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Abstract

Despite recent advances, the remaining bottle-

necks in deep generative models are necessity

of extensive training and difficulties with gen-

eralization from small number of training exam-

ples. We develop a new generative model called

Generative Matching Network which is inspired

by the recently proposed matching networks for

one-shot learning in discriminative tasks. By

conditioning on the additional input dataset, our

model can instantly learn new concepts that were

not available in the training data but conform to a

similar generative process. The proposed frame-

work does not explicitly restrict diversity of the

conditioning data and also does not require an ex-

tensive inference procedure for training or adap-

tation. Our experiments on the Omniglot dataset

demonstrate that Generative Matching Networks

significantly improve predictive performance on

the fly as more additional data is available and

outperform existing state of the art conditional

generative models.

1 Introduction

Deep generative models are currently one of the most

promising directions in generative modelling. In this class

of models the generative process is defined by a composi-

tion of conditional distributions modelled using deep neu-

ral networks which form a hierarchy of latent and observed

variables. This approach allows to build models with com-

plex, non-linear dependencies between variables and effi-

ciently learn the variability across training examples.

Such models are trained by stochastic gradient methods

which can handle large datasets and a wide variety of model

architectures but also present certain limitations. The train-

ing process usually consists of small, incremental updates
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of networks’ parameters and requires many passes over

training data. Notably, once a model is trained, it cannot

be adapted to newly available data without complete re-

training to avoid catastrophic interference (McCloskey &

Cohen, 1989; Ratcliff, 1990). There is also a risk of over-

fitting for concepts that are not represented by enough train-

ing examples which is caused by high capacity of the mod-

els. Hence, most of deep generative models are not well-

suited for rapid learning in real-world applications where

data acquisition is expensive or fast adaptation to new data

is required.

We present Generative Matching Network (GMN), a deep

generative model suitable for fast learning in the few-shot

setting, that makes progress in both of these directions.

After the model is trained on a particular domain, it can

instantly adapt it’s generative distribution by conditioning

on the additional dataset from a similar domain, without

invoking a computationally extensive inference procedure.

Generative matching networks are inspired the attentional

mechanism implemented in Matching Networks, originally

proposed for supervised discriminative tasks (Vinyals et al.,

2016). The attentional mechanism, extended to unsuper-

vised learning tasks, allows to smoothly interpolate be-

tween similar examples in the conditioning data and im-

plicitly account for the underlying class structure, hence

being robust to interference from diverse data, which was

not previously demonstrated by analogous models.

This paper is organized as follows. First, in section 2 we

revisit the necessary background in variational approach to

training generative models and mention the related work in

conditional generative models. Then, in section 3 we de-

scribe the proposed generative model, its recognition coun-

terpart and a number of extensions. Section 4 describes

the training procedure for generative matching networks.

Finally, section 5 contains experimental evaluation of the

proposed model as both generative model and unsupervised

feature extractor in small-shot learning settings. We con-

clude with discussion of the results in section 6. Additional

experiments as well as the detailed specification of model

architecture can be found in the supplementary material.
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2 Background

We consider the problem of learning a probabilistic genera-

tive model which can be expressed as a probability distribu-

tion p(x|θ) over objects of interests x parameterized by θ.

The major class of generative models introduce also latent

variables z that are used to explain or generate an object

x such that p(x|θ) =
R

p(z|θ)p(x|z,θ)dz and assumed to

be non-observable.

Currently, the common practice is to restrict the condi-

tional distributions p(z|θ) and p(x|z,θ) to tractable dis-

tribution families and use deep neural networks for re-

gressing their parameters. The expressive power of deep

non-linear generative models comes at a price since nei-

ther marginal distribution p(x|θ) can be computed analyt-

ically nor it can be directly optimized in a statistically ef-

ficient way. Fortunately, intractable maximum likelihood

training can be avoided in practice by resorting to adver-

sarial training (Gutmann & Hyvärinen, 2012; Goodfellow

et al., 2014) or variational inference framework (Kingma

& Welling, 2013; Rezende et al., 2014) which we consider

further.

