
Turk. J. Math. Comput. Sci.

11(2)(2019) 58–73

c©MatDer

http://dergipark.gov.tr/tjmcs

http://tjmcs.matder.org.tr MATDER

FeW: A Lightweight Block Cipher

Manoj Kumar1,∗ , SK Pal1 , Anupama Panigrahi2

1Scientific Analysis Group, DRDO, Metcalfe House Complex, Delhi-110 054, INDIA.
2Department of Mathematics, University of Delhi, Delhi-110 007, INDIA.

Received: 23-08-2018 • Accepted: 04-04-2019

Abstract. In this paper, we propose a new lightweight block cipher FeW which encrypts plaintext in the blocks

of 64-bit using 80/128 bits key to produce 64-bit ciphertext. We also propose a new structure namely Feistel-

M structure by admixture of Feistel and 4-branch generalised Feistel structures. This new structure significantly

contributes to enhance the security margins of our design against the basic cryptanalytic attacks like differential,

linear and impossible differential attacks. Security analysis signifies that FeW has enough security margins against

these cryptanalytic attacks and it can resist any key recovery attack beyond 17 rounds with the complexity better

than 264.

2010 AMS Classification: 94A60, 11T71, 14G50.

Keywords: Feistel structure, generalised Feistel structure, lightweight cryptography, substitution permutation net-

work.

1. Introduction

Lightweight cryptography [24, 32] has emerged to an immense research area in the field of cryptography. Re-

searchers espied to this area around the beginning of 21st century to cater the demand of cryptographic algorithms

having less implementation area and energy. Due to advancements in technology, industry started using cryptography

for securing daily life products and there were specific demands from product developers to provide security features

in tiny and hand-held devices viz. unlocking devices of cars. This was the time when Rijndael [12] was selected

as AES and there was a scope for lightweight ciphers for specific applications like RFID tags and sensor networks.

Lightweight block ciphers like PRESENT [8], RECTANGLE [46], PICARO [31], HIGHT [19], LBlock [45],

TWINE [41], SIMON and SPECK family [1], TEA [44], DES Light weight variant [27] and other lightweight

designs [10, 17, 18, 23, 36, 37, 39] with different design constructions [25] have been published in the last 15 years.

International Organisation for Standardization and International Electrotechnical Commission has specified PRESENT

and CLEFIA suitable for Lightweight Cryptography (ISO/IEC 29192-2:2012). Popularity of PRESENT inspired cryp-

tographic community to design many more lightweight block ciphers. Majority of designs are proposed for hardware

oriented applications and they do not perform equally well in software environments. There is an emerging demand

of security in critical situations like wireless sensor networks and cloud computing which require software oriented

lightweight block ciphers [28]. We propose a secure and efficient lightweight block cipher suitable for these kinds of

environments.

*Corresponding Author

Email addresses: manojkumar@sag.drdo.in (M. Kumar), skpal@hqr.drdo.in (SK. Pal), anupama.panigrahi@gmail.com (A. Panigrahi)

https://orcid.org/0000-0001-6900-4075
https://orcid.org/0000-0003-3297-1605
https://orcid.org/0000-0003-4637-3702

M. Kumar, SK Pal, A. Panigrahi, Turk. J. Math. Comput. Sci., 11(2)(2019), 58–73 59

In comparison to SPN [35] structure, Feistel structure [38] seems a better choice for designing a new lightweight

cipher as it does not require inversion of the round function and S-box. Feistel based cipher runs with fewer com-

putations, since half of the input block is processed through round function in each round. While, SPN based cipher

processes the full input block through round function in each round. Therefore, our choice is Feistel structure with

SPN type round function to design an efficient lightweight block cipher. Some earlier designs have also used similar

kind of operations in their round function as we have used in FeW. For instance, SMS4 [13] block cipher consists of

cyclic shifts and XOR operations on 32-bit words and generalised Feistel based design CLEFIA [37] uses two different

round functions. We use two different functions inside the round function. In addition, we also use a function to swap

the least significant byte between two 16-bit Feistel branches and two different combinations of cyclic shift and XOR

operations.

The rest part of the paper is organized in the following manner. In section 2, we describe design of FeW in detail.

In section 3, we present the security evaluation against some basic cryptanalytic attacks. Finally, its performance is

compared with other designs in section 4.

Notations:
- Pm,Cm :64-bit input plaintext and ciphertext blocks

- MK-80 :80-bit user supplied key

- MK-128 :128-bit user supplied key

- RKi :16-bit subkey extracted from MK

- Ki :32-bit subkey for round i as RK2∗i ‖ RK2∗i+1 (for i=0 to 31)

- rF :Round function

- WF1 :Weight Function 1 used inside rF

- WF2 :Weight Function 2 used inside rF

- ⊕ :Bitwise exclusive-OR operation

- ≪ n :Left cyclic shift by n bits

- ≫ n :Right cyclic shift by n bits

- [i]2 :Binary representation of integer i

- ‖ :Concatenation of two n-bit strings

- & :Bitwise And between two n-bit strings

- B← A :A is transformed to B

2. Lightweight Block Cipher: FeW

We describe detailed design specifications; encryption algorithm and key schedule of lightweight block cipher FeW

in this section:

2.1. Feistel-M Structure. Feistel Structure was proposed by Horst Feistel. It divides the input block in two equal

parts: First half (FH) and Second half (SH). The round function is applied on FH and its output is XORed with SH to

get new FH for the next round and old FH becomes new SH for next round. Generalized Feistel structure processes

the input block by dividing it into N equal parts. If we fix the value of N equals to 4 then it is referred as 4-branch

generalised Feistel structure.

We devise a novel mixing approach between the two Feistel branches of 4-branch generalised Feistel structure and

name it as Feistel-M structure due to the extra mixing operation used. Mixing operation is carried out inside the

round function rF by swapping the least significant byte between the two 16-bit branches. We use this structure to

design the lightweight block cipher FeW. This admixture enhanced the security margins of our design against the basic

cryptanalytic attacks. We use two different combinations of cyclic shift and XOR operations on 16-bit words inside the

round function. Application of cyclic shift and XOR operations provides better software efficiency.

2.2. Design Specifications. FeW takes 64-bit plaintext as input and generates the same size of ciphertext using 80/128

bits key. It consists of total 32 rounds. Design of FeW is based on Feistel-M structure which is shown in Fig. 1. Its

round function processes 32-bit word as two 16-bit branches with an extra mixing operation between the two branches.

The round function rF comprises of two different functions WF1 and WF2 which are applied on two 16-bit branches

respectively. However, one can visualize it broadly as a balanced Feistel based design also.

