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Abstract

We introduce FeUdal Networks (FuNs): a novel

architecture for hierarchical reinforcement learn-

ing. Our approach is inspired by the feudal rein-

forcement learning proposal of Dayan and Hin-

ton, and gains power and efficacy by decou-

pling end-to-end learning across multiple levels

– allowing it to utilise different resolutions of

time. Our framework employs a Manager mod-

ule and a Worker module. The Manager operates

at a lower temporal resolution and sets abstract

goals which are conveyed to and enacted by the

Worker. The Worker generates primitive actions

at every tick of the environment. The decoupled

structure of FuN conveys several benefits – in ad-

dition to facilitating very long timescale credit

assignment it also encourages the emergence of

sub-policies associated with different goals set

by the Manager. These properties allow FuN to

dramatically outperform a strong baseline agent

on tasks that involve long-term credit assignment

or memorisation.

1. Introduction

Deep reinforcement learning has recently enjoyed suc-

cesses in many domains (Mnih et al., 2015; Schulman

et al., 2015; Levine et al., 2015; Mnih et al., 2016; Lillicrap

et al., 2015). Nevertheless, long-term credit assignment re-

mains a major challenge for these methods, especially in

environments with sparse reward signals, such as the in-

famous Montezuma’s Revenge ATARI game. It is symp-

tomatic that the standard approach on the ATARI bench-

mark suite (Bellemare et al., 2012) is to use an action-

repeat heuristic, where each action translates into several

(usually 4) consecutive actions in the environment. Yet an-

other dimension of complexity is seen in non-Markovian

environments that require memory – these are particularly
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challenging, since the agent has to learn which parts of ex-

perience to store for later, using only a sparse reward signal.

The framework we propose takes inspiration from feudal

reinforcement learning (FRL) introduced by Dayan & Hin-

ton (1993), where levels of hierarchy within an agent com-

municate via explicit goals. Some key insights from FRL

are that goals can be generated in a top-down fashion, and

that goal setting can be decoupled from goal achievement;

a level in the hierarchy communicates to the level below

it what must be achieved, but does not specify how to do

so. Making higher levels reason at a lower temporal reso-

lution naturally structures the agents behaviour into tempo-

rally extended sub-policies.

The architecture explored in this work is a fully-

differentiable neural network with two levels of hierarchy

(though there are obvious generalisations to deeper hierar-

chies). The top level, the Manager, sets goals at a lower

temporal resolution in a latent state-space that is itself

learnt by the Manager. The lower level, the Worker, oper-

ates at a higher temporal resolution and produces primitive

actions, conditioned on the goals it receives from the Man-

ager. The Worker is motivated to follow the goals by an

intrinsic reward. However, significantly, no gradients are

propagated between Worker and Manager; the Manager re-

ceives its learning signal from the environment alone. In

other words, the Manager learns to select latent goals that

maximise extrinsic reward.

The key contributions of our proposal are: (1) A consistent,

end-to-end differentiable model that embodies and general-

izes the principles of FRL. (2) A novel, approximate transi-

tion policy gradient update for training the Manager, which

exploits the semantic meaning of the goals it produces. (3)

The use of goals that are directional rather than absolute in

nature. (4) A novel RNN design for the Manager – a di-

lated LSTM – which extends the longevity of the recurrent

state memories and allows gradients to flow through large

hops in time, enabling effective back-propagation through

hundreds of steps.

Our ablative analysis (Section 5.4) confirms that transi-

tional policy gradient and directional goals are crucial

for best performance. Our experiments on a selection of

ATARI games (including the infamous Montezuma’s re-
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venge) and on several memory tasks in the 3D DeepMind

Lab environment (Beattie et al., 2016) show that FuN sig-

nificantly improves long-term credit assignment and mem-

orisation.

2. Related Work

Building hierarchical agents is a long standing topic in re-

inforcement learning (Sutton et al., 1999; Precup, 2000;

Dayan & Hinton, 1993; Dietterich, 2000; Boutilier et al.,

1997; Dayan, 1993; Kaelbling, 2014; Parr & Russell, 1998;

Precup et al., 1997; 1998; Schmidhuber, 1991; Sutton,

1995; Wiering & Schmidhuber, 1997; Vezhnevets et al.,

2016; Bacon et al., 2017). The options framework (Sut-

ton et al., 1999; Precup, 2000) is a popular formulation for

considering the problem with a two level hierarchy. The

bottom level – an option – is a sub-policy with a termi-

nation condition, which takes in environment observations

and outputs actions until the termination condition is met.

