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Few-photon transport in low-dimensional systems
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We analyze the role of quantum interference effects induced by an embedded two-level system on the photon
transport properties in waveguiding structures that exhibit cutoffs (band edges) in their dispersion relation. In
particular, we demonstrate that these systems invariably exhibit single-particle photon-atom bound states and
strong effective nonlinear responses on the few-photon level. Based on this, we find that the properties of
these photon-atom bound states may be tuned via the underlying dispersion relation and that their occupation
can be controlled via multiparticle scattering processes. This opens an interesting route for controlling photon
transport properties in a number of solid-state-based quantum optical systems and the realization of corresponding
functional elements and devices.
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I. INTRODUCTION

Advances in micro- and nanofabrication technologies
combined with a significantly improved understanding of the
underlying physical mechanisms form the basis of most of the
recent progress in quantum photonics as well as in cavity and
circuit QED.

In the area of quantum photonics, high-quality single-
photon sources have been developed and can readily be
integrated with conventional waveguiding elements [1–6]
(for an overview we refer to Ref. [7]). In addition, several
types of integrated optical resonators with very high quality
factors such as ring resonators, disk resonators, and photonic
crystal resonators have become available and may be arranged
into various forms of arrays [8–10]. When these waveguid-
ing structures and resonators are equipped with judiciously
placed quantum-optical emitters such as quantum dots and
nitrogen-vacancy centers in nanodiamond crystals, complex
solid-state-based quantum optical functional elements may be
realized. Consequently, much of the ongoing work aims at
precisely positioning these quantum emitters within artificially
structured optical materials [11–17].

Similarly, in cavity and circuit QED, high-quality super-
conducting wave guides and cavities [18], strong coupling
of single photons to superconducting qubits [19], and Fock
states [20] have been realized for microwave photons. In
addition, these waveguides and cavities may be combined with
Josephson junctions and several of these compound elements
may be arranged to form left- and right-handed transmission
lines that exhibit tunable dispersion relations [21]. Moreover,
suitably engineered Josephson junctions realize few-level
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quantum systems for microwave photons whose coupling
strength to the radiation field can be tuned to values that are
simply not available in traditional quantum-optical systems at
optical frequencies [22].

Despite the apparent disparity in operation wavelengths
and underlying physical system, the common goal of all the
above approaches is the realization of integrated quantum
optical devices that operate in the few-photon regime. This
includes but is not limited to the more specific goals of efficient
generation and detection of single photons (or even plasmons
[17]), the realization and control of effective photon-photon
interaction processes, the generation and control of photon
entanglement, and—based on these fundamental building
blocks—the realization of complex quantum-optical func-
tional elements and devices [23]. As most of such high-quality
samples and systems have become available only recently,
there exists a rather limited number of theoretical works that
explore the potential of such systems with regards to modifying
light-matter interaction and its utilization for realizing and
controlling the above effective light-light interaction. Similar
to the early works by Fano, which have been concerned
with a discrete (electronic) state that interacts coherently
with a continuum of (electronic) states [24], we may expect
interesting physics to occur in the photonic case as well.
Obviously, the details will depend on the emitter, its interaction
with the continuum and—quite important for the photonic
case—the structure of the continuum itself.

In the present context, this suggests that low-dimensional
waveguiding systems with embedded quantum impurities
facilitate enhanced quantum interference effects for single-
and few-photon processes. On the one-photon level, a single
two-level system (TLS) realizes an energy-dependent mirror
[25–28]. Furthermore, and in contrast to the classical π -pulse
scenario (which only puts constraints on the pulse area), at
least for a linear dispersion relation without band edges, there
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exists a unique pulse shape that leads to a (momentarily) full
inversion of the TLS [29].

A single TLS embedded into a one-dimensional waveguide
leads to an effective photon-photon interaction. According to
Refs. [30–32], it may even lead to photon-photon bound states
in the case of two or more photons. Both effects are of direct
relevance for the generation and control of photon-photon
entanglement. In addition, realistic waveguiding systems
feature cut-offs or band edges in their dispersion relations,
and this leads to the formation of single-particle bound states
of the combined TLS + waveguide system [32,33]. These
single-particle states can only be accessed via nonlinear
multiparticle processes and may be utilized for the efficient
and robust trapping of radiation with applications for novel
detectors and quantum logic functional elements [33].

Embedding a three-level emitter into a one-dimensional
waveguiding system adds yet another twist, as now an external
classical driving field allows for additional control mecha-
nisms. For instance, in the V configuration the state of the
emitter can be switched deterministically by the driving field
via Raman scattering. In essence, this realizes a single-photon
transistor [34]. Arrays of so-called Jaynes-Cummings cavities
represent a further promising class of such solid-state-based
quantum-optical systems. Here, a set of ordinary resonators,
each equipped with a single TLS that interacts with a single-
resonator mode, are coupled together to form an artificial
optical material where concepts analogous to classical wave
propagation in photonic crystals and metamaterials have been
studied on the one-photon level [35].