FeW: A Lightweight Block Cipher 60

Figure 1. one round FeW

2.3. Encryption Algorithm. First, 64-bit plaintext Pm is divided into two 32-bit halves namely left half P0 and right

half P1. Plaintext Pm is expressed as a concatenation of two 32-bit words P0 and P1 :

(P0 ‖ P1)← Pm

Then, following steps are applied to obtain the 64-bit ciphertext Cm:

a) Apply rF on Pi+1 & Ki and XOR it with Pi to produce Pi+2 (i=0 to 31): Pi+2 ← (Pi ⊕ rF(Pi+1,Ki))

b) Apply swap function on the output of last round: (C0 = P33,C1 = P32)← (P32, P33)

Finally, we obtain the 64-bit ciphertext Cm as a concatenation of two 32-bit words C0 and C1 as follows:

Cm ← (C0 ‖ C1)

2.4. Round Function rF. It takes two inputs: Xi(= Pi+1) & key Ki and returns Yi as output (Fig. 2):

rF : {0, 1}32 × {0, 1}32 → {0, 1}32

We use two different weight functions WF1 and WF2 inside rF, which are described below in detail. Each function

takes 16-bit as input and produces 16-bit as output. In each round, rF is applied on Xi and Ki as follows:

i. (Xi ⊕ Ki)← (Xi,Ki)

ii. (C(8) ‖ D(8)||E(8) ‖ F(8))← (Xi ⊕ Ki)

iii. A(16) ‖ B(16), where A(16) = (C(8) ‖ F(8)) and B(16) = (E(8) ‖ D(8))

Figure 2. Round Function

M. Kumar, SK Pal, A. Panigrahi, Turk. J. Math. Comput. Sci., 11(2)(2019), 58–73 61

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D

Table 1. S-Box

A & B are processed through WF1 and WF2 respectively. Finally, Yi is the concatenation of two 16-bit outputs G &

H from WF1 and WF2, respectively. Yi is XORed with 32-bit word Pi to produce Pi+2 as follows:

Pi+2 ← Pi ⊕ rF(Xi,Ki) ,where Xi = Pi+1

i.e. Pi+2 ← Pi ⊕ Yi ,where Yi = rF(Xi,Ki)

2.4.1. Weight Function WF1. It processes 16-bit input A to produce 16-bit output G as follows:

WF1 : {0, 1}16 → {0, 1}16 i.e. G ← WF1(A),where A = (A0 ‖ A1 ‖ A2 ‖ A3)

WF1 applies S-box (S) 4 times in parallel as non-linear operation and produces U. Thereafter, it applies a combi-

nation of cyclic shifts and XOR operations on U as linear mixing operation L1:

(1) U ← (U0 ‖ U1 ‖ U2 ‖ U3) where U0 ← S (A0); U1 ← S (A1); U2 ← S (A2); U3 ← S (A3)

(2) G ← L1(U) where L1(U) = U ⊕ U ≪ 1 ⊕ U ≪ 5 ⊕ U ≪ 9 ⊕ U ≪ 12

2.4.2. Weight Function WF2. It takes 16-bit input B to produce 16-bit output H as follows:

WF2 : {0, 1}16 → {0, 1}16 i.e. H ← WF2(B),where B = (B0 ‖ B1 ‖ B2 ‖ B3)

WF2 applies S-box (S) 4 times in parallel as non-linear operation and produces V . Thereafter, it applies a different

combination of cyclic shifts and XOR operations on V as linear mixing operation L2:

(1) V ← (V0 ‖ V1 ‖ V2 ‖ V3) where V0 ← S (B0); V1 ← S (B1); V2 ← S (B2); V3 ← S (B3)

(2) H ← L2(V) where L2(V) = V ⊕ V ≪ 4 ⊕ V ≪ 7 ⊕ V ≪ 11 ⊕ V ≪ 15

2.5. S-Box. There is an application of single 4-bit S-box (Table 1) in encryption algorithm, decryption process and

key expansion of FeW-80 and FeW-128. This was also used in the design of block cipher HummingBird2 [15]. It is

categorized as golden S-box in the cryptographic analysis [11] of all 4 × 4 S-boxes [34].

2.6. Key Expansion Algorithm. There is a k-bit user supplied key which is expanded to obtain the round subkeys for

each round. Key expansion algorithm is the only difference between the two versions of lightweight block cipher FeW

i.e. FeW-80 and FeW-128.

2.6.1. Key Schedule for MK-80. We store user supplied 80-bit key MK-80 in a key register MK as:

MK = k0k1k2k3............k78k79.

We obtain round subkey RK0 by extracting leftmost 16 bits from the current contents of MK and update MK in the

following steps (for i =1 to 63):

(1) MK ≪ 13

(2) [k0k1k2k3]← S [k0k1k2k3];

[k64k65k66k67]← S [k64k65k66k67];

[k76k77k78k79]← S [k76k77k78k79]

(3) [k68k69k70k71k72k73k74k75]← [k68k69k70k71k72k73k74k75] ⊕ [i]2

(4) Leftmost 16 bits from current contents of MK are stored as round subkey RKi

2.6.2. Key Schedule for MK-128. First, we store user supplied 128-bit key MK-128 in a key register called MK as:

MK = k0k1k2k3 . . . k127.

We extract the round subkey RK0 as leftmost 16 bits from current contents of MK and update the register MK in the

following steps (for i = 1 to 63):

(1) MK ≪ 13

(2) [k0k1k2k3]← S [k0k1k2k3]

[k4k5k6k7]← S [k4k5k6k7]

[k112k113k114k115]← S [k112k113k114k115]

[k124k125k126k127]← S [k124k125k126k127]

FeW: A Lightweight Block Cipher 62

(3) [k116k117k118k119k120k121k122k123]← [k116k117k118k119k120k121k122k123] ⊕ [i]2

(4) Leftmost 16 bits from current contents of MK are stored as round subkey RKi.

2.7. Decryption Algorithm. FeW is a balance Feistel-M based design, therefore its decryption algorithm does not

require inversion of the round function. Round subkeys are used in the reverse order which is the main difference

between the encryption and decryption algorithms.

First, we divide the 64-bit ciphertext Cm into two halves C0 and C1. We have 64-bit input ciphertext Cm as a

concatenation of two 32-bit words:

(C0 ‖ C1)← Cm

(1) Apply rF on Ci+1 & K31−i and XOR it with Ci to give Ci+2 (i = 0 to 31) :

Ci+2 ← Ci ⊕ rF(Ci+1 ⊕ K31−i)

(2) Finally, swap the output in last round: (P0 = C33, P1 = C32)← (C32,C33)

We obtain the 64-bit plaintext as: Pm ← (P0 ‖ P1).

3. Security Analysis

Block Ciphers [9,24] are among the most analysed cryptographic primitives. A large variety of cryptanalytic attacks

can be applied on block ciphers. We provide security estimates of our design against some basic cryptanalytic attacks

in this section.

3.1. Differential Cryptanalysis. Differential attack [4] is one of the most basic cryptanalytic attack applied on block

ciphers which exploits the occurrences of high probability differences in the input and output of a cipher. Linear

components of a cipher produces the output differences with probability 1, while this is not the case for non-linear

components (e.g. S-box). Therefore, we analyse the non-linear components of a cipher and use the probabilistic

relations between the input and output differences of these components (S-box). We join several high probability one

round differential trails to form high probability (equals to p) differential trails for r rounds. These differentials are

used to recover the round subkeys from outermost rounds. For all possible input differences to the S-box, we find the

distribution of output differences and collect these in the form of a difference distribution table (DDT).

