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Abstract

Human motion prediction is a task where we an-
ticipate future motion based on past observation.
Previous approaches rely on the access to large
datasets of skeleton data, and thus are difficult to
be generalized to novel motion dynamics with lim-
ited training data. In our work, we propose a novel
approach named Motion Prediction Network (Mo-
PredNet) for few-short human motion prediction.
MoPredNet can be adapted to predicting new mo-
tion dynamics using limited data, and it elegantly
captures long-term dependency in motion dynam-
ics. Specifically, MoPredNet dynamically selects
the most informative poses in the streaming mo-
tion data as masked poses. In addition, MoPredNet
improves its encoding capability of motion dynam-
ics by adaptively learning spatio-temporal structure
from the observed poses and masked poses. We
also propose to adapt MoPredNet to novel motion
dynamics based on accumulated motion experi-
ences and limited novel motion dynamics data. Ex-
perimental results show that our method achieves
better performance over state-of-the-art methods in
motion prediction.

1 Introduction

Human motion prediction is the task of forecasting future hu-
man pose based on the observed pose data. It is one of the
hallmarks of human intelligence, which has a wide range of
applications such as autonomous driving [Behl et al., 2017],
motion simulation [Vondrak et al., 2008], and human-robot
interaction [Koppula and Saxena, 2015]. Taking human-
robot interaction as an example, robots are supposed to greet
us immediately once we are raising our hand to greet them,
to help us take the cup once we are walking to get it, and to
stop once their next motion may hurt others.

In contrast to human intelligence which acquires such a
prediction capability from just a few experiences, existing
methods for human motion prediction [Fragkiadaki et al.,
2015; Martinez et al., 2017; Liu et al., 2019] still rely on
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Figure 1: Overview of our few-shot human motion prediction ar-
chitecture (MoPredNet). Future poses are predicted from observed
poses. There are three modules in our architecture: DSTCN is used
for motion generation. Sequence mask (of length K) is used to re-
call referable motion to get the explicit guidance for prediction. The
parameter generation is used for quickly updating parameters of the
DSTCN.

extensive training data in order to be adapted to novel mo-
tion dynamics. This limits their applications in few-shot task
domain. In addition, even though these methods continu-
ously improve the performance in motion prediction on pub-
lic datasets, their prediction capability is limited in long-term
prediction [Martinez et al., 2017] mainly because they do not
explicitly learn sub-motion patterns and do not receive ex-
plicit guidance from past related motion. Here, sub-motions
represent the decomposition of complex motion, e.g., raising,
holding, and lowering hands are sub-motions of eating.

To deal with these issues, we propose a Motion Predic-
tion Network (MoPredNet) that can dynamically select the
most informative poses as prediction reference and adaptively
learn spatio-temporal motion structure for long-term motion
prediction. Besides, MoPredNet has the ability to predict
new motion categories based on accumulated information and
novel information from a few new samples. As shown in
Fig. 1, our MoPredNet can be divided into three modules: De-
formable Spatio-Temporal Convolution Network (DSTCN), a
sequence mask module and a parameter generation module.

The DSTCN is proposed to adaptively model sub-motion
dynamics and spatial correlation in the entire motion se-
quence to capture long-term dependency. In the spatial do-
main, human’s skeletal joints are directly related to their par-
ent joints but indirectly related to other joints (symmetry or
regularity in motion). For traditional convolution, it is hard to
model sub-motion patterns in a suitable starting and ending
frames and flexibly capture spatial correlation based on mo-
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tion dynamics. The DSTCN can adaptively extend in the past
time and establish selective connections with its neighboring
joints. Besides, because the joint is embedded with high-
dimensional representation compared to pixels, we present a
local geometric extraction layer before the deformable spatio-
temporal convolution layer.

The sequence mask module is used to recall a referable mo-
tion state from history, which provides explicit guidance for
long-term motion prediction at specific moments. Many re-
searchers extract the guidance information of motion dynam-
ics from different cues, such as speed [Martinez et al., 2017],
incorporating derivative [Gopalakrishnan et al., 2019], and
smooth trajectory [Wei et al., 2019]. However, a single
physical property does not explicitly guide the architecture
to generate the next moment pose as prediction errors accu-
mulate. In this work, we use the attention mechanism to cal-
culate the correlation scores between the past poses and the
current pose, which are then used to pick key frames. This in-
formation combined with observed motion information helps
the prediction module generate human-like motion.

