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Abstract

As a crucial component in task-oriented di-

alog systems, the Natural Language Genera-

tion (NLG) module converts a dialog act rep-

resented in a semantic form into a response in

natural language. The success of traditional

template-based or statistical models typically

relies on heavily annotated data, which is in-

feasible for new domains. Therefore, it is

pivotal for an NLG system to generalize well

with limited labelled data in real applications.

To this end, we present FEWSHOTWOZ, the

first NLG benchmark to simulate the few-shot

learning setting in task-oriented dialog sys-

tems. Further, we develop the SC-GPT1 model.

It is pre-trained on a large set of annotated

NLG corpus to acquire the controllable gener-

ation ability, and fine-tuned with only a few

domain-specific labels to adapt to new do-

mains. Experiments on FEWSHOTWOZ and

the large Multi-Domain-WOZ datasets show

that the proposed SC-GPT significantly outper-

forms existing methods, measured by various

automatic metrics and human evaluations.

1 Introduction

Task-oriented dialog systems are becoming increas-

ingly popular, as they can assist users in various

daily activities such as ticket booking and restau-

rant reservations. In a typical task-oriented dialog

system, the Natural Language Generation (NLG)

module plays a crucial role: it converts a system

action (e.g., often specified in a semantic form se-

lected by a dialog policy) into a final response in

natural language. Hence, the response should be

adequate to represent semantic dialog actions, and

fluent to engage users’ attention. As the ultimate

interface to interacts with users, NLG plays a sig-

nificant impact on the users’ experience.

Existing methods for NLG can be broadly sum-

marized into two major categories. (i) Template-

1Semantically-Conditioned Generative Pre-Training

based methods require domain experts to handcraft

templates for each domain, and the system fills in

slot-values afterward (Cheyer and Guzzoni, 2014;

Langkilde and Knight, 1998). Thus, the produced

responses are often adequate to contain the required

semantic information, but not always fluent and na-

ture, hurting users’ experiences. (ii) Statistical lan-

guage models such as neural networks (Gao et al.,

2019) learn to generate fluent responses via train-

ing from labelled corpus. One canonical model is

semantically conditioned LSTM (SC-LSTM) (Wen

et al., 2015b), which encodes dialog acts with one-

hot representations and uses it as an extra feature to

inform the sentence generation process. Despite its

good performance on simple domains, it requires

large amounts of domain-specific annotated data

which is not available for many domains in real-

world applications. Even worse, this renders severe

scalability issues when the number of possible com-

binations of dialog acts grows exponentially with

the number of slots in more complex domains.

We revisit the current research benchmarks for

NLG, and notice that each dialog domain is exten-

sively labelled to favor model training. However,

this is in contrast to the real-world application sce-

narios, where only very limited amounts of labelled

data are available for new domains. To simulate

such a few-shot learning setting, we have devel-

oped a new benchmark dataset, called FEWSHOT-

WOZ, based on the MultiWOZ (Budzianowski

et al., 2018) and Cambridge NLG datasets (Wen

et al., 2016a). FEWSHOTWOZ consists of dialog

utterances from 7 domains. For each domain, we

provide less than 50 labeled utterances for fine-

tuning. We believe that FEWSHOTWOZ can better

inspire research to address the challenge of learn-

ing data-hungry statistical models with very limited

amounts of labelled data in real-world scenarios.

To deal with the challenge of few-shot learning,

we develop the SC-GPT model. SC-GPT is a multi-
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Figure 1: Illustration of the NLG module in the overall task-oriented dialog system. (a) The NLG module is

highlighted with glowing black bounding boxes. (b) One example of dialog act (including intent and slot-value

pairs) and its corresponding natural language response.

layer Transformer neural language model, trained

in three steps: (i) Pre-trained on plain text, similar

to GPT-2 (Radford et al.); (ii) Continuously pre-

trained on large amounts of dialog-act labeled utter-

ances corpora to acquire the ability of controllable

generation; (iii) Fine-tuned for a target domain us-

ing very limited amounts of domain labels. Unlike

GPT-2, SC-GPT generates semantically controlled

responses that are conditioned on the given seman-

tic form, similar to SC-LSTM but requiring much

less domain labels to generalize to new domains.