3.1.1. Difference Distribution Table: Output difference from the S-box is denoted by △V and input difference is rep-

resented by △U. We count the number of occurrences of each output difference (0 ≤ △V ≤ 15) corresponding to a

particular input difference △U. This exercise is repeated for all possible input differences (0 ≤ △U ≤ 15) to get the

16 × 16 DDT. We run algorithm 1 in order to get table 2.

For: △U=0 to 15

For: △V=0 to 15

For: X = 0 to 15

If S [△U ⊕ X] ⊕ S [X] = △V

Then DDT [△U][△V] + +

Output: DDT [△U][△V]

Algorithm 1. Difference Distribution Table

The maximum differential probability for a non-zero input difference producing an output difference in a single

S-box application of FeW is 4/16 = 2−2 (Table 2). We need approximately p−1 chosen plaintext pairs to mount the

differential attack on a block cipher, where p is the probability of the differential trail [7]. Assuming that an attacker

finds a differential trail with one active S-box (i.e. S-box with non-zero input difference value) in each round, so

the number of active S-boxes in full round differential trail will be 32 . Therefore, the probability of 32-round trail

will become (2−2)32 i.e. 2−64. So, we need 264 chosen plaintext pairs for a full round differential distinguisher. This

condition ensures that even if there is only one active S-box in each round, still we will require 264 chosen plaintexts

(full codebook) to distinguish FeW from random permutation using differential attack.

Branch number of a function is defined by Rijmen [33] and Kanda [20] for SPN based designs and Feistel based

designs with SPN type round function. We define the branch number of linear permutation layer and find out the

M. Kumar, SK Pal, A. Panigrahi, Turk. J. Math. Comput. Sci., 11(2)(2019), 58–73 63

OD→

ID ↓ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 0 0 0 2 0 0 2 0 2 2 4 2

2 0 0 0 2 0 2 0 0 0 0 2 4 2 4 0 0

3 0 2 2 2 2 0 2 2 2 0 0 0 0 2 0 0

4 0 0 0 2 0 4 2 0 0 0 0 2 0 0 2 4

5 0 0 2 2 2 2 0 0 0 0 0 4 4 0 0 0

6 0 0 0 2 4 0 2 0 2 2 0 2 0 0 0 2

7 0 2 0 0 0 0 2 4 4 2 0 0 0 0 2 0

8 0 0 0 0 0 0 2 2 0 4 4 0 2 2 0 0

9 0 2 0 2 2 2 2 2 0 2 0 2 0 0 0 0

A 0 2 0 0 4 0 2 0 0 2 0 0 2 2 0 2

B 0 2 2 0 0 0 0 0 2 0 4 2 0 0 4 0

C 0 0 4 0 0 2 0 2 2 2 0 0 2 0 0 2

D 0 2 2 0 0 2 2 0 2 0 2 0 2 0 2 0

E 0 2 4 2 0 0 0 0 0 2 2 0 0 0 2 2

F 0 2 0 0 2 2 0 2 2 0 0 0 0 4 0 2

Table 2. Difference Distribution Table

differential & linear branch number for these layers below. We use similar techniques as in [22] and [40] to show the

resistance of FeW to differential and linear attacks.

Definition 3.1. Let X = (x0 ‖ x1 ‖ x2 ‖ x3) be a 4n-bit word and size of each xi is n-bit. We count the number of i
′

s

such that xi(i = 0 to 3) is not equal to zero. We denote this count as the Hamming weight of X i.e. Hw(X).

Definition 3.2 (Branch Number). Let X be a 16-bit input to the function f where X is written as concatenation of 4-bit

nibbles x0, x1, x2 and x3. We define the branch number of the function f : {0, 1}16 → {0, 1}16 by β(f) as follows:

β(f) = min
(X,0,X∈{0,1}16)

(Hw(X) + Hw(f(X))).

Definition 3.3. Differential Branch number βd of a linear layer L is defined as:

βd(L) = min
(△X,0,X1,X2∈{0,1}16)

(Hw△(X) + Hw(L(△X)))

where △X = X1 ⊕ X2 is input difference to the linear layer L and L(△X) = L(X1) ⊕ L(X2) is output difference. In case

of FeW, differential branch number of the linear layers L1 and L2 is 5, which is explained in section 3.1.2.

Definition 3.4. Let S : U → V is a bijective function where U and V are 4-bit nibbles. We observe the difference

distribution table (DDT) of the S-box (Table 2) which reflects the number of occurrences for all possible input (△U)

and output (△V) differences. If the input to the DDT of S-box is a non-zero nibble then it certainly outputs a non-zero

nibble which implies that:

Hw(△U) = Hw(△V).

Result 1: We observe the DDT of S-box and find that any two inputs to S-box with non-zero difference certainly

produce two outputs with non-zero difference. Therefore, number of non-zero nibbles in the input to round function is

same as the number of non-zero nibbles in the input to linear layer.

3.1.2. Differential Branch Number of FeW. If a function takes n-branch input and returns n-branch output, then max-

imum value of the branch number for this function can be n + 1. Diffusion layers with maximum value of branch

number provides optimal security against differential and linear attacks. In case of FeW, linear layers L1 and L2 are

applied on 16-bit branches. We tested the combination of cyclic shifts and XOR for all possible values of cyclic shifts

and all possible 16-bit non-zero inputs using algorithm 2.

There are four different values of (i, j, k, l) which give the maximum value of the branch number. These four values

are: (1,5,9,12), (3,7,11,12), (4,5,9,13) and (4,7,11,15). We have used two values out of these four values as our linear

layers L1 and L2.

FeW: A Lightweight Block Cipher 64

For: i = 1 to 15

For: j = i + 1 to 15

For: k = j + 1 to 15

For: l = k + 1 to 15

For: △X = 1 to 216 − 1

L(△X) = △X ⊕ (△X ≪ i) ⊕ (△X ≪ j) ⊕ (△X ≪ k) ⊕ (△X ≪ l);

βp(L) = Hw(△X) + Hw(L(△X);

If βp(L) ≥ 5, for all △X;

Return: βd(L) = 5 and (i, j, k, l)

Algorithm 2. Differential Branch Number

Definition 3.5 (Active S-box). An S-box corresponding to a non-zero input difference is called an active S-box.

Definition 3.6 (Active Round Function). We term a round function as active if it contains at least one active S-box. In

other words, a round function which contributes to a differential trail is an active round function otherwise we call it a

passive round function.

Definition 3.7 (Inverse of Linear Layer). For a 16-bit input W, we define the inverse of a linear function L by L−1 such

that L−1(L(W)) = W. We use two different combinations L1 and L2 of cyclic shifts and XOR operations as linear layers

and their inverse is defined as follows:

L−1
1 (W) = W ⊕W ≫ 1 ⊕W ≫ 4 ⊕W ≫ 5 ⊕W ≫ 7 ⊕W ≫ 8 ⊕W ≫ 9

⊕W ≫ 10 ⊕W ≫ 12 ⊕W ≫ 14 ⊕W ≫ 15

L−1
2 (W) = W ⊕W ≫ 1 ⊕W ≫ 2 ⊕W ≫ 4 ⊕W ≫ 6 ⊕W ≫ 7 ⊕W ≫ 8

⊕W ≫ 9 ⊕W ≫ 11 ⊕W ≫ 12 ⊕W ≫ 15

Theorem 3.8. Let (△Pi ‖ △Pi+1) be the 64-bit input difference to the ith round where △Xi(= △Pi+1) is the 32-bit input

difference and △Yi is the 32-bit output difference to the round function rF. We obtain the following relationship between

the input and output differences for any three consecutive rounds ith, (i + 1)th and (i + 2)th of FeW:

△Xi ⊕ △Xi+2 = △Yi+1

Proof. Follows trivially by observing Fig. 3. �

Theorem 3.9. If △Xi ⊕ △Xi+2 is not equal to zero, then any three consecutive rounds of FeW have at least 5 active

S-boxes.