The parameter generation module is inspired by the human
learning process. When facing a new motion category with a
few samples, we analyze and predict motion using accumu-
lated information from an external memory at first. Then we
will pay attention to novel motion dynamics to acquire new
knowledge. In the parameter generation module, we store
the basic knowledge learned from large-scale dataset in the
memory to instruct the model to generate human-like motion.
Besides, we present a learner that can learn novel motion
dynamics and quickly update the parameter of the DSTCN.
Therefore, the DSTCN can predict motion by a new context
vector with unique characteristics for a specific category.

2 Related Works

2.1 Human Motion Prediction

In early work, hand-craft features [Pavlovic et al., 2001;
Wang et al., 2006; Taylor et al., 2007] are proposed to model
the motion patterns. However, human motion incorporates far
more complicated changing, which is hard to be modeled in
a fixed, manually designed model.

With the collection and publication of large-scale human
motion datasets in recent years, many methods based on
the deep neural network are proposed and achieve promis-
ing results. Recurrent Neural Network (RNN) based meth-
ods [Fragkiadaki et al., 2015; Martinez et al., 2017; Liu et
al., 2019] are popular in motion prediction and encode tem-
poral structure by a hidden state. [Li et al., 2018] presents a
temporal convolution seq2seq Network with GAN to generate
human-like motion. Recently, [Wei et al., 2019] proposes a
feed-forward network based on graph convolutional networks
and improves the performance of fixed length motion predic-
tion within 1000 ms.

The prediction capability of most current methods is lim-
ited to short-term predictions, mainly because they do not
explicitly learn sub-motion patterns and do not dynamically
select important motion segmentation as a reference in the
past. Facing few-shot new motion categories, these meth-
ods, which have been trained with large amounts of annotated
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Figure 2: Pipeline of our framework. We take the generation of pose
x̂t+k as an example. x̂t+k is predicted based on observed poses
and generated poses [x, x̂]. After masked by M, k-recent poses and
observed poses are input to the DSTCN. They are encoded by the en-
coders (observed encoder fα and masked encoder fm) of DSTCN,
getting the context vector vo and vm respectively. The parameter
generation module provides parameters θ to the Decoder through
an external memory that shares the accumulated information and a
parameter learner for capturing novel information. Then the con-
catenated context vectors (vo and vm) are used by the decoder to
generate future pose. Note that the predicted pose x̂t+k will be used
to predict the pose x̂(t+k)+1 at the next moment.

data, will quickly become overfitting. In this paper, we design
a MoPredNet for few-shot human motion prediction.

2.2 Few-shot Learning

The goal of the few-shot learning is to learn new concepts
with limited samples. Recent work on few-shot learning can
be classified into three categories: metric-based [Koch, 2015;
Vinyals et al., 2016], gradient-based [Finn et al., 2017], and
memory-based [Ravi and Larochelle, 2016; Gidaris and Ko-
modakis, 2018]. In few-shot human motion prediction , [Gui
et al., 2018] proposes to combine the model-agnostic meta-
learning MAML [Finn et al., 2017] and model regression net-
works (MRN) [Wang et al., 2017] to jointly learn generic
model initialization and adaptation strategy during the meta-
training phase.

Unlike [Gui et al., 2018] that slowly updates parameters,
when facing novel features extracted from a new category, we
directly update a specific model for this motion category from
the external memory. Then instead of just using stored fixed
parameters [Gidaris and Komodakis, 2018], we also generate
target parameters by learning novel motion dynamics from
new motion categories.

3 Approach

In human motion prediction task, we forecast future pose se-
quence based on the observed pose sequence. In this paper,
the pose at each time step is defined by x (i.e., mocap repre-
sentation for skeleton joints). For observed motion pose, the
motion sequence from time 1 to t is expressed as x1:t. The
predicted motion sequence from t + 1 to t + T is expressed
as x̂t+1:t+T , which is expected to be close to the ground truth
xt+1:t+T . To predict the correct motion of a new category
from very few observed samples, as illustrated in Fig. 2, the
proposed new architecture consists of three parts. DSTCN
(Section 3.1) adaptively captures motion information from
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observed poses and mask poses (Section 3.2) through en-
coders and generates new pose through the decoder. In the
few-shot motion prediction, the parameter generation module
(Section 3.3) generates new parameters by combining infor-
mation from the memory and generation module, enabling
fast adaptation to new motion categories.

