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Abstract: Buildings are important entity objects of cities, and the classification of building shapes
plays an indispensable role in the cognition and planning of the urban structure. In recent years,
some deep learning methods have been proposed for recognizing the shapes of building footprints in
modern electronic maps. Furthermore, their performance depends on enough labeled samples for
each class of building footprints. However, it is impractical to label enough samples for each type
of building footprint shapes. Therefore, the deep learning methods using few labeled samples are
more preferable to recognize and classify the building footprint shapes. In this paper, we propose a
relation network based method for the recognization of building footprint shapes with few labeled
samples. Relation network, composed of embedding module and relation module, is a metric based
few-shot method which aims to learn a generalized metric function and predict the types of the
new samples according to their relation with the prototypes of these few labeled samples. To better
extract the shape features of the building footprints in the form of vector polygons, we have taken
the TriangleConv embedding module to act as the embedding module of the relation network. We
validate the effectiveness of our method based on a building footprint dataset with 10 typical shapes
and compare it with three classical few-shot learning methods in accuracy. The results show that our
method performs better for the classification of building footprint shapes with few labeled samples.
For example, the accuracy reached 89.40% for the 2-way 5-shot classification task where there are
only two classes of samples in the task and five labeled samples for each class.

Keywords: few-shot learning; vector maps; relation network; building footprint shape recognization;
TriangleConv

1. Introduction

The recognization of urban structure is important for cartographic generalization
and urban modeling [1]. As a key component of the city, buildings often determine the
structure and the form of the city [2]. Therefore, it is significant for studying the building
characteristics, which has well promoted the development of multi-scale representations
and been applied in urban planning, landscape analyses, and other fields [3].

When exploring the characteristics of entity objects in the field of GIS, one focus is the
spatial attributes, such as location, shape, and relativity. Among these spatial attributes,
shape is probably the most important attribute that objects can be perceived [4]. To some
extent, shape can reflect the relationship between entity and history. For the buildings in
the city, the shape of building in a certain period can reflect the cultural characteristics of
the corresponding period [5]. Therefore, through the recognization and classification of
building shapes, we can better recognize and plan the urban structure.
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In modern electronic maps, entity objects like building footprints are often stored as
vector data, and their shapes are defined as patterns formed by polygons. Many methods
have been proposed by researchers from different perspectives to recognize the shape of
vector objects. Traditional methods are based on geometric and statistical metrics, such
as the curvature [6], the compactness [7], and the triangular centroid distances (TCDs) [8].
More recently, Fu et al. [9] proposed a moment-based method to measure shape similarity,
while Fan et al. [10] proposed a method based on multiscale features and grid context
descriptors to solve the shape recognition problem. These methods are intuitive but
tend to ignore the fact that shapes are complex and cognitively relevant [11]. In order to
extract deeper shape features of vector objects, researchers recently have proposed some
methods based on deep learning, such as graph convolutional neural network [12], graph
convolutional autoencoder [11], and deep point convolutional network [13].

In the past few years, deep learning methods, particularly supervised deep learning
methods, have achieved excellent results in several fields such as computer vision [14–16]
and geoscience [17–20]. These methods often require a large number of labeled samples
for training the neural network models. However, for some tasks in practice, it is costly
or impossible to obtain enough labeled samples. This severely limits the scalability and
applicability of these methods [21].

Few-shot learning proposes a series of solutions to the above problem encountered by
traditional deep learning methods. Its purpose is to let machine learning models recognize
a new object like humans which can learn a new object with few samples [22,23]. Cur-
rently, the research of few-shot learning is carried out from several different perspectives,
such as metric-based learning methods [21,24,25] and parameter optimization-based meth-
ods [26–28]. Most few-shot learning methods draw on the meta-learning strategy whose
purpose is to train a model with a large number of tasks and generalize it to a new task.
It usually constructs a lot of meta tasks with an available dataset and divides the whole
learning process into two phases: meta training and meta testing. In meta training, the
model is generalized under different classes by different meta tasks so that it can recognize
and classify new classes of the new task in meta testing [29–31].

In maps, there is a wide variety of building footprints whose shapes are diverse. It
would be costly or even impossible to label a large number of samples for each building foot-
print shape. For example, in the study by Yan et al. [11], only ten kinds of building footprint
shapes were labeled based on the similarity between building footprints and alphabets.
Moreover, for some building footprints, for example, the newly emerging building foot-
prints, it is impracticable to obtain lots of samples which have the same shapes. Therefore,
it is valuable for the few-shot methods which can achieve recognization and classification
of building footprint shapes when there are only few labeled samples available.