In summary, our key contributions are three-fold:

• A new benchmark FEWSHOTWOZ is intro-

duced to simulate the few-shot adaptation set-

ting where only a handful of training data

from each domain is available.

• We propose a new model SC-GPT. To our

best knowledge, this work is the first study

of exploiting state-of-the-art pre-trained lan-

guage models for NLG in task-oriented dialog

systems.

• On the MultiWOZ dataset, SC-GPT creates

a new SOTA, outperforming previous mod-

els by 4 points in BLEU. On FEWSHOT-

WOZ, SC-GPT outperforms several strong

baselines such as SC-LSTM and HDSA (Chen

et al., 2019), showing that SC-GPT adapts to

new domain much more effectively, requiring

much smaller amounts of in-domain labels.

2 Background

A typical task-oriented spoken dialog system uses

a pipeline architecture, as shown in Figure 1 (a),

where each dialog turn is processed using a four-

step procedure. (i) Transcriptions of user’s input

are first passed to the natural language understand-

ing (NLU) module, where the user’s intention and

other key information are extracted. (ii) This infor-

mation is then formatted as the input to dialog state

tracking (DST), which maintains the current state

of the dialog. (iii) Outputs of DST are passed to

the dialog policy module, which produces a dialog

act based on the facts or entities retrieved from ex-

ternal resources (such as a database or a knowledge

base). (iv) The dialog act emitted by the dialog pol-

icy module serves as the input to the NLG, through

which a system response in natural language is gen-

erated. In this paper, we focus on the NLG compo-

nent of task-oriented dialog systems, i.e., how to

produce natural language responses conditioned on

dialog acts.

Specifically, dialog act A is defined as the combi-

nation of intent I and slot-value pairs {(si, vi)}
P
i=1

:

A = [ I
︸︷︷︸

Intent

, (s1, v1), · · · , (sP , vP )
︸ ︷︷ ︸

Slot-value pairs

] (1)

where P is the number of pairs2, which varies in

different dialog acts.

• Intents are usually used to distinguish differ-

ent types of system actions. Typical examples

include inform, request, confirm, select etc.

• Slot-value pairs indicate the category and con-

tent of the information to express in the utter-

ance, respectively.

The goal of NLG is to translate A into a

natural language response x = [x1, · · · , xT ],
where T is the sequence length. In Figure 1

(b), we show an example of the dialog act:

confirm (name=Hilton, area=center), and the

2In some literature, dialog act denotes only the type of
system actions, slot-value pairs are defined as meaning rep-
resentations. Throughout this paper, we follow the usage in
Budzianowski et al. (2018) and use dialog acts to indicate
system action and associated slot-value pairs.
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Confirm    (     name    =   Hinton       ,     area     =     center      )    [BOS]  Let    me  confirm  that    you    are searching for  Hinton  hotel     in      the   center area  [EOS] 

System ResponseDialog Act

[BOS]  Let    me  confirm  that    you    are searching for  Hinton  hotel    in      the   center  area  [EOS] 

Figure 2: Illustration of SC-GPT. In this example, SC-GPT generates a new word token (e.g., “confirm” or

“center”) by attending the entire dialog act and word tokens on the left within the response.

corresponding natural language response is “Let

me confirm that you are searching for Hilton in the

center area”.

