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Abstract
Graph neural networks and convolutional architectures have proven to be pivotal in improving the prediction of molecular

properties in drug discovery. However, this is fundamentally a low data problem that is incompatible with regular deep

learning approaches. Contemporary deep networks require large amounts of training data, which severely limits the

prediction of new molecular entities from limited available data. In this paper, we address the challenge of low data in

molecular property prediction by: (1) defining a set of deep learning architectures that accept compound chemical

structures in the form of molecular graphs, (2) creating a few-shot learning strategy across graph neural networks and

convolutional neural networks to leverage the rich information of graph embeddings, and (3) proposing a two-module

meta-learning framework to learn from task-transferable knowledge and predict molecular properties on few-shot data.

Furthermore, we conduct multiple experiments on two benchmark multiproperty datasets to demonstrate a superior

performance over conventional graph-based baselines. ROC-AUC results for 10-shot experiments show an average

improvement of þ11:37% on Tox21 and þ0:53% on SIDER, which are representative small-sized biological datasets for

molecular property prediction.
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1 Introduction

Drug discovery and development is an extremely long and

expensive process that aims to find innovative medical

compounds ready to be formulated, synthesized and

administered to a patient [1]. Despite the most recent sci-

entific advances and ever-increasing understanding of

biological systems, most of these compounds fail to be

selected due to a lack of desirable molecular properties [2].

In lead optimization, only a small fraction of the

molecules can pass virtual screening and enter clinical

development. The higher the quality of these preclinical

candidates, the higher the probability of successful drug

development [3]. However, the major cost of this operation

stems from exploring the entire chemical space to synthe-

size only a few drug candidates. Thus, the search for new

classes of compounds with a suitable pharmacological

profile from a small amount of labeled data is paramount

[4].

Currently, artificial intelligence assists almost every step

of drug discovery including target identification, lead dis-

covery and optimization or preclinical data generation.

These methods reduce the number of iterations required to

discover novel and active compounds while eliminating

those that are inactive, reactive and toxic [5].

With the evolution of artificial intelligence, develop-

ments in deep learning (DL) have played a crucial role in

optimizing drug discovery. These algorithms motivated the

application of new graph representation learning tech-

niques to model systems of drug interaction and prediction.

However, with only a few labeled molecules available,

deep networks struggle to generalize well and achieve

acceptable performance [6].
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Well-validated biological datasets (e.g., Tox21, SIDER)

[7] are limited in size and very expensive to obtain. These

scarce drug repositories include only a few compounds that

share the same set of molecular properties. The resulting

lack of biological information, including molecules sharing

similar properties, bounds the performance of conventional

approaches. This precondition sets the challenge of

developing models to effectively predict small molecules

in few-shot learning scenarios [8, 9].

Recent research has demonstrated that simple machine

learning algorithms and random forest predictors are

effective in learning meaningful structural information

from just a few labelled compounds [10, 11]. On the other

hand, transfer learning and data augmentation techniques

also provide the domain knowledge required in cases

where examples with supervised information are hard or

impossible to obtain [12, 13].

Nonetheless, these techniques are often too expensive

and resource intensive to perform in drug discovery cam-

paigns. More recently, non-trivial few-shot learning pre-

dictors have been proposed to discover the properties of

new molecules and recognize potential drug candidates for

further development [14, 15]. These methods attempt to

learn from a set of molecular property prediction tasks and

generalize to new chemical properties given a just a few

molecules available.

Small molecules can be viewed as comprehensive graph

structures, where atoms are represented as nodes and

chemical bonds as edges shared by neighbors in a graph

[16–18]. These graph-level representations account for the

spatial arrangement of atoms and bonds as well as inter-

actions between neighboring nodes and edges. This

approach is more suitable for representation learning than

sequence-based methods that describe molecules as

sequential features such as SMILES (Simplified Molecular

Input Line Entry System) strings [19].

These unique graph features can be used by deep

learning pipelines, which fail to predict molecular proper-

ties with limited available data. This limitation prompts the

need to explore models that quickly adapt across tasks to

predict new properties on few-shot data [20, 21].

2 Related work

Few-shot learning methods have emerged as critical tools

to accelerate and optimize drug discovery. These are

algorithms that target at generalizing from small data col-

lections to predict new systems from a limited amount of

labeled information. Recently, few-shot models have pro-

ven effective in modeling molecules as comprehensive

graph structures used for graph-based representation

learning. Graph neural networks leverage this information

to build molecular embeddings by treating atoms as nodes

and chemical bonds as edges. Node and edge embeddings

can later be used to support the prediction of molecular

properties. Deep networks such as convolutional neural

networks also manipulate these continuous vectorial rep-

resentations to encode molecular graphs in a form suit-

able for few-shot molecule prediction.

2.1 Few-shot learning

Humans have an innate ability to recognize new objects

and representations quickly from just a few examples. Prior

knowledge helps to distinguish new concepts based on a

generalized perception of an extensive and diverse set of

representations. Thus, the ability to few-shot learn different

representations by observing a concept and generating

meaningful and diverse variations is very important when

classifying new instances of unknown concepts [22].

This strategy attempts to adapt from previously seen

classes to predict unseen representations from just a few

labeled examples. This idea of few-shot generalization

gave rise to few-shot learning methods [23].

Few-shot learning (FSL) was introduced by Fei-Fei et al.

[24] in the field of computer vision and image processing.

This approach presents a fundamental feature, which is the

ability to predict based on prior experience by transferring

knowledge across tasks.

In drug discovery, molecular property prediction is a

few-shot learning problem since only a few molecules can

pass virtual screening to be further evaluated in lead opti-

mization. At this stage, few-shot models attempt to learn a

predictor from a set of molecular property tasks and gen-

eralize to new chemical properties from a small amount of

labelled molecules.

Altae-Tran et al. [25] introduced an iteratively refined

LSTM (IterRefLSTM) model and adapted a classic FSL

algorithm to handle these molecular property prediction

tasks by iteratively coevolving undirected graph features.

In this pioneering study, a graph neural network acts as a

molecular encoder and learns few-shot representations

across tasks to provide an inductive bias from prior expe-

rience that guides the search for the optimal model

parameters.