An agent picks an option using its policy-over-options (the

top level) and subsequently follows it until termination, at

which point the policy-over-options is queried again and

the process continues. Options are typically learned using

sub-goals and ‘pseudo-rewards’ that are provided explic-

itly (Sutton et al., 1999; Dietterich, 2000; Dayan & Hinton,

1993). For a simple, tabular case (Wiering & Schmidhu-

ber, 1997; Schaul et al., 2015), each state can be used as a

sub-goal. Given the options, a policy-over-options can be

learned using standard techniques by treating options as ac-

tions. Recently (Tessler et al., 2016; Kulkarni et al., 2016)

have demonstrated that combining deep learning with pre-

defined sub-goals delivers promising results in challenging

environments like Minecraft and Atari, however sub-goal

discovery was not addressed.

A recent work of (Bacon et al., 2017) shows the possibil-

ity of learning options jointly with a policy-over-options

in an end-to-end fashion by extending the policy gradi-

ent theorem to options. When options are learnt end-to-

end, they tend to degenerate to one of two trivial solutions:

(i) only one active option that solves the whole task; (ii)

a policy-over-options that changes options at every step,

micro-managing the behaviour. Consequently, regularis-

ers (Bacon et al., 2017; Vezhnevets et al., 2016) are usually

introduced to steer the solution towards multiple options of

extended length. This is believed to provide an inductive

bias towards re-usable temporal abstractions and to help

generalisation.

A key difference between our approach and the options

framework is that in our proposal the top level produces

a meaningful and explicit goal for the bottom level to

achieve. Sub-goals emerge as directions in the latent state-

space and are naturally diverse. We also achieve signif-

icantly better scores on ATARI than Option-Critic (sec-

tion 5).
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Figure 1. The schematic illustration of FuN (section 3)

There has also been a significant progress in non-

hierarchical deep RL methods by using auxiliary losses and

rewards. (Bellemare et al., 2016a) have significantly ad-

vanced the state-of-the-art on Montezuma’s Revenge by us-

ing pseudo-count based auxiliary rewards for exploration,

which stimulate agents to explore new parts of the state

space. The recently proposed UNREAL agent (Jaderberg

et al., 2016) also demonstrates a strong improvement by us-

ing unsupervised auxiliary tasks to help refine its internal

representations. We note that these benefits are orthogonal

to those provided by FuN, and that both approaches could

be combined with FuN for even greater effect.

3. The model

What is FuN? FuN is a modular neural-network consist-

ing of two modules – the Worker and the Manager. The

Manager internally computes a latent state representation

st and outputs a goal vector gt. The Worker produces ac-

tions conditioned on external observation, its own state, and

the Managers goal. The Manager and the Worker share

a perceptual module which takes an observation from the

environment xt and computes a shared intermediate repre-

sentation zt. The Manager’s goals gt are trained using an

approximate transition policy gradient. This is a particu-

larly efficient form of policy gradient training that exploits

the knowledge that the Worker’s behaviour will ultimately

align with the goal directions it has been set. The Worker

is then trained via intrinsic reward to produce actions that

cause these goal directions to be achieved. Figure 1a il-

lustrates the overall design and the following equations de-

scribe the forward dynamics of our network:

zt = fpercept(xt); st = fMspace(zt) (1)

hM
t , ĝt = fMrnn(st, h

M
t−1); gt = ĝt/||ĝt||; (2)

wt = φ(

t∑

i=t−c

gi) (3)

hW , Ut = fWrnn(zt, h
W
t−1);πt = SoftMax(Utwt) (4)

where both the Manager and the Worker are recurrent. Here

hM and hW correspond to the internal states of the Man-
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ager and the Worker respectively. A linear transform φ
maps a goal gt into an embedding vector wt ∈ R

k, which is

then combined via product with matrix Ut (Workers output)

to produce policy π – vector of probabilities over primitive

actions. The next section provides the details on goal em-

bedding and the following sections 3.2,3.3 describes how

FuN is trained.