3 Semantically Conditioned GPT

We tackle this generation problem using condi-

tional neural language models. Given training data

of N samples D = {(An,xn)}
N
n=1

, our goal is to

build a statistical model parameterized by θ to char-

acterize pθ(x|A). To leverage the sequential struc-

ture of response, one may further decompose the

joint probability of x using the chain rule, casting

an auto-regressive generation process as follows:

pθ(x|A) =
T∏

t=1

pθ(xt|x<t,A) (2)

where x<t indicates all tokens before t.
Learning θ is performed via maximizing the log-

likelihood (MLE) of the conditional probabilities

in (2) over the entire training dataset:

Lθ(D) =

|D|
∑

n=1

Tn∑

t=1

log pθ(xt,n|x<t,n,An) (3)

In this paper, we employ the Transformers

(Vaswani et al., 2017) to parameterize the condi-

tionals in (2). To enable strong generalization and

controllable ability for the learned model, we pro-

pose the following three-stage procedure as the

training recipe.

Massive Plain Language Pre-training. Large

models trained on massive training corpus usu-

ally generalize better to new domains. Inspired

by this, we inherit the GPT-2 architecture (Radford

et al.) as the backbone language model. GPT-2 is

an auto-regressive language model that leverages

12-24 layers of masked, multi-head self-attention

Transformers. GPT-2 is pre-trained on extremely

massive text data OpenWebText (Radford et al.).

It has demonstrated superior performance on char-

acterizing human language data distribution and

knowledge transfer. Given text prompts, GPT-2

can often generate realistic sentences.

Dialog-Act Controlled Pre-training. To enable

the guidance of dialog act in response generation,

we propose to continuously pre-train the GPT-2

model on large amounts of annotated (dialog act,

response) pairs. The pre-training dataset3 includes

annotated training pairs from Schema-Guided Dia-

log corpus, MultiWOZ corpus, Frame corpus, and

Facebook Multilingual Dialog Corpus. The total

size of the pre-training corpus is around 400k ex-

amples.

We firstly pre-process dialog act A into a se-

quence of control codes using the following format:

A′ = [ I ( s1 = v1 , · · · sP = vP ) ] (4)

Meanwhile, the output sequence x
′ is pre-

processed via appending x with a special start to-

ken [BOS] and an end token [EOS]. Finally, the

sequentialized dialog act A′ is concatenated with

its augmented response x′, and then fed into GPT-2.

During training, the prediction loss is only com-

puted for x′, and A′ provides the attended condi-

tions. Since the dialog act represents the semantics

of the generated sentences, we follow the naming

convention of SC-LSTM, and term our model as

Semantically Conditioned Generative Pre-training

(SC-GPT). The overall architecture of SC-GPT is

illustrated in Figure 2.

Fine-tuning. For a new domain, a dialog act usu-

ally contains novel intents or slot-value pairs, and

annotated training samples are often limited. We

3The domains appearing in fine-tuning are excluded.
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Statistics E2E NLG BAGEL RNNLG FEWSHOTWOZ

# Domains 1 1 4 7
Avg. # Intents 1 8 11.25 8.14
Avg. # Slots 8 10 21 16.15
Avg. # Delexicalised DAs in Training 109 23.9 794.5 50
Avg. # Delexicalised DAs in Testing 7 14.3 566.5 472.857
Overlap Percentage 100% 99.6% 94.00% 8.82%
Avg. # Training Instances 42056 363 4625.5 50
Avg. # Testing Instances 630 41 1792.5 472.86

Table 1: Comparison of existing NLG datasets, including E2E NLG (Novikova et al., 2017), BAGEL(Mairesse

et al., 2010), Cambridge NLG(Wen et al., 2016a) and the proposed FEWSHOTWOZ.

Statistics Restaurant Hotel Laptop TV Attraction Taxi Train

# Intent 9 10 13 13 5 2 5
# Slot 21 19 22 22 10 7 13
# DAs in training 50 50 50 50 50 40 50
# DAs in testing 129 78 1379 680 340 47 657
Overlap Percentage 35.56 60.26 2.61 5.74 13.82 72.34 6.55
Avg. #DAs per Instance 1 1 1 1 2 1.33 2.05
# Training Instances 50 50 50 50 50 40 50
# Testing Instances 129 78 1379 680 340 47 657

Table 2: FEWSHOTWOZ statistics over 7 different domains.

fine-tune SC-GPT on limited amounts of domain-

specific labels for adaptation. The fine-tuning fol-

lows the same procedure of dialog-act controlled

pre-training, as described above, but uses only a

few dozens of domain labels.