Proof. We denote the linear transformation layers (L1 and L2) in round function rF by L. We use Theorem 3.8 and

Definition 3.7 with linearity of L to get the following relation:

△Xi ⊕ △Xi+2 = △Yi+1 = L(L−1(△Yi+1) = L(△L−1(Yi+1)).

Applying inverse of L on the output to round function at ith round, we get the same number of non-zero nibbles as

there are in the input to round function. Therefore, we have the following relation using Definition 3.4 and Result 1:

Hw(△Xi+1) = Hw(△L−1(Yi+1)).

We know the relation between the number of non-zero nibbles in two binary strings α and β [20]:

Hw(α) + Hw(β) ≥ Hw(α ⊕ β).

Using this relation, we get:

Hw(△Xi) + Hw(△Xi+2) ≥ Hw(△Xi ⊕ △Xi+2).

M. Kumar, SK Pal, A. Panigrahi, Turk. J. Math. Comput. Sci., 11(2)(2019), 58–73 65

Figure 3. Differential Trail

Using equations (2.1), (2.2), (2.3) & definition of βd(L), we get the following relation which asserts that any 3

consecutive rounds will have at least 5 differentially active S-boxes if △Xi ⊕ △Xi+2 , 0

Hw(△Xi) + Hw(△Xi+1) + Hw(△Xi+2) = Hw(△Xi) + Hw(△Xi+2) + Hw(△Xi+1)

= Hw(△Xi) + Hw(△Xi+2) + Hw(△L−1(Yi+1))

≥ Hw(△Xi ⊕ △Xi+2 ⊕ △L−1(Yi+1))

= Hw(L(△L−1(Yi+1)) ⊕ △(L−1(Yi+1))

= 5[since βd(L) = 5 for L1 and L2]. �

Theorem 3.10. Any four consecutive rounds of FeW (ith to i+3rd round) have at least three differentially active round

functions.

Proof. (Refer Fig. 3) Let us assume that round function in ith round is differentially passive then input to this round

will be of the form:

(△Pi , 0) ‖ (△Pi+1 = 0) i.e. △Xi = 0 & △Yi = 0.

Whereas △Xi = 0 implies that input to round function consists all zero nibbles, therefore output will also contain all

zero nibbles. As a result, there will be no active S-box in this round. So, the number of active S-boxes in this round is

zero and input to (i + 1)th round will be of the form:

(△Pi+1 = 0) ‖ (△Pi+2 = △Pi , 0)

i.e. input to round function in (i + 1)th round is △Xi+1 , 0 and output is △Yi+1 , 0. We consider that only one nibble of

△Xi+1 is non-zero. Therefore, there will be at least one active S-box in this round. We obtain input to (i+ 2)nd round of

the form:

(△Pi+2 = △Pi , 0) ‖ (△Pi+3 , 0).

This asserts that input and output to round function in (i + 2)nd round are △Xi+2 , 0 and △Yi+2 , 0 respectively. Since

△Xi+2 = △Pi+3 and △Pi+3 = △Yi+1, one gets (△Xi+2 = △Yi+1). As, branch number of Linear layers L1 and L2 is 5, we get

minimum 4 non-zero nibbles in △Yi+1 corresponding to one non-zero nibble in △Xi+1. This ensures that △Xi+2 consists

of 4 non-zero nibbles and the minimum number of active S-boxes in this round are 4. If the round function in (i + 3)rd

round is passive (i.e. △Xi+3 = 0), then input to this round should be of the form:

(△Pi+3 = △Pi , 0) ‖ (△Pi+4 = 0).

FeW: A Lightweight Block Cipher 66

To get △Pi+4 = 0, the following expression should be satisfied:

△Pi ⊕ △Yi+2 = 0 i.e. △Pi ⊕ rF(△Pi+3) = 0.

Finally, we get △Pi ⊕ rF(rF(△Pi+2)) = 0 which is represented in terms of input to ith round by △Pi ⊕ rF(rF(△Pi)) = 0.

We searched this relation for all possible 32-bit input differences (i.e. 232 values with △Pi , 0) using a C programme.

This relation was not satisfied for any non-zero value of △Pi, which proves the theorem. �

We now provide crude estimates to prove the resistance of full round FeW to differential attack. It is shown by

providing a lower bound on the number of active S-boxes in any 27 round differential characteristic. The following

theorem assures the resistance of full round FeW against the differential attack.

Theorem 3.11. Any differential characteristic for 27 rounds of FeW has minimum 45 active S-boxes and hence the

probability of this differential characteristic is 2−90.

Proof. We use the fact that any three rounds of FeW has at least 5 active S-boxes. Therefore, 27(= 3 × 9) rounds

will have at least 45(= 5 × 9) active S-boxes. So, the maximum probability of any single 27 round differential trail

is (2−2)45 = 2−90. If we use 27 round trail to recover subkeys of 32 round FeW, it will require 290 chosen plaintexts

which is more than the amount of available data. This theorem ensures that full round FeW is secure enough against

differential attack. �

We assumed that FeW is broadly a Feistel based cipher to prove the theorems 3.8 to 3.11. We did not consider the

effect of mixing operation in these results. Now we consider the Feistel-M structure which shows the actual impact of

mixing operation on security bounds against differential attack. We use branch-and-bound based algorithm given by

M. Matsui [30] to search the best differential trail. We get the following results by searching the best differential trails

of FeW.

Round Input Difference Swap LSB S-box Linear Layer Probability

Index (A||B) (DDT) (L1||L2) (−log2)

1 0200 0000 0000 0000 0000 0000 0000 0000 0000 0000 0

2 0000 0000 0200 0000 0200 0000 0d00 0000 b7cb 0000 2

3 0200 0000 b7cb 0000 b700 00cb a700 00fe 022b 8066 11

4 b7cb 0000 002b 8066 0066 802b 00f4 a0aa b792 fa00 23

5 002b 8066 0059 fa00 0000 fa59 0000 46c5 0000 c166 34

6 0059 fa00 002b 4100 0000 412b 0000 fedb 0000 5e00 43

7 002b 4100 0059 a400 0000 a459 0000 463b 0000 4100 54

8 0059 a400 002b 0000 0000 002b 0000 00be 0000 a404 58

9 002b 0000 0059 0004 0004 0059 0005 00b1 5aaf 5b7c 65

10 0059 0004 5a84 5b7c ← Output Difference

Table 3. Optimal Differential Trail

We need a differential trail with probability greater than 2−64 to mount a successful differential attack on FeW. We

did not find any differential trail with probability greater than 2−65 for 9-round FeW. We can use 8 round differential

trail (Table 3) with probability 2−58 to attack reduced round FeW. We can recover some of the subkey bits from the

outermost rounds of the trail using differential attack and the remaining subkey bits are found using exhaustive trials.