2.1 Training with variational inference

Recent developments in variational inference alleviate

problems with maximizing the intractable marginal like-

lihood log p(x|θ) by approximating it with a lower

bound (Jordan et al., 1999):

log p(x|θ) ≥ L(θ,φ) = Eq [log p(x, z|θ)− log q(z|x,φ)]
(1)

Tightness of the bound is controlled by the recognition

model q(z|x,φ) which aims to minimize Kullback-Leibler

divergence to the true posterior p(z|x,θ).

Similarly to the generative model, recognition model may

also be implemented with the use of deep neural networks

or other parameter regression which is known as amortized

inference (Gershman & Goodman, 2014). Amortized in-

ference allows to use a single recognition model for many

training examples. Thus, it is convenient to perform train-

ing of the generative model p(x|θ) by stochastic gradient

optimization of variational lower bounds (1) corresponding

to independent observations {xi}
N
i=1.

The clear advantage of this approach is its scalability. Ev-

ery stochastic update to the parameters computed from only

a small portion of training examples has an immediate ef-

fect on the whole dataset. However, while a single param-

eter update may be relatively fast, a large number of them

is required to significantly improve generative or inferen-

tial performance of the model. Hence, gradient training of

generative models usually results into an extensive com-

putational process which prevents from rapid incremental

learning. In the next section we discuss potential solutions

to this problem that allow to implement fast learning ability

in generative models.

2.2 Fast learning in generative models

In probabilistic modelling framework the natural way of in-

corporating knowledge about newly available data is con-

ditioning. One may design a model that being conditioned

on the additional input data X = x1,x2, . . . ,xT represents

a new generative distribution p(x|X,θ).

An implementation of this idea can be found in the model

by Rezende et al. (2016) which was able to produce new

examples of a concept that was missing at the training time

but had similarities in the underlying generative process

with the other training examples. The model supported an

explicit conditioning on a single observation x
0 represent-

ing the new concept to construct a new generative distribu-

tion of the form p(x|x0,θ).

The explicit conditioning when adaptation is performed by

the model itself and has to be learned is not the only way

to propagate knowledge about new data. Another solution

which is often encountered in Bayesian models is to main-

tain a global latent variable encoding information about the

whole available dataset such that the individual observa-

tions are conditionally independent given it’s value. De-

noting the global variable as α, a typical model from this

class would have the following form:

p(X|θ) =

Z

p(α|θ)
T
Y

t=1

p(xt|α,θ)dα.

The principal existence of such a global variable may be

justified by the de Finetti’s theorem (Diaconis & Freedman,

1980) under the exchangeability assumption. In global la-

tent variable models, the conditional generative distribution

p(x|X,θ) is then defined implicitly via posterior over the

global variable: p(x|X,θ) =
R

p(x|α,θ)p(α|X,θ)dα.

Once there is an efficient inference procedure for the global

variable α, learning or fast adaptation can be implemented

straightforwardly.

There are several relevant examples of generative models

with global latent variables used for model adaptation and

few-shot learning. Salakhutdinov et al. (2013) combined

deep Boltzmann machine (DBM) with nested Dirichlet

process (nDP) in a Hierarchical-Deep (HD) model. While

DBM was used to learn low-level features, the nonparamet-

ric distribution over high-level features defined via nDP al-

lowed to infer a latent global hierarchy of concepts from the

training data. Later, Lake et al. (2015) proposed Bayesian

program learning (BPL) approach for building a generative

model of handwritten characters. The model was defined

as a probabilistic program contained fine-grained specifi-

cation of prior knowledge of the task such as generation

of strokes and their composition into characters mimicking
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human drawing behaviour.

While being suitable for learning from small data, both

HD and BPL models required extensive sampling as a

necessary part of either training or generation procedures.

Hence, although Bayesian inference over the global latent

variable may prevent overfitting, fast learning still remains

a challenge for sampling-based inference.

The recently proposed neural statistician model (Edwards

& Storkey, 2016) is another deep generative model with

a global latent variable. The model was trained by opti-

mizing a variational lower bound following the approach

described in section 2.1, but with an additional recogni-

tion model approximating posterior distribution over the

global latent variable. Authors designed the recognition

model to be computationally efficient and require only a

single pass over data which consisted of extracting special

features from the examples, applying to them a pooling op-

eration (e.g. averaging) and passing the result to another

network providing parameters of the variational approxi-

mation.