3.1 Deformable Spatio-Temporal Convolution

To adaptively model sub-motion dynamics and spatial cor-
relation in the entire motion sequence, inspired by [Dai et
al., 2017], we propose a Deformable Spatio-Temporal Con-
volution Network (DSTCN) based on Temporal Convolution
Network (TCN) [Bai et al., 2018]. Same as [Li et al., 2018],
the observed skeletons data are represented in a 2D format:
temporal sequence domain t and spatial skeleton domain s.

Compared with TCN, our DSTCN can adaptively model
sub-motions, and can flexibly capture spatio-temporal struc-
ture. We show the first two layers of DSTCN in Fig. 3. The
feature Fl+1 ∈ R

ns×nt (feature map size: n) of location
P0 in l + 1-th layer includes not only original receptive field
O information in l layer but also its neighbor’s information.
The selection of neighbor information for motion modeling
is guided by the offset of receptive field ∆P . Then feature
Fl+1 (P0) convolves (∗) this deformable information by a 2D
convolution kernel Kl ∈ R

ms×mt (kernel size: m). We for-
mulate the deformable convolution process as follows:

Fl+1 (P0) =
∑

Pts∈O

Kl ∗ Fl (P0 + Pts +∆P ) , (1)

where Pts = (Pt, Ps). Pt is the temporal dimension and Ps

is the spatial dimension. Due to the limitation of the fixed
kernel, TCN does not have the offset ∆P . Unlike the original
application of deformable convolution using image data [Dai
et al., 2017], the DSTCN is designed to fit the temporal data,
where the information from the previous moment cannot be
leaked to the next moment.

In our work, we use the nonlinear activation function
(ReLU) to limit the direction of convolution expansion. We
also adaptively expand the receptive field in space to capture
the correlation of joints that are not directly connected, e.g.,
the symmetry of arms. We have the spatio-temporal offset:

∆P = (−ReLU (∆Pt) ,∆Ps) . (2)

However, high-dimensional 3D skeleton data are different
from the explicit relationship of adjacent pixels. Adjacent
pixels are not coaxial, so it is difficult to extract spatial corre-
lation directly. Therefore, reasonable deformation expansion
should occur on the same geometric pixels. In this work, we
present a local geometric extraction layer before deformable
spatio-temporal convolution layer to encode coordinates data
∆Ps = Pjoint.

The extension of convolution to the past is beneficial for
the modeling of periodic and aperiodic sub-motions. The
captured motion dynamics in base motion categories can be
easily generalized to new motion categories.

3.2 Sequence Mask

Correlated motion sequence is selected in past sequences
based on attention mechanism to provide explicit motion in-
formation guidance. As shown in Fig. 2, the observed pose
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Figure 3: Illustration of Deformable Spatio-Temporal Convolution.
The input is human motion data with spatio-temporal information.
A convolutional layer extracts the temporal and spatial offset fields.
In the temporal domain, the offset field is restricted to the past direc-
tion. In the spatial domain, the offset field is encouraged to expand
to both two directions. To effectively extract the spatial correlation,
from the input to the feature map F0, the offset is limited to the joint
level (green coordinate to yellow coordinate).

and masked pose (masked by M) are encoded by observed
encoder fα and masked encoder fm respectively. At each
time step, by combining observed motion context vector vo
and masked motion context vector vm, a reasonable future
motion sequence can be predicted by decoder function fβ .
The generation of x̂t+k can be presented by

x̂t+k = fβ
(

fα (x1:t; θα) , fm (M⊙ [x, x̂] ; θm) ; θβ
)

, (3)

where θα, θm, θβ are parameters of deep networks. ⊙ de-
notes Hadamard product. [x, x̂] is the observed and generated
motion before time t+k. The temporal maskM in this paper
is binary which depends on the correlation score ai between
past poses and the current pose. The process of selection can
be given by

Mi =

{

0, ai ≤ δ

1, ai > δ
, (4)

where ai is defined as

ai =
exp (xt+k

⊺xt+k−i)
∑K

i=0 exp (xt+k
⊺xt+k−i)

. (5)

Here, δ and K are hyper-parameters that determine the num-
ber of reference frames. In summary, different from previous
work [Martinez et al., 2017; Gopalakrishnan et al., 2019] in
which a single physical property is selected, we enhance cor-
related motion sequence encoding to provide explicit guid-
ance for long-term motion prediction.