In this paper, we propose a relation network based few-shot method for the clas-
sification of building footprint shapes. Relation network, composed of the embedding
module and the relation module, is a metric based few-shot method which aims to learn a
generalized relation metric function and predict the types of the new samples according to
their relation with the prototypes of these few labeled samples [21]. It uses the embedding
module to obtain the features of the samples and computes the relations between the
features and the prototypes of these few labeled samples by relation module. Considering
that the building footprints are in the form of vector polygons, we take the TriangleConv
convolutional module proposed in our previous work [13] as the embedding module of
relation network to better extract the shape features of building footprints. Our experi-
ments demonstrate that the proposed method is better than the classical few-shot learning
methods in solving the problem of recognizing and classifying building footprint shapes
with few labeled samples.

The remainder of this paper is organized as follows. Section 2 presents in more detail
the work related to the recognization and classification of shapes of vector polygons like
building footprints and the work related to few-shot learning. Section 3 gives the problem
statement of this paper and describes the details of the proposed relation network based
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method. Section 4 reports the experimental data, data pre-processing operations, and the
analysis of the experimental results. In Section 5, we conclude our work.

2. Relate Work
2.1. Building Footprint Shapes Recognization in Maps

In maps, building footprints are important geographical objects, which are widely
distributed in large and medium-sized maps [32,33]. Furthermore, the shape is an in-
dispensable geometric property of geographical objects, which effectively facilitates the
recognization of these objects [34,35]. In the past decades, the study on the shape of vector
geographic objects such as building footprints in maps can be divided into two phases: one
based on geometric and statistical metrics, and the other based on deep learning.

Methods based on geometric and statistical metrics are easy to understand, and most
of them focus on the region or boundary of the objects [11]. Region-based methods select
metrics usually in terms of the object as a whole. For example, Li et al. proposed a method
to compute shape compactness based on the moment of inertia [7], and Basaraner and
Cetinkaya presented Equivalent Rectangular index and Roughness index to help describe
the shape [36]. The boundary methods fit shapes to some descriptors to better investigate
the shapes. For example, Belongie et al. presented shape contexts to measure similarity
between shapes [37]. Alajlan et al. [38] proposed a shape retrieval method using triangle-
area representation, and Yang et al. [8] proposed triangular centroid distances to solve the
partial shape matching problem.

While methods based on geometric and statistical metrics often fail to capture deeper
shape features, deep learning methods have proven their ability to extract the deep feature
information of objects. Since geographic vector objects are non-Euclidean, the usual deep
learning methods applied to Euclidean data such as images are not well suited to geographic
vector objects [11]. In recent years, with the rise of the concept of graph convolution,
Yan et al. used graph Fourier transform and the convolution theorem to extract the shape
features of building groups [12] and used the graph neural network of the spectral domain
to construct a graph convolutional autoencoder (GCAE) model to extract the shape features
of the building footprints [11]. In our previous work [13], a deep point convolutional
network has also been proposed for building footprint shape recognization by using a
TriangleConv operator during convolution. Although these methods can extract the shape
features of vector objects, the results of these methods are supported by a large number
of training samples, and the performance of these methods will be severely limited when
there are only few labeled samples available.

2.2. Few-Shot Learning

After years of development, supervised deep learning methods that use a large amount
of labeled data as support for a particular application have gained widespread attention
due to their excellent performance [39–41]. However, these methods are severely limited in
their effectiveness when solving tasks with few labeled samples [22].

Few-shot learning is a kind of machine learning problem that can acquire prior knowl-
edge from a large number of supervised samples and then use the knowledge to gen-
eralize to new tasks which contain only few supervised samples [22,23]. Earlier work
on few-shot learning was typically implemented based on complex iterative inference
strategies [42,43]. With the popularity of deep learning, few-shot learning methods based
on deep learning have gradually increased. Most methods use meta-learning (learning
to learn) strategy [21,25,28], where prior knowledge gained from specific tasks is used to
guide the learning of new tasks so that the network can quickly fit the new tasks.