3.1. Goal embedding

The goal g modulates the policy via a multiplicative

interaction in a low dimensional goal-embedding space

R
k, k << d. The Worker first produces an embedding

vector for every action, represented by rows of matrix

U ∈ R
|a|×k (eq. 4). To incorporate goals from the Man-

ager, the last c goals are first pooled by summation and then

embedded into a vector w ∈ R
k using a linear projection

φ (eq. 3). The projection φ is linear, with no biases, and

is learnt with gradients coming from the Worker’s actions.

The embedding matrix U is then combined with the goal

embedding w via a matrix-vector product (eq. 4). Since

φ has no biases it can never produce a constant non-zero

vector – which is the only way the setup could ignore the

Manager’s input. This makes sure that the goal output by

the Manager always influences the final policy. Notice how,

due to pooling of goals over several time-steps, the condi-

tioning from the Manager varies smoothly.

3.2. Learning

We consider a standard reinforcement learning setup. At

each step t, the agent receives an observation xt from the

environment and selects an action at from a finite set of

possible actions. The environment responds with a new ob-

servation xt+1 and a scalar reward rt. The process contin-

ues until the terminal state is reached, after which it restarts.

The goal of the agent is to maximise the discounted return

Rt =
∑∞

k=0 γ
krt+k+1 with γ ∈ [0, 1]. The agent’s be-

haviour is defined by its action-selection policy π. FuN

produces a distribution over possible actions (a stochastic

policy) as defined in eq. 4.

The conventional wisdom would be to train the whole ar-

chitecture monolithically through gradient descent on ei-

ther the policy directly or via TD-learning. Notice, that

since FuN is fully differentiable we could train it end-to-

end using a policy gradient algorithm operating on the ac-

tions taken by the Worker. The outputs g of the Manager

would be trained by gradients coming from the Worker.

This, however would deprive Manager’s goals g of any se-

mantic meaning, making them just internal latent variables

of the model. We propose instead to independently train

Manager to predict advantageous directions (transitions) in

state space and to intrinsically reward the Worker to follow

these directions. If the Worker can fulfil the goal of mov-

ing in these directions (as it is rewarded for doing), then we

ought to end up taking advantageous trajectories through

state-space. We formalise this in the following update rule

for the Manager:

∇gt = AM
t ∇θdcos(st+c − st, gt(θ)), (5)

where AM
t = Rt − V M

t (xt, θ) is the Manager’s ad-

vantage function, computed using a value function esti-

mate V M
t (xt, θ) from the internal critic; dcos(α, β) =

αTβ/(|α||β|) is the cosine similarity between two vectors.

Note: the dependence of s on θ is ignored when computing

∇θdcos – this avoids trivial solutions. Notice that now gt
acquires a semantic meaning as an advantageous direction

in the latent state space at a horizon c, which defines the

temporal resolution of the Manager.

The intrinsic reward that encourages the Worker to follow

the goals is defined as:

rIt = 1/c

c∑

i=1

dcos(st − st−i, gt−i) (6)

We use directions because it is more feasible for the Worker

to be able to reliably cause directional shifts in the latent

state than it is to assume that the Worker can take us to

(potentially) arbitrary new absolute locations. It also gives

a degree of invariance to the goals and allows for structural

generalisation – the same directional sub-goal g can invoke

a sub-policy that is valid and useful in a large part of the

latent state space; e.g. evade an enemy, swim up for air, etc.

We compare absolute against directional goals empirically

in section 5.4.

The original feudal reinforcement learning formulation

of Dayan & Hinton (1993) advocated completely conceal-

ing the reward from the environment from lower levels of

hierarchy. In practice we take a softer approach by adding

an intrinsic reward for following the goals, but retaining the

environment reward as well. The Worker is then trained to

maximise a weighted sum Rt + αRI
t , where α is a hyper-

parameter that regulates the influence of the intrinsic re-

ward. The Workers policy π can be trained to maximise

intrinsic reward by using any off-the shelf deep reinforce-

ment learning algorithm. Here we use an advantage actor

critic (Mnih et al., 2016):

∇πt = AD
t ∇θ log π(at|xt; θ) (7)

The advantage function estimator AD
t = (Rt + αRI

t −
V D
t (xt; θ)) is calculated using an internal critic, which es-

timates the value functions for both rewards.