This simple architecture allowed for the fast learning and

guaranteed invariance to both data permutations and size

of the conditioning dataset. However, authors evaluated

the fast learning ability in the model only in the setting

where all of the training examples represented the same

single concept. Indeed, as we show later in section 5.2,

this approach is less efficient for adaptation to more com-

plex data, perhaps because a fixed parametric description is

too restrictive for an accurate representation of datasets of

varying complexity.

3 Generative Matching Networks

Generative matching networks aim to model conditional

generative distributions of the form

p(x|X,θ) =

Z

p(z|X,θ)p(x|z,X,θ)dz, (2)

where z is a latent variable generated by a (potentially data-

dependent) prior p(z|X,θ) and p(x|z,X,θ) is a condi-

tional likelihood.

We assume that the model is allowed to train on a large

number of examples from a certain domain, accumulating

knowledge about the domain in parameters θ. At the test

time, the model can be conditioned on an additional dataset

X = {x1,x2, . . . ,xT } and has to adapt it’s generative dis-

tribution to the conditioning data.

In order to design a fast adaptation mechanism, we have

to make certain assumptions about relationships between

training data and the new data X used to condition the

model. Thus we assume the homogeneity of generative

processes for training and conditioning data up to some

parametrization. The generative process is assumed to have

an approximately linear dependence on such parameters,

i.e. the interpolation between parameters corresponding to

different examples of the same concept can serve as good

parameters for generating other examples. Below we de-

scribe the proposed model as well as a number of exten-

sions that can significantly improve it’s performance.

3.1 Basic model

In the basic version of our model, the prior is simply a stan-

dard Normal distribution p(z) = N (z|0, I) which does not

depend on the conditioning data X = {x1, . . . ,xT }. A

new observation is generated by first sampling the latent

variable from the prior z ∼ p(z) and then matching it with

each of the conditioning objects x0 ∈ X to extract few rel-

evant examples that would be used as prototypes for gener-

ation.

The relevance of the conditioning objects x0 ∈ X is deter-

mined by a similarity function sim(·, ·). Since latent vari-

ables and observations typically have very different rep-

resentations, we first project them to the same matching

space ΦG, where similarity can be computed naturally. A

particularly convenient choice of such ΦG would be a high-

dimensional real vector space where the similarity func-

tion can be defined simply as cosine between correspond-

ing vectors or, even simpler, dot-product which we used in

our implementation.

The obtained similarity scores are then transformed

through a softmax function defining the attention kernel

aG(z,x):

aG(z,xt) =
exp(sim(fG(z), gG(xt)))

PT

t0=1 exp(sim(fG(z), gG(xt0)))
,

rG =

T
X

t=1

aG(z,xt)ψG(xt),

(3)

where functions fG(·) and gG(·) implemented by neu-

ral networks map observations and latent variables to the

matching space ΦG.

The attention kernel provides a normalized weight assigned

to a conditioning object which is used to extract different

subsets of X conditioned on the sample z in a soft man-

ner. These subsets are aggregated in rG by interpolating be-

tween their prototype descriptions computed with another

network ψG(·). It is important to see, that the generated

output does not depend on the order in which conditioning

objects X are provided to the model. Finally, the decoder

network is provided with the weighted average rG together

with the latent variable z and outputs a distribution over ob-

servations. Figure 1 contains a cartoon explanation of the

described generative process.

Functions gG(·) and ψG(·) are applied to observations and

hence can be considered as feature extractors. Since fea-
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1. Computing attention kernel 2. Aggregating prototypes

gG(xt)

fG(z)
ΨG

ΦG

rG =
X

t

aG(z,xt)ψG(xt)

aG

Matching space

Prototype space

3. Decoding an observation

z rG

Decoder 

(deconv net)

p(x|z,X)

z ∼ p(z)

ψG(xt)

Figure 1: Generation of a new sample in a basic generative matching network, see section 3.1 for the description of

functions f , g and ψ.

tures useful to specify the generative process are not nec-

essarily good for discrimination and vice versa, it makes

sense to represent these functions differently, taking into

account nature of a considered domain. Thus, in our exper-

iments these functions were implemented as convolutional

networks with partial parameter sharing between them.

