the
other hand, the coarse problem of the FETI-DP method is sparse and positive, and therefore can
be handled by an o�-the-shelve sparse solver. Furthermore, at each PCG iteration of the FETI-2
method, both rigid body mode and corner mode based corner problems must be solved. On the
other hand, at each PCG iteration of the FETI-DP method, only one coarse problem (15) needs
be solved.
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Noting the role of the quantity 1=H in the above remarks, we formulate the following expecta-
tions

E1: For second-order problems, the computational overhead associated with the solution at each
PCG iteration of one or several coarse problems is smaller for the FETI-DP method than
for the one-level FETI method. Assuming similar convergence rates, the FETI-DP method
can be expected to signi�cantly improve the performance of the one-level FETI method,
for example by a factor two, when the number of subdomains is very large—say, of the
order of a thousand.

E2: For fourth-order plate and shell problems, the computational overhead associated with the
solution at each PCG iteration of one or several coarse problems is signi�cantly smaller
for the FETI-DP method than for the FETI-2 method. Assuming similar convergence rates,
the FETI-DP method can be expected to signi�cantly improve the performance of the
FETI-2 method, for example by a factor two, when the number of subdomains is reasonably
large—say, of the order of a few hundreds.

Hence, the FETI-DP method o�ers important computational advantages per iteration over the
previously established FETI methods. It remains however to investigate whether the FETI-DP
method is numerically scalable and delivers iteration counts that are similar to those of the FETI
and FETI-2 methods.
We have already noted in Section 2.2 that unlike in the FETI and FETI-2 methods, the null

spaces of the subdomain problem matrices do not play any role in the present formulation of the
FETI-DP method. This is because the interface problem (14) does not require any self-equilibrium
condition to be satis�ed by the Lagrange multipliers �, which bypasses the necessity for computing
the subdomain rigid body modes. Because extracting these null spaces by a ‘bullet-proof’ procedure
is a challenging task [35], particularly for geometrically non-linear problems where some tangent
sti�ness matrices can lose one or several rotational rigid body modes, the FETI-DP solver o�ers
a robust alternative to the one- and two-level FETI solvers.

3. NUMERICAL SCALABILITY

Next, we investigate the numerical scalability of the FETI-DP method with respect to the mesh
size h, the subdomain size H , and the ratio H=h. These parameters characterize the problem size,
the number of subdomains, and the number of elements per subdomain, respectively. For this
purpose, we focus on a two-dimensional squared domain whose side is denoted by a, and which
is discretized by 1=h×1=h elements and partitioned into 1=H ×1=H subdomains. We consider both
second-order elasticity and fourth-order plate problems. In all cases, we denote by Ndof and Ncoarse
the sizes of the global and coarse problems, respectively, adopt De�nition D2 (see Section 2.1)
for the corner points, and monitor the convergence of the iterative solvers using the following
criterion:

‖Ku− f‖26�× ‖f‖2 (18)

where K , u, and f denote the global sti�ness matrix and displacement and force vectors, and
�=10−6 except where otherwise speci�ed.
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Table I. Plane stress problem—Ns=64 subdomains (8× 8 mesh
partition). Comparison of the iteration counts of the one-level
FETI and FETI-DP methods equipped with their respective

Dirichlet preconditioners.

FETI FETI-DP
h Ndof # iterations # iterations

1=40 3362 18 23
1=80 13 122 14 17
1=160 51 842 17 20
1=320 206 082 22 23
1=640 821 762 25 26

Table II. Plane stress problem—Ndof = 821 762 (h=1=640).
Comparison of the iteration counts of the one-level FETI
and FETI-DP methods equipped with their respective

Dirichlet preconditioners.

