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ABSTRACT

Calcium and phosphate combine to form insoluble precipitates
in both inorganic and organic materials. This property is useful
biologically and has been used by numerous organisms to create
hard tissues, a process referred to as biomineralisation [1]. In
humans, calcium and phosphate combine to form useful crystal
structures largely composed of calcium hydroxyapatite [Ca10-
(PO4)6(OH)2] and these are essential in the growth, mainten-
ance and strength of parts of the skeleton and other
structures like teeth. However, it remains unclear how the
body achieves the exquisite specificity involved in biominerali-
sation. In ageing and disease, these pathways are perturbed, re-
sulting in ectopic calcium crystal deposition impairing tissue
function and, interestingly, frequently accompanied by simul-
taneous loss of mineral from sites where it is useful (e.g.
bone). One paradigm for this maladaptive situation is renal fail-
ure; a situation that we know is associated with vascular stiffen-
ing and calcification, along with mineral loss from the skeleton.

Mineral trafficking is a loose term used to describe the move-
ments of calcium salts around the body, and new insights
into these pathways may explain some of the problems of pre-
vious models of bone mineral disease in renal failure and point
to potential future therapeutic strategies.

Keywords: calcification, calcium, fetuin, mineral metabolism,
phosphataemia

BIOMINERALISATION

The fact that hydroxyapatite crystals do not form spontaneous-
ly in the relatively supersaturated serum (based on the activities
of calcium and phosphate) is related to the mineral binding
roles of circulating proteins (e.g. Fetuin-A) that limit growth
of spontaneously forming crystal nidi, thus limiting mineral
formation [2]. A number of experiments attest to the damaging
effects of pure hydroxyapatite crystals on cells, which cause pro-
found pro-inflammatory changes, but whose effects are
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attenuated or abrogated by the presence of such proteins [3].
Thus, mammals have evolved efficient mechanisms to chaper-
one mineral until it can precipitate safely at the correct mineral-
ization sites (e.g. in the bone). Further, it is also clear that a
mineral–serum interface is essential to buffer serum mineral
concentrations on a minute-to-minute basis to prevent danger-
ous excursions in the levels of ionized mineral in the serum
[4, 5], while responding to endocrine signals to change this
equilibrium in a longer time frame. Balancing these complex
and sometimes competing roles is clearly complex, but exciting
to explore.

The biomineralisation process is tightly controlled by a
number of factors, including a series of proteins that appear
to be crucial in directing the assembly of mineralized structures.
In humans, the apatite crystals that are required for bone forma-
tion start as nanocrystals. While apatite crystals can grow in situ
(e.g. in bone), nanocrystalisation and calcification nidi may also
be formed in extracellular spaces or intracellularly and may be
secreted in matrix vesicles or other export packages. At sites of
mineralization surfaces, calcification is facilitated by a specia-
lized collagen matrix, rich in glycosylated collagen I and with
well-defined spatial configuration [1].

FETUIN-A

One key regulating protein protecting cells from ‘naked’ hy-
droxyapatite in mammalian systems is the protein fetuin-A
(Fet-A or α2-Heremans-Schmid glycoprotein) [6]. Fet-A is
mainly synthesized in the liver, where it is heavily glycosylated
and secreted into the plasma where it circulates at high concen-
trations [7]. Fet-A has a high affinity for apatite and thus select-
ively accumulates as one of the major non-collagenous protein
components (∼25%) in bone and teeth [8–10]. The high affinity
of Fet-A for apatite also explains the co-localization of this pro-
tein with ectopic mineral deposits found in the vascular wall
and other calcified soft tissues [11–14]. Pivotal studies by
Jahnen-Dechent et al. [15] showed that Fet-A has a particularly
high affinity for nascent mineral and inhibits its precipitation
from supersaturated solutions in addition to de novo apatite for-
mation by mineralizing rat osteoblast cultures. Consistent with

this, studies in mice rendered deficient for Fet-A show wide-
spread calcification of the soft tissues and established this rather
enigmatic protein as a potent systemic inhibitor of extra-
osseous mineralization [16–20]. Furthermore, there is in vitro
and in vitro evidence that Fet-A plays a central role in uptake
of mineral by vascular smooth muscle cells (VSMC), and free
Fet-A may function to limit calcification here by inhibiting cas-
pase cleavage and apoptosis, which are key events in vascular
calcification [21]. In humans, Fet-A deficiency has been con-
sistently associated with increased arterial calcification scores
and higher mortality rates [22, 23]. In kidney disease, low cir-
culating Fet-A concentrations are associated with progressive
aortic stiffening [24] and calcification [25].