It is worth noticing that the above recipe has

several favorable properties:

• Flexibility. SC-GPT operates on a sequence of

tokens without delexicalization, which means

that SC-GPT does not assume a fixed one-

hot or tree-structured dialog act representa-

tion vectors. Hence, it has great flexibility in

extending to novel dialog acts.

• Controllability. In contrast to GPT-2 that gen-

erates natural sentences without high-level se-

mantic guidance, SC-GPT can generate sen-

tences with adequate intent and slot-value in-

formation and maintain its fluency.

• Generalizability. SC-GPT is able to general-

ize significantly better than SC-LSTM, due to

the pre-training on massive plain text corpora

and annotated dialog datasets.

4 Dataset: FEWSHOTWOZ

Revisiting NLG Benchmarks. The three com-

monly used NLG datasets in developing and

evaluating task-oriented dialog systems are E2E

NLG (Novikova et al., 2017) BAGEL (Mairesse

et al., 2010) and RNNLG (Wen et al., 2016a), as

summarized in Table 1. We observe two issues

from their shared statistics: (i) All the datasets con-

tain a large number of labelled training samples

for each domain, ranging from hundreds to tens of

thousands. However, the cost of labeling is high in

practice, e.g., labeling 50 utterances is 5 hours per

domain. Creating such an extensively annotated

dataset for each new domain is prohibitively expen-

sive. (ii) The percentage of distinct delexicalised

dialog acts between training and testing data is

quite small. For example, the delexicalised dialog

acts in testing is 100% covered by the training set

for the E2E NLG dataset. It renders difficulties

in evaluating the model’s generalization ability for

new domains.

FEWSHOTWOZ. To build a setting for more

pragmatic NLG scenarios, we introduce a new

dataset FEWSHOTWOZ to better reflect real appli-

cation complexity, and encourage the community

to develop algorithms that are capable of generaliz-

ing with only a few domain-specific labels for each

(new) domain. The dataset statistics are shown

in the last column of Table 1. We see that FEW-

SHOTWOZ is different from the other datasets in

three aspects: (i) More domains. FEWSHOTWOZ

contains seven domains in total, which is larger

than any existing NLG datasets. (ii) Less train-

ing instances. Importantly, FEWSHOTWOZ has



176

a much smaller number of training instances per

domain, aiming to evaluate the few-shot learning

ability. (iii) Lower training/testing overlap. FEW-

SHOTWOZ has only 8.82% overlap, significantly

smaller than the other datasets, which amount to

more than 90% overlap. The average number of

intents per instance in Attraction/ Taxi/ Train

domain is 2, 1.33, and 2.05, respectively. In con-

trast, there is only one intent for each example

in the other datasets. The NLG task defined on

FEWSHOTWOZ requires the models to learn to

generalize over new compositions of intents. The

details of FEWSHOTWOZ is shown in Table 2.

Collection Protocols. We construct FEWSHOT-

WOZ via re-organizing data samples from RNNLG

and MultiWOZ datasets (Budzianowski et al.,

2018). For each domain in RNNLG, we first group

utterances according to their delexicalised dialog

acts, and keep only one utterance as the target sen-

tence. To ensure diversity, we consider three do-

mains from MultiWOZ: Attraction, Taxi, and

Train. Since MultiWOZ is a cross-domain dataset,

the dialog act of an utterance may exist in multi-

ple domains. We choose to keep utterances whose

dialog act appears only in one domain. Similar

delexicalising processing is applied to ensure that

each dialog act has only one target utterance. Fi-

nally, to simulate the few-shot learning in practice,

we randomly sample 50 training examples for each

domain, except the Taxi domain, which has 40

examples.