With the exception of a few works on the one-photon
case [27,29] and our work on the few-photon transport [33], all
of the above calculations have been carried out in the stationary
regime. Specifically, the more challenging few-photon case has
been addressed with sophisticated Bethe-Ansatz [30,31] and
Lehmann-Symanzik-Zimmermann reduction techniques [32]
that allow the determination of the corresponding scattering
matrices. However, as these field-theoretical approaches em-
ploy linearized dispersion relations without band edges, they
do not contain the physics of the photon-atom-bound state
described above.

In this paper, we extend our earlier study of few-photon
transport in low-dimensional waveguiding systems with an
embedded TLS [33] and provide further results regarding
interaction-induced radiation trapping via photon-atom bound
states, the underlying physical mechanisms, and its applica-
tions. To facilitate this, we briefly review in Sec. II the details
of the model and our computational framework. We discuss
the single-particle photon-atom bound states and radiation
trapping for different types of dispersion relations in Secs. III
and IV, respectively. In Sec. V, we provide a detailed analysis
of the underlying nonlinear multiparticle scattering processes,
and in Sec. VI we analyze the redistribution of momenta during
such scattering processes that are constrained by total energy
conservation.

II. FUNDAMENTALS

A. The Model

We start with the foundation for all theoretical consid-
erations in this paper, which is given by the celebrated

Dicke-Hamiltonian [36]. This represents a multimode general-
ization of the well-known Jaynes-Cummings model [37] and,
therefore, constitutes a generic description of fully quantum-
mechanical light-matter interaction in the sense discussed
above. For modeling the interplay of one photonic band with
a single TLS, we write the Hamiltonian in the rotating-wave
approximation as

Ĥ =
∑

k

εk a
†
k ak + �

2
σz +

∑
k

(Vk σ+ ak + V ∗
k σ− a

†
k). (1)

Here, a†
k and ak are bosonic creation and annihilation operators

for photons with wavenumber k, εk denotes the photonic
dispersion relation of the underlying waveguiding system, and
� represents the atomic transition energy. The usual Pauli oper-
ators σz and σ± describe, respectively, the atomic inversion and
the raising/lowering of the atomic state. In general, the atom-
field coupling strength Vk depends on the photonic dispersion,
the atomic dipole matrix element, and the quantization volume.
As we will, in the following, apply certain simplifications to
the Hamiltonian (1), we will from now on also disregard the
explicit momentum-dependence of the coupling constants Vk .
Finally, we restrict our investigations to the case of a single
band of effectively one-dimensional photonic systems. Such
systems frequently occur in experimental settings, notably
in the context of photonic crystal waveguides and supercon-
ducting transmission lines, and their reduced dimensionality
leads to rather strong quantum interference processes. Our
computational framework, which we present below, does
not rely on the above simplifications and can accommodate
several bands, momentum-dependent coupling constants, and
higher-dimensional systems. For instance, an approach based
on photonic Wannier functions [38,39] provides a quantitative
tight-binding-like real-space description [cf., Eqs. (3), (4), and
(5) below]. Nevertheless, the above simplifications allow for a
much more transparent discussion of the relevant physics.

In the context of transport calculations, we find it useful to
work with an equivalent real-space formulation of the problem.
By applying a lattice Fourier transform,

a
†
k = 1√

N

N∑
j=1

eıkjaa
†
j , (2)

the Dicke-Hamiltonian (1) takes the form

Ĥ =
∑
j �=j ′

(Jjj ′ a
†
j aj ′ + H.c.) + �

2
σz

+
∑

j

(Gj σ+ aj + H.c.). (3)

In the above expression, we have introduced the hopping
elements Jjj ′ and the Fourier transform of the atom-field
coupling Gj :

Jjj ′ = 1

N

∑
k

εke
ıka(j−j ′) ≡ Jj−j ′ , (4)

Gj = 1√
N

∑
k

Vke
−ıkaj . (5)
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Furthermore, N denotes the number of modes (number of wave
numbers k) in the momentum-space formulation. This number
is identical to the number of lattice sites in the real-space
formulation. In addition, a stands for the lattice constant so
that the system’s total length is L = Na. Note, the lattice
constant a cannot be confused with the annihilation operators
in real or momentum space, ak and ax , as the latter always
carry an appropriate index. For the above-mentioned simpli-
fication of a momentum-independent coupling Vk = V/

√
N ,

the atom-field coupling becomes local in real space, i.e., we
have Gj = V δx0j , where x0 is the position of the TLS. By
additionally limiting the hopping elements to be nonvanishing
for nearest neighbors only, Jjj ′ = −J (δjj ′+1 + δjj ′−1), and
by applying hard-wall boundary conditions at the ends of
the chain, the Hamiltonian (3) finally takes the form of a
bosonic tight-binding model with a fermionic impurity that
is side-coupled to the lattice site x0:

Ĥ = −J

N−1∑
x=1

(a†
x+1ax + a†

xax+1) + �

2
σz

+V (σ+ax0
+ σ−a†

x0
). (6)

If not explicitly stated otherwise, we will, in the following,
employ the above tight-binding formulation (6), which yields
a cosine-shaped dispersion relation εk = −2J cos(ka) (cf.,
Fig. 1). In order to obtain further insight into the problem,
we provide an equivalent form of the Hamiltonian [Eq. (6)],
which reads