2.2 Graph neural networks

More recently, the fast adaptability of few-shot learning

methods foregrounded graph neural networks (GNNs) as

promising strategies to model nonlinear systems of mole-

cule prediction.

GNNs have shown promising results by representing

molecules as topological graphs of node and edge features.

Graphs are characterized by specific neighborhood
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aggregation functions to update node representations and

iteratively build graph-level embeddings.

Graph embedding methodologies, such as graph con-

volutional networks (GCN) or node2vec, are able to per-

form feature representation learning to obtain

comprehensive graph embeddings. While GCNs use node

and edge aggregation to compute graph embeddings,

node2vec is inspired by powerful natural language pro-

cessing algorithms (word2vec) to explore the relationship

between nodes and edges in a graph as words in a sentence

[26].

In drug discovery, the generated embeddings can be

used to learn and predict properties of molecular graph

features representing molecules. Hu et al. [27] propose

novel strategies to pretrain graph-based networks and assist

the learning of local and global information for molecular

property prediction using graph embeddings.

GNNs such as GCN, graph isomorphism networks

(GIN), GraphSAGE and graph attention networks (GAT)

have significantly improved the discovery of new chemical

entities with enhanced therapeutic properties [28, 29].

Graph convolution architectures include a convolutional

component to aggregate nodes and edges from close

neighbors on the same receptive field. This type of graph

networks aggregates node features by applying convolu-

tional filters on the aggregated nodes. GraphSAGE uses a

different sampling strategy by transforming the original

graph convolution training procedure into a training

method divided in small batches centered on the nodes. An

inductive graph convolution operation also extends the

aggregation to generate relevant graph features on unseen

nodes and edges [30, 31]. GAT models are an extension of

the conventional GCN that perform node aggregation by

adding specific attention weights to certain nodes. Thus,

GAT computes node aggregates based on attention scores

that translate the most meaningful parts of a node’s

neighborhood [32]. Among graph neural network archi-

tectures, GIN presents the maximum discriminative power

by generalizing the Weisfeiler–Lehman (WL) isomorphism

test to capture different graph structures [33].

Guo et al. [34] proposed a meta-learning framework

(Meta-GNN) across GNNs to predict molecular properties

using a novel pre-training technique. Self-supervised

learning objectives such as bond reconstruction and atom

type prediction were included to improve generalization on

few-shot data.

Structural aspects of these graph features model com-

plex patterns and local dependencies between neighboring

nodes and edges. Node and edge features can be later used

to predict the behavior of active compounds or specific

molecular properties of multiple drug candidates.

2.3 Convolutional neural networks

Convolutional neural network (CNN) architectures can

process molecules to build up features using learnable

convolutional layers [35]. These architectures consist of a

set of layers with multiple neurons and a set of parameters

representing the strength of the connections between neu-

rons [36].

CNNs learn by applying a backpropagation algorithm to

tell the neural network how to change its internal param-

eters. This shift allows CNNs to compute the representation

in a layer from the representation of the previous layer. As

we progress to deeper layers, the ability to distinguish

global patterns and local dependencies increases [37].

Sequential layers treat the input as an image viewed as a

grid where each element corresponds to a pixel. Convo-

lutional weight matrices act as filters that operate in local

receptive fields of neighboring pixels to develop structure

in high-dimensional feature spaces.

In drug discovery, molecular features can be handled by

convolutional architectures to model nonlinear functions of

molecular structure and transform small molecules into

deep representations. To explore the potential of such

representations, Shi et al. [38] proposed a CNN method to

establish prediction models of molecular properties for

automated virtual screening and ADMET prediction.

Moreover, Ståhl et al. [35] introduced a flexible CNN

architecture to incorporate global and local information of

deep representations to effectively predict undirected graph

features representing molecules.

By converting these molecular features into continuous

embedded descriptors, CNNs can use deep representations

to infer the complex concepts of molecular structures and

boost the prediction of molecular properties [39, 40].

3 Proposed approach

Few-shot molecular property prediction depicts a practical

learning scenario where a model f is provided with a small

number of training examples. This model intends to predict

new molecular properties from just a few examples by

generalizing from prior learning experience.

In this direction, the problem of low data can be defined

to the following extent: Given the molecular property

labels yi 2 Y of a small set of molecules D, the goal is to

learn a function f to map a molecule di 2 D to a given

molecular property y 2 Y in the test data. This can be

formalized by

f : di 7!yi: ð1Þ
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GNNs have proven critical when optimizing the prediction

of drug-like properties by exploring unique graph features

[41]. Generally, the objective is to obtain an embedding for

a set of nodes and edges in a graph to generalize from

node-edge representation learning. Subsequently, these

continuous vectorial representations are fed into a simple

classifier to predict a given property or molecular label.

Conventionally, a GNN f converts a graph representa-

tion of a node v 2 V to an embedding h based on the

contextual information of a subgraph of its neighboring

nodes u 2 NðVÞ and edges e ¼ ðv; uÞ. These embedded

descriptors preserve the original graph structure and

properties to map them to a reduced space of comprehen-

sive representations (see Fig. 1).

However, most of the aforementioned graph-based net-

works neglect the practical use of such representations and

fail to leverage node and edge embeddings to enhance the

prediction of molecular properties. Hence, the potential of

these graph embeddings has yet to be fully explored

successfully.

To address the limitations of existing studies and exploit

the singular properties of graph-level representations, we

propose an innovative approach, FS-GNNConv, for

molecular property prediction. The proposed GNN-CNN

architecture explores the local dependencies of molecular

graph embeddings to learn complex patterns and produce

stronger features for representation learning. The challenge

of low-data is systematically addressed by proposing a two-

module meta-learning framework to quickly adapt to new

molecular properties across few-shot tasks. This strategy

saves resources and promotes fast adaptation to new

experimental tasks, similar or marginally identical to those

found in training. The major contributions of this work can

be summarized as follows

(i) a two-module GNN-CNN architecture that accepts

the compound chemical structure to exploit the

rich information of graph embeddings;

(ii) a few-shot learning (FSL) strategy to learn from

task-transferable knowledge and predict the

behavior of active compounds in new experimen-

tal systems;

(iii) a meta-learning framework to iteratively optimize

model parameters and successively gather generic

knowledge across tasks to predict task-specific

molecular properties;

(iv) experiments on real multiproperty prediction data

to demonstrate the predictive power of the

proposed model when inferring specific target

properties adaptively.