CALCIPROTEIN PARTICLES

Fet-A inhibits mineralization by shielding nascent nanocrystals
of calcium phosphate from further growth through the forma-
tion of an outer protein monolayer or corona—conceptually
akin to the manner in which apolipoproteins coat their insoluble
lipid cargo [2, 6]. Mutational analysis has demonstrated that
mineral stabilization is mediated by an array of regularly spaced
acidic residues (Asp orGlu) positioned on an extended β-sheet of
the D1 domain in a Fet-A:calcium ratio of ∼1:15 [6]. The inter-
action of pre-formedmineral, Fet-A and, to a lesser extent, other
acidic serumproteins (e.g. albumin), generates colloidal (soluble)
complexes termed by Jahnen-Dechent et al. as calciprotein pro-
tein particles (CPP), in analogy to lipoprotein particles that
transport insoluble lipid [6].

CPP formation is biphasic, starting with the aggregation of
small clusters of fetuin-A-bound mineral ions (calciprotein
monomers) to form spherical nanoparticles containing
amorphous calcium phosphate called primary CPP (CPP-I).
Once in the circulation, these particles may be removed by
class A scavenger receptor–mediated pathways expressed in
the reticuloendothelial system [26] or undergo rearrangement
into more densely packed needle-shaped particles called sec-
ondary CPP (CPP-II) that contain mineral in crystalline
phase (Figure 1). This transformation process is likely due to
nanoparticle growth by accretion of mineral and structural

F IGURE 1 : Cryo-TEM analysis of fetuin-A-containing CPP isolated from uraemic human serum showing a heterogeneous population of
mineral-containing nanoparticles (central panel). CPP were enriched by differential centrifugation and immuno-capture as described previously
[3]. Magnified regions show amorphous calcium phosphate–containing CPP-I (left panel), which undergo spontaneous rearrangement to larger
needle-shaped CPP-II (right panel) containing mineral in a more densely packed crystalline phase, e.g. octacalcium phosphate/hydroxyapatite
(bar = 20 nm). Insets depict typical electron diffraction patterns of each particle ‘type’. As described in the text, CPP-I-to-CPP-II transformation is
modulated by a number of known promoter and inhibitory factors.
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reorganization into a more regular lattice structure with a lower
free energy, a process known as ‘ripening’. CPP ripening is en-
tirely related to the physicochemical properties of proteins and
mineral present, and proceeds spontaneously in a supersatu-
rated solution of calcium and phosphate without the require-
ment for cellular involvement. A number of factors are
known to modulate this transition, including the concentration
of Fet-A; albumin; the ionic activity of calcium, phosphate and
magnesium; pH; temperature and time [2, 6, 27]

Detection of these particles has to date been mainly by dif-
ferential centrifugation and ELISA immunoassay for the Fet-A
protein [28]. Using such methodology, serum CPP appear un-
detectable in healthy adults but elevated in patients with CKD,
increasing in a stepwise manner with worsening renal function
[28]. In the pre-dialysis setting we found that CPP levels were
strongly associated with systemic inflammatory markers and
aortic stiffness [29]. Others have reported strong correlations
between circulating levels and coronary artery calcification
scores [28]. Intriguingly, we have also found that serum CPP
are elevated in patients with chronic rheumatological disease
but normal renal function, providing further evidence of the
link between inflammatory and pro-calcific processes [30]. Im-
portantly, measuring the levels of these circulating CPP-II in
patients has impressive prognostic significance in CKD [31],
being highly predictive of mortality (Figure 2). The ability of
a given patient serum to resist the ripening process of these par-
ticles in vitro in an artificial milieu of supersaturating calcium
and phosphate, the so-called calcification propensity (T50) [32],
has also been found to have prognostic significance in CKD and
transplantation [31, 33], suggesting that as biomarkers they
perform well.