Ĥ = −J

N−1∑
x=1

(a†
xax+1 + a

†
x+1ax) + �b†b + Ub†b(b†b − 1)

+V
(
ax0b

† + a†
x0

b
)
. (7)

Here, we have replaced the atomic operators σz and σ± by
appropriate combinations of bosonic creation and annihilation
operators, b† and b, that belong to an additional bosonic site
with on-site energy � that side-couples (via the coupling
constant V ) to the waveguide. More precisely, we have
replaced the free-atom part of the Hamiltonian according
to (�/2)σz → �b†b + Ub†b(b†b − 1), so that in the limit
U → ∞ the atom can at most absorb one photon. In other
words, sending U → ∞ in Eq. (7) shifts all except the two
lowest-lying levels of the additional bosonic site to infinity

FIG. 1. (Color online) Dispersion relations εk = −2J cos(ka) −
2J2 cos(2ka) for tight-binding models with next-nearest-neighbor
hopping term J2.

so that we can identify the original atomic ground state
with the case of zero bosons on this additional site and the
original excited state of the atom with the case of one boson
on this additional site. States with more than one boson on
this additional site are irrelevant, i.e., we recover a true TLS
description and there is neither a numerical nor a physical
difference between Hamiltonian Eq. (6) and Hamiltonian
Eq. (7).

Nevertheless, from the Hamiltonian Eq. (7) we imme-
diately deduce that the corresponding transport properties
will strongly depend on the particle (or excitation) number
because the term Ub†b(b†b − 1) depends in a nonlinear way
on b†b. In turn, this has the immediate consequence that
few- or many-body eigenfunctions of the system are not just
direct products of corresponding single-particle eigenstates.
Therefore, an analytical treatment of the problem turns out
to be very challenging [30–32]. On the other hand, the form
of the Hamiltonian Eq. (7) immediately suggests that certain
numerical or analytical techniques that have been developed
for correlated electron systems may be adapted to this case.

B. Initial States, Time Evolution, and Observables

In the context of dynamical transport calculations, we
evolve quantum states in time according to

|�(t)〉 = e− ı
h̄
Ĥ ·(t−t0)|�(t0)〉, (8)

where |�(t)〉 stands for the full-state vector of radiation field
plus TLS. The time evolution is carried out using Krylov-
subspace-based operator-exponential techniques [40–42,44].
To this end, it is helpful to note that the (equivalent)
Hamiltonians [Eqs. (6) and (7)] conserve the total number of
excitations so that we can, depending on the initial condition
|�(t0)〉, restrict the simulations to the corresponding sector of
the Hilbert space [27]. As a result, we can evolve Eq. (8) by
means of exact numerics for the case of one or two particles.
As the dimension of the Hilbert space grows rapidly with
the number of particles, we have to employ density-matrix-
renormalization-group methods (DMRG) [43] in the case of
more than two particles. Within the applied time-dependent
DMRG scheme we perform the full time evolution at each
DMRG step [44,45]. The local vector space is restricted to
the total number of photons of the complete system. Note
that one could enhance resolution in energy space by applying
discretization schemes as explained in Ref. [46].

An initial condition in the m-particle sector of the Hilbert
space that contains m photons has the general form

|�(t0)〉 =
N∑

x1=1

. . .

N∑
xm=1

�x1,...,xm
a†

x1
. . . a†

xm
|0, ↓〉, (9)

where |0, ↓〉 denotes the product state of the vacuum state
of the radiation field (no photon on any lattice site) and the
atom being in its ground state (or, equivalently zero bosons
on the additional bosonic site). Due to the bosonic nature
of photons, the many-body wave function �x1,...,xm

has to
be totally symmetric with respect to permutations of the
coordinate variables and, therefore, can be written as

�x1,...,xm
= 1√

m!
Ŝx1,...,xm

ϕ
k

(1)
0 ,x

(1)
c ,s(1)

x1 . . . ϕ
k

(m)
0 ,x

(m)
c ,s(m)

xm
. (10)
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Here, Ŝx1,...,xm
denotes the symmetrization operator that exe-

cutes a sum over all permutations of coordinate variables, and
ϕk(l),x

(l)
c ,s(l)

xj
stands for a single-particle Gaussian wave function

with carrier wavenumber k(l), center x(l)
c , and width s(l). For

more details about simulation issues such as considerations
regarding the finite system size, we refer the reader to our
earlier work [27].