3.3 Few-shot Learning

Fig. 4 summarizes our new memory-based parameter gener-
ation module for the few-shot motion prediction. Follow-
ing related few-shot work [Gidaris and Komodakis, 2018;
Sun et al., 2019], we divide large human motion dataset D
into two subcategory datasets: base categories split Dbase =

{Di}
Cb

c=1 of Cb categories and novel categories splitDnovel =

{Di}
Cn

c=1 of Cn categories. In few-shot motion prediction, the
training data for a new category are limited. Therefore, we

sample a few prediction task T (tr) =
⋃Cb

c=1 {xc,s}
S

s=1 of S
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Figure 4: Illustration of the Parameter Generation Module. Motion
Prediction Module provides the context vector vnovel of new motion
category to Parameters Generation Module and gets new parame-
ters θβ

∗ from it. In the Parameter Generation Module, accumulated
knowledge is stored in the memory, including context vectors V of
base category and corresponding parameters θ. The novel informa-
tion in vnovel which is non-existence in based context vectors, is
decoded by the Parameter Learner to generate target parameters. It
combines with the base parameter computed by attention mecha-
nism to generate new parameters. ∇L

T (tr) (fβ) and ∇L
T (tr) (fg)

denote backpropagation (red line) for DSTCN and the Parameter
Learner, respectively.

samples from Dbase and T (ts) =
⋃Cn

c=1 {xc,s}
S

′

s=1 of S
′

sam-
ples from Dnovel for meta-train and meta-test separately.

In our work, we train a model suitable for a new category
of motion prediction in three phases: a pre-training phase,
a meta-training phase, and a meta-test phase. In the pre-
training phase, to simulate the accumulation of basic human
knowledge, we pre-train our motion prediction module on a
large dataset with base categories Dbase. Pose encoder (in-
cluding whole past sequence encoder fα (·; θα), masked se-
quence encoder fm (·; θm)), and pose decoder fβ (·; θβ) are
trained by the loss function LD:

[θα; θm; θβ ]← [θα; θm; θβ ]− γ1∇LD ([fα; fm; fβ ]) , (6)

where▽LD is computed by the L2 loss ℓ2 on frames:

∇LD ([fα; fm; fβ ]) =
1

D

∑

x∈D

ℓ2 (xt+1:t+T , x̂t+1:t+T ) ,

(7)

and γ1 denotes the learning rate. In addition to pre-training
general parameters [θα; θm; θβ ] of the model for all motion
categories, the parameters θβ of the prediction decoder are
also kept in an external memory with its n-dimensional con-
text vector v = fα (·; θα) ∈ R

n (including general parame-
ters and specific category parameters). So, similar to mem-
ory networks [Sukhbaatar et al., 2015], the external mem-

ory stores key-value pairs: (V , θ), where V = {vc}
Cb+1
c=1 and

θ =
{

θβc

}Cb+1

c=1
.

The second phase is the meta-training phase, as shown in
Fig. 4. To quickly adapt the motion prediction module to new
motion categories, we use the parameter generation module
to generate decoder parameters θβ instead of optimizing them
slowly [Gui et al., 2018]. A crucial difference between our
network and previous work [Gidaris and Komodakis, 2018]

is that our proposed parameter generation module not only
references a credible parameter set θ in the memory but also

relies on novel information in a new motion category. The
parameters in the memory have the ability to extract shared
features in the motion but cannot capture unique information
for new motion. Therefore, we propose a parameter learner
to extract novel motion dynamics and generate a novel weight
for fg (·; θg), which enables the motion prediction module de-
code new motion. Combining the base parameters and novel
parameters, the p-dimensional target parameters θβ

∗ ∈ R
p

are computed as:

θβ
∗ = fg (vnovel; θg) + h (vnovel,V, θ) , (8)

where the context vector vnovel is encoded by observed en-
coder fα (xt+1:t+T ; θα) and is the same as vo in base cat-
egories. vnovel ∈ R

n denotes novel feature as a query.
h (·, ·, ·) computes the content-based attention scores by nor-
malized cosine similarity and used to weight the basic param-
eters. Therefore, the Motion Prediction Module will use the
updated parameters [θα; θm; θβ

∗] of the DSTCN to generate
future pose.