A major difference between the GMNs and the originally

proposed discriminative matching networks (Vinyals et al.,

2016) is that since no label information is available to the

model, the interpolation in equations (3) is performed not

in the label space but rather in the prototype space Ψ which

itself is defined by the model and is learned during the train-

ing.

3.2 Recognition model

The recognition model q(z|X,x) is used to approximate

the posterior distribution of latent variable given object x in

the context of previously observed conditioning objects X.

Similarly to the conditional likelihood, a similarity function

operating in a (potentially different) matching space ΨR is

used to form an attention kernel, with the difference that

function fR is now applied to the observation x.

The attention kernel and the interpolated prototype are

given by:

aR(x,xt) =
exp(sim(fR(x), gR(xt)))

PT

t0=1 exp(sim(fR(x), gR(xt0)))
,

rR =
T
X

t=1

aR(x,xt)ψR(xt)

(4)

After the matching, interpolated prototype vector rR is

used to compute parameters of the approximate pos-

terior which in our case was a normal distribution

with diagonal covariance matrix, i.e. q(z|X,x,φ) =
N (z|µ(rR),Σ(rR)).

3.3 Pseudo-inputs

One can note that the described model is not applicable in

a situation where no conditioning objects are available, i.e.

X = ∅. A possible solution to this problem involves im-

plicit addition of a pseudo-input to the set of conditioning

objects, i.e. X. There is no need to model pseudo-input

as an actual observation, so we just represent it as corre-

sponding outputs of functions g⇤ = g(x⇤) and ψ⇤ = ψ(x⇤)
which are assumed to be another trainable parameters.

3.4 Full context matching

The potential limitation of the basic matching procedure (3)

is that conditioning observations X are embedded indepen-

dently from each other. Similarly to discriminative match-

ing networks we address this problem by computing full

context embeddings (Vinyals et al., 2015), i.e. embeddings

that are computed jointly in the context of other condition-

ing examples.

We make K attentional passes over X of the form (3),

guided by a recurrent controller R which accumulates

global knowledge about the conditioning data in its hidden

state h. The hidden state is thus passed to feature extractors

f and g in order to obtain context-dependent embeddings.

We refer to this process as the full context matching proce-

dure which modifies equation (3) as:

aG(z, hk,xt) =
exp(sim(fG(z, hk), gG(xt, hk)))

PT

t0=1 exp(sim(fG(z, hk), gG(xt0 , hk)))
,

(5)

where the interpolated prototype vector rK and the hidden

state hk are given by:

rk+1
G =

T
X

t=1

aG(z, hk,xt)ψG(xt, hk),

hk+1 = R(hk, r
k
G).

(6)
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The output of the full matching procedure is thus the inter-

polated prototype vector from the last iteration rKG and the

last hidden state of hK+1 passed to a decoder. The anal-

ogous procedure is used in the recognition model. In our

implementation we shared the recurrent controller for gen-

erative and recognition models, thus we further refer to it

as shared controller.

Since the full context matching consists of a sequence of

basic matching operations, it is also invariant to the formal

order of conditioning objects X.

3.5 Data-dependent prior

Full context matching described in the previous section

also allows us to implement a context-dependent prior

p(z|X,θ) which adjusts our prior assumptions based on

the conditioning data X. Although in theory it should be

possible to use a data-independent prior and translate the

dependency on the conditioning data to the likelihood with

the same effect, as we show below in our experiments,

data-dependent prior has a positive effect on model’s per-

formance.

As before, we use the hidden state h of a recurrent con-

troller to match the conditioning data:

aP (hk,xt) =
exp(sim(fP (hk), gP (xt, hk)))

PT

t0=1 exp(sim(fP (hk), gP (xt0 , hk)))
,

(7)

and then aggregate the result:

rk+1
P =

T
X

t=1

aP (hk,xt)ψP (xt, hk),

hk+1 = R(hk, r
k
P ),

(8)

where subscript ·P denotes “prior”.

As opposed to the conditional likelihood and the recog-

nition model, only the hidden state is passed to func-

tion fP as there is no other information to use for

matching. The prior is then parametrized as a nor-

mal distribution with diagonal covariance: p(z|X,θ) =
N (z|µ(rkP , hK+1),Σ(r

k
P , hK+1)).