Having the full quantum state |�(t0)〉 of the combined
waveguiding plus TLS system at our disposal, we can define
the relevant physical quantities whose time evolutions we
investigate in the subsequent sections. The transport process
can be monitored in an intuitive way by examining the
expectation values of the real-space occupation numbers

〈nx(t)〉 = 〈�(t)|a†
xax |�(t)〉. (11)

Together with the occupation of the excited atomic level, which
can either be expressed through Pauli or (equivalently) through
bosonic operators,

〈nb(t)〉 = 〈(σz(t) + 1)/2〉 = 〈�(t)|b†b|�(t)〉, (12)

we are able to obtain a nearly complete picture of the scattering
of photon wave packets by the TLS. However, we find that
Fourier transforms of the wave function amplitudes provide
very useful further information by way of time-resolved
momenta distributions. Specifically, for the case of a general
two-photon state,

|�〉 =
N∑

x1=1

N∑
x2=1

�x1,x2a
†
x1

a†
x2

|0, ↓〉 +
N∑

x=1

exa
†
x |0, ↑〉, (13)

the corresponding Fourier-transformed amplitudes for the
atom in the ground and excited states (and correspondingly
two and one photons in the waveguide), �k1,k2 and ek , read as

�k1,k2 = 1√
N2

N∑
x1=1

N∑
x2=1

eı(k1x1+k2x2)�x1,x2 , (14)

ek = 1√
N

N∑
x

eıkxex. (15)

Note that these amplitudes are time-dependent.
Finally, we define the units for the remainder of this work:

We will express length, time, energy, and wavenumber, in
units a (lattice constant), h̄/J , J (the nearest-neighbor hopping
element), and π/a, respectively.

III. PHOTON-ATOM BOUND STATES

Photon-atom bound states, i.e., mixed states of atomic
and photonic excitations, are dressed (polaritonic) eigenstates
of a system with discrete (atomic) levels that is coupled to
a continuum of states (photonic band). This problem has
attracted attention for a long time [24] and manifests itself
in different contexts. For instance, photon-atom bound states
play an important role when describing spontaneous emission
in photonic bandgap media [47,48] or quantum-optical photon
transport [32,33,49]. In this section, we would like (i) to
demonstrate the existence of such bound states in a system

that is described by the Hamiltonian Eq. (6) and (ii) to discuss
their relevance for the photon transport in such systems.

In particular, Zhou et al. [26] have calculated the
single-particle scattering eigenstates for the infinite system.
These scattering states are sufficient to describe single-
particle transport, but they do not form a complete basis of
the single-particle Hilbert space. In order to obtain a complete
basis, bound eigenstates with energies outside the range of the
cosine-band have to be taken into account.

The corresponding eigenvalue problem (Ĥ − E)|�〉 = 0
with a general state

|�〉 =
∑

x

ϕxa
†
x |0, ↓〉 + e|0, ↑〉 (16)

in the single-particle subspace yields two coupled equations
for the probability amplitudes ϕx and e, which can be
combined to

−J (ϕx+1 + ϕx − 1) −
(

E + �

2

)
ϕx + V 2

E − (�/2)
ϕx0δxx0 = 0.

(17)

Upon inserting an appropriate ansatz for bound states,

ϕx ∝ e−κ|x−x0| with Re(κ) > 0, (18)

we obtain the quartic equation

η4 + �

J
η3 +

(
V

J

)2

η2 − �

J
η − 1 = 0 (19)

for the variable η ≡ e−κ .
The polynomial Eq. (19) always has two physical solutions

that satisfy Re(κ) > 0 unless we take the limit J → ∞, which
corresponds to shifting the band edges energetically to ±∞.
In this special case, none of the 4th-order roots of unity, η4 =
1, represents a physical solution. This clearly highlights the
role of band edges and, furthermore, explains why photon-
atom bound states are removed from the physically accessible
Hilbert space for linearized photonic dispersions without cut-
off [25,30,31].

As mentioned above, dispersion relations other than the
cosine dispersion can be included into our framework via
long-range hopping terms that go beyond nearest-neighbor-
hopping terms (see Fig. 1). In terms of the above discussion
regarding the existence of photon-atom bound states, this leads
to higher-order polynomials in η as compared to Eq. (19) so
that analytic solutions become considerably more involved.
Therefore, we demonstrate the existence of photon-atom
bounds states in such systems in the next section with the
help of our numerical approach (see also Refs. [32,47,50,51]
for similar discussions). Clearly, as there is nothing special
about a cosine-shaped dispersion relation, we expect that
such single-particle bound states exist in any one-dimensional
waveguiding system with a band edge or frequency cut-off that
is side-coupled to a TLS. These bound states lead to interesting
physical consequences [33] and in the following sections we
provide further examples and details.

IV. RADIATION TRAPPING

The photon-atom bound states that we have introduced in
the previous section are energetically outside the photonic
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band and, therefore, cannot be accessed by a single particle
with energy in the band, i.e., a photon that propagates in the
waveguide. However, the local U term in the Hamiltonian
Eq. (7) provides scattering processes between all single-
particle eigenstates, including the bound state and, therefore,
provides a physical mechanism for in-band particles to
access the bound states via nonlinear multiparticle scattering
processes.