We guess the subkey bits corresponding to active S-boxes only. There is a 4-bit subkey to guess corresponding to

one active S-box. Since any three round differential trail will have at least 5 active S-boxes, so we need to guess at

least 20 subkey bits in any three additional outer rounds of the trail. If we add 3 rounds on the top and 3 rounds on the

bottom of the trail, then we can get 40 subkey bits of 14 round FeW. If we allow to add 3 more rounds on the top or

bottom, then we can recover 60 subkey bits of 17 round FeW. Therefore, we estimate that it is not possible to mount

any useful differential attack on FeW beyond 17 rounds. Although, we can apply differential attack up to a maximum

of 17 rounds by guessing 260 possible values of 60-bit subkey.

If we remove the mixing operation used in the round function of FeW, then any 22 round differential trail will consist

of 31 active S-boxes. Thus, we can recover the subkeys for the 31 rounds of FeW. However, the number of rounds

resisting the differential attack is reduced to 17 after using the Feistel-M structure.

M. Kumar, SK Pal, A. Panigrahi, Turk. J. Math. Comput. Sci., 11(2)(2019), 58–73 67

3.2. Multiple Differential and Structure Attacks. We find a high probability differential trail and use it to recover

the secret key in the classical form of a differential attack. The main impediment in mounting a differential attack

on the greater number of rounds of a cipher is the data complexity. In order to reduce the data complexity, multiple

differential [6] and structure attacks [43] are devised. These variants have been proved very effective in reducing

the data complexity [43] and covering the greater number of rounds than the differential attack for lightweight block

cipher PRESENT. We can cluster many differential trails with different input and output differences in a multiple

differential attack. In structure attack, we try to find a collection of all possible differential trails with the different input

differences but the same output difference to form a differential [26]. The probabilities of all the trails belonging to the

differential is combined to get a lower bound on the probability of this differential which becomes the upper bound for

the complexity of the attack.

S. # Differential Probability

No. Trails (−log2)

1 32 65

2 128 66

3 128 67

4 44 68

5 132 69

6 1202 70

7 12365 71

8 71590 72

Table 4. Multiple Differential Trails

We searched for all differential trails with probability between 2−65 and 2−72 based on the branch-and-bound search

algorithm for 9-round FeW (Table 4). We find that it is not possible to construct a structure using these trails and it

cannot be used to mount a structure attack with reduced complexity. So, we did not find any useful structure which

can be used to cluster the differential trails in a differential and reduce the complexity of the attack. We believe that

clustering of the differential trail is not possible beyond 9 rounds in case of FeW.

3.3. Differential Factors in FeW. Differential factor [42] α of a S-box results in invariant output difference β when

possible input pairs of S-box are XORed with some non-zero value α. Presence of Differential factors in S-box

significantly reduces the time complexity of differential attack. S-box used in FeW is free from Differential factors

which is guaranteed by the Conjecture [42] “A differential 4-uniform S-box S has a differential factor for the input

difference β if and only if the β-th column of the DDT table of S consists of only zeros and fours”. Since there does

not exist any column in DDT of S (Table 2) which consists of only zeros and fours, so the differential factors cannot be

applied on FeW to reduce the complexity of the differential attack.

3.4. Impossible Differential Cryptanalysis. Impossible Differential attack [3,21] is an extension of basic differential

attack. This attack has been widely applied and given best results on some ciphers like CLEFIA etc. Zero probability

differential trails are used in this attack while differential attack make use of high probability differential trails. We

use impossible differentials to recover the key material by sieving out the keys suggesting the impossible differential

from the list of all possible keys. The key (or keys) still remaining in the list are the candidates for the correct key.

We process the 64-bit input in four groups G1, G2, G3 and G4, where each group consists of four 4-bit nibbles. We

observe the following four facts from DDT (Table 2) and differential branch number βd:

(1) A nibble with zero input difference to DDT of S-Box outputs a zero difference (i.e. 0→ 0) with probability 1.

(2) A nibble with some non-zero input difference α (1 ≤ α ≤ 15) to DDT of S-Box certainly outputs some

non-zero difference β (1 ≤ β ≤ 15) (i.e. α→ β) with probability 1

(3) Any group with all zero nibbles as input difference to linear layer returns a zero difference (i.e. 0000→ 0000)

with probability 1.

(4) Any group with non-zero difference in 1,2,3,4 nibbles as input to linear layer produces at least 4,3,2,1 (respec-

tively) nibbles with non-zero difference.

FeW: A Lightweight Block Cipher 68

#R Forward Differential #R Backward Differential

G1 G2 G3 G4 G1 G2 G3 G4

0 α000 0000 0000 0000 6 0000 0000 0000 000α

1 0000 0000 α000 0000 5 000α 0000 0000 0000

2 α000 0000 Γθζη 0000 4 Γ′θ′ζ′η′ 0000 000α 0000

3 Γθζη 0000 **** **** 3 **** **** Γ′θ′ζ′η′ 0000

Table 5. Impossible Differential Trail

We construct 6 round impossible differential trail (Table 5) by proving the contradiction between a 3-round forward

differential trail and a 3-round backward differential trail. These differential trails occur with probability 1. We get a

3-round forward differential trail in the following way:

(1) Set non-zero difference α to first nibble in G1 and the remaining nibbles in G1 and all nibbles in G2, G3 and

G4 are assigned a 0 difference.

(2) Any group with 0 difference outputs a 0 difference with probability 1 (see Fact 3 and Result 1). We get the

difference α positioned to the first nibble in G3 and 0 differences in the remaining nibbles after first round.

(3) In second round, we get some non-zero difference β with probability 1 after applying DDT of S-box on α (see

Fact 2). We have one nibble in G3 with non-zero difference β as input to linear layer which returns 4 nibbles

with some non-zero difference (Γ, θ, ζ, η) (Fact 4 and βd). After second round, we get first nibble in G1 as α

and G3 as all non-zero nibbles (Γ, θ, ζ, η).

(4) In third round, two rightmost nibbles of G3 & G4 are swapped and we get two non-zero nibbles in each of G3

and G4. We get the output from round function as all * values (i.e. any value) in G3 and G4 with at least three

nibbles with non-zero difference in each of the group G3 and G4 (see Fact 4). After this round, G1 becomes

((Γ, θ, ζ, η), all nibbles of G3 and G4 becomes * values while all nibbles of G2 remains with 0 difference.