3.1 Embedding module: graph isomorphism
network

GNNs are extremely effective in modeling molecular

properties by describing the molecular structure as a graph.

In a molecular graph, each node represents an atom, and

each edge represents a chemical bond between atoms. Both

can be described by multiple features encoding structural

and stereochemical attributes.

Let a molecular graph be defined as G ¼ ðV;EÞ with V

as the set of nodes and E as the set of edges e ¼ ðv; uÞ
connecting each pair of nodes in a neighborhood NðVÞ,
where v 2 V ; u 2 NðvÞ. We denote M ¼ fG1. . .;GNg as

the set of molecular graphs and Y as the set of molecular

property labels Y ¼ fy1. . .; yNg. The objective is to predict

a molecular property yi by learning a nonlinear function f

that maps a molecular graph G to an embedding hG,

f : G7!hG ð2Þ

where hG is the graph-level embedding used to assist the

prediction.

Recent research in this field suggests two main groups of

GNNs based on the neighborhood aggregation function for

graph embedding. Spectral GNNs decompose each graph

to approximate the spectral filters of GNN message-passing

layers. On the other hand, spatial GNNs compute the

neighborhood aggregation from the node spatial relations

between neighboring nodes and edges in the graph [42].

Fig. 1 Graphical depiction of a

molecule representation as a

molecular graph. Node

embeddings hv are mapped from

molecular graphs to a low-

dimensional feature space of

vectorial embeddings
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Spatial-based GNNs operate under two arbitrarily dif-

ferentiable functions: a neighborhood aggregation function

AGGREGATE and a COMBINE step to merge and update

node and edge features.

GNNs are iterative message-passing networks. Multiple

message-passing iterations l update nodes hlv using prior

representations of a node hl�1
v and representations of its

close neighbors in the graph hl�1
u . During a message-

passing iteration, node embeddings hv with v 2 V are

updated using representations of neighboring nodes u 2
NðvÞ and edges e ¼ ðv; uÞ [43].

In this work, we apply a spatial-based GIN [33] as the

first module to compute graph embeddings for further

learning and prediction. In this case, the GNN implements

both COMBINE and AGGREGATE functions as the sum

of node and edge features [27]. Thus, node embeddings are

updated for each message-passing iteration l by

ml
NðvÞ ¼AGGREGATElðfhl�1

u ;

8u 2 NðvÞg; fhl�1
e : e ¼ ðv; uÞgÞ

ð3Þ

hlv ¼rðMLPlðCOMBINElðhl�1
v ;ml

NðvÞÞÞÞ ð4Þ

where m is the ‘‘neural message’’ passed through the net-

work, hlu are the embeddings of neighboring nodes, and hle
is the feature vector of an edge between nodes u and v. An

UPDATE step includes a multi-layer perceptron MLP to

introduce nonlinearity and a nonlinear activation function r
(ReLU). More specifically, the GNN updates node repre-

sentations by

hlv ¼ ReLU MLPl
X

u2NðvÞ[v
hl�1
u

0

@

0

@

þ
X

e¼ðv;uÞ:u2NðvÞ[v
hl�1
e

1
A
1
A:

ð5Þ

The idea is that a message is generated from the informa-

tion about neighboring nodes and combined with previous

embedded representations of a node v, hl�1
v to obtain the

updated embedding hlv. The original inputs for aggregation

are the initial node and edge attributes h0v and h0e . After l

iterations, the final embedding, hlv; 8v 2 V , incorporates

information about the node (atom) and the contextual

subgraph of nodes and edges (bonds between atoms) in a l-

hop neighborhood [44].

Finally, a READOUT mean-pooling operation is per-

formed to obtain an embedding hG. This graph-level rep-

resentation is obtained by averaging the node embeddings

hv at the final message-passing layer l

hG ¼ meanðfhlv : v 2 VgÞ: ð6Þ

These graph embeddings can be saved for further learning,

as we will present in the next section.

A graphical depiction of the proposed model architec-

ture is shown in Fig. 2. For graph operations, the nodes

being operated on are displayed in blue, with neighboring

nodes shown in black. For AGGREGATE, COMBINE and

UPDATE, the operations are shown for a single node v 2 V

and performed on all nodes v in the graph, simultaneously.

In this case, we consider graph operations for L ¼ 5 mes-

sage-passing layers and the READOUT operation is per-

formed at the final layer. In the convolution operations,

hconv describes the deep representations extracted by a

CNN g from graph embeddings of size ¼ 300. Different

blue squares denote different values of the node-level and

graph-level embeddings hv and hG, respectively. Different

orange squares denote different values of deep represen-

tations hconv.

Node and edge features are described by atom and bond

attributes. Node attributes include the atom number (AN)

and atom chirality (AC) to describe the type of atom, how

it is connected and the spatial interaction behavior with

neighboring nodes. Edge attributes include bond type (BT)

and bond direction (BD) to specify the structural aspects of

chemical bonds and the spatial orientation of the edges.

Formally, the input node and edge features are described as

h0v ¼ ðvAN; vACÞ ð7Þ

h0e ¼ ðeBT; eBDÞ ð8Þ

with ð; Þ as a concatenation operation and e and v as edge

and node attributes, respectively.

Pre-trained GIN, GCN and other graph-based architec-

tures have been widely used in drug discovery applications.

In this sense, the GIN model is pre-trained using a recent

pre-training technique [27] to achieve better parameter

initialization and learn global and more generic descriptors.

3.2 Prediction module: convolutional neural
network

CNNs inherit many of the properties of the artificial neural

networks to develop structures in a feature space where the

complexity stratifies along with different layers. These

layers are made up of neurons including a set of learnable

weights and biases.

Convolutional layers consist of several convolutional

filters (weight matrices) capable of extracting local features

from the input. In the forward pass, these representations

are propagated across convolutional layers while convo-

lutional filters slide through the spatial dimensions of the

input. The output feature maps are the result of the con-

volution operation between the convolutional filters and

different positions in the input vector [29].
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These sequential layers emerge as detectors of local

patterns by restricting the connections with neurons to

small regions of the input. The subsequent increase in the

number of convolutional filters and in the combinatorial

size of the feature space allows the extraction of more

complex and generic descriptors [37].