For parameter update in the meta-training phase, parame-
ters [θα; θm] of the pose encoder in DSTCN are frozen, and
the learnable generated parameter θβ

∗ of the pose decoder in
DSTCN is optimized by gradient descent:

θβ
∗

upd
= θβ

∗

ass
− γ2∇LT (tr) ([fα; fm; fβ ]) , (9)

where θβ
∗

ass
denotes the assigned parameters before the opti-

mization and θβ
∗

upd
denotes the updated parameters after the

optimization. θβ
∗

ass
and θβ

∗

upd
are used for guiding the opti-

mization of θg:

θg ← θg − γ3∇LT (tr) (fg) , (10)

where loss function LT (tr) is computed by the L2 loss be-
tween θβ

∗

ass
and θβ

∗

upd
:

∇LT (tr) (fg) =
1

T (tr)

∑

T (tr)

ℓ2

(

θβ
∗

ass
, θβ

∗

upd

)

. (11)

In the meta-test phase, we train the parameter generation

module on the support data of a new prediction task T (ts).
With the motion of the new category as input, the parame-
ter generation module is adjusted by new training data. To
avoid the problem of “catastrophic forgetting” [Lopez-Paz
and Ranzato, 2017], the encoder’s parameters of the motion
generation module are frozen.

Our parameter generation module can quickly update pa-
rameters of motion prediction module for new motion cate-
gories. The memory module helps generate model param-
eters for human-like motion, and the parameter learner can
help generate model parameters for decoding novel motion.

3.4 Schedule Sampling

There are many training strategies for human motion predic-
tion, including open-loop prediction with noise [Fragkiadaki
et al., 2015], closed-loop prediction [Martinez et al., 2017]

and fixed sampling [Li et al., 2018]. All these training strate-
gies focus on the challenging error accumulation problem,
which ignores the model’s convergence efficiency and con-
vergence effect. Inspired by [Bengio et al., 2015], we use
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walking eating smoking discussion

Methods 80 320 400 560 1000 80 320 400 560 1000 80 320 400 560 1000 80 320 400 560 1000

PAML [Gui et al., 2018] 0.35 0.76 0.82 0.80 0.83 0.36 0.65 0.70 0.71 0.79 0.39 0.81 1.01 1.03 1.01 0.41 1.01 1.02 1.09 1.12

Baseline
Single 0.32 0.58 0.59 1.09 1.08 0.30 0.58 0.69 0.94 1.53 0.26 0.76 0.89 1.19 2.35 0.44 1.02 1.07 1.33 2.21

Transfer 0.24 0.44 0.45 0.85 0.87 0.31 0.51 0.57 0.80 0.87 0.23 0.67 0.76 1.02 2.16 0.43 0.99 1.08 1.39 2.54

Abalation Memory (attention) 0.20 0.44 0.44 0.77 0.85 0.32 0.54 0.59 0.82 0.97 0.24 0.64 0.74 1.02 2.17 0.42 0.95 1.00 1.26 2.22

MoPredNet(Ours) 0.19 0.43 0.44 0.75 0.83 0.30 0.45 0.47 0.63 0.73 0.21 0.53 0.59 0.78 1.88 0.41 0.94 0.90 1.06 1.17

Table 1: Mean Angle Error of different methods on Human 3.6M dataset for few-shot motion prediction task.

scheduled sampling to balance the convergence and gener-
alization during the training phase. Let f denote the entire
prediction function, including encoding function (fα, fβ) and
decoding function (fθ). We have

x̂t+k+1 = f ([x0:t+k−1, ϕ · x̂t+k + (1− ϕ) · xt+k]) ,
(12)

where ϕ decays after each series of iterations I (or epoch),
like the learning rate:

ϕI = 1− s ·
(

1− ϕI−1

)

. (13)

Here, s determines the decay speed of the function, with the
range of [0, 1]. Hence, in the early stage of training, the net-
work can quickly converge relying on the guidance of ground
truth. As the training proceeds, the network can generate
plausible motion based on motion model and dynamics. The
network then reduces the sampling rate to focus on error ac-
cumulation and improves its generalization ability.