In a similar way, we get a backward differential trail for 3 rounds with G1 and G2 being * values, G3 as (Γ′, θ′, ζ′, η′)

and all nibbles of G4 as 0 difference. We get a contradiction for G2 between forward and backward differential trails at

third round. Forward trail consists of 0 differences in G2 while backward differential trail consists of 3 or 4 nibbles with

non-zero difference. We get the following 6-round impossible differential trail using miss-in-the-middle technique:

(α000000000000000)6R9 (000000000000000α)

We find the values of secret key using the impossible differentials by adding the rounds on the top and bottom of the

trail. We choose the plaintext pairs with the input difference suggested by the trail and get the corresponding ciphertext

pairs. We process the ciphertext and guess the key bits involved in the additional rounds and sieve out the wrong keys

suggesting the impossible difference. We know that any 3 rounds of FeW have at least 5 active S-boxes. So, we need to

guess 20 subkey bits corresponding to these 5 active S-boxes in 3 rounds and 40 subkey bits corresponding to 10 active

S-boxes in 6 rounds. If we add 3 rounds on the top and 6 at the bottom of the trail, then we need to guess all possible

values of 60-bit subkey. We can apply this attack on 15 rounds of FeW out of total 32 rounds.

3.5. Linear Cryptanalysis. Linear cryptanalysis proposed by Matsui [14, 29] have been proven most effective on

DES. We can show the resistance to linear attack similar to the differential attack. This is a known plaintext attack and

it exploits the probabilistic relation involving the plaintext, ciphertext and subkey bits which are bounded away from

half. These relations are used to find the values of key bits. Some bit positions in the plaintext and ciphertext are tapped

which is known as input and output mask value. Linear Branch number [20] is used to count the minimum number of

active S-boxes in a trail, so we first define the linear branch number of a linear layer.

Definition 3.12. Linear Branch number βl of a linear function L is defined as:

βl(L) = min
(Γq,0,Γq∈{0,1}16)

(Hw(L∗(Γq) + Hw(Γq))

= min
(Γq,0,Γq∈{0,1}16)

(Hw((Γt) + Hw(Γq))

where Γq is an output mask value and Γt is an input mask value of the linear layer L. Function L∗ is the linear function

of the mask values concerned to L.

In case of FeW, linear branch number of the linear layers L1 and L2 used in rF is 5. We have applied L∗ on all

possible 16-bit mask values Γq and calculated L∗(Γq). For each non-zero mask value Γq and the corresponding value

M. Kumar, SK Pal, A. Panigrahi, Turk. J. Math. Comput. Sci., 11(2)(2019), 58–73 69

For: Γt=0 to 15

For: Γq=0 to 15

For: A = 0 to 15

If (parity[A&Γt] = parity[S [A]&Γq])

Then LAT [Γt][Γq] + +

Output: (LAT [Γt][Γq] − 8)

Algorithm 3. Linear Approximation Table

L∗(Γq), we count the minimum number of non-zero nibbles in the input and output using a computer programme and

this count comes out to be 5. It is observed from the linear approximation table of S-box (Table 6) that non-zero mask

value always outputs a non-zero mask value with bias (ε = p−
1
2) and the zero mask value always returns a zero mask

value with bias 1
2
. Therefore, the number of non-zero branches as input to the round function is same as the number of

non-zero branches as input to the liner layer. We estimate the minimum number of active S-boxes in a trail and use it

to prove the resistance of FeW from linear attack.

3.5.1. Linear Approximation Table. We denote an output mask value by Γq and input mask value by Γt. We construct

a parity check array for all 4-bit values (i.e. t to 15) as follows:

parity[16] = {0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0}.

We find the number of matches between the linear equation represented in hexadecimal as Γt and the sum of the output

bits represented in hexadecimal as Γq. We get the linear approximation table (LAT) by subtracting 8 from LAT [Γt][Γq]

and dividing it by 16 gives the linear approximation bias. We run algorithm 3 to construct Table 6:

In case of FeW, linear branch number of the linear layers L1 and L2 used in rF is 5. We have applied L∗ on all

possible 16-bit mask values Γq and calculated L∗(Γq). For each non-zero mask value Γq and the corresponding value

L∗(Γq), we count the minimum number of non-zero nibbles in the input and output using a computer program and this

count comes out to be 5. It is observed from the linear approximation table of a S-box (Table 6) that non-zero mask

value always outputs a non-zero mask value with bias (ε = p−
1
2) and the zero mask value always returns a zero mask

value with bias 1
2
. Therefore, the number of non-zero branches as input to the round function is same as the number of

non-zero branches as input to the liner layer. We estimate the minimum number of active S-boxes in a trail and use it

to prove the resistance of FeW from linear attack.

Γt→ 0 1 2 3 4 5 6 7 8 9 A B C D E F

Γq ↓

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 -2 2 2 -2 0 0 0 4 -2 -2 2 2 0 4

2 0 2 0 2 0 -2 0 -2 2 0 2 0 2 4 2 -4

3 0 2 2 0 2 4 -4 2 -2 0 0 -2 0 2 2 0

4 0 2 -2 0 -2 0 0 2 0 2 2 -4 -2 0 -4 -2

5 0 -2 -4 -2 0 2 0 -2 0 2 0 -2 0 -2 4 -2

6 0 0 -2 -2 2 -2 -4 0 -2 2 0 4 0 0 -2 -2

7 0 -4 0 0 4 0 0 0 2 -2 -2 -2 -2 2 -2 -2

8 0 0 0 -4 0 0 0 -4 -2 -2 2 -2 2 2 -2 2

9 0 0 2 2 -2 2 0 -4 -2 2 -4 0 0 0 -2 -2

A 0 2 0 -2 0 -2 0 2 0 -2 -4 -2 4 -2 0 -2

B 0 2 -2 0 -2 0 -4 -2 4 -2 -2 0 -2 0 0 2

C 0 -2 -2 0 -2 4 0 2 2 0 0 2 4 2 -2 0

D 0 2 0 2 4 2 0 -2 2 0 2 0 2 -4 -2 0

E 0 4 -2 -2 2 2 -4 0 0 0 -2 2 -2 2 0 0

F 0 0 4 4 0 0 0 0 4 4 0 0 0 0 0 0

Table 6. Linear Approximation Table

FeW: A Lightweight Block Cipher 70

Theorem 3.13. Any linear characteristic for 27 rounds of FeW has a minimum 45 active S-boxes and hence the

maximal bias of this 27 round linear trail is 2−92.

Proof. We again consider FeW broadly a Feistel structure based design. Branch number of linear layers L1 and L2 of

FeW is 5 and the maximal bias [29] of the S-box is 2−2 (Table 6). We start with all zero nibbles in left half and the

right half contains non-zero nibbles. We assume that there is at least one nibble as non-zero mask value in right half Γq

(Fig. 4). Round function returns a zero mask value corresponding to all zero mask values, so first round trail consists

zero active S-box. In second round, output mask value Γq corresponds to the input mask value Γt and this becomes

output mask value for the next round. We get Γq as input mask value and there are minimum 5 active S-boxes in these

two rounds (see βl). This shows that any 3 rounds linear trail of FeW has minimum 5 linearly active S-boxes. Using

Matsui‘s Piling-up lemma [29], we get maximal bias for any 3 round linear trail as:

ǫ3 = 24 × (2−2)5 = 2−6.

Similarly, we get the maximal bias for any 27(= 3 × 9) round linear trail as:

ǫ27 = 28 × (2−6)9 = 2−46.