In this study, one-dimensional CNNs are explored to

build a molecular property prediction module. By incor-

porating the graph structure information enclosed in graph

embeddings, CNNs can discriminate important patterns

between close and distant neighbors in the graph.

To this end, node representations hv are used to calculate

graph embeddings hG through node averaging and mean

pooling, as described in the previous section. Embeddings

are then used as input feature vectors for further

computation.

First, we collect the embeddings H ¼ fhG1
. . .; hGN

g
obtained from the original graphs Gi. Then, we perform the

nonlinear mapping of hG to a deep representation vector

hconv using a CNN g. This relation can be defined by

g : hG 7!hconv: ð9Þ

Deep representations hconv are then propagated to become

increasingly smaller and more complex as we progress to

deeper layers.

The prediction module g presents a conventional

architecture with 3 CNN blocks. One-dimensional input

embeddings of size ¼ 300 are convoluted with filters of

size 3� 1 followed by batch normalization with

momentum ¼ 1; � ¼ 1e� 5 and ReLU activation (see

Table 1).

The convolution operation consists in a set of multipli-

cation operations and later sum. The convolution between

convolutional filters and the elements of input embeddings

hG, over which these filters slide, returns the feature map of

convolutional outputs hconv. This process is repeated across

layers to return the output of the convolution operation

between weight matrices W and the regions to which they

are connected in the input vector (see Fig. 3) [37].

After convolution, batch normalization helps to coordi-

nate the updates of multiple layers in the CNN module by

scaling the output feature maps of convolutional layers.

This is done by normalizing the activations of each input

variable per mini-batch, such as the neural activations from

previous layers. This process of standardization stabilizes

and speeds up model convergence while reducing the

generalization error [45].

Then, ReLU (Rectified Linear Unit) units apply a

function that converts the values present in the input vec-

tors of elements x to non-negative values: maxð0; xÞ. This
operation sets a threshold at 0, where the negative values

are nullified, accelerating the process of convergence due

to the linear profile of ReLU activation [46].

Hence, the feature maps for each l-th convolutional

layer take the form

hl ¼ maxð0;BatchNormðWl�1;l � hl�1 þ blÞÞ ð10Þ

where Wl�1;l is the weight matrix connecting units of layer

l� 1 to units in layer l and bl the bias vector for a layer l. �
is the convolution operation to return the output units for

neural activation and hl, hl�1 are the hidden vectors in

layers l and l� 1, respectively.

Finally, a dense fully connected layer (FC) followed by

sigmoid activation uses the output of the last convolutional

Fig. 3 Schematic of the one-

dimensional (1D) convolutional

operation

Table 1 CNN architecture details

Layer conv1D conv1D conv1D FC

dims ½input; output� ½300; 128� ½128; 64� ½64; 64� ½64; 1�
batch-normalization Yes Yes Yes –

nonlinearity ReLU ReLU ReLU sigmoid
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layer l ¼ 3 to compute the prediction (condensed in a value

2 f0; 1g).
The CNN module treats graph-level embeddings as

images. Each embedding is viewed as a grid and elements

in the same receptive field are convoluted to build a rep-

resentation that accounts for the dependencies between

neighboring nodes and edges. Local connections between

close and distant regions of graph embeddings are then

explored to compute increasingly smaller and complex

representations.

The convolution of graph embeddings hG transforms

molecular graphs into deep vectorial representations hconv.

By propagating such representations across convolutional

layers, CNNs model complex patterns and local depen-

dencies within molecular structures as a function for

molecular property prediction.

A detailed representation of the CNN prediction module

is depicted in Fig. 4.

4 Training and inference

In this section, we introduce a few-shot meta-learning

framework on the basis of model-agnostic meta-learning

(MAML) Finn et al. [47] to predict new molecular prop-

erties across tasks.

Meta-learning relies on prior knowledge to systemati-

cally revisit previous learning episodes and define a

promising strategy based on experience. Fewer examples

are required with an increasing number of learning tasks

making the process faster and more efficient. This type of

non-trivial learning adapts and generalizes to new repre-

sentations from limited available data [48, 49].

From this perspective, we address the challenge of low

data by optimizing the proposed model across several

learning tasks. In meta-training, the model is trained on a

labeled support set and evaluated on a disjoint query set for

each task. Previous learning episodes are then used to

predict new tasks and optimize the algorithm to the new

task at hand. This process is repeated across tasks to return

a predictor that generalizes well to unseen representations

in few-shot data.

The goal is to predict a molecular property (e.g., toxi-

city, side effects) of a query molecule x so that

ffhðxÞ; gh� ðhðxÞÞg : M ) f0; 1g 2 Y , where M is the space

of all molecular graphs G, hðxÞ is the output embedding

from a GNN fh, gh� is a CNN and Y are the molecular

property labels.

In this study, we train two meta-models, a GNN fh and a

CNN gh� with parameters h and h� across tasks t from a

distribution qðTÞ. Meta-training and meta-testing sets are

sampled for each molecular property task t. Both include a

Fig. 4 Graphical representation of the CNN module architecture
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support set S for training and a query set Q for evaluation.

For each task t, both models are parameterized by a task-

specific support set St and query set Qt for each task.

Particularly, under a k-shot meta-training, both models

fh and gh� with parameters h and h�, are constantly updated,
trained on St and evaluated on Qt for each task.

First, for each k-shot task t, k support samples GSti
are

randomly sampled and fed into the GNN-CNN two-module

architecture to compute the support losses Lgnn
t and Lconv

t .

Subsequently, the support losses are used to update the

model parameters h ! h0, h� ! h�
0
, and both models are

evaluated on a query set Qt to compute the query losses

Lgnn0

t and Lconv0

t using the remaining n samples for each

task.

In practice, we update the model parameters to adapt to

a new task t. Tasks include k support samples to compute

the support losses for both modules, Lgnn
t ðhÞ and Lconv

t ðh�Þ.
In this process, we apply a few gradient steps

ht ¼ h� aOhL
gnn
t ðhÞ ð11Þ

h�t ¼ h� � a�Oh�L
conv
t ðh�Þ ð12Þ

with a and a� as the step sizes for the gradient descent

updates.