FETI FETI-DP
H Ns # iterations # iterations

1=10 100 26 27
1=16 256 28 26
1=20 400 27 25
1=40 1600 26 22
1=64 4096 23 19
1=128 16 384 18 16

3.1. Second-order elasticity problems

Here, we consider a plane stress problem. We set a=1, clamp one side of the square, and
apply a distributed axial load on the opposite side. We set Young’s modulus to E=1:0e+07, and
Poisson’s ratio to �=0:3. We consider several values of h and H , and in each case, solve the
resulting systems of equations using both the one-level FETI and FETI-DP methods equipped with
their respective Dirichlet preconditioners.
First, we �x H =8 (Ns=64 subdomains), and vary h. We report in Table I the performance

results obtained for the FETI and FETI-DP methods. These results suggest that the FETI-DP
method is as numerically scalable with respect to the mesh size h as the one-level FETI method.
Next, we �x h=1=640 (Ndof = 821 762) and vary the number of subdomains Ns by varying H .

The performance results we report in Table II suggest that the FETI-DP method is not only
numerically scalable with respect to the number of subdomains, but also outperforms the one-level
FETI method iteration-wise.
Finally, we vary both h and H while keeping the ratio H=h=10—that is, keeping the number

of elements per subdomain constant and equal to 100. We report in Table III the performance
results obtained for both the FETI and FETI-DP methods. These results suggest that the FETI-DP
method is as numerically scalable with respect to the subdomain problem size as the one-level
FETI method, and even delivers a better iteration count for large-scale problems. The reader can
also observe that as predicted, the size Ncoarse of the coarse problem of the FETI-DP method is in
general 1.5 times smaller than that of the one-level FETI method for two-dimensional second-order
elasticity problems.
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Table III. Plane stress problem—H=h=10 (100 elements per subdomain). Comparison
of the iteration counts of the one-level FETI and FETI-DP methods equipped with their

respective Dirichlet preconditioners.

FETI FETI-DP FETI FETI-DP
h Ns Ndof Ncoarse Ncoarse # iterations # iterations

1=20 4 882 6 8 8 8
1=40 16 3362 36 36 12 14
1=80 64 13 122 168 140 14 17
1=160 256 51 842 720 540 18 18
1=320 1024 206 082 2976 2108 23 18
1=640 4096 821 762 12 096 8316 23 19

Table IV. Plate bending problem—Ns=64 subdomains (8 × 8 mesh partition).
Comparison of the iteration counts of the FETI-2 and FETI-DP methods equipped

with their respective Dirichlet preconditioners.

FETI-2 (a) FETI-2 (b) FETI-DP
h Ndof # iterations # iterations # iterations

1=40 5166 23 12 17
1=80 19 926 30 16 22
1=160 78 246 36 20 28
1=320 310 086 44 23 34
1=640 1 234 566 51 29 41

3.2. Fourth-order plate bending problems

Next, we consider a plate bending problem with the same geometry (a=1) and material properties
as in the previous section. We set the thickness of the plate to t=10−3, clamp one of its sides, and
apply a distributed bending load on the opposite side. We discretize this problem by triangular
plate bending elements with 3 d.o.f. per node. Again, we consider several values of h and H ,
and in each case, solve the resulting systems of equations using both the FETI-2 and FETI-
DP methods equipped with their respective Dirichlet preconditioners. For the FETI-2 method, we
consider two options where (a) the continuity of the transverse displacement d.o.f. at the corners
is ensured at each iteration, and (b) the continuity of all 3 d.o.f. at the corners is ensured at each
iteration. Option (a) su�ces to ensure the numerical scalability of the FETI-2 method [30]. Option
(b) serves the purpose of further comparisons with the FETI-DP method whose coarse problem,
in this case, is based on 3 d.o.f. per corner node.
First, we �x H =8 (Ns=64 subdomains), and vary h. We report in Table IV the performance

results obtained for the FETI-2 and FETI-DP methods. These results suggest that the FETI-DP
method is as numerically scalable with respect to the mesh size h as the FETI-2 method, and
delivers an iteration count that is halfway between that of the FETI-2 method option (a), and that
of the FETI-2 method option (b).
Next, we �x h=1=640 (Ndof = 1; 234; 566) and vary the number of subdomains Ns between 64

and 4096 by varying H between 1=8 and 1=64. The performance results we report in Table V
suggest that the FETI-DP method is numerically scalable with respect to the number of subdomains.
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Table V. Plate bending problem—Ndof = 1 234 566 (h=1=640). Comparison of
the iteration counts of the FETI-2 and FETI-DP methods equipped with their

respective Dirichlet preconditioners.