If we assume that linear attack is applied on full round FeW using 27 round differential trail then the amount of known

plaintext/ciphertext data required will be of order 292(∼ ǫ−2) which is greater than the available data. Any kind of

cryptanalytic attack on block ciphers is considered successful if it recovers the key using the available data, whereas

264 is the upper limit of data available in case of FeW.

Figure 4. Linear Trail

�

3.6. Related Key Cryptanalysis. We exploit the weaknesses in the key schedule of a block cipher by a related key

attack [2] and slide attack [5]. There is a practice to use a round dependent constant to protect the subkeys from the

slide attacks. Therefore, we have used a round dependent constant so that round subkeys cannot be “slid” easily. For

each 16-bit subkey generation, we apply a non-linear S-box three times to mix the current contents of the key register

MK. After 13 rounds, all subkey bits become a non-linear function of the user supplied key. As a result, there is no

subkey bit which can be expressed as a linear function of the user supplied key bits after 13 rounds.

3.7. Statistical Tests. NIST Statistical Test Suite, SP800-22 [16] is a widely used application for testing the output

bit sequence. It consists of 15 different tests which test the random nature of the output bit sequence generated from a

cipher. We have generated the bit sequence from lightweight block cipher FeW using two different modes of operation,

output feedback mode and counter mode. For each mode, we have taken 100 different random 64-bit plaintexts and

M. Kumar, SK Pal, A. Panigrahi, Turk. J. Math. Comput. Sci., 11(2)(2019), 58–73 71

encrypted these using 100 different random 80-bit keys. For each mode, we have generated 100 files and each file

contains 107 bits sequence. We have collected the experimental results of the both type of data in the table 7 which

shows the P-value and the pass percentage of the files for each test. We observe that output bit sequence generated

using FeW is totally random in nature.

Statistical Test Output Feedback mode Counter mode

P-Value Proportion P-Value Proportion

Frequency 0.911413 98 0.816537 99

Block Frequency (m=64) 0.045675 98 0.275709 100

Cumulative Sum-Forward 0.759756 98 0.851383 99

Cumulative Sum-Backward 0.955835 99 0.955835 99

Runs 0.030806 100 0.911413 99

Longest Runs of Ones 0.554420 100 0.867692 100

Rank 0.455937 100 0.249284 98

Universal 0.455937 99 0.249284 99

Approximate Entropy 0.419021 100 0.955835 100

Serial 0.437274 100 0.514124 98

Serial 0.514124 99 0.595549 100

Linear Complexity 0.637119 97 0.455937 98

Table 7. Statistical Results

3.8. Avalanche Effect. Avalanche effect quantifies the effect of changing the bits in plaintext or key on the ciphertext

bits. It states that if we change 1 bit in the plaintext or key, then there must be approx. 50 percent change in the

ciphertext bits. We show the effect of changing the 1 bit in plaintext for 1040 executions of FeW. We observe that there

is approximately 50 percent change on an average in the ciphertext bits. Similarly, we have performed this exercise

for 1053 executions for 1 bit change in the key. The detailed results are shown in Fig. 5 where series 1 represents the

result for change in plaintext bits and series 2 refers to change in the key bits.

Figure 5. Avalanche Effect

3.9. Performance Evaluation. We designed FeW focusing its application in software oriented environments. So, we

made used those operations which are considered to be lightweight when implemented in software viz. cyclic shifts

and XORs. We use single 4 × 4 S-box in the encryption, decryption and key expansion algorithms. Linear operations

L1 and L2 are applied on 16-bit branches which are two different combinations of cyclic shifts and XOR operations.

This type of linear layer is approximately two times efficient in software in comparison to a linear layer comprising the

bitwise mixing operations. PRESENT and RECTANGLE use bitwise mixing operations in its linear layers while we

use cyclic shifts and XOR in the linear layer of FeW. Therefore, FeW performs better in software implementations. We

describe the parameters of PRESENT, RECTANGLE and FeW in Table 8.

We compare throughput of FeW with PRESENT and RECTANGLE on a Windows based PC with the following

configuration: Intel Core 2 Duo E8400 @ 3.00 GHz processor with 1 GB RAM. We encrypt five files with different

FeW: A Lightweight Block Cipher 72

Cipher PRESENT RECTANGLE FeW

Block Size (bit) 64 64 64

Key Size (bit) 80 80 80

Rounds 31 25 32

Table 8. Parameters

sizes in KB (87.8, 166, 244, 400, 556) using these ciphers in output feedback mode and measure the throughput of

each cipher (Table 9). This comparison indicates that FeW is significantly efficient than lightweight block ciphers

PRESENT and RECTANGLE in software performance.

Throughput (MB/Sec)

File Size (MB) PRESENT RECTANGLE FeW

0.085742 0.352849 0.496193 0.734723115

0.162109 0.381075 0.553652 0.84232353

0.238281 0.395029 0.574726 0.889109142

0.390625 0.403997 0.590961 0.92546525

0.542969 0.403904 0.599369 0.938742652

Table 9. Performance Comparison

4. Conclusion

We proposed a secure and efficient lightweight block cipher FeW by devising a novel mixing approach between the

Feistel and 4-branch generalised Feistel structures. We named this structure as Feistel-M structure which is used for

the first time in the design of a block cipher. We analysed the security of FeW against basic cryptanalytic attacks which

proves that it has enough security margins to counter these attacks. We believe that any cryptanalytic attack cannot be

applied on FeW to recover the secret key beyond 17 rounds. There is a large variety of attacks which can be applied on

block ciphers. In future, we will analyse it against other advanced cryptanalysis methods and we will use it to design

other cryptographic primitives.

Acknowledgement

We would like to thank Director, SAG and Ms. Pratibha Yadav for their valuable guidance and continuous support

to work in this direction. We would also like to thank anonymous reviewers who have invested their precious time to

suggest the improvements in the paper.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

References

[1] Beaulieu, R., Shors, D., Smith, J., Clark, S.T., Weeks, B., Wingers, L., The SIMON and SPECK families of lightweight block ciphers, Cryptol-

ogy ePrint Archive, Report 2013/404(2013). 1

[2] Biham, E., New types of cryptanalytic attacks using related keys, EUROCRYPT’93, LNCS, 765(1994), 398–409. 3.6

[3] Biham, E., Biryukov, A., Shamir, A., Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials, EUROCRYPT’99, LNCS,

3027(1999), 12–23. 3.4

[4] Biham, E., Shamir, A., Differential cryptanalysis of DES-like cryptosystems, Journal of Cryptology, 4(1)(1991), 372. 3.1

[5] Biryukov, A., Wagner, D., Slide attacks, In: Knudsen, L.R. (ed.) FSE 1999 LNCS, 1636(1999), 245–259. 3.6

[6] Blondeau, C., Gerarad, B., Multiple differential cryptanalysis: Theory and practice, In: Jaux, A. (ed.) FSE 2011. LNCS, 6733(2011), 35–54.