4 Training

Training of our model consists of maximizing marginal

likelihood of a dataset X which can be expressed as:

p(X|θ) =
T
Y

t=1

p(xt|X<t,θ), X<t = {xs}
t�1
s=1. (9)

One should note that since each of the conditional distri-

butions does not depend on the order of conditioning data

X<t provided, the joint distribution is also order-invariant.

We use the available training data to dynamically construct

a large number of randomized few-shot learning problems

and train GMNs to adapt on each of these problems simul-

taneously. Such a training strategy is rooted in curriculum

learning (Bengio et al., 2009) and meta-learning (Thrun,

1998; Vilalta & Drissi, 2002; Hochreiter et al., 2001). It re-

cently was successfully applied for one-shot discriminative

learning (Santoro et al., 2016) and below we adapt it to our

setting.

We define a task-generating distribution pd(X) which sam-

ples datasets X of size T from training data. Then we train

our model to maximize the marginal likelihood of each

dataset sampled on average:

Epd(X) [log p(X|θ)] → max
θ

.

The standard practice is constrain pd to generate datasets

that consist only of objects of a single class, so that

the model has a clear incentive to re-use conditioning

data (Rezende et al., 2016; Edwards & Storkey, 2016). As

we show further, Generative Matching Networks impose

much less requirements for the data generating distribution

and can be trained on datasets representing C > 1 different

concepts or classes.

Since the marginal likelihood (9) as well as the condi-

tional marginal likelihoods are intractable we instead use

variational lower bound (see section 2.1) as a proxy to

log p(X|θ):

L(X,θ,φ) =

T
X

t=1

Eq(zt|xt,X<t,φ)

⇥

log
p(xt, zt|X<t,θ)

q(zt|xt,X<t,φ)

⇤

.

5 Experiments

For our experiments we use the Omniglot dataset (Lake

et al., 2015) which consists of 1623 classes of handwrit-

ten characters from 50 different alphabets. The first 30

alphabets are devoted for training and the remaining 20

alphabets are left for testing. Importantly, only 20 exam-

ples of each class are available which makes this dataset

specifically useful for few-shot learning problems. Unfor-

tunately, the literature is inconsistent in usage of the dataset

and multiple versions of Omniglot were used for evaluation

which differ by train/test split, resolution, binarization and

augmentation, see e.g. (Burda et al., 2015; Rezende et al.,

2016; Santoro et al., 2016).

We use the canonical split provided by Lake et al. (2015).

In order to speed-up training we downscaled images to

28× 28 resolution and since the result was fully binary we

did not apply any further pre-processing. We also did not

augment our data in contrast to (Santoro et al., 2016; Ed-

wards & Storkey, 2016) to make future comparisons with

our results easier. Unless otherwise stated, we train models
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(a) GMN (no pseudo-input)

(b) GMN (one pseudo-input)

(c) GMN (no attention, no pseudo-input)

(d) Neural statistician

Figure 2: Conditionally generated samples. For each im-

age: first column contains conditioning data in the order

it is revealed to the model. Row number t (counting from

zero) consists of samples conditioned on first t input exam-

ples.

on datasets of length T = 20 and of up to Ctrain = 2 dif-

ferent classes as we did not observe any improvement from

training on more diverse datasets.

5.1 Effect of number of attention steps

Since the full context matching procedure consists of mul-

tiple attention steps, it is interesting to see the effect of

these numbers on model’s performance. We trained sev-

eral models with smaller architecture than the one used in

further experiments and T = 10, varying number of atten-

tion steps allowed for the likelihood and recognition shared

controller and the prior controller respectively. The mod-

els were compared using exponential moving averages of

lower bounds corresponding to different numbers of condi-

tioning examples X<t obtained during the training. Results

of the comparison can be found on figure 3.

Interestingly, larger numbers of steps lead to better results,

however lower bounds are almost not improving after the

shared controller is allowed for 4 steps. This behaviour

was not observed with discriminative matching networks

perhaps confirming the difficulty of unsupervised learning.

Another important result is that the standard Gaussian prior

makes adaptation significantly harder for the model yet still

possible which justifies importance of the data-dependent

prior (see section 3.5).

One may also see that all models preferred to set higher

variances for a prior resulting to higher entropy compar-

ing to standard normal prior. Clearly as more examples are

available, generative matching networks become more cer-

tain about the data and output less dispersed Gaussians.