In meta-testing, we randomly sample a support set of

size k for a new task t to optimize the model parameters

h ! h0, h� ! h�
0
through a few gradient descent steps.

Molecular properties are finally predicted in a disjoint

query set with the remaining samples. Thus, the updated

model parameters are used to generalize to new samples

and compute deep representations hconv to assist the pre-

diction of molecular properties.

In this framework, it is expected to obtain optimized

parameters that map the molecular graphs to different task-

specific properties. The goal is to generalize well to new

tasks in the test data after a few gradient steps. A schematic

of the proposed meta-learning framework is shown in

Fig. 5.

When training the model on a specific data collection,

tasks or assays are divided in training and testing tasks. As

stated previously, training consists in a set of learning

episodes. For each episode, a task from the training tasks is

randomly sampled and a support set of size nþ ? n� (with

nþ positive and n� negative samples) and a batch of

queries are randomly sampled from that task. Each learning

episode takes a few gradient descent steps to minimize the

loss function using Adam optimizer.

The accuracy of the model is evaluated separately for

each test task at test time. For each test task, a support set

of size nþ ? n� is randomly sampled from the data from

that task. ROC-AUC scores are then evaluated on the

remaining data for that task.

In the results Sect. 5.3, we use the notation ð5þ; 5�Þ
and ð10þ; 10�Þ to represent nþ ¼ 5, n� ¼ 5 and nþ ¼ 10,

n� ¼ 10, respectively. Appendix Sect. 7 provides further

details about the tasks considered for each data collection.

Fig. 5 Schematic of the proposed meta-learning framework for few-shot molecular property prediction
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4.1 Cost-sensitive loss for imbalanced
classification

The loss for both modules Lgnn and Lcnn is the binary cross-

entropy loss over the predicted properties y0 and the

molecular property ground-truth labels y with k as the

number of samples,

L ¼ � 1

k

Xk

i¼1

yi logðy0iÞ þ ð1� yiÞ logð1� y0iÞ: ð13Þ

However, the problem of class imbalance in few-shot data

prevents us from obtaining superior performance for either

the Tox21 or SIDER benchmarks. To address this issue, we

introduce a customized version of binary cross-entropy loss

to establish a weight for the minority class as a weighted

version of the original objective. This customized loss

function takes into account the distribution of each class to

penalize failed predictions for rare instances, which greatly

impact the loss value.

The weighted version of binary cross-entropy defines a

weight p for the minority class,

L ¼ � 1

k

Xk

i¼1

p yi logðy0iÞ þ ð1� yiÞ logð1� y0iÞ ð14Þ

with p defined as the ratio between positive and negative

samples. For instance, if a dataset contains 100 positive and

500 negative examples of a single class, then p for the class

should be equal to 500
100

¼ 5. Since different tasks present

different positive/negative distributions, we determine p by

exploring multiple values between 1 and 50 and selecting

those that return superior performance (p ¼ 35 for Tox21

and p ¼ 1 for SIDER due to task variability).

5 Experiments

The present section reports multiple experiments on two

benchmark datasets (Tox21 and SIDER).

The Tox21 dataset comprises qualitative toxicity mea-

surements for 7831 compounds for 12 biological targets

including nuclear receptors (NR) and stress response

pathways (SR). Each sample represents a compound with

12 binary labels for 12 toxicology experiments [50].

Tox21 is a machine-learning challenge formerly won by

a multitask learning approach across deep networks. The

main goal is to predict the toxicity of small molecules for a

specific NR or SR. In a few-shot learning setting, we use a

different proportion of training and testing tasks, disre-

garding the original train-test split. For a total of 12 tasks,

the data were split into 9 tasks for training and 3 for testing

(see Table 2).

SIDER is a collection of 1427 well-validated drugs and

adverse drug reactions (ADRs) grouped into 27 system

organ classes [51]. SIDER data are extracted from several

public articles and publications containing labeled infor-

mation on marketed drugs, including side effect frequen-

cies, drug-target interactions and drug/side effect

classification. The goal is to predict whether a compound

triggers a side effect for 27 organ systems. For a total of 27

tasks, the data were split into 21 tasks for training and 6 for

testing (see Table 3).

Both datasets are broadly distinct and represent diverse

collections of molecular scaffolds. Thus, it is expected that

models perform differently on both data collections.

Raw data of molecules are given in the form of SMILES

strings and converted into molecular graphs using the

Python library Rdkit.Chem [52]. These SMILES strings are

converted into node and edge features to best describe the

structure and spatial arrangement of the molecules used in

the experiments.

5.1 Baselines

The proposed FS-GNNConv model is compared with three

graph-based models:

(i) GIN: Pre-trained version of GIN.

(ii) GCN: Pre-trained GCN model. The GNN includes

a convolutional component for node aggregation.

Nodes are seen as pixels, and neighbors in the

same receptive field are used to compute node

embeddings as the output of the convolution [53].

(iii) GraphSAGE: Pre-trained GraphSAGE model.

Graph-based network that samples and aggregates

neighboring embeddings to leverage relevant

graph features. This is an inductive framework

that exploits these node attributes to efficiently

Table 2 Tox21 comprises qualitative toxicity measurements related

to 12 biological targets

Tox21 benchmark

Datatype Task type # Tasks #Compounds

SMILES Classification 12 7831

Table 3 SIDER includes a database of marketed medicines grouped

into 27 different system organ classes

SIDER benchmark

Datatype Task type # Tasks #Compounds

SMILES Classification 27 1427
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generate representations on previously unseen data

[30].

All baselines were pre-trained with the GCN, GIN and

GraphSAGE models of Hu et al. [27] to improve perfor-

mance. A meta-learning framework was applied to all

baselines to achieve comparable results.

5.2 Evaluation metrics

Binary classification of molecular properties is evaluated

by ROC-AUC scores on the query set of each test task. For

a given test task, we randomly sample a support set with k

examples to collect the data points for that task. Then, we

evaluate the ROC-AUC scores for the model on the

remainder of the data points for each test task in a disjoint

query set.

In model evaluation, each task is considered indepen-

dent, and we report the results for a 2-way binary classi-

fication with 5-shots and 10-shots. To show more robust

results, this procedure is reported 20 times for each test

task using 20 randomly sampled support sets to calculate

the average ROC-AUC scores. The notation ðnþ; n�Þ
indicates random support sets with nþ positive samples and

n� negative samples.