Note that the Worker and Manager can potentially have dif-

ferent discount factors γ for computing the return. This al-

lows, for instance, the Worker to be more greedy and focus

on immediate rewards while the Manager can consider a

long-term perspective.
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3.3. Transition Policy Gradients

We now motivate our proposed update rule for the Manager

as a novel form of policy gradient with respect to a model

of the Worker’s behaviour. Consider a high-level policy

ot = µ(st, θ) that selects among sub-policies (possibly

from a continuous set), where we assume for now that these

sub-policies are fixed duration behaviours (lasting for c
steps). Corresponding to each sub-policy is a transition dis-

tribution, p(st+c|st, ot), that describes the distribution of

states that we end up at the end of the sub-policy, given the

start state and the sub-policy enacted. The high-level policy

can be composed with the transition distribution to give a

‘transition policy’ πTP (st+c|st) = p(st+c|st, µ(st, θ)) de-

scribing the distribution over end states given start states.

It is valid to refer to this as a policy because the original

MDP is isomorphic to a new MDP with policy πTP and

transition function st+c = πTP (st) (i.e. the state always

transitions to the end state picked by the transition policy).

As a result, we can apply the policy gradient theorem to the

transition policy πTP , so as to find the performance gradi-

ent with respect to the policy parameters,

∇θπ
TP
t = E [(Rt − V (st))∇θ log p(st+c|st, µ(st, θ))]

(8)

In general, the Worker may follow a complex trajectory. A

naive application of policy gradients requires the agent to

learn from samples of these trajectories. But if we know

where these trajectories are likely to end up, by modelling

the transitions, then we can skip directly over the Worker’s

behaviour and instead follow the policy gradient of the pre-

dicted transition. FuN assumes a particular form for the

transition model: that the direction in state-space, st+c−st,
follows a von Mises-Fisher distribution. Specifically, if the

mean direction of the von Mises-Fisher distribution is given

by g(ot) (which for compactness we write as gt) we would

have p(st+c|st, ot) ∝ edcos(st+c−st,gt). If this functional

form were indeed correct, then we see that our proposed

update heuristic for the Manager, eqn.5, is in fact the proper

form for the transition policy gradient arrived at in eqn.8.

Note that the Worker’s intrinsic reward (eqn. 6) is based

on the log-likelihood of state trajectory. Through that the

FuN architecture actively encourages the functional form

of the transition model to hold true. Because the Worker is

learning to achieve the Manager’s direction, its transitions

should, over time, closely follow a distribution around this

direction, and hence our approximation for transition pol-

icy gradients should hold reasonably well.

4. Architecture details

This section provides the particular details of the model as

described in section 3. The perceptual module fpercept is

a convolutional network (CNN) followed by a fully con-

nected layer. The CNN has a first layer with 16 8x8 fil-

ters of stride 4, followed by a layer with with 32 4x4 fil-

ters of stride 2. The fully connected layer has 256 hidden

units. Each convolutional and fully-connected layer is fol-

lowed by a rectifier non-linearity1. The state space which

the Manager implicitly models in formulating its goals is

computed via fMspace, which is another fully connected

layer followed by a rectifier non-linearity. The dimension-

ality of the embedding vectors, w, is set as k = 16. To en-

courage exploration in transition policy, at every step with

a small probability ǫ we emit a random goal sampled from

a uni-variate Gaussian.

The Worker’s recurrent network fWrnn is a standard

LSTM (Hochreiter & Schmidhuber, 1997). For the Man-

ager’s recurrent network, fMrnn, we propose a novel de-

sign – the dilated LSTM, which is introduced in the next

section. Both fMrnn and fWrnn have 256 hidden units.