In Ref. [33], we have determined the optimal parameters
for the excitation of bound states for systems with nearest-
neighbor hopping terms, i.e., for cosine-shaped dispersion
relations. Here, we want to demonstrate that radiation trapping
is a generic effect for systems with a band edge or a frequency
cut-off. In Fig. 1, we display dispersion relations for systems
with nearest- and next-nearest-neighbor hopping terms, where
the strength of the next-nearest-neighbor hopping J2 is varied.
Next, we prepare as an initial condition a two-photon wave
packet with identical photons [identical momenta, centers,
and widths of the single-particle Gaussian wave functions
in Eq. (10)] that is located sufficiently far away from the
TLS, which is in its ground state. In addition, the momenta
are selected such that the single-particle resonance criterion
is satisfied, i.e., that the photon energy equals the atomic
transition energy. Then, we let the wave packet propagate
toward the TLS and investigate the interaction process by
monitoring the TLS’s excited-state population 〈nb(t)〉. In
Fig. 2, we depict the time evolution 〈nb(t)〉 for the dispersion
relations shown in Fig. 1. Once the two-photon wave packet
reaches the TLS, part of the radiation is absorbed by the TLS
and leads to a population of the excited state. In contrast to
a one-photon interaction scenario, where only the scattering
states are relevant for the scattering process [26,27], we
now find the nonlinear scattering processes become effective.
Therefore, bound states do play a role and an excitation of these
bounds states becomes possible. After a certain interaction
time, the photons propagate away from the TLS in the form of
a transmitted and reflected wave packet. However, this implies

FIG. 2. (Color online) Time evolution of the occupation of the
TLS’s excited state 〈nb〉 for an incoming two-photon wave packet
and the dispersion relations depicted in Fig. 1. The parameters
are (see text for details): L = 99a, x0 = 50, V = J , x(1)

c = x(2)
c =

20a, s(1) = s(2) = 8a, k
(1)
0 = k

(2)
0 = π

2a
. The single-particle resonance

condition, ε
k

(i)
0

= �, is fulfilled. Black solid curve: J2 = 0, � = 0.
Blue dashed curve: J2 = 0.2J , � = 0.4J . Green dash-dotted curve:
J2 = 0.4J , � = 0.8J . Note the finite amount of trapped occupation
after scattering.

FIG. 3. (Color online) Cosine dispersion εk = −2J cos(ka)
(black dashed line) in the first Brillouin zone linearized around
k = ± π

2a
(blue solid line). Both dispersion relations exhibit cut-offs

due to upper and lower band edges that are situated at wave numbers
k = ± π

a
and k = 0, respectively.

that the nonlinear scattering processes will become ineffective
so that any excitation of the bound states remains trapped in
this state, i.e., we observe a fractional occupation of the TLS’s
upper level in the long-time limit. Therefore, our results of
radiation trapping in Fig. 2 demonstrate that the existence of
bound states is not restricted to the special form of the cosine
dispersion, which has been analyzed in Eq. (19). Interestingly,
the actual amount of trapped radiation depends quite strongly
on the value of J2, i.e., on the dispersion relation. This suggests
that a tunable dispersion relation allows for a tunable trapping
efficiency.

To further support the above arguments, we display in
Fig. 4 the time evolution of the TLS’s excited state occupation
〈nb(t)〉 for the case of a truncated linear dispersion relation
(k ∈ [−π/a,π/a]) that is constructed by linearizing the
cosine-dispersion around k = ± π

2a
. For k � 0, the resulting

dispersion relation is εk = 2J (k − π
2a

). In this system, too,
we observe radiation trapping that is mediated by nonlinear
scattering processes that lead to a nonvanishing occupation of
single-particle bound states. In addition, this demonstrates that

FIG. 4. (Color online) Time evolution of the occupation of the
TLS’s excited state 〈nb〉 for different incoming two-photon wave
packets and the truncated linear dispersion relation depicted in Fig. 3.
The parameters are (see text for details): L = 199a, x0 = 100, V =
J , x(1)

c = x(2)
c = 70a, s(1) = s(2) = 6a. The single-particle resonance

condition, ε
k

(i)
0

= �, is fulfilled in all cases. Note the finite amount of
trapped occupation after scattering.
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FIG. 5. (Color online) Snapshots of the real-space occupation numbers 〈nx〉 of the waveguide sites when two single-photon pulses are
launched symmetrically from different sides toward the TLS (cf., the red solid curve in Fig. 6 for the occupation of the TLS). The red line
denotes the position of the TLS at x0 = 100a.

linear dispersion relations also lead to single-particle bound
states as long as the band edge (or cut-off) is not moved
to infinity (cf., Sec. III). Note that V = J in Fig. 4 does
not necessarily represent the optimal parameters for radiation
trapping, as is the case for the cosine dispersion [33].

We now return to the case of a single TLS that is embedded
in a waveguide with cosine-shape dispersion relation. In
Fig. 5, we present an alternative route for the excitation of
the single-particle bound states via nonlinear multiparticle
scattering processes. Specifically, we display snapshots of two
single-photon wavepackets that are launched symmetrically
from different sides of a waveguide with cosine-shaped
dispersion and propagate toward the TLS. When the two wave
packets reach the TLS, the quantum interference associated
with their scattering at the TLS is clearly visible. After the
scattering is complete, an exponentially decaying real-space
occupation profile remains around the site of the quantum
impurity—the “photonic part” of the (polaritonic) bound state
(for the corresponding “atomic part” of the bound state see
the red solid curve in Fig. 6). This photon-atom bound state is
stable in the long-time limit because it is a true eigenstate of
the system (cf., Sec. III).