4 Experiments

We evaluate the effectiveness of our MoPredNet for few-shot
motion prediction on two popular human motion datasets:1)
Human 3.6M dataset [Ionescu et al., 2013] and 2) CMU MO-
CAP. We follow [Martinez et al., 2017] on Human 3.6M
dataset, where the sequence of subject 5 is selected for test
(same in meta-learning and meta-test) and others are selected
for training. Besides few-shot motion prediction, we also re-
port the performance of the sequence mask and DSTCN mod-
ule on long-term prediction using Human 3.6M dataset. Sim-
ilar to [Li et al., 2018], 8 representative motions in CMU
MOCAP are used and split into training and test set.

4.1 Experimental Setup

In our Motion Prediction Network (MoPredNet), pose en-
coder consists of whole past sequence encoder and masked
motion sequence encoder with the longest mask K set as 20
and mask threshold γ set as 0.0666. They share the parame-
ters of the convolution layer in the encoder, including 1 con-
volution layer with 1×3 convolutions for joints coding and 3
deformation convolution layers with 2× 3 convolutions, fol-
lowed by leaky ReLU nonlinearity. The feature channels of
each convolution layer are set as 16, 64, 128, 256 respectively.
After that, the feature is encoded to a 512-dimensional vector
by a fully-connected layer. The pose decoder network con-
tains three fully-connected layers with the size of 512, 128,
and 54, respectively. Leaky ReLU action function and drop
out are both set as 0.5 in the first two layers. For the parameter
learner in the parameter generation network, it contains two
fully-connected layers. We adopt the ADAM optimizer with
the initial learning rate set as γ1 = γ2 = 1e− 4, γ3 = 1e− 8.

The initial sampling rate and decayed rate are set as 0.8 and
0.7, respectively.

In order to fairly evaluate previous work, we report experi-
mental results by implementing their released code with their
original setting. The input window is set as 50 frames (2s),
and the output window is set to 25 frames (1s) for training
(GCNs’ output window is set to 100 frames as it required).
It is noteworthy to mention that both in few-shot motion pre-
diction and long-term motion prediction, we do not use any
supervised label for motion prediction.

4.2 Evaluation on Human 3.6M Dataset

We first evaluate our MoPredNet architecture for few-shot hu-
man motion prediction on Human 3.6M dataset. Following
previous work [Gui et al., 2018], we sample 6 motion se-
quences (5 sequences for training, 1 sequence for test) from
each of the 11 categories (except walking, eating, smoking

and discussion) as base prediction task T (tr) during meta-
training phase. The remaining categories of motion are used

as novel prediction task T (ts) with its small training set and

test set like T (tr). The performance of our meta-learning ar-
chitecture is shown in Table 1. Obviously, our method out-
performs PAML [Gui et al., 2018] almost all the time in all
novel motion categories, which proves that encoding novel
motion dynamics is beneficial for few-shot motion prediction.

We construct two baseline methods (MoPredNet without
parameter generator module): Single means training a single
model with few samples on every specific motion category,
and Transfer means training one model for all basic motion
categories with large data and fine-tuning new motion cate-
gories with few samples. Compared with baseline methods,
we can see that our meta-learning method improves the per-
formance of our MoPredNet on novel motion categories.

We also apply the DSTCN and the sequence mask mod-
ule to long-term motion prediction (4000 milliseconds)
[Gopalakrishnan et al., 2019] and compare with the state-of-
the-art methods. Table 3 shows the Mean Angle Error (MAE)
results on the Euler angles on the Human 3.6M dataset.
From the experiment results, we can see that our architec-
ture achieves the best prediction results. Especially at 560ms,
1000ms and 2000ms, our errors are 0.07, 0.08 and 0.1 lower
than HMR results respectively.

The qualitative results are illustrated in Fig. 5, which shows
the long-term human motion prediction over 4000ms for two
actions: walking and walking together. We can see that poses
predicted by our MoPredNet are closed to ground truth in
short-term prediction and more like human motion. Take
walking as an example, our generated pose sequence is con-
sistent with ground truth before 1 second. After that, our Mo-
PredNet hardly holds the same motion frequency with ground
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running soccer basketball washwindow

Methods 80 320 400 560 1000 80 320 400 560 1000 80 320 400 560 1000 80 320 400 560 1000

Baseline
Single 0.37 0.95 1.14 1.53 1.58 0.23 0.78 0.95 1.18 1.70 0.35 1.06 1.26 1.66 2.80 0.35 0.99 1.19 1.44 1.75

Transfer 0.26 0.68 0.75 0.78 1.27 0.21 0.67 0.81 0.95 1.60 0.28 0.98 1.26 1.63 2.73 0.34 0.89 1.09 1.32 1.60

MoPredNet(Ours) 0.26 0.61 0.65 0.62 1.02 0.16 0.47 0.60 0.78 1.36 0.27 0.71 0.94 1.30 2.32 0.34 0.87 1.06 1.27 1.50

Table 2: Mean Angle Error of our method and baselines on CMU dataset for few-shot motion prediction task.