5 Related Work

Pre-trained Models. Pre-trained language mod-

els (PLMs) have substantially advanced the state-

of-the-art across a variety of natural language pro-

cessing (NLP) tasks (Peters et al., 2018; Devlin

et al., 2019; Yang et al., 2019; Liu et al., 2019;

Keskar et al., 2019; Raffel et al., 2019; Peng et al.,

2020). PLMs are often trained to predict words

based on their context on massive text data, and the

learned models can be fine-tuned to adapt to vari-

ous downstream tasks. The closest line of research

to ours are GPT-2 (Radford et al.), CTRL (Keskar

et al., 2019) and Grover (Zellers et al., 2019). GPT-

2 first investigated missive Transformer-based auto-

regressive language models with large-scale text

data for pre-training. After fine-tuning, GPT-2

achieves drastic improvements on several gener-

ation tasks. One drawback of GPT-2 is the lack of

high-level semantic controlling ability in language

generation. To alleviate this issue, CTRL (Keskar

et al., 2019) was introduced to train the model

based on pre-defined codes such as text style, con-

tent description, and task-specific behavior, mean-

while Grover (Zellers et al., 2019) was proposed

to generate news articles conditioned on authors,

dates etc. Although conceptually similar to our

SC-GPT, CTRL and Grover cannot be readily ap-

plied to NLG in task-oriented dialog systems, as

the conditioning codes are quite different. An-

other controllable generation work for GPT-2 is

PPLM (Dathathri et al., 2019), which provides a

decoding scheme to guide the generation process

using key-words or classifiers, without re-training

the model. In this paper, we focus on pre-training

an NLG model conditioned on finer-grained seman-

tic dialog acts, which are more desirable for dialog

systems.

Dialog. Various dialog systems have been de-

veloped (Gao et al., 2019, 2020), including task-

oriented dialog systems such as Rasa4, Microsoft

Bot Framework5, and Conversational Learner6, and

chit-chat systems such as XiaoIce (Zhou et al.),

DialoGPT (Zhang et al., 2019), Meena (Adiwar-

dana et al., 2020). In this paper, we focus on

task-oriented systems, particularly the NLG mod-

ule. With the blooming of deep learning, neural

sequential models have shown powerful capability

and flexibility in NLG. Extensive efforts have been

made, including new architecture choices such as

RNNs (Wen et al., 2015a), attention RNNs (Dušek

and Jurčı́ček, 2016), SC-LSTM (Wen et al., 2015b)

and its variants (Tran et al., 2017; Tran and Nguyen,

2017), as well as learning objectives (Zhu et al.,

2019; Zhu, 2020; Mi et al., 2019). However, they

all require large amounts of annotated data to reach

satisfactory performance. A more realistic scenario

is to require much less labeling and improve the

sample efficiency of models, This is especially im-

portant when deploying the models to new domains,

where dialog acts need to be labelled from scratch.

Our paper aims to formally set up such a research

scenario by proposing a new dataset FEWSHOT-

WOZ, and a new model SC-GPT.

4https://rasa.com/
5https://dev.botframework.com/
6https://www.microsoft.com/en-

us/research/project/conversation-learner/
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Model
Restaurant Laptop Hotel TV Attraction Train Taxi

BLEU ↑ ERR ↓ BLEU ↑ ERR ↓ BLEU ↑ ERR ↓ BLEU ↑ ERR ↓ BLEU ↑ ERR ↓ BLEU ↑ ERR ↓ BLEU ↑ ERR ↓

SC-LSTM 15.90 48.02 21.98 80.48 31.30 31.54 22.39 64.62 7.76 367.12 6.08 189.88 11.61 61.45

GPT-2 29.48 13.47 27.43 11.26 35.75 11.54 28.47 9.44 16.11 21.10 13.72 19.26 16.27 9.52

SC-GPT 38.08 3.89 32.73 3.39 38.25 2.75 32.95 3.38 20.69 12.72 17.21 7.74 19.70 3.57

Table 3: Performance of different methods on FEWSHOTWOZ

Model Informativeness Naturalness

SC-LSTM 2.29 2.13

GPT-2 2.54* 2.38*

SC-GPT 2.64*† 2.47*†

Human 2.92 2.72

*
p < 0.005, comparison with SC-LSTM

†
p < 0.05, comparison with GPT

Table 4: Human evaluation on FEWSHOTWOZ. Statis-

tical significance is computed with a two-tailed t-test.