Very interestingly, by changing the relative initial separa-
tions of the pulses with respect to the TLS’s position, we obtain
a certain degree of control over the amount of trapped radiation
as displayed in Fig. 6 (reproduced from Ref. [33]).

In this context, it is instructive to examine the case when one
of the two photons is detuned from the atomic resonance. In
this case, we launch both photons from the same position and
with identical shapes of their wave packets toward the TLS.
However, the two wave packets have different momenta and
only one fulfills the resonance condition � = εk=3π/4a = √

2
(see Fig. 7).

This multicolor setup constitutes another way of controlling
the amount of trapped radiation. Increasing values of the
momentum difference result in an increasing difference in
the arrival times of both pulses at the TLS’s site due
to an increasing group velocity mismatch (recall that we
operate with a cosine-shaped dispersion relation). Both effects,
detuning and delay, contribute to a lowering of the trapping
efficiency relative to the case of two identical photons—and
they are clearly not independent: Even if we prepare the initial
conditions such that we have a simultaneous arrival of both
photons, the different group velocities would still lead to
a modified interaction time relative to the case of identical
photons. In order to eliminate the effect of pulse delay due

FIG. 6. (Color online) Time evolution of the TLS’s excited state
occupation 〈nb〉 for a setup where two single-photon wave packets
are launched with different initial positions relative to the TLS. The
parameters are: L = 199a, x0 = 100a, V = J , � = √

2J , s(1) =
s(2) = 7a, k

(1)
0 = −k

(2)
0 = 3π/4a, x(1)

c = 50a. The initial position
x(2)

c = 150a + �x of the second single-photon wave packet is varied.
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FIG. 7. (Color online) Time evolution of the TLS’s excited state
occupation 〈nb〉 for the interaction with two distinct photons, where
only one fulfills the resonance condition prescribed to the cosine-
shape dispersion and the other is energetically detuned from the TLS’s
transition energy �. The parameters are: L = 199a, x0 = 100a, V =
J , � = √

2J , s(1) = s(2) = 7a, x(1)
c = x(2)

c = 50a, k(1)
0 = 3π/4a. The

wave number of the detuned photon, k
(2)
0 = k

(1)
0 − �k , is varied by

an amount h̄�k relative to the resonant photon. For �k = 0.159 π

a
,

the detuned photon exhibits a detuning of 0.85J with respect to the
atomic resonance.

to dispersion, we present analogous results for the case of a
linearized dispersion relation (cf., Fig. 3) in Fig. 8.

As a result of the above analysis, we can provide the
following physical picture: The existence of single-particle
bound states and nonlinear multiparticle scattering processes
that result in radiation trapping is a generic feature of a
quantum system with discrete levels (for instance, two-level
atom or other TLSs), which is coupled to a dispersion relation
with a finite bandwidth (band). This can be understood as
follows: Once the quantum system is appreciably excited
by one of the two (or more) incoming photons, the re-
maining photons see a saturated and, therefore, modified
quantum system and are thus partially scattered into the
hitherto unreachable bound states via nonlinear multiparticle
scattering processes. At this point, we want to also recall
that within the formulation of the problem via Hamiltonian

FIG. 8. (Color online) Time evolution of the TLS’s excited state
occupation 〈nb〉 for the interaction with two distinct photons analo-
gous to Fig. 7 but for the linearized dispersion relation (cf. Fig. 3). Pa-
rameters: L = 199a, x0 = 100a, V = J , � = 2J (k0 − π/2a), s(1) =
s(2) = 6a, x(1)

c = x(2)
c = 50a, k

(1)
0 = k0 = 0.89π/a, k

(2)
0 = k

(1)
0 − �k .

For �k = 0.15π/a, the detuned photon exhibits a detuning of 0.94J

with respect to the atomic resonance.

Eq. (7), the limit U → ∞ represents a “strongly correlated”’
system in the language of condensed-matter physics. After
the scattering is complete, the photon-atom bound states are
again decoupled from the continuum and, thus, cannot decay.
As these single-particle bound states are of a polaritonic
nature, this implies that a fraction of the radiation remains
trapped at the quantum system’s position and manifests itself
in a fractional occupation of the quantum system’s excited
level(s).

V. MULTIPARTICLE SCATTERING PROCESSES AND
MULTIPLE ATOMIC OCCUPANCIES

Having established the existence and utility of the photon-
atom bound state, we turn to a detailed examination of the
nonlinear multiparticle scattering processes. This is most
easily facilitated by considering the Hamiltonian Eq. (7) and
examining the role of the nonlinear on-site interaction term
U . At this point, we would like to note that all subsequent
computations that involve more than two particles have been
carried out with a DMRG approach [43,44].

In a first step, we investigate the role of finite values of U

for the scattering of a two-photon wave packet of identical
photons. In Fig. 9, we display the time evolution of the
atomic excitation 〈nb〉 for the scattering of a two-photon wave
packet of identical photons for different values of U . This
provides a clear demonstration of the role of the nonlinear
scattering mechanism induced by the U term: Whereas for
U = 0 radiation trapping is impossible, increasing values of U

lead to an increased trapping efficiency and the limit U → ∞
finally allows for the most efficient trapping.