Depending on the way to solve the problem, few-shot learning methods can be
classified into four classes: data augmentation-based methods, metric-based methods,
optimization-based methods, and semantic-based methods. The key to data augmentation
methods is to generate more samples based on few labeled samples to provide richer prior
knowledge for the model. This technique is commonly used in the field of image pro-
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cessing, and common data augmentation techniques include scaling, rotation, etc. [44,45].
Optimization-based methods introduce optimizers such as memory augmented networks
and long short-term memory into the training to help the model achieve excellent results
on new tasks [26,27]. Metric-based methods use methods such as convolutional neural net-
works to transform the data into the corresponding embedding representation and then use
some metric methods to achieve comparison and clustering of the embedding representa-
tion [21,24,25]. Semantic-based methods are more often applied to solve zero-shot learning,
which is a special case of few-shot learning. Semantic-based methods add additional
semantic information to the data, and the information can help the model to acquire more
prior knowledge and thus perform new tasks better [46,47]. This paper follows the relation
network which is a kind of metric based method [21] to achieve few-shot building footprint
shape recognization. Furthermore, considering the characteristics of the vector building
footprints, we use the TriangleConv module to replace the 2D convolutional module in our
method to better obtain the embedding representation of building footprint shapes.

3. Methodology

In this section, we state the problem of the few-shot building footprint shape classifi-
cation in maps, present the network and the training strategy of the proposed method, and
describe how to apply the proposed method in practice.

3.1. Problem Statement

Existing deep learning methods for the recognization and classification of building
footprint shapes often require a large number of supervised training samples. However,
there is a large variety of building footprint shapes, and it is costly to mark a large number
of training samples for each building footprint shape. In this case, the few-shot building
footprint shape classification problem is about whether we can recognize the specific
shapes of lots of unlabeled building footprints with only a small number of labeled samples.
Following the few-shot learning, the set of few labeled samples is called the support set
Dsupp, and the set of unlabeled building footprints is called the query set Dquery. If the
support set contains C classes and each class contains K labeled samples, such few-shot
problem is called C-way K-shot problem.

To predict the shapes of these building footprints in Dquery by using these labeled
samples in Dsupp, the intuitive method is to label the building footprints in Dquery according
to their similarity with the samples in Dsupp. In this way, the key is the metric that estimates
the similarity between the samples in Dquery and Dsupp. Besides these simple metrics such
as the Cosine similarity and the Euclidean distance, it is preferable to learn a more suitable
metric from labeled samples with deep learning techniques. Given the small number of
labeled samples in the support set, obviously, it is difficult to learn a metric for that purpose.
In light of that, current few-shot learning methods usually resort to available datasets
which have lots of labeled samples that often belong to the different classes compared with
the samples in Dsupp and aim to learn a generalized metric which can be further fine-tuned
using the samples in Dsupp and Dquery. Such datasets are often called the base dataset Dbase.
In comparison, the dataset in the current task, i.e., the dataset consisting of the support
set Dsupp and the query set Dquery, is called the novel dataset Dnovel . The base dataset Dbase
provides the metric with some transferable prior knowledge and allows it to be sufficiently
generalizable. In general, the classes in Dnovel and Dbase have little or no intersection.

3.2. The Model

To address the few-shot building footprint shape classification problem, this paper
proposes a relation network based method by following the metric-based method. As can
be seen in Figure 1, the relation network model used in this paper consists of two modules:
embedding module and relation module. The two modules are two different networks.
The embedding module is to embed the input samples and obtain their deep features. The
relation module learns a relation metric that measures the similarity between the feature
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of samples in the query set and the prototypes of each class of samples in the support
set. Based on our previous work on building footprint shape classification, we adopt the
TriangleConv embedding module to act as the embedding module of the relation network
to map the input building footprints into the shape features.

The inputs to our relation network model are the preprocessed vector building foot-
print data in the form of closed polygons without any internal holes. That is, each build-
ing footprint input to the network is essentially an ordered set of vertices of polygon
{vi|i = 1, 2, · · · , n}, each vertex in the set can be represented as vi = (xi, yi), and all the
building footprints input have the same number of vertices. With the TriangleConv em-
bedding module in our method, the features of the samples of each class in the support set
Dsupp are generated and the prototypes of each class are obtained. For the C-way K-shot
problem, there are C classes in the support set and each class has K samples. After obtaining
the embedding feature FS c,j of the j-th sample Sc,j of class c, the prototype of class c is
calculated as follows:

Pc =
1
K

K

∑
0
FS c,j (1)

For the unlabeled sample in the query set Dquery, once its embedding feature is obtained
through the TriangleConv embedding module, the embedding feature is concatenated
together with the prototype Pc of class c and input to the relation module to compute the
relation score between the sample and class c. Thus, the output of the proposed method is
the relation scores which indicate the possibility that the samples in the query set belong
to the classes in the support set. The label of the sample in Dquery is predicted by the class
with the highest relation score.