Walking

Walking together

-1 0 1 2 3 4(S)

Figure 5: Qualitative results on Human 3.6M dataset.

truth, but can still capture the motion direction changes.

4.3 Evaluation on CMU MOCAP Dataset

Using similar architecture settings for Human 3.6M, we re-
port our results on the CMU MOCAP dataset in terms of
angle errors in Table 2. The CMU MOCAP dataset is di-
vided into base categories and novel categories. The base
categories include walking, jumping, basketball signal, and
directing traffic. The novel categories include running, soc-
cer, basketball, and wash window. The experiment results
show that our method outperforms other baselines in all the
new categories.

4.4 Ablation Study

We use the parameter learner to update the parameters of de-
coder according to novel motion dynamics beyond the mem-
ory combination. We remove it from our MoPredNet to ver-
ify its effectiveness as shown in Table 1. The results show
that using the parameter learner provides a significant boost
in performance. We also show the influence of the sequence
mask module, the DSTCN module, and the local geometric
extraction layer in Table 3. The def.cnn in Table 3 indicates
DSTCN without local geometric extraction layer before the
deformable convolution layer. Results show that the sequence
mask, the DSTCN and the local geometric extraction layer all
contribute to the improvement of the performance.

In the training stage, we use schedule sampling to cope
with the error accumulation problem. We compare the per-
formance in Human 3.6M dataset using schedule sampling
with open-loop prediction, closed-loop prediction, and fixed
sampling in Table 4. We can see that using schedule sampling
can converge to a better local optimal solution.

Methods 80 240 400 560 1000 2000 4000

ERD [Fragkiadaki et al., 2015] 1.21 1.44 1.65 1.80 2.18 2.56 2.96
LSTM-3LR [Fragkiadaki et al., 2015] 1.39 1.53 1.72 1.89 2.33 2.79 3.29

Res-GRU [Martinez et al., 2017] 0.39 0.95 1.28 1.49 1.91 2.44 3.01
Zero-velocity [Martinez et al., 2017] 0.40 0.90 1.21 1.42 1.85 2.21 2.55

Conv seq2seq [Li et al., 2018] 0.38 0.87 1.15 1.35 1.77 2.17 2.51
HMR [Liu et al., 2019] 0.38 0.83 1.14 1.37 1.80 2.14 2.46
GCNs [Wei et al., 2019] 0.40 0.89 1.18 1.36 1.76 2.22 2.69

Ablation

None 0.40 0.90 1.21 1.41 1.85 2.22 2.60
Mask 0.40 0.89 1.19 1.39 1.81 2.15 2.52

def. cnn 0.39 0.87 1.16 1.36 1.81 2.24 2.65
DSTCN 0.39 0.85 1.13 1.33 1.75 2.10 2.45

MoPredNet(Ours) 0.38 0.84 1.11 1.30 1.72 2.04 2.43

Table 3: Mean Angle Error of different methods on Human 3.6M
dataset for short-term and long-term motion prediction tasks.

80 240 400 560 1000 2000 4000

Close L 0.40 0.87 1.13 1.32 1.75 2.13 2.87
Open L 0.40 0.88 1.17 1.37 1.80 2.18 2.53
Fixed S 0.39 0.84 1.12 1.32 1.74 2.09 2.47

Schedule S 0.38 0.84 1.11 1.30 1.72 2.04 2.43

Table 4: Mean Angle Error of different sampling methods on Human
3.6M dataset.

5 Conclusion

In this paper, we propose MoPredNet for few-shot motion
prediction. In addition to the base knowledge accumu-
lated through base motion categories, MoPredNet can capture
novel motion dynamics from a few new motion samples. This
improves its performance in new motion categories. MoPred-
Net can select the correlated motion frames of past motion to
provide explicit guidance for long-term pose prediction. In
addition, the MoPredNet can adaptively capture past motion
spatio-temporal structure to improve its encoding capabil-
ity. Experiment results demonstrate that our method achieves
state-of-the-art performance in human motion prediction.
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