In the case of U = 0, the Hamiltonian Eq. (7) does not
contain any nonlinear dependence on the particle number. As
a result, it describes an effective single-particle problem so
that many-body solutions can be written as direct products
of single-particle solutions. In turn, this explains why the
photon-atom bound state is inaccessible in this special situation
where the atom can absorb infinitely many photons. A single
photon with energy in the band is energetically prohibited from
reaching a bound state so that the same holds also for direct
product states. To further support this statement, we compute
the time evolution of the atomic occupation for the scattering

FIG. 9. (Color online) Time evolution of the impurity occupation
〈nb〉 for different values of the on-site repulsion U . Parameters: L =
99a, x0 = 50a, V = J , � = √

2J , s(1) = s(2) = 6a, x(1)
c = x(2)

c =
16a, k

(1)
0 = k

(1)
0 = 3π/4a.
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FIG. 10. (Color online) Time evolution of the atomic occupation
〈nb〉 for few-photon wave packets of identical photons with different
photon numbers C and vanishing on-site interaction U = 0. The
parameters are: L = 99a, x

(i)
0 = 50a, V = J , � = √

2J , s(i) = 5a,
x(i)

c = 25a, k(i)
0 = 3π/4a, i = 1, . . . ,C. The single-particle resonance

condition is fulfilled.

of multiphoton wave packets that contain up to four photons
and display the results in Fig. 10. Apparently, also for this
case, radiation trapping is absent. Finally, we want to mention
that this special case of U = 0 corresponds to the (admittedly
unphysical) case of an atom with infinitely many degenerate
excited levels.

However, we may employ a modification of the Hamilto-
nian Eq. (7) such that double occupancy of the atomic site
is allowed but triple occupancy is strictly forbidden. This
modification corresponds to a three-level atom with doubly
degenerate excited levels. It is realized by replacing the U

term in the Hamiltonian Eq. (7) by

Ub†b(b†b − 1)(b†b − 2), (20)

and taking the limit U → ∞. Based on our above analysis, we
expect that a radiation trapping effect is realized only for three
or more photons, C � 3. In Fig. 11, we provide the results of
corresponding computations for different numbers of photons.

These computations confirm our expectations and thus fur-
ther support our interpretation regarding the role of nonlinear

FIG. 11. (Color online) Occupation of the atom’s excited level
as a function of time in a situation where photon wave packets
with different photon numbers C interact with an atom that exhibits
a doubly degenerate upper level (cf., Fig. 10 for the relevant
parameters).

FIG. 12. (Color online) Occupation of the atom’s excited level
as a function of time in a situation where photon wave packets
with different photon numbers C interact with an atom that exhibits
a threefold degenerate upper level (cf., Fig. 10 for the relevant
parameters).

multiparticle scattering processes. Consequently, if we replace
the U term in the Hamiltonian Eq. (7) by

Ub†b(b†b − 1)(b†b − 2)(b†b − 3), (21)

we realize (again in the limit U → ∞) a four-level system
with a threefold degenerate upper level. We depict the results
for this situation in Fig. 12 and find that radiation trapping
occurs only for photon numbers C � 4 as expected.

The above findings may be compressed into the statement
that a saturable absorber is required to allow for nonlinear
multiparticle scattering processes with which photon-atom
bound states can be reached energetically.

VI. MOMENTUM DISTRIBUTION

As a final element of our analysis, we consider a situation
where two photons with different momenta scatter at the TLS
with parameters such that the excitation of the bound states
is inefficient. Specifically, we choose the coupling V = 0.8J ,
the atomic transition energy � = 0.1J , and the photon wave
numbers as k

(1)
0 = π/2a and k

(2)
0 = 3π/4a. The corresponding

single-particle energies in the cosine band, επ/2a = 0 and
ε3π/4a = √

2J , are, therefore, detuned with respect to the
atomic transition. Nevertheless, both photons interact with the
atom, which results in a redistribution of the corresponding
momenta. We monitor this process with the help of the
Fourier transformed amplitudes of the two-photon state vector,
Eqs. (14) and (15). In Fig. 13, we display the momentum
distribution that corresponds to the part of the full two-photon
state vector where the atom is in its ground state. In Fig. 14, we
provide the momentum distribution for the atom being in its
excited state and one remaining propagating photon. In order
to understand the scattering process, both distributions have to
be monitored at the same time.