3.2

[7] Bogdanov, A., Analysis and Design of Block Cipher Constructions, PhD thesis, 2009. 3.1.1

[8] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C., Present: An ultra-lightweight

block cipher, CHES 2007, LNCS, 4727(2007), 450–466. 1

[9] Bogdanov, A., Rijmen, V., Linear Hulls with correlation zero and linear cryptanalysis of block ciphers, Cryptology ePrint Archive, Report

2011/123(2011). 3

M. Kumar, SK Pal, A. Panigrahi, Turk. J. Math. Comput. Sci., 11(2)(2019), 58–73 73

[10] Cannire, C., Dunkelman, O., Knezevi, M., Katan and Ktantana family of small and efficient hardware-oriented block ciphers, CHES 2009,

LNCS, 5747(2009), 272–288. 1

[11] Carlet, C., Ding, C., Nonlinearities of S-boxes, Finite fields and their applications, 13(1)(2007), 121–135. 2.5

[12] Daemen, J., Rijmen, V., The Design of Rijndael, Springer-Verlag, 2002. 1

[13] Diffie, W., Ledin, G. (translators), SMS4 encryption algorithm for wireless networks, Cryptology ePrint Archive, Report 2008/329(2008). 1

[14] Emami, S., Ling, S., Nikolic, I., Pieprzyk, J., Wang, H., The Resistance of PRESENT-80 against related key differential attacks, Cryptology

and Communications, Sep. 2014(2014), 171–187. 3.5

[15] Engels, D., Saarinen, M.J.O., Schweitzer, P., Smith, E. M., The Hummingbird-2 Lightweight Authenticated Encryption Algorithm, RFID Sec

2011, 7th Workshop on RFID Security and Privacy, 26-28, Amherst, Massachusetts, USA, 2011. 2.5

[16] Gallagher, P. (Director), A Statistical Test for Random and Pseudorandom Number Generators for Cryptographic Application, Apr, 2010. 3.7

[17] Gong, Z., Nikova, S., Law, Y. W., KLEIN: A New Family of Lightweight Block Ciphers, RFID Sec 2011, LNCS Vol. 7055, 1-18, 2011. 1

[18] Guo, J., Peyrin, T., Poschmann, A., The LED Block Cipher, Cryptographic Hardware and Embedded Systems CHES 2011, LNCS, 2011. 1

[19] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S., HIGHT: A new block

cipher suitable for low-resource device, CHES 2006, LNCS, 4249(2006), 46–59. 1

[20] Kanda, M., Practical Security Evaluation against Differential and Linear Cryptanalysis for Feistel Ciphers with SPN Round Function, SAC

2000, LNCS 2012, 324-338, Springer-Verlag, 2001. 3.1.1, 3.1.2, 3.5

[21] Kim, J., Hong, S., Sung, J., Lee, C., Lee, S., Impossible differential cryptanalysis for block cipher structure, INDOCRYPT 2003, LNCS,

2904(2003), 82–96. 3.4

[22] Kim, T., Kim, J., Hong, S., Sung, J., Linear and differential cryptanalysis of reduced SMS4 block cipher, Cryptology ePrint Archive, Report

2008/281(2008). 3.1.1

[23] Knudsen, L.R., Leander, G., Poschmann, A., Robshaw, M.J.B., PRINTcipher: A block cipher for IC printing, In: Mangard, S., Standaert, F.-X.

(eds.) CHES 2010, LNCS, 6225(2010), 16–32. 1

[24] Knudsen, L., Robshaw, M.J.B., Block Cipher Companion, Book Springer, 2011, ISBN 978-3-642-17341-7. 1, 3

[25] Kumar, M., Pal, S.K., Yadav, P., Mathematical constructs of lightweight block ciphers-A survey, American Jr. of Mathematics and Sciences,

2(1)(2013), ISSN No: 2250-3102. 1

[26] Lai, X., Massey, J.L., Markov Ciphers and Differential Cryptanalysis, In: Davis D.W. (ed.) EUROCRYPT 1991. LNCS, Vol. 547, 17-38.

Springer, Heidelberg, 1991. 3.2

[27] Leander, G., Paar, C., Poschmann, A., New Lightweight DES Variants, FSE 2007, LNCS, 4593(2007), 196-210. 1

[28] Matsuda, S., Moriai, S., Lightweight cryptography for the cloud: Exploit the power of Bitslice Implementations, CHES 2012, LNCS,

7428(2012), 408-425. 1

[29] Matsui, M., Linear Cryptanalysis Method for DES Cipher, Advances in Cryptology EUROCRYPT 1993, LNCS, Vol. 765, 386-397, Springer-

Verlag, 1994. 3.5, 3.5.1

[30] Matsui, M., On Correlation between the Order of S-Boxes and the Strength of DES, In: De Santis, A. (ed.), EUROCRYPT 1994, LNCS, Vol.

950, 366-375, Springer, 1995. 3.1.2

[31] Piret, G., Roche, T., Carlet, C., PICARO- A block cipher allowing efficient higher order side channel resistance, ACNS 2012, LNCS,

7341(2012), 311-328. 1

[32] Poschmann, A.Y., Lightweight Cryptography: Cryptographic Engineering for a Pervasive World, PhD thesis 2009. 1

[33] Rijmen, V., Cryptanalysis and design of iterated block cipher, PhD Thesis, 1997. 3.1.1

[34] Saarinen, M.O., Cryptographic analysis of all 4x4 bit S-boxes, Cryptology ePrint Archive, Report 2011/218(2011). 2.5

[35] Shannon, C. E., Communication theory of secrecy systems, Bell Systems Technical Journal, (1949), 656-715. 1

[36] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T., Piccolo: An ultra-lightweight block cipher, CHES 2011, LNCS,

6917(2011), 342-357. 1

[37] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T., The 128-bit block cipher CLEFIA, (Extended Abstract) FSE 2007, LNCS,

4593(2007), 181-195. 1

[38] Sorkin, A., LUCIFER: A cryptographic algorithm, Cryptologia, 8(1)(1984), 22-35. 1

[39] Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J., SEA: A scalable encryption algorithm for small embedded applications, CARDIS

2006, LNCS, 3928(2006), 222-236. 1

[40] Su, B., Wu, W., Zhang, W., Differential cryptanalysis of SMS4 block cipher, Cryptology ePrint Archive, Report 2010/62(2010). 3.1.1

[41] Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E., Twine: A Lightweight, Versatile Block cipher, ECRYPT Workshop on Lightweight

Cryptography, 2011, http://www.uclouvain.be/crypto/ecryptlc11/static/post proceedings.pdf. 1

[42] Tezcan, C., Ozbudak, F., Differential factors: Improved attacks on SERPENT, Cryptology ePrint Archive, Report 2014/860(2014). 3.3

[43] Wang, M., Sun, Y., Tischhauser, E., Preneel, B., A model for structure attacks, with applications to PRESENT and serpent, In: Canteaut, A.

(ed.) FSE 2012, LNCS, 7549(2012), 49-68. 3.2

[44] Wheeler, D., Needham, R., TEA, a tiny encryption algorithm, FSE 1994, LNCS, 1008(1995), 363-366. 1

[45] Wu, W., Zhang, L., LBlock: Lightweight block cipher, Cryptology ePrint Archive, 2011/345(2011). 1

[46] Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I., RECTANGLE: A bit-slice ultra-lightweight cipher suitable for multiple

platforms, Cryptology ePrint Archive, Report 2014/084(2014). 1

	FeW: A Lightweight Block Cipher. By