Relation module Relation 
score

TriangleConv embedding module

···

pi+1

pi-1

pi

e1

e2e3

TriangleConv Block Maxpooling

Support set

Query set

ve1

ve2

ve3

vpi

·  ·  · 

·  ·  · 

·  ·  · 

·  ·  · 

Figure 1. The framework of our relation network model which is mainly composed of the Triangle-
Conv embedding module and the relation module.

3.2.1. TriangleConv Embedding Module

For the choice of embedding module, most existing few-shot learning methods use
multiple 2D convolutional blocks to form the embedding module [21,25,29]. Considering
that the building footprints are often represented in the form of non-Euclidean vector data
which do not have a regular structure, we adopt the TriangleConv module presented in
our previous work [13] to embed the building footprints and extract their shape features.

The TriangleConv module uses a new convolution block named TriangleConv to
perform convolution on the vertices of the vector building footprints. In deep learning,
the convolution operation can be viewed as an aggregation of the features of a point and
its neighbor points in the receptive field. Accordingly, the TriangleConv operator was
to aggregate the features of a vertex and its two adjacency vertexes to generate the new
features of the vertex. Thus, the local shape features around the vertices can be learned by
applying the TriangleConv block.

As shown in Figure 1, Pi−1 and Pi+1 are the two vertices adjacent to Pi in the triangle
region corresponding to Pi. With the coordinates of these vertexes, the TriangleConv block
first generates four kinds of feature information Vpi ,Ve1 , Ve2 and Ve3 . Vpi is the coordinate
value of Pi. Ve1 , Ve2 and Ve3 correspond to the difference between the coordinates of Pi
and Pi−1, Pi and Pi+1, Pi−1 and Pi+1, respectively. After concatenating them together, the
multilayer perceptron(MLP) is used to map the features into higher dimensional space.
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There are two TriangleConv blocks within the TriangleConv embedding module. They map
the features of each vertex to higher dimensional representations. Finally, the max-pooling
is used to aggregate the feature information of each vertex to generate the shape feature of
the input building footprints.

3.2.2. Relation Module

The entire relation module can be expressed as Formula (2). After obtaining the
prototypes Pc of each class in Dsupp and the embedding features FQ j of each sample Qj
in Dquery, the relational module will produce a total of C ∗ N results in the case that there
are C way and N samples in Dquery. Each result represents the relation score indicating the
similarity between the c-th prototype Pc and the embedding feature FQ j of j-th sample Qj.
The value is between 0 and 1. The larger the value, the higher the similarity between the
prototype classc and Qj. The j-th building footprint will be labeled as the shape of the class
with the highest relation score.

Scorec,j = R
(
Pc,FQ j

)
(2)

The relation module consists of two 1D convolutional blocks and two fully connected
layers. Each 1D convolutional block contains a 1D-Conv, a 1D BatchNorm, a LeakyReLU
activation function, and a MaxPool1d. The two fully-connected layers are 8 and 1 dimen-
sions, respectively. The Sigmoid function is used as the activation function in the output
layer. Furthermore, the mean square error (MSE) loss defined in the Formula (3) is taken as
the loss function where yi is the real data, ŷi is the fitted data, and wi > 0.

MSE =
1
n

m

∑
i=1

wi(yi − ŷi)
2 (3)

3.3. Training Strategy

To train the model for the building footprint shape classification, we adopt the episode
based meta-learning training strategy which is used in many classical few-shot learning
methods [21,25]. An example is illustrated in Figure 2.