4.1. Dilated LSTM

We propose a novel RNN architecture for the Manager,

which operates at lower temporal resolution than the data

stream. The main contribution here is the inductive bias to-

wards slowly varying outputs, which have very long-term

temporal dependencies. We define a dilated LSTM anal-

ogously to dilated convolutional networks (Yu & Koltun,

2016). For a dilation radius r let the full state of the net-

work be h = {ĥi}ri=1, i.e. it is composed of r sepa-

rate groups of sub-states or ‘cores’. At time t the net-

work is governed by the following equations: ĥt%r
t , gt =

LSTM(st, ĥ
t%r
t−1; θ

LSTM), where % denotes the modulo op-

eration and allows us to indicate which group of cores is

currently being updated. We make the parameters of the

LSTM network θLSTM explicit to stress that the same set

of parameters governs the update for each of the r groups

within the dLSTM.

At each time step only the corresponding part of the state is

updated and the output is pooled across the previous c out-

puts. This allows the r groups of cores inside the dLSTM

to preserve the memories for long periods, yet the dLSTM

as a whole is still able to process and learn from every in-

put experience, and is also able to update its output at ev-

ery step. This idea is similar to clockwork RNNs (Koutnı́k

et al., 2014), however there the top level “ticks” at a fixed,

slow pace, whereas the dLSTM observes all the available

training data instead. In the experiments we set r = 10,

and this was also used as the predictions horizon, c.

5. Experiments

The goal of our experiments is to demonstrate that FuN

learns non-trivial, helpful, and interpretable sub-policies

1This is substantially the same CNN as in (Mnih et al., 2016;
2015), the only difference is that in the pre-processing stage we
retain all colour channels.
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Figure 2. a) Learning curve on Montezuma’s Revenge b) This is a visualisation of sub-goals learnt by FuN in the first room. For each time

step we compute the latent state st and the corresponding goal gt. We then find a future state for which cos(st − st, gt) is maximized.

The plot corresponds to the number of past states for which a frame maximizes the goal - i.e. the taller the bar, the more frequently that

state was a maximizer of the goal for some previous state. Notice that FuN has learnt a semantically meaningful sub-goals – the tall bars

in the plot (i.e. consistent goals) correspond to interpretably useful waypoints in Montezuma.

and sub-goals, and also to validate components of the archi-

tecture. We start by describing technical details of the ex-

perimental setup and then present results on Montezuma’s

revenge – an infamously hard ATARI game – in section 5.1.

Section 5.2 presents results on more ATARI games and

extensively compares FuN to LSTM baseline with differ-

ent discount factors and BPTT lengths. In section 5.3 we

present results on a set of visual memorisation tasks in

3D environment. Section 5.4 presents an ablation study of

FuN, validating our design choices.

Baseline. Our main baseline is a recurrent LSTM net-

work on top of a representation learned by a CNN. The

LSTM (Hochreiter & Schmidhuber, 1997) architecture is

a widely used recurrent network and it was demonstrated

to perform very well on a suite of reinforcement learn-

ing problems (Mnih et al., 2016). LSTM uses 316 hid-

den units2 and its inputs are the feature representation of

an observation and the previous action of the agent. Action

probabilities and the value function estimate are regressed

from its hidden state. All the methods the same CNN ar-

chitecture, input pre-processing, and an action repeat of 4.

Optimisation. We use the A3C method (Mnih et al.,

2016) for all reinforcement learning experiments. It

was shown to achieve state-of-the-art results on sev-

eral challenging benchmarks (Mnih et al., 2016). We

cut the trajectory and run backpropagation through time

(BPTT) (Mozer, 1989) after K forward passes of a net-

work or if a terminal signal is received. For FuN K =
400, for LSTM, unless otherwise stated, K = 40. We

discuss different choice of K for LSTM in section 5.2.

The optimization process runs 32 asynchronous threads us-

ing shared RMSProp. There are 3 hyper-parameters in

2This choice means that FuN and the LSTM baseline to have
roughly the same number of total parameters.