Our understanding of CPPmetabolism is incomplete, but in
vitro work has shown that CPP are taken up by various cell
types, in particular cells of the monocytic/macrophage lineage,
and there is accumulating evidence that CPP-I and CPP-II pro-
voke very different cellular responses, with the latter causing
pro-inflammatory cytokine release (especially IL-1β) and

reactive oxygen species [3]. The mechanism of this effect is
still debated but there is some evidence of NLRP3 inflamma-
some activation.

CPP AND PHOSPHATE TOXICITY

There is of course a lot of epidemiological evidence of an asso-
ciation between higher serum inorganic phosphate concentra-
tions and mortality (particularly cardiovascular) in patients
with renal disease and in the normal population [34]. This as-
sociation, together with in vitro evidence obtained by adding
phosphate to cells in culture, causing cellular dysfunction, sug-
gested that extracellular phosphate may be a direct cellular
toxin. Thus, for years we have concentrated on controlling
serum phosphate concentrations in dialysis patients with in-
creasing times on dialysis, dietary restriction of phosphate
and prescription of phosphate binders (PBs) [35]. Such strat-
egies are predicated on the hypothesis that high extracellular
phosphate is toxic, and thus it is logical that reducing serum
phosphate concentrations will by itself improve outcomes.
However, there remain unexplained observations that make a
phospho-centric paradigm difficult to fully accept. For example
why is it that many mammalian species have serum phosphate
levels that are far higher than those seen in humans, and if
phosphate is so toxic, why does this not cause a problem. In
fact, normal rat phosphate levels are some 0.5–1.0 mmol/L
higher than in humans [36] despite being relatively calcification
resistant, and the phosphate levels in some pigs are routinely
>2–3 mmol/L [37]. Human neonates have phosphate levels be-
tween 1.0 and 2.8 mmol/L for the first few days of life. Addition-
ally, in this paradigm it is hard to explain why ‘phosphate
toxicity’ is abrogated almost completely by pyrophosphate, a
compound that inhibits hydroxyapatite crystal formation and
nanocrystalisation [38]. Phosphonoformic acid (also known
as Foscarnet, an antiviral drug, and a pyrophosphate analog in-
hibiting viral DNA replication) also inhibits crystal formation
at low concentrations [39] and abrogates calcification in a num-
ber of systems. This property has often been interpreted as
being due to Pit1 inhibition (a sodium-phosphate co-
transporter) and used as evidence to support a phosphate tox-
icity hypothesis but occurs at lower concentrations than those
that affect this transporter [40]. Furthermore, if calcium is al-
most completely removed from the milieu [41] cellular dys-
function induced by phosphate is almost completely
abrogated. In contrast, when almost serum-free media is used
for cell culture, phosphate toxicity appears much worse, dem-
onstrating a protective effect of serum components and suggest-
ing that endogenous inhibitors of ‘phosphate toxicity’ are
present naturally in the serum [38]. Sage et al. [38] showed
that the addition of Fet-A can prevent such phosphate toxicity,
with cellular dysfunction only occurring once nanocrystals are
detected within themedia. This suggests that calcium and phos-
phate ions may not in fact be the direct mediators of cellular
toxicity by themselves at all, but more likely it is their product
(calcium phosphate nanocrystals) that is the culprit. Thus, en-
dogenous circulating inhibitors, which protect against this pro-
cess (by forming CPP) may be far more influential on outcomes