Experimental results including the mean and standard

deviation of ROC-AUC scores for ð5þ; 5�Þ and

ð10þ; 10�Þ random support sets are displayed in Tables 4

and 5.

5.3 Results

In this work, we systematically address the low-data

problem in molecular property prediction by introducing a

Table 4 Average ROC-AUC scores for binary classification with 5-shots on benchmark datasets Tox21 and SIDER

Dataset Task GIN GCN GraphSAGE FS-GNNConv (GIN ? CNN) MðAUCÞ

5-shot ð5þ; 5�Þ
Tox21 SR-HSE 61:44� 1:17 65:76� 2:49 64:19� 2:50 76:37 � 0:48 þ10:61

SR-MMP 57:55� 0:90 64:85� 1:28 63:56� 3:89 77:60� 0:33 þ12:75

SR-p53 59:15� 1:13 63:02� 1:49 61:75� 3:45 72:67 � 0:59 þ9:65

Average 59:38 64:54 63:17 75:55 þ11:01

SIDER R.U.D. 69:77� 1:08 60:62� 1:56 62:62� 0:64 70:11� 0:63 þ0:34

P.P.P.C. 77:05� 0:66 71:89� 1:25 74:16� 1:19 70:95� 0:84 �6:10

E.L.D. 70:24� 1:03 62:78� 0:96 64:50� 0:75 70:55� 0:45 þ0:31

C.D. 68:66� 0:90 60:82� 1:11 61:81� 0:76 70:68� 0:58 þ2:02

N.S.D. 65:23� 0:70 58:77� 2:27 59:00� 1:41 67:61� 0:74 þ2:38

I.P.P.C. 72:92� 1:03 65:62� 1:95 67:01� 0:76 72:01� 0:68 �0:91

Average 70:64 63:42 64:85 70:32 �0:32

Table 5 Average ROC-AUC scores for binary classification with 10-shots on benchmark datasets Tox21 and SIDER

Dataset Task GIN GCN GraphSAGE FS-GNNConv (GIN ? CNN) MðAUCÞ

10-shot ð10þ; 10�Þ
Tox21 SR-HSE 57:05� 0:56 64:92� 1:42 65:24� 3:20 77:57 � 0:39 þ12:33

SR-MMP 54:76� 0:23 66:01� 0:28 64:59� 3:78 77:99� 0:36 þ11:98

SR-p53 53:29� 0:29 63:07� 0:14 62:52� 2:78 72:55� 0:48 þ9:48

Average 55:03 64:67 64:12 76:04 þ11:37

SIDER R.U.D. 69:02� 0:47 61:01� 0:19 63:80� 0:41 70:58� 0:48 þ1:56

P.P.P.C. 77:63� 0:82 70:88� 0:71 73:55� 0:68 71:18� 0:61 �6:45

E.L.D. 70:60� 0:43 62:41� 0:20 64:81� 0:43 71:09� 0:41 þ0:49

C.D. 67:49� 0:61 60:62� 0:14 63:20� 0:40 71:36� 0:53 þ3:87

N.S.D. 62:80� 0:60 58:99� 0:45 59:32� 0:68 67:67 � 0:67 þ4:87

I.P.P.C. 73:28� 0:57 65:98� 0:17 68:79� 0:60 72:10� 0:48 �1:18

Average 70:13 63:32 65:58 70:66 þ0:53
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two-module architecture FS-GNNConv, to effectively

learn deep representations from graph embeddings. In

addition, we demonstrate that the proposed model outper-

forms different graph-based baselines.

Note that the work presented undertakes standard meta-

learning practices (MAML) to iteratively adapt and gen-

eralize to new experimental tasks. Here, few-shot learning

experiments model the behavior of small molecules in new

experimental tasks given just a few samples of these new

systems.

This section reports experimental results for few-shot

models across a number of tasks on the Tox21 and SIDER

datasets.

The results in Table 4 and 5 are the average ROC-AUC

scores obtained on 20 experiments with 20 different

ð5þ; 5�Þ and ð10þ; 10�Þ random support sets,

respectively.

The results in Table 4 confirm that the proposed model

outperforms the best baseline method on Tox21 for all 3

test tasks and for 4 test tasks on SIDER. For 5-shot

experiments, we observe an average overall improvement

on Tox21 of þ11:01%.

Table 5 reports analogous results for the 10-shot

experiment. In this case, the proposed model outperforms

the best baseline method on Tox21 for all 3 test tasks and

for 4 test tasks on SIDER. We also observe an average

overall improvement on Tox21 of þ11:37% and þ0:53%
on SIDER.

A graphical representation of these results is shown in

Figs. 6 and 7. For both datasets, SIDER and Tox21, there

are clear differences in performance between tasks, sug-

gesting that the model generalizes better to some tasks than

others in the test data. Due to a lower amount of tasks and

greater number of samples per task, the model performs

better on Tox21 showing lower variances and greater ROC-

AUC scores.

For the 5-shot and 10-shot experiments, the standard

deviations indicate the lower variances of the proposed

model when compared with the graph-based baselines.

Fig. 6 Distribution of ROC-AUC scores of the proposed model for 20 experiments with 20 random ð5þ; 5�Þ support sets

Fig. 7 Distribution of ROC-AUC scores of the proposed model for 20 experiments with 20 random ð10þ; 10�Þ support sets
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This translates into a more stable performance that pro-

vides more robust results.

It is clear that the baseline methods do not present a

stable performance on a number of tasks. Simply put, they

may generalize well for one task but perform poorly for

most tasks.

In this scenario, most few-shot models struggle to deal

with larger support set sizes and show a more robust

improvement in the presence of less data. On that account,

we report superior performance with ð5þ; 5�Þ random

support sets for most baseline methods. However, the same

does not apply to the proposed model. This can be

explained by the convolutional component, which adds a

significant boost with larger support sets ð10þ; 10�Þ.
Since SIDER has more tasks than Tox21, it is difficult to

achieve great overall performance for an extensive set of

separate tasks. In contrast, due to the larger size of Tox21,

the proposed model performs better by exploiting the

generalization capabilities of the CNN module.