FuN and 2 in the LSTM baselines. For each method,

we ran 100 experiments, each using randomly sampled

hyper-parameters. Learning rate and entropy penalty

were sampled from a LogUniform(10−4, 10−3) interval

for LSTM. For FuN the learning rate was sampled from

LogUniform(10−4.5, 10−3.5), to account for higher gradi-

ents due to longer BPTT unrolls. The learning rate was

linearly annealed from a sampled value to half the initial

rate for all agents. To explore intrinsic motivation in FuN,

we sample its weight α ∼ Uniform(0, 1). We define a

training epoch as one million observations. When report-

ing learning curves, we plot the average episode score of

the top 5 agents (according to the final score) against the

training epochs. For all ATARI experiments we clip the

reward to [−1,+1] interval

5.1. Montezuma’s revenge

Montezuma’s revenge is one of the hardest games avail-

able through the ALE (Bellemare et al., 2012). The game

is infamous for challenging agents with lethal traps and

sparse rewards. We had to broaden and intensify our

hyper-parameter search for the LSTM baseline to see any

progress at all for that model. We have experimented with

many different hyper-parameter configurations for LSTM

baseline, for instance expanding learning rate search to

LogUniform(10−3, 10−2), and we report on the configu-

ration that worked best. We use a small discount 0.99 for

LSTM; for FuN we use 0.99 in Worker and 0.999 in Man-

ager. Figure 2b analyses the sub-goals learnt by FuN in

the first room. They turn out to be meaningful milestones,

which bridge the agents progress to its first extrinsic re-

ward – picking up the key. Interestingly, two of the learnt

sub-goals correspond to roughly the same locations as the

ones hand-crafted in (Kulkarni et al., 2016) (ladder and

key), but here they are learnt by the agent itself. Figure 2a
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Figure 3. ATARI training curves. Epochs corresponds to a million training steps of an agent. The value is the average per episode score

of top 5 agents, according to the final score. We used two different discount factors 0.95 and 0.99.

Goal

Figure 4. FuN in water maze, top down view. The left plot visu-

alises FuN trajectories during one episode. The first trajectory

(green) performs a search for the target in different locations,

while subsequent ones (other colours) perform searches along a

circle of a fixed radius matched to that of the target, always finding

the target. The right plot visualises different learnt sub-policies,

produced by sampling a random g and fixing it for 200 steps. Each

colour corresponds to a different g, the black circle represents the

starting location.

plots the learning curves. Notice how FuN starts learning

much earlier and achieves much higher scores. It takes

> 300 epochs for LSTM to reach the score 400, which

corresponds to solving the first room (take the key, open

a door); it stagnates at that score until about 900 epochs,

when it starts exploring further. FuN solves the first room

in less than 200 epochs and immediately moves on to ex-

plore further, eventually visiting several other rooms and

scoring up to 2600 points.

5.2. ATARI

Experiments in this section validate that the capabilities of

FuN go beyond what standard tools for long-term credit

assignment – discount factors and BPTT unroll length –

can provide for a baseline LSTM agent. We use two dis-

counts 0.99 and 0.95 for both FuN and LSTM agents.

(For the experiments on FuN only the discount for the

Manager changes, while the Worker’s discount is fixed at
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Figure 5. Training curves for memory tasks on Labyrinth.

0.95.) For the LSTM we explore BPTT of 40 and 100,

while for FuN we use a BPTT unroll of 400. For LSTM

with BPTT 100 we search for learning rate in the inter-

val LogUniform(10−4.5, 10−3.5), as for FuN. We use a di-

verse set of ATARI games, some of which involve long-

term credit assignment and some which are more reactive.

Figure 3 plots the learning curves. A few categories

emerge. On Ms. Pacman, Amidar, and Gravitar FuN with

a low Manager discount of 0.99 strongly outperforms all

other methods. All of these games are known to require

long-term reasoning to play well. Enduro stands out as all

the LSTM agents completely fail at it. In this game the

agent controls a racing car and scores points for overtak-

ing other racers; this requires accelerating and steering for

significant amount of time before the first reward is expe-

rienced. Frostbite is a hard game (Vezhnevets et al., 2016;

Lake et al., 2016) that requires both long-term credit as-

signment and good exploration. The best-performing frost-
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bite agent is FuN with 0.95 Manager discount, which out-

performs the rest by a factor of 7. On Hero and Space

Invaders all agents perform equally well. On Seaquest

and Breakout, the baseline LSTM with a more aggressive

discount of 0.95 is the best. This suggests that in these

games long-term credit assignment is not important and

the agent is better off optimising more immediate rewards

in a greedy fashion. Alien is the only game where us-

ing different discounts doesn’t meaningfully influence the

agents performance; here we see the baseline LSTM out-

performs our FuN model, although both still achieve a sat-

isfactory scores. We provide qualitative analysis of sub-

policies learnt on Seaquest in supplementary material.