F IGURE 2 : Superior discriminative performance of serum T50 and
CPP compared with other conventional mineral markers for all-cause
mortality in patients with Stage 3 and 4 CKD [31]. Area under the
curve (AUC): T50 0.74 (0.65–0.82); CPP 0.69 (95% CI 0.60–0.77); in-
tact PTH (iPTH) 0.60 (0.50–0.70); phosphate 0.53 (0.44–0.63); cal-
cium 0.50 (0.41–0.60). Dashed black line no discriminative ability.
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than the concentrations of these inorganic minerals alone. Thus
the more damaging CPP-II, which accumulate in disease,
caused by enhanced formation or reduced removal, may be cen-
tral to organisms attempts to prevent more widespread calcium
phosphate deposition. This might explain some of the para-
doxes and interpretation of much of the current data and
show why relatively crude attempts to bind phosphate in
renal disease have not elucidated a mechanism or been over-
whelmingly successful in preventing death in controlled studies.

Winkelmayer et al. [42] studied mortality in 3603 incident
patients starting dialysis. They were either prescribed calcium-
based phosphate binders (CBPBs) (77.5%) or no binder [42].
Either prescribed CBPBS and the rest not taking binders.
While the phosphate binder group had a lower overall mortal-
ity, when propensity score matched, no differences in mortality
were evident and no differences in phosphate levels were ob-
served between groups. In a prospective study of PBs in incident
haemodialysis (HD) patients, Isakova et al. [43] examined a
large (>10 000) cohort of incident HD patients treated or not
treated with PBs within the first 90 days of starting dialysis.
After adjusting for many known co-variates, mortality differ-
ences favoured those on PB therapy. However, these results
were independent of baseline and follow-up serum phosphate
concentrations. Cannata-Andía et al. [44] published similar re-
sults suggesting that phosphate binder use was associated with
better survival on HD, but those patients on PB actually had
higher serum phosphate levels [44] in the unadjusted data.
When subgroup analysis was performed, the risk for subgroups
appeared to be lower in all groups taking PB regardless of plas-
ma phosphate level, even when plasma phosphate was low
(<0.97 mmol/L). Interpretation of data like these does not
make a compelling argument for targeting ever lower plasma
phosphate levels, but perhaps suggests that if PBs do indeed re-
duce mortality, the mechanism of action may not be by phos-
phate lowering alone. Furthermore, this might well explain why
calcium-based binders may be associated with higher risks than
non-phosphate binders [45].

Thus, as we understand more about the drivers of soft-tissue
mineralization, it is clear that crude attempts to reduce extracel-
lular phosphate may actually play only a very small part in this
process. Targeting CPP disruption, enhancing endogenous
pyrophosphate formation or upregulating regulatory proteins
to interferewith this processmay be better targets for treatment.
Calcium apatite nanocrystals within CPP2 may be far more im-
portant, and targeting their disruption, enhancing endogenous
pyrophosphate formation or upregulating regulatory proteins
may be better targets for therapeutic intervention.

TARGETING CPP

If we accept this model of free Fet-A playing a central role in
health to protect against mineral nucleation and nano-
crystallisation in the soluble phases, we can start to look at
novel interventions using these pathways. At times when nor-
mal bone metabolism is perturbed, ‘mineral stress’ may occur
due to an imbalance between production and removal of CPP
locally. Such an imbalance might allow us to start to detect such

particles in the vascular compartment. Fet-A also accumulates
in membrane vesicles shed from vascular smooth muscle cells,
which may be important in preventing further mineral nucle-
ation. In patients with end-stage renal disease, the reduction
of PTH by parathyroidectomy or calcimimetic also results in
a reduction in serum CPP [28]. Free serum Fet-A levels are
very low in calcific uraemic arteriopathy (CUA) with very
high levels of secondary CPP [46], but with improvement in
symptoms associated with removal of the circulating particles
by plasma exchange [47], suggesting perhaps a role for CPP
as biomarkers and potential mediators of CUA.

CONCLUSION

Fet-A is a key regulator of mineral trafficking, preventing nano-
crystalline calcium apatite formation in vivo via the formation
of CPP. Measurement of Fet-A protein and its interaction with
mineral may provide some better biomarkers and targets for fu-
ture therapies aimed at reducing soft tissue mineralization.
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