Nonetheless, we still experience some underlying limi-

tations of few-shot models. As shown in transfer learning

experiments presented in Sect. 5.4, few-shot models

struggle to classify completely different tasks with little or

no degree of similarity between them. Experimentation

also demonstrates that few-shot methods find it difficult to

generalize to unrelated tasks regardless of the direction

from which we transfer the knowledge. These results

indicate that there is a long path to achieve broader gen-

eralization and predict completely unrelated tasks of a

disjoint system.

Finally, in Sect. 5.5, we explore t-SNE visualizations to

visually compare graph embeddings and deep representa-

tions. For each dataset, we show the differences between

t-SNE cluster plots obtained by the proposed model and the

graph-based baselines. It has been reported that deep rep-

resentations mapped to the reduced space perform better in

discriminating both types of molecules (positive or nega-

tive) for each molecular property.

All documentation and code scripts to reproduce the

results are available to facilitate further experimentation.

5.4 Case study: transfer learning with few-shot
models

Previous experiments report the ability of few-shot learn-

ing to transfer information from one training task to rather

similar testing tasks. To complement this work, we also test

whether the proposed model is able to transfer knowledge

from Tox21 to predict new tasks in the SIDER benchmark,

and vice versa. In practice, the goal is to learn a model

trained to predict the toxicity on different nuclear receptors

(NR) and stress response pathways (SR) (Tox21) and use it

to predict the side effects on real patients over 27 organ

systems (SIDER). Conversely, we aim to predict the toxi-

city on Tox21 from a model trained to predict side effects

on SIDER.

Consistent experimentation is conducted to evaluate

whether few-shot models are able to generalize to unrelated

tasks when provided with very little or no supervised

information similar or closely related to the test data.

From this perspective, we assess the ability of few-shot

learning to generalize by transferring knowledge between

two broadly distinct data repositories. In Table 6, we report

the mean ROC-AUC scores for all 27 SIDER tasks for

models trained on Tox21. This experiment is repeated 20

times with 20 different ð5þ; 5�Þ random support sets. The

reverse experiment with the same settings is reported in

Table 7.

We conclude that none of the few-shot models reported

achieve acceptable performance for rather distinct data

collections, attesting to the lack of predictive power for

unrelated tasks.

5.5 Case study: t-SNE visualization of graph
embeddings and deep representations

Well-understood methods such as principal component

analysis (PCA) map high-dimensional data into low-di-

mensional feature spaces by retaining the global structure

to preserve data variance globally across the entire dataset.

t-distributed stochastic neighborhood embedding (t-

SNE) works differently by observing closely located dat-

apoints. To this end, t-SNE computes a metric to measure

the distance between datapoints and a given number of

neighbors and models this relation by a t-distributed

Table 6 Mean ROC-AUC scores of models trained on Tox21 to

predict SIDER tasks

SIDER from Tox21

GIN GCN GraphSAGE FS-GNNConv

49:43� 0:07 52:90� 0:38 53:02� 0:42 50:54� 0:18

Table 7 Mean ROC-AUC scores of models trained on SIDER to

predict Tox21 tasks

Tox21 from SIDER

GIN GCN GraphSAGE FS-GNNConv

50:38� 0:23 52:97� 0:76 52:26� 0:29 51:71� 0:31
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distribution. Then, it tries to find an optimal embedding

such that graphs in the original n-dimensional space are

mapped to close locations in a low-dimensional space [54].

t-SNE works remarkably well to retain the local struc-

ture so that clusters of graph embeddings and deep repre-

sentations in the reduced space are interpretable as

molecules that were also similar in the high-dimensional

space.

Deep representations for different molecular property

tasks on the Tox21 dataset: {SR-HSE, SR-MMP, SR-p53}

using t-SNE visualizations are shown in Figs. 8 and 9. In

Fig. 10, we compare t-SNE visualizations of graph

embeddings and deep representations. Blue dots denote

negative samples for each test task. The orange dots rep-

resent positive samples.

One important feature of t-SNE is the perplexity

parameter. Perplexity balances the importance of local and

global structure in the plotted result. For lower values, we

focus on local aspects, while large perplexity values denote

a global sense of geometry in high-dimensional spaces. To

balance both views, we fine-tuned the perplexity parameter

and fixed a value of 30.

In Figs. 8 and 9, it is noticeable that our model performs

well in discriminating both types of molecules (positive or

negative) since positive datapoints are found closer to each

other in the reduced space. For cases (a) and (c), we can see

clusters of orange dots progressively separating from blue

datapoints. In case (b), most orange points are separated

Fig. 8 t-SNE visualizations of

deep representations hconv
generated by FS-GNNConv for

the Tox21 dataset for ð5þ; 5�Þ
random support sets. The orange

dots represent positive labels

and the blue points the negative

labels. SR-HSE, SR-MMP and

SR-p53 tasks are described by

plots (a), (b) and (c),
respectively

Fig. 9 t-SNE visualizations of

deep representations hconv
generated by FS-GNNConv for

the Tox21 dataset for

ð10þ; 10�Þ random support

sets. The orange dots represent

positive labels and the blue

points the negative labels. SR-

HSE, SR-MMP and SR-p53

tasks are described by plots (a),
(b) and (c), respectively

Fig. 10 t-SNE visualizations of graph embeddings generated by

GraphSAGE, GIN, GCN and deep representations for the Tox21 SR-

MMP task for ð5þ; 5�Þ random support sets. The orange dots

represent positive labels and the blue points the negative labels
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from the blue datapoints located in the upper region,

denoting two well-defined clusters of molecules.

It is clear that our model achieves better performance

when discriminating between positive and negative sam-

ples than the other baseline methods. In Fig. 10, GIN, GCN

and GraphSAGE show sparsely located positive and neg-

ative samples, making it difficult to identify well-defined

groups of molecules. Conversely, deep representations

obtained by FS-GNNConv place positive samples on the

bottom left corner to form clusters of molecules closely

related to each other.

In addition, we observe local dependencies separating

both positive and negative samples. In a broader view, an

elongated shape is visible, which might indicate the exis-

tence of complex interaction patterns shared by deep rep-

resentations expressing a global connectivity among

molecules.

6 Conclusion

The main goal of this paper is to tackle the challenge of

low-data in few-shot molecular property prediction. We

systematically address this issue by introducing an archi-

tecture to effectively learn deep representations from graph

embeddings. In this work, we demonstrate that the pro-

posed model outperforms different graph-based methods.