FETI-2 (a) FETI-2 (b) FETI-DP
H Ns # iterations # iterations # iterations

1=8 64 51 29 41
1=10 100 47 28 40
1=16 256 47 27 37
1=20 400 47 25 35
1=40 1600 40 21 30
1=64 4096 36 20 28

Table VI. Plate bending problem—H=h=10 (100 elements per subdomain). Comparison
of the iteration counts of the FETI-2 and FETI-DP methods equipped with their respective

Dirichlet preconditioners.

FETI-2 (a) FETI-2 (b) FETI-DP
# iterations # iterations # iterations

h Ns Ndof Ncoarse Ncoarse Ncoarse

1=20 4 1386 (12) 12 (24) 10 (12) 12
1=40 16 5166 (72) 24 (144) 14 (54) 19
1=80 64 19 926 (336) 30 (672) 16 (210) 22
1=160 256 78 246 (1440) 32 (2880) 16 (810) 24
1=320 1024 310 086 (5952) 34 (11 904) 18 (3162) 25
1=640 4096 1 234 566 (24 192) 36 (48 384) 20 (12 474) 28

It performs a number of iterations that is halfway between those of the two options of the FETI-2
method. Note that for all considered FETI solvers, the number of iterations decreases when Ns
increases.
Finally, we vary both h and H while keeping the ratio H=h=10—that is, keeping the number

of elements per subdomain constant and equal to 100. We report in Table VI the performance
results obtained for both the FETI-2 and FETI-DP methods. We also report between parentheses
the di�erent sizes of the di�erent coarse problems associated with the di�erent FETI methods.
Again, these performance results suggest that the FETI-DP method is as numerically scalable with
respect to the subdomain problem size as the FETI-2 method. As in both previous numerical
scalability tests (see Table IV and V), it delivers an iteration count that is halfway between that
of the FETI-2 method option (a), and that of the FETI-2 method option (b). However, the reader
can also observe in Table VI that the coarse problem of the FETI-DP method grows only as
O(3Ns) and is smaller that of the FETI-2 method option (a) which grows as O(6Ns). It is also
signi�cantly smaller than that of the FETI-2 method option (b) which grows as O(12Ns). For this
reason, and because the FETI-2 methods must also solve twice at each PCG iteration the additional
rigid-body-mode-based coarse problem (see Section 2.4), one can reasonably expect the FETI-DP
solver to perform better CPU wise than both options of the FETI-2 method. This is also con�rmed
by the CPU performance results reported in Section 4.1.
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Table VII. Plane stress problem—Ndof = 821 762 (h=1=640). Performance comparisons
on an 8-processor Origin 2000 of the one-level FETI and FETI-DP methods equipped

with their respective Dirichlet preconditioners.

FETI FETI-DP FETI FETI-DP
H Ns # iterations # iterations CPU (s) CPU (s)

1=10 100 26 27 157 142
1=16 256 28 26 87 58
1=20 400 27 25 50 41
1=40 1600 26 22 47 25
1=64 4096 23 19 66 24
1=128 16 384 18 16 262 57

4. APPLICATIONS AND PERFORMANCE RESULTS

Finally, we report on the CPU performance of the FETI-DP method for a series of realistic
problems. More speci�cally, we benchmark this new FETI method against the original FETI and
FETI-2 methods, and the PSLDLT sparse direct solver. In all cases, we monitor the convergence
of the FETI solvers using the criterion (18) with �=10−6.
We perform all computations in 64-bit arithmetic on an Origin 2000 Silicon Graphics system

with 24 processors and 12 gigabytes of memory. The PSLDLT sparse direct solver is part of the
scienti�c library of the Silicon Graphics systems. It requires storing the target sparse matrix in the
Harwell-Boeing format (also known as the Compressed Column Storage format). It is parallelized
by Silicon Graphics on the O2000 multiprocessor, and is most likely written in assembly lan-
guage. All FETI solvers are programmed in C++ and are not optimized for any speci�c computer
architecture. All FETI computational kernels are parallelized except the forward and backward
substitutions associated with the coarse problems of the one-level FETI and FETI-DP methods.
These sparse triangular solves are performed in serial mode because they do not parallelize well.
On the other hand, the forward and backward substitutions associated with the coarse problem of
the FETI-2 method are parallelized; this is because the latter coarse problem gives rise to dense
block algebra that parallelizes relatively well.
We also note that the sizes of the problems discussed here are such that memory swapping

never occurs on our Origin 2000 system, and therefore the performance results we report are
purely computational performance results.