Note how using an unroll for BPTT=100 in the baseline

LSTM significantly hurts its performance (hence we do not

explore longer unrolls), while FuN performs very well with

BPTT of 400 thanks to its ability to leverage the dLSTM.

Being able to train a recurrent network over very long se-

quences could be an enabling tool for many memory related

task, as we demonstrate in section 5.3.

Option-critic architecture (Bacon et al., 2017) is, to

the best of our knowledge, the only other end-to-end train-

able system with sub-policies. The experimental results for

Option-Critic on 4 ATARI (Bacon et al., 2017) games show

scores similar those from a flat DQN (Mnih et al., 2015)

baseline agent. Notice that our baseline (Mnih et al., 2016)

is much stronger than DQN. We also ran FuN on the same

games as Option-Critic (Asterix, Ms. Pacman, Seaquest

and Zaxxon) and after 200 epochs it achieves a similar

score on Seaquest, doubles it on Ms. Pacman, more than

triples it on Zaxxon and gets more than 20x improvement

on Asterix (see supplementary material for plots).
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Figure 6. Ablative analysis

5.3. Memory in Labyrinth

DeepMind Lab (Beattie et al., 2016) is a first-person 3D

game platform extended from OpenArena. It’s a visually

complex 3D environment with agent actions corresponding

to movement and orientation. We use 4 different levels that

test long-term credit assignment and visual memory:

Water maze is a reproduction of the Morris water maze

experiment (Morris, 1981) from the behavioural science lit-

erature. An agent is dropped into a circular pool of wa-

ter with a concealed platform at unknown random location.

The agent can move around and upon stepping on the plat-

form it receives a reward and the trial restarts. The platform

remains in the same location for the rest of the episode,

while agent starts each trial at a random location. The walls

of the pool are decorated with visual cues to assist localisa-

tion.

T-maze is another classic animal cognition test. The

agent spawns in a small T-shaped maze. Two objects with

randomly chosen shape and colour are spawned at the left

and right ”baiting” locations. One of them is assigned a re-

ward of +1 and the other a reward of -1. When the agent

collects one of the objects, it receives the reward and is re-

spawned at the beginning of the T-maze. The objects are

also re-instantiated in the same locations and with the same

rewards on the re-spawn event. The agent should remem-

ber which object gives the positive reward across re-spawns

and collect it as many times as possible within the fixed

time given for the episode. T-maze+ is a modification of

T-maze, where at each trial the length of corridors can vary,

adding additional dimension of complexity.

Non-match is a visual memorisation task. Each trial be-

gins in small room with an out of reach object being dis-

played in one of two display pods. There is a pad in the

middle, which upon touching, the agent is rewarded with 1

point, and is teleported to a second room which has two ob-

jects in it, one of which matches the object in the previous

room. Collecting the matching object gives a reward of -10

points, collecting the non matching object gives a reward of

10 points. Once either is collected, the agent is teleported

back to the first room, with the same object being shown.

For all agents we include reward as a part of the observa-

tion. Figure 5 plots the learning curves. FuN consitently

outperforms the LSTM baseline – it learns faster and also

reaches a higher final reward. We analyse the FuN agent’s

behaviour in more detail in Figure 4b. It demonstrates that

FuN learns meaningful sub-policies, which are then effi-

ciently integrated with memory to produce rewarding be-

haviour. Interestingly, the LSTM agent doesn’t appear to

use its memory for water maze task at all, always circling

the maze at the roughly the same radius.
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Figure 7. Action repeat transfer

5.4. Ablative analysis

This section empirically validates the main innovations of

this paper: transition policy gradient for training the Man-

ager; relative rather than absolute goals; intrinsic motiva-

tion for the Worker. First we consider a ‘non-Feudal’ FuN –

it has exactly the same network architecture as FuN, but the

Managers output g is trained with gradients coming directly

from the Worker and no intrinsic reward is used, much like

in Option-Critic architecture (Bacon et al., 2017). Second,

g is learnt using a standard policy gradient approach with

the Manager emitting the mean of a Gaussian distribution

from which goals are sampled (as if the Manager were solv-

ing a continuous control problem (Schulman et al., 2016;