6 Experiments

In this section, we evaluate the proposed SC-GPT

on the FEWSHOTWOZ and MultiWOZ datasets

to answer two research questions: (i) Is SC-GPT

an effective model for strong generalization and

controllability in dialog response generation? (ii)
Does FEWSHOTWOZ meet the goal of effectively

evaluating the generalization of NLG models in the

few-shot learning setting?

6.1 Experimental Setup

Implementation details. The model was built

upon Huggingface Pytorch Transformer (Wolf

et al., 2019). We use GPT2-Medium with 345M

parameters7 as the initial checkpoint, and byte pair

encodings (Sennrich et al., 2015) for the tokeniza-

tion. Linear rate scheduler with start rate as 5e-

5 was used for both pre-training and fine-tuning.

Adam (Kingma and Ba, 2014) with weight decay

was used to optimize the parameters. For pre-

training, the model was trained with a mini-batch

of 8 on an 8 Nvidia V100 machine until observing

no significant progress on validation loss or up to

20 epochs, whichever is earlier. For fine-tuning

on FEWSHOTWOZ, models were trained on each

domain separately with five epochs.

Automatic metrics. Following Wen et al.

(2015b), BLEU scores and the slot error rate (ERR)

are reported. BLEU score evaluates how natu-

7We also experimented using GPT2 with 117M parameters
but observed significant poor performance.

ral the generated utterance is compared with hu-

man readers. ERR measures the exact match-

ing of the slot tokens in the candidate utterances.

ERR = (p+ q)/M , where M is the total number

of slots in the dialog act, and p, q is the number of

missing and redundant slots in the given realisation.

For each dialog act, we generate five utterances and

select the top one with the lowest ERR as the final

output.

Human evaluation. We conducted the human

evaluation using Amazon Mechanical Turk to as-

sess subjective quality. We recruit master level

workers (who have good prior approval rates) to

perform a human comparison between generated

responses from two systems (which are randomly

sampled from comparison systems). The workers

are required to judge each utterance from 1 (bad)

to 3 (good) in terms of informativeness and nat-

uralness. Informativeness indicates the extent to

which generated utterance contains all the infor-

mation specified in the dialog act. Naturalness

denotes whether the utterance is as natural as a hu-

man does. To reduce judgement bias, we distribute

each question to three different workers. Finally,

we collected in total of 5800 judges.

Baselines. We compare with three baseline meth-

ods. (i) SC-LSTM (Wen et al., 2015b) is a canon-

ical model and a strong baseline that uses an ad-

ditional dialog act vector and a reading gate to

guide the utterance generation. (ii) GPT-2 (Rad-

ford et al.) is used to directly fine-tune on the

domain-specific labels, without pre-training on the

large-scale corpus of (dialog act, response) pairs.

(iii) HDSA (Chen et al., 2019) is a state-of-the-art

model on MultiWOZ. It leverages dialog act struc-

tures to enable transfer in the multi-domain setting,

showing superior performance than SC-LSTM.

6.2 FEWSHOTWOZ

Table 3 reports the automatic evaluation perfor-

mance of different methods on FEWSHOTWOZ.