4.1. Back to the sample plane stress problem

First, we consider again the sample plane stress problem described in Section 3.1, and update
Tables II and III with the corresponding CPU performance results.
For both the FETI and FETI-DP methods, increasing the number of subdomains for a �xed

problem size reduces the computational complexity of the solution of the local problems, but
increases the size of the interface problem. Hence, for both of these numerically scalable DD
methods, increasing the number of subdomains up to a certain optimal number N opts can decrease
the total solution CPU time. Increasing Ns beyond that optimal number increases the total solution
CPU time. The results reported in Table VII illustrate this behaviour and suggest that for this
problem, the optimal number of subdomains for the FETI method is approximately N opts =1600,
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Table VIII. Plane stress problem—H=h=10 (100 elements per subdomain). Performance com-
parisons on a single processor O2000 of the one-level FETI and FETI-DP methods equipped

with their respective Dirichlet preconditioners.

FETI FETI-DP FETI FETI-DP
h Ns Ndof # iterations # iterations CPU (s) CPU (s)

1=20 4 882 8 8 0.06 0.05
1=40 16 3362 12 14 0.24 0.24
1=80 64 13 122 14 17 1.3 1.5
1=160 256 51 842 18 18 13 13
1=320 1024 206 082 23 18 47 43
1=640 4096 821 762 23 19 252 192

while the optimal number of subdomains for the FETI-DP method is approximately N opts =4096.
This suggests that the FETI-DP method is more suitable for �ne mesh partitions than the FETI
method, and therefore more suitable for massively parallel systems with thousands of processors
such as the ASCI Option Red supercomputer.
The performance results reported in Table VII are for an 8-processor Origin 2000 con�guration.

They show that for a �xed problem size, the FETI-DP method equipped with its optimal number of
subdomains is twice as fast as the FETI method equipped with its optimal number of subdomains.
On the other hand, the performance results reported in Table VIII are for a single Origin 2000
processor. They suggest that for a �xed subdomain problem size and an increasing number of
subdomains, the FETI-DP method is 30 per cent faster than the one-level FETI method.
As stated earlier, all FETI coarse problems are currently solved by a direct method where

the factorization phase is performed once and in parallel, but all subsequent sparse forward and
backward substitutions are performed in serial mode—because they do not parallelize well. Con-
sequently, the parallel speed-up of a FETI solver is larger when the percentage of the total CPU
time spent in the coarse problem solver is smaller—that is, when the coarse problem is smaller.
This is illustrated by the performance results reported in Table VII for Ns=4096 and 8 processors,
and Table VIII for h=1=640 and a single processor. These results show that for this plane stress
problem, when the number of subdomains is as large as Ns=4096, the FETI-DP method delivers
a speed-up equal to 8 on an 8-processor O2000, but the one-level FETI method whose coarse
problem is 1.5 times larger and must be solved twice at each PCG iteration delivers a speed-up
equal to 3.8 only.

4.2. A composite sti�ened wing panel

Next, we consider the stress analysis of a sti�ened composite wing panel from the V22 tiltrotor
aircraft [36]. This panel contains interesting features such as ply drop-o�s, ply interleaves, axial
sti�eners, transverse ribs, clips, brackets, a large elliptical access hole, and 46 di�erent material
section properties. We design three di�erent �nite element models using two-noded beam, and
three-noded triangular plate and shell elements: (a) model M1 with 56 916 d.o.f. (Figure 3),
(b) model M2 with 223 620 d.o.f., and (c) model M3 with 885 924 d.o.f. We clamp the panel at
one end, and constrain to zero the out-of-plane displacements and rotations about the longitudinal
axis at the midpoint of the top of the �xture brackets. We specify a uniform end-shortening
displacement �eld at the other end of the panel to simulate the compressive motion of a test
machine.
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Figure 3. Finite element discretization of a V22
sti�ened wing panel (model M1).