Based on this study, for our experiments we have chosen

a model with 4 attention steps in the shared controller and

single step in the prior controller, which is a reasonable

compromise between computational cost and performance.

5.2 Fast learning and few-shot generation

In this section we compare generative matching networks

with a set of baselines by expected conditional likelihoods

Epd(X)p(xt|X<t). The conditional likelihoods were esti-

mated using importance sampling with 1000 samples from

the recognition model used as a proposal. When training

and evaluating conditional models we ensure that the first

Ctrain objects in a dataset belong to different classes so that

they in principle contain enough information to explain rest

of the dataset.

5.2.1 Models

We compare different variants of generative matching net-

works with a set of baselines. To make the evaluation con-

sistent, all the models use the same architecture for the en-

coder and the decoder parts, which we describe in detail in
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Figure 3: Lower bound estimates (left) and entropy of prior (right) for various numbers of attention steps and numbers of

conditioning examples. Numbers are reported for the training part of Omniglot.

Table 1: Conditional negative log-likelihoods for the test part of Omniglot. Ctrain and Ctest denote the maximum number of

classes in datasets used for training and evaluating respectively.

NUMBER OF CONDITIONING EXAMPLES

MODEL Ctest 0 1 2 3 4 5 10 19

GMN, Ctrain = 2 1 89.7 83.3 78.9 75.7 72.9 70.1 59.9 45.8

GMN, Ctrain = 2 2 89.4 86.4 84.9 82.4 81.0 78.8 71.4 61.2

GMN, Ctrain = 2 3 89.6 88.1 86.0 85.0 84.1 82.0 76.3 69.4

GMN, Ctrain = 2 4 89.3 88.3 87.3 86.7 85.4 84.0 80.2 73.7

GMN, Ctrain = 2, no pseudo-input 1 93.5 82.2 78.6 76.8 75.0 69.7 64.3

GMN, Ctrain = 2, no pseudo-input 2 86.1 83.7 82.8 81.0 76.5 71.4

GMN, Ctrain = 2, no pseudo-input 3 86.1 84.7 83.8 79.7 75.3

GMN, Ctrain = 2, no pseudo-input 4 86.8 85.7 82.5 78.0

VAE 89.1

One-shot VAE 1 83.9

Neural statistician, Ctrain = 1 1 102 83.4 77.8 75.2 74.6 71.7 71.5

Neural statistician, Ctrain = 2 2 86.4 82.2 82.3 80.6 79.7 79.0

GMN, Ctrain = 1, no attention 1 92.4 84.5 82.3 81.4 81.1 80.4 79.8 79.7

GMN, Ctrain = 2, no attention 2 88.2 86.6 86.4 85.7 85.3 84.5 83.7 83.4

GMN, Ctrain = 1, no attention, no pseudo-input 1 88.0 84.1 82.9 82.4 81.7 80.9 80.7

GMN, Ctrain = 2, no attention, no pseudo-input 2 85.7 85.0 85.3 84.6 84.5 83.7

the supplementary material.

VAE. In order to get a sense of quantitative improvement

over non-conditional generative models, we implemented a

variational auto-encoder (VAE) with a similar architecture

to our model, but lacking any adaptation mechanisms.

One-shot VAE. Following Rezende et al. (2016), we im-

plemented a simple conditional VAE of the form p(x|x0) =
R

p(z|x0)p(x|z,x0)dz. This model aims at generating a

new example of a character represented by x
0 and hence

can be trained only with C = 1.

Neural Statistician. Another non-trivial baseline is the

Neural Statistician model (Edwards & Storkey, 2016) (see

section 2.2) which can be considered as state of the art in

few-shot generative modelling.

Generative Matching Network (GMN). For evaluation,

we used a model with full matching procedure (see sec-

tion 3.4) using 4 steps for the shared controller and a sin-

gle step for the prior controller (see supplementary mate-

rials for discussion of these parameters). Further, if not

stated otherwise, we consider GMNs with a single pseudo-

input (described in section 3.3), as we found the benefit of

adding more pseudo-inputs negligible.

Generative Matching Network without attention

(GMN, no attention). We also consider a restricted

version of our model with the attentional matching pro-

cedure (3) replaced by a uniform kernel that effectively

leads to simple averaging prototypes of all conditioning

examples. The same architecture was used in the neural

statistician model to aggregate conditioning data, except

that the latter models uncertainty about this aggregate.