SC-LSTM fails to learn the generation effectively
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Model Entity F1 BLEU

SC-LSTM (Wen et al., 2015b) 80.42 21.6

HDSA (Chen et al., 2019) 87.30 26.48

GPT-2 87.70 30.71

SC-GPT 88.37 30.76

Table 5: Performance on MultiWOZ

Model
Data size

0.1% 0.5% 1% 5% 10% 20% 50%

SC-LSTM 9.05 15.15 15.38 18.26 18.97 19.99 21.07

HDSA 9.40 15.32 18.27 22.19 22.89 24.16 25.01

GPT-2 11.96 18.88 20.29 24.18 25.39 26.25 27.40

SC-GPT 12.70 19.65 20.67 24.45 25.67 26.37 27.89

Table 6: BLEU score of different models on MultiWOZ

using training data of different sizes.

in this few-shot learning setting. The generated

utterances are poor in quality and suffer from in-

accurate slot rendering. In addition, GPT-2 per-

forms consistently better than SC-LSTM in all the

domains. It reveals the feasibility of using a pre-

trained language model for NLG, though only lim-

ited annotations are available for fine-tuning. Im-

portantly, SC-GPT performs significantly better

than GPT and SC-LSTM in terms of both BLEU

and ERR. In all the domains, SC-GPT reduces the

ERR to a significantly lower level, revealing its

strong controllability power. This verifies the im-

portance of pre-training on large annotated dialog

data, as SC-GPT learns how to generate utterances

specified by the dialog acts accurately.

Table 4 shows the human assessment on FEW-

SHOTWOZ. The results exhibit the same trend

with automatic evaluation. SC-GPT outperforms

GPT-2 and SC-LSTM significantly in both metrics,

i.e., SC-GPT can better control the generation to

convey information in the dialog act while main-

taining good fluency. Note that the gap between

SC-GPT and human annotation is still large, indi-

cating that the proposed FEWSHOTWOZ exhibits

an under-explored research area, and provides a

large space to encourage future research for im-

provement.

6.3 MultiWOZ

The results on MultiWOZ are shown in Table 5.

Following Chen et al. (2019), Entity F1 (Wen et al.,

2016b) is used to evaluate the entity coverage ac-

curacy (including all slot values, days, numbers,

and reference, etc.). Again, SC-GPT achieves the

best performance on BLEU score. Note that GPT-2

performs similarly with SC-GPT on the full Multi-

Model Informativeness Naturalness

SC-LSTM 2.14 2.33
HDSA 2.34 2.42

SC-GPT 2.71* 2.69*

Human 2.77 2.61

*
p < 0.005

Table 7: Human evaluation on MultiWOZ. Statistical

significance was computed with a two-tailed t-test be-

tween SC-GPT and HDSA.

WOZ dataset, this is because MultiWOZ contains

57k utterances, which is large enough for GPT-2

to achieve good performance. The results also con-

firm that with enough annotated data, conditional

language model formulation performs significantly

better than HDSA, a strong competitor that lever-

ages graph/tree-structure information to encode di-

alog acts.

To study how SC-GPT performs with different

training data sizes. We further conduct experiments

with varying percentages of training data on Mul-

tiWOZ, ranging from 0.1% (50 examples) to 50%.

As shown in Table 6, the observations are consis-

tent with FEWSHOTWOZ. SC-GPT performs con-

sistently better than GPT-2, HDSA, and SC-LSTM

for a wide range of dataset sizes, and the improve-

ment is more substantial when the fewer numbers

of in-domain labels are used for fine-tuning.

Table 7 shows the human assessment results on

MultiWOZ. The results are consistent with the au-

tomatic evaluation. It is interesting to see that (i)
the gap between the new state-of-the-art method

(i.e., SC-GPT ) and human performance on FEW-

SHOTWOZ (as shown in Table 4) is much larger

than that on MultiWOZ; (ii) the human rating on

the naturalness of SC-GPT is even higher than hu-

mans on MultiWOZ, while there is a visible gap on

FEWSHOTWOZ. These results demonstrate that

FEWSHOTWOZ presents a challenging few-shot

learning setting, SG-GPT serves as a simple and

strong baseline in this setting, and the combined

provides a platform for researchers to develop NLG

models that are able to generalize to new domains

and generate semantically conditioned and fluent

responses.