Figure 4. Finite element discretization of a car wheel.

Table IX. Sti�ened composite wing panel from the V22 tiltrotor aircraft Performance comparisons on a 10-
processor O2000 of the FETI-2 and FETI-DP methods equipped with their respective Dirichlet preconditioners.

FETI-2 FETI-DP FETI-2 FETI-DP FETI-2 FETI-DP
FE Ndof Ns Ncoarse Ncoarse # iter. # iter. CPU (s) CPU (s)

M1 56 916 80 1656 1680 93 104 17 13
M2 223 620 140 2949 2796 129 130 77 55
M3 885 924 250 5348 4686 200 198 361 269

We perform several stress analyses of this panel on a 10-processor Origin 2000 system using
both the FETI-2 and FETI-DP methods equipped with their respective Dirichlet preconditioners,
and De�nition D2 of the corner nodes. We generate all mesh partitions using the TOP=DOMDEC
software package and its option for optimizing the subdomain aspect ratio [37]. For each problem
size, we select a number of subdomains that is as optimal as possible for both the FETI-2 and
FETI-DP solvers.
The performance results we report in Table IX show that

(1) The FETI-2 and FETI-DP solvers deliver comparable iteration counts for all three �nite
element models. However, the FETI-DP solver is systematically 1.35 times faster than the
FETI-2 solver.

(2) Both the FETI-2 and FETI-DP solvers exhibit a CPU performance that scales reasonably
well with the problem size. Indeed, when the size of this complex problem is increased
by factors equal to 4 and 16, the CPU timings of both the FETI-2 and FETI-DP solvers
increase by factors equal to 4 and 21, respectively.
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Table X. Car wheel problem with 936 102 d.o.f. Parallel
performance results on an O2000 system of the PSLDLT
solver, and the FETI-2 and FETI-DP solvers equipped

with their respective Dirichlet preconditioners.

Np FETI-2 (s) PSLDLT (s) FETI-DP (s)

1 2995 1631 1594
4 789 502 370
8 371 301 196
16 214 218 116
20 179 200 99
24 157 200 86

For the �nite element model M3 of this speci�c shell problem, the FETI-2 solver stagnates at
�=7:6e − 7 (see criterion (18)). On the other hand, the FETI-DP solver stagnates much later at
�=6:6e−11. This suggests that the FETI-DP solver is not only faster than the FETI-2 solver, but
can also reach signi�cantly lower residuals.

Remark.. We note that for this problem and the mesh partitions generated for all three �nite
element models, the coarse problem of the FETI-2 method turns out to be not much larger than
that of the FETI-DP method. This is because for all generated mesh partitions, it turns out that
about 50 per cent of the corner points belong to two and only to two subdomains (see De�nition
D2 in Section 2.1). Each of these corner points contributes 3 rather than 9 unknowns to the FETI-2
coarse problem, while any corner point contributes 6 unknowns to the FETI-DP coarse problem.
Consequently for this problem and the considered mesh partitions, the size of the FETI-DP coarse
problem is only slightly smaller than that of the FETI-2 coarse problem, and the FETI-DP solver
is only 1.35 times faster than the FETI-2 solver.

4.3. A car wheel

Finally, we consider the stress analysis of an alloy wheel clamped at a few centre points and
loaded by a set of concentrated forces at its top rim. The �nite element model of this wheel con-
tains 313 856 three-noded triangular shell elements and 936 102 d.o.f. (Figure 4). This problem is
representative of a class of two-and-a-half-dimensional shell problems for which sparse solvers are
in principle more computationally e�cient than most iterative solvers. A preliminary investigation
indicated that the optimal number of subdomains for the solution of this problem by the FETI-2
method equipped with the Dirichlet preconditioner and the corner modes is N opts =175, and that of
the FETI-DP method equipped with its own Dirichlet preconditioner is N opts =500. For a change,
we adopt for this problem De�nition D1 for identifying the corner nodes (see Section 2.1).
For this shell problem with almost 1 million d.o.f., the parallel PSLDLT sparse direct solver