Different from traditional deep learning which trains models by iterating over super-
vised samples, the meta-learning strategy typically uses the tasks as training examples.
After the model has been trained to adapt well to a large number of different tasks, it can
also adapt well when processing new tasks. For this purpose, the meta-learning training
strategy adopts the episode based training process which consists of a lot of episodes. In
each episode, there is a task consisting of a support set and a query set. The model is trained
by using the support set and validated and updated by using the query set. Particularly,
the entire episode based training process is separated into two phases: the meta-training
phase and the meta-testing phase. In the meta-training phase, a lot of training tasks are
constructed by using the base dataset Dbase to train the model. In the meta-testing phase,
the classification performance of the trained model for new tasks constructed from novel
dataset Dnovel is evaluated. To ensure the generalization ability of the model to be trained,
both the training tasks and the new tasks are sampled based on the same distribution from
the datasets. That is, both the support set and the query set of the training task have the
same number of classes and each class has the same number of samples as that in the
new task.

As shown in Figure 2, each green box in meta training and each orange box in meta
testing all represent an episode. In each episode, we randomly draw a fixed size of building
footprint data from the dataset to form the task for the episode. In detail, taking the meta-
training task as an example, we randomly select C classes of building footprint data from
the meta-training dataset, each class contains K + Q = M samples, where C ∗ K building
footprint samples form the support set and the remaining C ∗Q samples form the query
set. After obtaining the relation scores indicating the probability that each sample in the
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query set belongs to the classes in the support set, we select the class with the highest
relation score as the label of the sample and use Formula (3) to calculate the loss function
and update the model.

Figure 2. An example of meta-learning episode based training strategy. There are 3 way 1 shot
samples in one task which has been used in our work.

3.4. The Classification of Building Footprint Shapes under Few-Shot Setting

When applying our method trained for the classification of the shapes of a set of
unlabeled building foorprints which was not be seen in training phase, it is required that
there should be more than C classes and more than K building footprint samples per class.
Among them, at least K building footprint samples per class should be labeled. Such set of
building footprint samples forms the novel dataset Dnovel which we have described in the
problem statement.

Given the novel dataset Dnovel , a set of tasks can be constructed by sampling C classes
and K + Q building footprint samples per class from the dataset where the K samples per
class are the labeled samples. Like that in the meta-testing phase shown in Figure 2, the
C ∗ (K + Q) samples of a task are input into the trained model in one episode. First, the
shape features of these building footprint samples are extracted by the embedding module.
Then, the prototypes of each class of the task are obtained by averaging the features of
these labeled samples of each class. After that, the features of each unlabeled sample are
concatenated with these prototypes, and the concatenations are input into the relation
module to obtain the relation scores indicating the probabilities that the unlabeled samples
belong to the shape classes. Finally, the shape class of each unlabeled sample is predicted
as that with the highest relation score. The prediction accuracy can be calculated for each
task, and the average accuracy can be taken as the result when there are more than one task
constructed from the dataset Dnovel .
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4. Experiments

In this section, we describe the experiments that we have taken to validate the pro-
posed method. We first describe the dataset, the data pre-processing operations, and the
parameter settings used in our experiments. Then we provided details and the results of
the evaluations.

4.1. Dataset and Preprocessing

We constructed our experimental dataset using the data in [11]. The data were collected
from OpenStreetMap. There are 10 classes of building footprints in the dataset, and each
class contains 501 building footprints. To ensure that the data are broadly representative,
they are selected from areas with different geographical characteristics, such as urban,
rural, etc. Since the building footprint shapes are generally similar to the English alphabet
and using letter shapes to label building footprints enhances recognition [3], the building
footprints are labeled as 10 typical English alphabets, such as U-Shape, H-Shape, and F-
Shape. The labels for all data were manually tagged by three people with map knowledge,
and for disputed data, the shapes were determined jointly by three people. The shapes of
the building footprints in the dataset are essentially closed polygons, and there are no holes
in the interior of the polygons. Some raw data samples of 10 building footprint shapes are
shown in Figure 3.

Similar to the few-shot learning methods in image processing, we need to preprocess
the individual building footprint data to ensure that all data fed into the relation network
have the same number of vertices and are normalized. So some preprocessing methods
used in [11] are adopted for our work. We use the Douglas–Peucker method [48] with a
conservative and empirical threshold of 0.1 m to simplify the original data, then perform
the spaced interpolation on the simplified data to unify the number of vertexes of different
vector objects. Furthermore, we use the Z-score method to normalize the data.