Initially, i.e., before the photons reach the TLS (t =
0 and t = 21.25h̄/J ), the distribution in Fig. 13 exhibits
peaks around the initial wavenumbers according to the initial
condition. By the same token, Fig. 14 displays a nil result.
In principle, both wave packets would disperse due to the
cosine-shaped dispersion relation. However, for the given
parameters, this spread is hardly visible while the photons
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FIG. 13. (Color online) Snapshots of the momentum distribution |�k1,k2 |2 (in arbitrary units) corresponding to the atom being in its ground
state and two propagating photons [cf. Eq. (14)]. Parameters: L = 199a, x0 = 50a, V = 0.8J , � = 0.1J , s(1) = s(2) = 9a, x(1)

c = x(2)
c = 35a,

k
(1)
0 = π/2a, k

(2)
0 = 3π/4a. The distributions are boson-symmetric with respect to interchanging the wavenumbers k1 and k2 at all times (times

are given in units of h̄/J ).

propagate toward the TLS (t = 21.25h̄/J in Fig. 13). When
the photons approach the impurity (t = 28.75h̄/J ), the effect
of the different group velocities becomes apparent: The

π
2a

-photon arrives first and is less detuned from the TLS
than the 3π

4a
-photon. Thus, it is partly absorbed by the atom.

As a result, the momentum distribution for the atom being

FIG. 14. Snapshots of the momentum distribution |ek|2 (in arbitrary units) corresponding to the atom being in its excited state and one
remaining propagating photon [cf. Eq. (15)]. (Note the differing scale of the y axis at time t = 37.5h̄/J .)
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in its ground state is distorted (see t = 28.75h̄/J and t =
37.5h̄/J in Fig. 13) and the corresponding distribution of
the remaining single photon exhibits contributions around
wavenumbers of 3π

4a
(see t = 28.75h̄/J and t = 37.5h̄/J in

Fig. 14). This demonstrates that it is really the π
2a

-photon that
is absorbed and, therefore, the slower 3π

4a
-photon continues

to propagate. However, together with the re-emission in
forward and backward direction of the (partly) absorbed
π
2a

-photon (t = 37.5h̄/J ), the slow 3π
4a

-photon finally reaches
the atom (t = 47.5h̄/J ), where it is partly absorbed, too. This
results in an additional peak of the single-particle momentum
distribution |ek|2 around the wavenumber π

2a
, which now

corresponds to the 3π
4a

-photon being absorbed with a remaining
π
2a

-photon in the waveguide. As the single-particle energy of
the 3π

4a
-photon is more detuned from the atomic resonance �,

this fraction of absorbed radiation is smaller as compared to
the π

2a
-photon (cf., the heights of the peaks at t = 28.75h̄/J

and t = 47.5h̄/J in Fig. 14). In addition, at t = 47.5h̄/J , we
can also identify the contribution of the re-emitted π

2a
-photon

around the wavenumber −π/2a, which corresponds to the
reflected part. After scattering is complete (t = 71.25h̄/J ),
the atom is in its ground state again so that |ek|2 vanishes
altogether (recall that we have selected the parameters such
that no excitation of bound states occurs).

After scattering, |�k1,k2 |2 exhibits a pattern that corresponds
to a final-state vector, which is a superposition of both photons
being transmitted, both being reflected, and one photon being
transmitted and the other one being reflected. As the shape
of the forward propagating parts does not resemble the initial
distribution, scattering at the impurity causes a distortion of
the initial pulses and, therefore, a nontrivial redistribution of
momenta under the constraint of total energy conservation
occurs.

VII. CONCLUSION AND OUTLOOK

In conclusion, we have analyzed in detail the role of
photon-atom bound states that result when a quantum impurity
with two levels is coupled to a low-dimensional waveguiding
system. We have demonstrated that these bound states exist
whenever the corresponding waveguide dispersions exhibit
band edges or cut-offs. These states do not contribute to
single-particle scattering scenarios. However, we have shown
that when the quantum impurity exhibits a bounded excitation

spectrum, it represents a saturable absorber that induces
nonlinear multiparticle scattering processes. These processes
provide access to the photon-atom bound states. Based on
this, we have further shown that these bound states may exert
a considerable influence on the photon transport properties.
In particular, we have found that it becomes possible to trap
radiation at the site of the quantum impurity. Finally, we
have demonstrated that the corresponding trapping efficiency
can be controlled in a number of ways. This opens up the
possibility for realizing novel quantum optical functional
elements. For instance, it could be interesting to exploit the
tunable dispersion relations for microwave photons that may be
realized by superconducting transmission lines with variable
bias currents. In these systems, quantum impurities with tun-
able couplings can be implemented through superconducting
qubits. Also, more complex devices such as four-port devices
where two transmission lines are coupled by one or several
qubits can be implemented. In the optical domain, recent
progress regarding the controlled integration of nanodiamonds
into fibers [52] suggests that more complex fiber networks are
feasible, where nitrogen-vacancy centers in judiciously placed
diamonds realize quantum impurities at room temperatures in
the sense discussed above.

Furthermore, our results are also of direct relevance
for the investigation of so-called Jaynes-Cummings-Hubbard
systems, where photons propagate in arrays of coupled cavities
where each cavity contains a single TLS. To date, only single-
photon transport properties have been studied in such systems
[35], and we expect that the photon-atom bound states will
lead to considerably different few-photon transport properties
and entire quantum simulators may become possible.

Finally, our approach to describe the photon transport
can be extended to obtain photon-photon correlations in
a similar way as the shot-noise simulations provided in
Refs. [53,54].
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