requires 2601 megabytes of memory, and consumes 1631 s CPU on a single Origin 2000 processor.
The FETI-2 solver requires 2638 megabytes of memory and 3226 s CPU on a single Origin 2000
processor. On the other hand, the FETI-DP method requires 2386 megabytes of memory and
1671 s CPU on the same O2000 processor. Hence, all three solvers require comparable amounts
of memory. However, the serial FETI-DP solver is twice as fast as the serial FETI-2 solver, and
almost as fast as the serial PSLDLT sparse direct solver, which is an important result.
We report in Table X the performance results obtained for all three solvers using an increasing

number of processors Np on the Origin 2000 system. The reader can observe that at Np = 20, the
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Figure 5. Convergence history.

PSLDLT solver delivers a speed-up equal to 8.2, and that increasing the number of processors
beyond Np = 20 does not reduce any further the solution time of this sparse solver. On the other
hand, at Np = 20, the FETI-2 and FETI-DP solvers deliver speed-ups equal to 16.7 and 16.1,
respectively, and at Np = 24 these speed-ups are equal to 19 and 18.5, respectively. This shows
that domain decomposition methods such as FETI, even when they require the solution of one
or several coarse problems, are more amenable to parallel processing than sparse direct solvers.
The FETI-2 solver delivers slightly better speed-ups than its FETI-DP counterpart because as
stated earlier, the solution by forward and backward substitutions of the FETI-2 coarse problems
involves dense block algebra and therefore parallelizes to some extent, whereas the solution of the
FETI-DP coarse problem by forward and backward substitutions involves only sparse computations
and therefore is currently serialized. Nevertheless, using 24 O2000 processors, the FETI-DP solver
is still 1.8 times faster than the FETI-2 solver, and 2.3 times faster than the PSLDLT sparse solver.
We also report in Figure 5 the convergence histories of both FETI-2 and FETI-DP methods for

this car wheel problem. These histories show well that both FETI methods have similar convergence
rates. Therefore the fact that the FETI-DP solver is faster than the FETI-2 solver is due to the
di�erences in the number of coarse problems each method embeds, and the di�erent sizes of these
auxiliary problems. Most importantly, Figure 5 also shows that the FETI-DP method can reach
signi�cantly smaller residuals than the FETI-2 method.

5. OUTSTANDING ISSUE

For three-dimensional problems discretized by solid elements (brick, tetrahedra, ...), De�nition D1
produces a large number of corner nodes. For computational e�ciency purposes, only a subset of
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Figure 6. Finite element discretization of a di�raction grating system.

these nodes can be selected. Hence, we adopt for three-dimensional problems a modi�ed version
MD1 of De�nition D1 where a node is identi�ed as a corner if it belongs to at least four sub-
domains. This particular choice of four subdomains is due to the fact that for a three-dimensional
uniform mesh partitioned into 1=H × 1=H × 1=H subdomains, a ‘vertex’ of the mesh partition is
connected to at least four subdomains. However, for three-dimensional irregular meshes partitioned
into an arbitrary number of subdomains, De�nition MD1 can cause some subdomain problem
matrices to be singular. For this reason, we complement De�nition MD1 by a fast postprocessing
phase that guarantees that at least three non-colinear nodes are selected as corner nodes. This
ensures that all subdomain problem matrices are then non-singular.
In order to illustrate the performance of the FETI-DP method for three-dimensional second-order

problems, we consider the structural analysis of the di�raction grating system shown in Figure 6.
This system is part of a satellite borne telescope spectrograph. Its �nite element model contains
35 328 eight-noded brick elements and 120 987 d.o.f. The grating material of this structure is
fused silica. When mounted, it must have face surface de
ections below the micron level in 1G
acceleration for accurate pre-launch alignment with the rest of the spectrograph. It must also be
able to withstand accelerations up to 15G laterally and axially during launch. Several designs for
this system have been conceived at the University of Colorado [38], and analysed by the FETI
method. Here, we compare the performance results of the one-level FETI and FETI-DP methods
when applied to the structural analysis of one design con�guration. For this purpose, we equip
both FETI methods with their respective lumped preconditioners because these are known to be
more computationally e�cient than the Dirichlet preconditioners for second-order problems. We
report in Table XI the performance results obtained on a single processor Origin 2000 for two
di�erent numbers of subdomains. These results suggest that

(1) Using De�nition MD1, the size of the coarse problem of the FETI-DP method has a tendency
to grow faster with the number of subdomains than that of the one-level FETI method.