E  

Buildings

F  

Buildings

H  

Buildings

I  

Buildings

L  

Buildings

O  

Buildings

T  

Buildings

U  

Buildings

Y  

Buildings

Z  

Buildings

 Building
Classes

Building
Classes

 Sample
1

Sample
2

Sample
3

 Sample
1

Sample
2

Sample
3

Figure 3. Raw data examples of 10 different classes of building footprints in the experiment.

4.2. Experimental Settings

The programming language used for the experiments is Python in version 3.6, and
our relation network is implemented by using the deep learning framework Pytorch [49],
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version 1.6.0. The main hardware used for the experiments is 64G RAM, Intel Core I9-9900K,
and NVIDIA GeForce RTX 2080Ti with CUDA version 10.2.

Given the limited classes of our datasets and the general setup of few-shot learning
experiments, we conducted 9 sets of evaluation experiments. They are the 2-way 1-shot
experiment, the 2-way 3-shot experiment, the 2-way 5-shot experiment, the 3-way 1-shot
experiment, the 3-way-3 shot experiment, the 3-way 5-shot experiment, the 4-way 1-shot
experiment, the 4-way 3-shot experiment, the 4-way 5-shot experiment, respectively. For
query data, we have 19 query samples in the 1-shot experiment, 17 query samples in the
3-shot experiment, and 15 query samples in the 5-shot experiment. In other words, for the
3-way 5-shot, there are 3 ∗ 5 + 3 ∗ 15 = 60 building footprints in the task of one episode.

In a similar way as that in [21], we set the number of test episodes to 300 and averaged
the results of these 300 episodes to calculate the performance of the relation network in one
trail. We randomly selected 5 classes of building footprints as the base dataset Dbase and
the remaining 5 classes of building footprints as the novel dataset Dnovel in each trial. The
base dataset is used for training in the meta-training phase and the novel dataset is used
for testing in the meta-testing phase. When randomly selecting 5 classes from 10 classes
of data, there are C5

10, i.e., 252 kinds of selection. In our experiments, we have randomly
selected the data 60 times and the final result is the average of the results of 60 trials.

We chose Accuracy as the evaluation metric for each trial, which is defined as
Formulas (4) and (5). In Formula (5), xi is the ith test sample, f (xi) is the prediction
class corresponding to xi, and yi is the true class of xi. It can be seen that Accuracy measures
the proportion of all correctly classified samples to the total number of samples.

Accuracy =
1
m

m

∑
i=1
Ai (4)

Ai =

{
1, f (xi) = yi
0, f (xi) 6= yi

(5)

4.3. Results and Analysis of Different Embedding and Metric Modules

Our proposed relation network based method is a metric-based few-shot learning
method which is a combination of an embedding module and a similarity metric module.
In this subsection, we evaluate the different choices of the embedding and metric modules.
For the embedding module, we choose the 2D convolutional module commonly used in
traditional few-shot learning [24,25,27] and the TriangleConv module used in our method.
For the metric module, we chose the Cosine similarity and the relation module used in
our method. It should be noted that when using the 2D convolutional module as the
embedding module, the relation module will consist of 2D convolutional blocks to match
the embedding module, and when using the TriangleConv module, the relation module
should consist of 1D convolutional blocks. The parameters of the experimental setup
remain the same between the experiments. The results for the combination of different
embedding modules with different metric modules are shown in Table 1.

The experimental results in this section demonstrate that both the TriangleConv em-
bedding module and the relation module played positive roles in solving the few-shot
learning problem of recognization and classification of vector building footprint shapes
under our experimental conditions. From Table 1, comparing the results of experiments (1)
and (2) and experiments (3) and (4), we can find that the results of the methods using the
TriangleConv module are better than the results of the methods using the 2D convolutional
module. In Figure 4, the results of the method using the TriangleConv module are mostly
distributed in the interval 0.6–1, while the results of the method using 2D convolutional
blocks are mostly distributed in the interval 0.3–0.7. This is probably because the Trian-
gleConv module is better at extracting features of building footprint shapes than the 2D
convolutional module. Figure 5 shows the visualization of the feature embeddings, which
is obtained using the T-SNE method [50]. It is also clear that the clustering effect of the
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embeddings obtained by the TriangleConv module is better. Comparing the results of
experiments (1) and (3) and experiments (2) and (4), the results show that the method using
relation module is superior to the method using Cosine similarity, and this is similarly
borne out in Figure 4. This may be that the relation module can learn to obtain a metric
more adapted to solve the problem of this paper.