Small data networks (Tox21 and SIDER) simulate an

environment favorable for low-data learning where few-

shot models unequivocally outperform simple deep learn-

ing approaches. Both benchmarks include high-level

measurements of toxicity and side-effect frequency, mak-

ing predictions volatile and highly uncertain. This behavior

makes few-shot learning results particularly interesting and

gives a strong indication of superior performances in small

biological datasets.

In this work, we proposed a new few-shot two-module

architecture, called FS-GNNConv, to address the low-data

problem of molecular property prediction. A GNN module

encodes the topological structure of molecular graphs as a

set of node (atoms) and edge features (chemical bonds).

The resulting graphs are then converted into embedded

representations. By exploiting the rich information of these

embedded descriptors, a CNN propagates deep

representations across convolutional layers to generalize to

new chemical properties and unseen classes of molecular

scaffolds.

A meta-learning framework for optimizing a two-mod-

ule network across tasks was developed promoting quickly

adaptation to new molecular properties on few-shot data.

Analysis of the experimental results demonstrated the

predictive power and robustness of the proposed model

over standard graph-based methods on multi-property

prediction data. The results showed that FS-GNNConv

takes a step forward to generalize to new experimental

tasks, marginally identical to the tasks found in training.

As shown in Sect. 5.3, the proposed model outperforms

the best baseline method presented for the majority of test

tasks with an average overall improvement of þ11:37%

and þ0:53% for Tox21 and SIDER, respectively (for

ð10þ; 10�Þ random support sets). We posit that the novel

proposed framework fully explores the potential of graph-

level embeddings to generalize to new molecular properties

in contrast with the other GNN competitors.

Future work includes the exploration of few-shot models

to generalize to unrelated drug discovery tasks with no

degree of structural similarity among molecules. It would

also be a promising direction to extend the ideas to

regression tasks encouraging predictions to a larger spec-

trum of molecular properties. We believe that this study

demonstrates that starting with few-shot models as pow-

erful non-trivial predictors can help to improve broader

generalization in the molecular property prediction

problem.

Appendix

This appendix section provides some details regarding

model training and optimization.

Meta-learning algorithm

A meta-learning framework optimizes the model parame-

ters across tasks. The algorithm for model training and

optimization is displayed below.
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In this case, the GNN is denoted by GNNðhÞ and the

CNN by CNNðh�Þ. First, for each k-shot task t, k support

set samples are fed into the network to compute the support

losses Lgnn
t and Lconv

t . Subsequently, all support losses are

used to update the model parameters h ! h0, h� ! h�
0
.

Finally, n examples are sampled from a query set to further

evaluate the model and compute the query losses Lgnn0

t and

Lconv0

t . In meta-testing, the updated model generalizes to

new examples to assist the prediction of a molecular

property.

Details of model training

As stated before, training is performed across several

learning episodes. Each episode randomly samples a sup-

port set of size ð5þ; 5�Þ or ð10þ; 10�Þ and a query set of

size 128. Models provided for comparison were trained

across ðnTRAIN � epochsÞ episodes with nTRAIN number of

training tasks and epochs number of epochs. In most cases,

the models stopped improving significantly after 500

epochs.

In meta-testing, ROC-AUC scores are evaluated for

each test task separately. In the same way as in training, a

support set is randomly sampled and the model is evaluated

in the remaining data points for the task at hand. This

process is repeated 20 times for 20 different support sets to

report the average ROC-AUC scores for each test task.

In this work, we do not focus on hyperparameter opti-

mization, especially for model baselines. Consequently, we

did not put a great effort into optimizing model hyperpa-

rameters, leaving this task for future work. More specifi-

cally, we consider a learning rate of 1e�4 and an update

step of 5 for training and 10 for testing.

Data are split into test and training tasks: Tox21 is split

into 9 tasks for training and 3 for testing for a total of 12

tasks; SIDER is split into 21 tasks for training and 6 for

testing for a total of 27 tasks.
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Task details

Tox21 Task Details: {NR-AR, NR-ARLBD, NR-AhR, NR-

Aromatase, NR-ER, NR-ER-LBD, NRPPAR-gamma, SR-

ARE, SR-ATAD5} were used for training. Tasks {SR-

HSE, SR-MMP, and SR-p53} were used for evaluation.

SIDER Task Details: {H.D.: ‘‘Hepatobiliary disorders’’,

M.N.D.: ‘‘Metabolism and nutrition disorders’’, P.I: ‘‘Pro-

duct issues’’, E.D.: ‘‘Eye disorders’’, I.M.C.T.D.: ‘‘Inves-

tigations, musculoskeletal and connective tissue

disorders’’, G.D.: ‘‘Gastrointestinal disorders’’, S.C.’’

‘‘Social circumstances’’, I.S.D: ‘‘Immune system disor-

ders’’, R.S.B.D.: ‘‘Reproductive system and breast disor-

ders’’, N.B.M.U.: ‘‘Neoplasms benign, malignant and

unspecified (incl cysts and polyps)’’, G.D.A.C: ‘‘General

disorders and administration site conditions’’, E.D.:

‘‘Endocrine disorders’’, S.M.P: ‘‘Surgical and medical

procedures’’, V.D: ‘‘Vascular disorders’’, B.L.S.D: ‘‘Blood

and lymphatic system disorders’’, S.S.T.D.: ‘‘Skin and

subcutaneous tissue disorders’’, C.F.G.T.D.: ‘‘Congenital,

familial and genetic disorders’’, ‘‘I.I.’’: ‘‘Infections and

infestations’’, R.T.M.D.: ‘‘Respiratory, thoracic and medi-

astinal disorders’’, P.D.: ‘‘Psychiatric disorders’’} were

used for training. Tasks {R.U.D.: ‘‘Renal and urinary dis-

orders’’, P.P.P.C.: ‘‘Pregnancy, puerperium and perinatal

conditions’’, E.L.D.: ‘‘Ear and labyrinth disorders’’, C.D.:

‘‘Cardiac disorders’’, N.S.D.: ‘‘Nervous system disorders’’,

I.P.P.C.: ‘‘Injury, poisoning and procedural complica-

tions’’} were used for evaluation.
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