(2) The convergence rate of the FETI-DP method is slower than that of the one-level FETI
method, and subsequently the FETI-DP solver is slower than the FETI solver.

The observations noted above are con�rmed by several numerical tests that we have conducted
for other three-dimensional second-order problems, using both the lumped and Dirichlet precondi-
tioners. These observations suggest that for three-dimensional second-order problems, the FETI-DP
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Table XI. Di�raction grating problem with 120 987 d.o.f. Performance results on a
single processor O2000 of the one-level FETI and the FETI-DP solvers equipped with

their lumped preconditioners.

FETI FETI-DP FETI FETI-DP FETI FETI-DP
Ns Ncoarse Ncoarse # iterations # iterations CPU (s) CPU (s)

56 319 312 81 190 281 534
128 749 1116 51 125 115 273

method needs either a di�erent preconditioner, or a di�erent coarse problem. This outstanding issue
is successfully dealt with in two sequel publications: in the companion paper [39], and Part II of
this work. Indeed in Reference [39] and Part II, it is shown that the numerical scalability of the
FETI-DP method and its computational e�ciency can be restored for three-dimensional second-
order problems by an appropriate enrichment of the coarse problem (15), and a careful selection
of the corner nodes. This enrichment is based on the framework proposed in Reference [33] for
accelerating the convergence of a DD method with Lagrange multipliers, and the methodology
described in Reference [19] for enforcing a multipoint constraint in a FETI method.

6. CONCLUSIONS

Like the original FETI method, the FETI-DP method is a domain decomposition method with
Lagrange multipliers. It is based on the same concept as the two-level FETI-2 method that was
originally developed for the scalable iterative solution of fourth-order plate and shell problems.
In both the FETI-2 and FETI-DP methods, the exact continuity of the displacement �eld at the
subdomain corners is enforced at each preconditioned conjugate gradient (PCG) iteration, while
the continuity of the displacement �eld at the other subdomain interface points is reached only at
convergence. While the FETI-2 method employs corrective Lagrange multipliers to achieve this
objective, the FETI-DP method relies for this purpose on a dual–primal formulation where the
displacement and rotational degrees of freedom at the subdomain corners are considered as part
of the fundamental unknowns. Unlike in the FETI and FETI-2 methods, the problem matrices
associated with 
oating subdomains are never singular in the FETI-DP method. Consequently, the
FETI-DP solver does not have to compute any subdomain rigid body mode, and is equally appli-
cable to the solution of both static and dynamic problems. Therefore, the FETI-DP solver is more
robust than the previously developed FETI solvers, and requires less code maintenance. Extensive
numerical experiments suggest that the FETI-DP method is numerically scalable with respect to
the size of the global problem, the size of the subdomain problem, and the number of subdomains.
These numerical experiments also reveal that the FETI-DP solver can reach substantially lower
residuals than the FETI and FETI-2 solvers. While most FETI methods require solving at least
two coarse problems at each PCG iteration, the FETI-DP method requires solving only one coarse
problem at each PCG iteration. Furthermore, for two-dimensional second-order elasticity problems
and for fourth-order plate and shell problems, the coarse problem of the FETI-DP method is in
general smaller than that of the FETI and FETI-2 methods. For these two reasons, even though
the FETI-DP method exhibits the same convergence rate as the basic FETI method when applied
to second-order problems, and the same convergence rate as the FETI-2 method when applied to
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fourth-order problems, it is faster than both of these methods, particularly when the number of
subdomains is very large. It is also faster than sparse direct solvers, even for some shell problems,
particularly on parallel processors. For three-dimensional second-order problems, the FETI-DP
method as described in this paper does not perform as well as the basic FETI method. However,
in the companion paper [39] and Part II of this work, the FETI-DP method is further improved
and shown to achieve numerical scalability and computational e�ciency also for three-dimensional
second-order problems.
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