Table 1. The results of the methods using different embedding and metric modules (The 2D conv is
the 2D convolutional module and the TC is the TriangleConv module).

(1) 2D conv
and Cosine

(2) TC
and Cosine

(3) 2D conv
and Relation

(4) TC
and Relation (Ours)

2Way 1Shot 0.6204 0.8291 0.8104 0.8747
2Way 3Shot 0.6757 0.8429 0.8239 0.8843
2Way 5Shot 0.7100 0.8521 0.8256 0.8940

3Way 1Shot 0.4812 0.6807 0.6886 0.7800
3Way 3Shot 0.5481 0.7215 0.6943 0.8052
3Way 5Shot 0.5677 0.7380 0.7259 0.8100

4Way 1Shot 0.4062 0.5952 0.5714 0.6862
4Way 3Shot 0.4875 0.6425 0.6075 0.7081
4Way 5Shot 0.4862 0.6523 0.6346 0.7330

Figure 4. Statistical histograms of the results of 60 trials for 4 networks which are constructed using
different embedding and metric modules. In the figure, 2D-Conv represents the 2D convolutional
module and TC represents the TriangleConv module. Each subplot shows the distribution of the
results of 60 trials for each model in different value intervals. The horizontal coordinates in the
subplot are value intervals.
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  (a) Results of TriangleConv module (b) Results of 2D convolution module

Figure 5. The clustering results by feeding the preprocessed data from 10 classes with 200 samples in
each class into the 2D convolutional embedding module and the TriangleConv embedding module to
obtain the embedding representation and clustering them with T-SNE method (PCA is used as the
initialization method and random_state is set to 2020).

4.4. The Comparison with Related Few-Shot Learning Methods

To further validate the performance of our proposed method, we selected three clas-
sical methods of few-shot learning for comparison: convolutional siamese net(CSN) [24],
model-agnostic meta-learning(MAML) [27], and prototypical network(PN) [25]. The CSN is
a deep neural network that determines the similarity of two samples. It constructs different
pairs of samples by combining them, and uses the same deep neural network to extract
the features of the two input samples, then calculates the similarity between the features
and updates the deep neural network parameters. The prediction of the results is based
on the similarity between the samples and the classes to which they belong. The MAML
trains a set of initialization parameters, which can be quickly adapted to a new task with
only few data by applying one or more steps of gradient adjustment. The core idea is to
find the initial parameters of the model that allows the model to learn quickly and obtain a
better result on few training data for a new task. The PN maps the samples in each class
to their embedding features and calculates their mean as the prototype of the class. With
the Euclidean distance as the distance metric, the network is trained with the assumption
that the samples of one class are close to the prototype of this class and far away from the
prototypes of other classes.

We used the Pytorch-based implementation of these baselines from Github to complete
our experiments. In our experiments, all building footprint data input to each model was
preprocessed using the methods in Section 4.1, and the number of vertices of building
footprints was unified to 16. The learning rate for all methods was set to 0.001. The
averaged results of all methods over 60 trials are given in Table 2. Due to that the CSN is
usually used for 1 shot tasks, the discussion of CSN in this paper is limited to 1 shot. The
results of all baselines are also the average of the results of 60 trials.

Table 2. The classification results when comparing our method with three classical few-shot
learning methods.

Convolutional
Siamese Net

Model-Agnostic
Meta-Learning

Prototypical
Network Ours

2Way 1Shot 0.7341 0.7574 0.6354 0.8747
2Way 3Shot —— 0.7885 0.7051 0.8843
2Way 5Shot —— 0.7928 0.7457 0.8940
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Table 2. Cont.

Convolutional
Siamese Net

Model-Agnostic
Meta-Learning

Prototypical
Network Ours

3Way 1Shot 0.5970 0.6122 0.4846 0.7800
3Way 3Shot —— 0.6653 0.5933 0.8052
3Way 5Shot —— 0.7126 0.6243 0.8100

4Way 1Shot 0.4841 0.5013 0.4145 0.6862
4Way 3Shot —— 0.5864 0.4934 0.7081
4Way 5Shot —— 0.5961 0.5232 0.7330