Mnih et al., 2016; Lillicrap et al., 2015)). Third, we ex-

plore a variant of FuN in which g specifies absolute, rather

than relative/directional, goals (and the Worker’s intrinsic

reward is adjusted accordingly) but otherwise everything is

the same. The experiments (Figure 6) reveal that, although

alternatives do work to some degree their performance is

significantly inferior. We also evaluate a purely feudal ver-

sion of FuN – in which the Worker is trained from the in-

trinsic reward alone. This ablation performs better than

other, but still inferior to the full FuN approach. It shows

that allowing the Worker to experience the external reward

is beneficial.

5.5. ATARI action repeat transfer

One of the advantages of FuN is the clear separation of du-

ties between Manager and Worker. The Manager learns a

transition policy, while the Worker learns to operate primi-

tive actions to enact these transitions. This transition policy

is invariant to the underlying embodiment of the agent – the

way its primitive actions translate into state space transi-

tions. Potentially, the transition policy can be transferred

between agents with different embodiment – e.g. robot

models with different bodies or different operational fre-

quency. We provide evidence towards that possibility by

transferring policies across agents with different action re-

peat on ATARI. Action repeat is a heuristic used in all suc-

cessful agents (Mnih et al., 2015; 2016; Bellemare et al.,

2016b; Vezhnevets et al., 2016). It enables better explo-

ration, eases credit assignment, and saves computation by

repeating an action chosen by the agent several (= 4) times.

To perform transfer, we initialise the FuN system with pa-

rameters extracted from an agent trained with action re-

peat of 4 and then make the following adjustments: (i)

we accordingly adjust the discounts for all rewards; (ii)

we increase the dilation of the dLSTM by a factor of 4;

(iii) we increase the Manager’s goal horizon c by a fac-

tor of 4. (These modifications adapt all the “hard-wired”

but explicitly temporally sensitive aspects of the agent.)

We then train this agent without action repeat. As a base-

line we use an LSTM agent transferred in a similar way

(with adjusted discounts) as well as FuN and LSTM agents

trained without action repeat from scratch. Figure 7 shows

the corresponding learning curves. The transferred FuN

agent (green curve) significantly outperforms every other

method. Furthermore it shows positive transfer on each en-

vironment, whereas LSTM only shows positive transfer on

Ms. Pacman.

6. Discussion and future work

How to create agents that can learn to decompose their be-

haviour into meaningful primitives and then reuse them to

more efficiently acquire new behaviours is a long standing

research question. The solution to this question may be an

important stepping stone towards agents with general in-

telligence and competence. This paper introduced FeUdal

Networks, a novel architecture that formulates sub-goals as

directions in latent state space, which, if followed, translate

into a meaningful behavioural primitives. FuN clearly sep-

arates the module that discovers and sets sub-goals from

the module that generates the behaviour through primitive

actions. This creates a natural hierarchy that is stable and

allows both modules to learn in complementary ways. Our

experiments clearly demonstrate that this makes long-term

credit assignment and memorisation more tractable. This

also opens many avenues for further research, for instance:

deeper hierarchies can be constructed by setting goals at

multiple time scales, scaling agents to truly large environ-

ments with sparse rewards and partial observability. The

modular structure of FuN is also lends itself to transfer and

multitask learning – learnt behavioural primitives can be

re-used to acquire new complex skills, or alternatively the

transitional policies of the Manager can be transferred to

agents with different embodiment.



FeUdal Networks for Hierarchical Reinforcement Learning

Acknowledgements

We thank Daan Wierstra, Olivier Pietquin, Tejas Kulka-

rni, Alex Graves, Oriol Vinyals, Joseph Modayil and Vlad

Mnih for many helpful discussions, suggestions and com-

ments on the paper.

References

Bacon, Pierre-Luc, Precup, Doina, and Harb, Jean. The

option-critic architecture. In AAAI, 2017.

Beattie, Charles, Leibo, Joel Z., Teplyashin, Denis, Ward,

Tom, Wainwright, Marcus, Küttler, Heinrich, Lefrancq,
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