Table 1 contains results of the evaluation on test alphabets

from Omniglot. One can see, that Generative Matching

Networks demonstrate significant improvement in predic-

tive performance as more data is available to the model. As

one would expect, larger values of Ctest made adaptation

harder since on average less examples of the same class are
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Table 2: Few-shot classification accuracy (%) on the test part of Omniglot. All models were trained with Ctrain = 1 and no

pseudo-input (if applicable).

5 CLASSES 20 CLASSES

MODEL METHOD 1-SHOT 5-SHOT 1-SHOT 5-SHOT

GMN likelihood 82.7 97.4 64.3 90.8

GMN, no attention likelihood 90.8 96.7 77.0 91.0

GMN cosine 62.7 80.8 45.1 67.2

GMN, no attention cosine 72.0 86.0 50.1 72.6

One-shot VAE likelihood 90.2 76.3

One-shot VAE cosine 72.1 50.1

Neural statistician likelihood 82.0 94.8 63.1 87.6

Neural statistician cosine 66.4 85.5 47.3 71.7

Matching networks, no fine-tuning cosine 98.1 98.9 93.8 98.5

available to the model. Still GMNs are capable of working

in low-data regime even when Ctest > Ctrain.

Unsurprisingly, models with prototype averaging (GMN,

no attention and Neural statistician) performed well for

simple datasets constructed of a single class, although sig-

nificantly worse than the proposed matching procedure. On

more difficult datasets with mixed examples of two differ-

ent classes (Ctest = 2) GMNs clearly outperformed all con-

current models, thus justifying importance of nonparamet-

ric representations for complex data.

In order to visually assess the fast learning ability of

GMNs we also provide conditionally generated samples in

figure 2. Interestingly, the GMN without pseudo-inputs

generated samples more similar to the conditioning data

while sacrificing the predictive performance. Such counter-

intuitive mismatch between visual quality of samples and

predictive performance has been studied before (Theis

et al., 2015) and may suggest that without a pseudo-input,

GMNs tend to learn less of the common knowledge about

the domain and slightly “overfit” to conditioning data.

Therefore, presence or absence of the pseudo-input should

depend on the target application of interest, i.e. density

estimation or producing new examples. We provide more

samples generated by GMNs in supplementary materials.

5.3 Classification

Even if an adaptive generative model did not take into ac-

count the label information during the training, as in the

case of GMN, it can still be used for few-shot classifica-

tion. Given a small number of labeled examples Xc =
{xc,1,xc,2, . . .xc,N} for each class c ∈ {1, . . . , C}, it pos-

sible to use p(x|Xc) as a score for assigning label c to

x. While one would not expect this method to provide

state of the art results, few-shot classification using class-

conditional densities is still a good test for adaptation capa-

bilities.

Alternatively, one may use the recognition model

q(z|x,X1, . . . ,XC) to extract features describing the new

object x and then use a classifier of choice, e.g. nearest-

neighbour classifier with cosine similarity of mean param-

eters as in our experiments. This method can be used as

a general adaptive feature extraction technique which itself

is an interesting application of GMNs.

The results under different number of training examples

available are provided in table 2. Surprisingly, the sim-

pler GMN with uniform attention outperformed all other

models, including the full model. As shown in the previ-

ous section, GMNs without pseudo-inputs are very smooth

density estimators, so maybe even conditioned on a number

of same-class examples, they still assign enough probabil-

ity mass to discrepant observations.

6 Conclusion

We presented Generative Matching Network, a new con-

ditional generative model that is capable of fast adaptation

to conditioning dataset by adjusting both the latent space

and the predictive density. The nonparametric matching

procedure enabling these features can be seen as a general-

ization of the original matching network architecture since

it allows the model to define the label space itself, thus ex-

tending applicability of matching networks to unsupervised

and perhaps semi-supervised settings. One of the principal

innovations over existing conditional and few-shot genera-

tive models is that GMNs can naturally work with diverse

conditioning data and put less assumptions on its homo-

geneity. We believe that these ideas can evolve further and

help to implement more data-efficient models in other do-

mains where data acquisition is especially hard.
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