In Table 2, as the number of classes increases, the accuracies of all methods decrease,
and Figure 6 fits this trend. This is because in a multi-classification task, the more classes that
need to be classified, the more difficult the classification task becomes. In the meanwhile,
the performance of each method gradually improves as the number of samples per class
increases. This is because more samples provide more feature information for these methods
to learn. Among all methods, our method achieves competitive results in solving the task of
few-shot building footprint shape classification in maps. For example, the accuracy reached
81.00% for the 3 way 5 shot classification task where there are three classes of samples in
the support set and 5 labeled samples for each class. Our method outperforms the baselines
by at least 9.58% in 9 sets of experiments. This may be because that the three baseline
methods all use 2D convolutional module to extract features from samples. In contrast,
our method uses the TriangleConv embedding module to extract the shape features of the
samples, and its ability to extract vector building footprint shapes is superior to that of the
2D convolutional module, which was verified in Section 4.3. Better embedding module
can provide more effective feature embedding for relation module, which allows relation
module to learn to obtain better similarity metrics. In addition, both CSN and PN use
Euclidean distance, whereas our method uses the relation module which is better able
to measure the similarity between the data in support set and the data in query set. The
results in this section indicate that our method is a better choice to resolve the few-shot
problem of recognizing and classifying building footprint shapes when comparing with
these baselines.

Figure 6. Statistical histograms of the results of 60 trials of our method and baselines in 9 sets of
experiments. Each subplot shows the distribution of the results of 60 experiments for each model in
different value intervals. The horizontal coordinates in the subplot are value intervals.
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4.5. The Limitations

Although the experimental results have shown the feasibility and effectiveness of the
proposed method, there are still some limitations.

First, the proposed method aims to classify the shapes of the vector building footprints.
Thus, it is required that the input data of the proposed method are the ordered sets
of vertices of polygons. Particularly, due to the TriangleConv convolution manner we
have used to extract the shape features of vector building footprints, the vector building
footprints to be classified should be in the form of closed polygons without internal holes.
Therefore, for some geographic data in the form of lines or polygons with holes inside, our
method may not be applicable.

Second, richer data may make the model more generalizable. Although the data used
in this paper come from different geographic regions, the classes of shapes in the dataset
were fewer, which may limit the performance of the model.

Third, the relation scores produced by the proposed method indicate the possibility
that one unlabeled sample belongs to the classes in the support set. However, these scores
are calculated based on the prototypes of the classes in the support set, and we have directly
averaged the feature embeddings of the samples of each class in the support set as the
prototype of the class. The prototypes obtained in this way may not be the real one of
the classes. There may be deviation, particularly when there are singular samples in the
support set.

5. Conclusions

This paper proposed a relation network based method for recognizing and classifying
the building footprint shapes with few labeled samples. Its basic idea is to train a neural
network model with lots of different classes of labeled building footprint samples and
generalize it to recognize new classes of building footprint samples. The neural network
model of the proposed method is composed of an embedding module and a relation
module. The embedding module uses the TriangleConv block to extract the shape features
of the building footprints which are in the form of closed vector polygon. The relation
module computes the relations between the shape features of the building footprints and
the prototypes of each class. The classes of the samples are predicted according to the
relations. To ensure the generalization of the model, the episode based meta-learning
training strategy has been used to train the neural network model. Based on the data and
experimental environment used in this paper, our method has achieved an accuracy of
89.40% in the 2-way 5-shot task. The experimental results have shown that our method can
achieve competitive performance in solving the problem of recognization and classification
of building footprint shapes with few supervised samples when comparing with related
few-shot learning methods.

In practice, when applying the model trained in this paper for the classification of a
set of unlabeled new building footprint samples, few samples should be manually labeled
in advance. Then the tasks in the form of C-way K-shot that the model has been trained
should be constructed from these samples. By inputting these tasks into the model, the
classification of the shapes of these building footprint samples will be achieved.

In future work, we will continue to explore the classification of building footprint
shapes with few supervised samples, and try to improve its performance and applicability.
The datasets we have used are closed polygons without holes inside. We will improve
the embedding operation of the vector building footprints and enable it to deal with more
types of building footprints. Moreover, we have only used the vector information of the
building footprints in current work. Actually, additional information such as semantic
information of the building footprints may also helfpful for enhancing the performance of
shape classification. Further, what we have addressed in this paper is the few-shot building
footprint shape classification problem which still requires some building footprints to be
labeled for each shape class. Then, it is also promising to address the zero-shot building
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footprint shape classificaiton problem where there are none building footprints labeled for
each shape class.
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