6.4 Analysis

We perform detailed analysis to investigate SG-

GPT’s flexibility, controllability and generalizabil-

ity. The test set is split into two subsets - seen and
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1 Input DA Laptop{inform(name=satellite proteus 84; type=laptop; memory=8 gb; drive=1 tb; weight=2.3 kg)}

Reference the satellite proteus 84 is a laptop with a 1 tb drive , 8 gb memory and weighs in at 2.3 kg

SC-LSTM the satellite proteus 84 is a laptop with 8 gb , with a 1 tb drive , and is for business computing , and is for business computing %

[businesscomputing=true] [weight=2.3kg]

GPT-2 the satellite proteus 84 laptop has a 1 tb drive , weighs 2.3 kg and is used for business computing % [businesscomputing=true]

[memory=8 gb]

SC-GPT the satellite proteus 84 is a laptop with 8 gb memory , 1 tb drive , and a weight of 2.3 kg

2 Input DA Restaurant{inform only match(name=marnee thai and thanh long; pricerange=moderate; near=outer sunset; goodformeal=dinner)}

Reference marnee thai and thanh long are the only 2 moderately priced restaurants near outer sunset that are good for dinner

SC-LSTM marnee thai and thanh long is is moderate restaurant restaurant and good good good dinner % [near=outer sunset] [inform only match]

GPT-2 there is a moderately priced restaurant called marnee thai and thanh long that is near the outer sunset area % [goodformeal=dinner]

[inform only match]

SC-GPT marnee thai and thanh long is the only restaurant that serves moderately priced food near outer sunset and good for dinner

3 Input DA Train{inform(time=50 minutes)}, hotel{request(stars=?; area=?), inform(choice=5)}

Reference travel time is 50 minutes . i found 5 hotels you may like . do you have a star rating request or an area you prefer

SC-LSTM there are 5 trains that are 50 minutes . do you have a preferred departure location ?

% [train{inform(choice=5),request(departure=?)}] [hotel{request(stars=?; area=?), inform(choice=5)}]

HDSA there are 5 trains that meet your criteria . do you have a preference on the area or star rating ? % [train{inform(choice=5,

time=50 minutes)}] [hotel{inform(choice=5)}]

SC-GPT there are 5 hotels that meet your criteria . the trip will last 50 minutes . do you have an area preference or star rating you would like ?

Table 8: Examples of generated utterances from different models, along with its corresponding dialog acts (DAs)

and references. The first two examples are sampled from FEWSHOTWOZ and the last one is from MultiWOZ.

Each generated utterance is followed by a brief description explaining the errors (starting with “%”). (Better

viewed in color. wrong , redundant , missing information)

Model
Seen Unseen

BLEU ↑ ERR ↓ BLEU ↑ ERR ↓

SC-LSTM 23.05 40.82 12.83 51.98
GPT-2 30.43 3.26 27.92 17.36
SC-GPT 40.28 1.09 36.69 4.96

Table 9: Performance of different methods on seen DAs

and unseen DAs in restaurant domain.

unseen. If a dialog act of an example appears in

the training set, the example is marked as seen; oth-

erwise, it is marked as unseen. Table 9 compares

different models on the seen and unseen subsets in

the restaurant domain. SC-GPT yields higher

BLEU and lower ERR, and the improvement is

more significant on the unseen set. For example,

SC-GPT reduces ERR to 4.96, an order of magni-

tude lower than SC-LSTM and only 1/3 of GPT-2.

This demonstrates that SC-GPT generalizes well to

novel dialog acts, and is able to precisely ground

in them to compose fluent responses. This is fur-

ther confirmed by the quantitative comparison in

Table 8, where we compare the generated utterance

examples of different models. While the baseline

methods prone to over-generate or miss important

slots, SC-GPT can successfully generate fluent nat-

ural language utterances that share precise semantic

conditions with the ground-truth references.

We further simulate the process when deploying

SC-GPT for a new domain, using the examples

provided in the RASA dialog toolkit 8. We first

fine-tune SC-GPT using a few training examples

(only 16 instances in this new domain), and then

generate utterances based on novel dialog acts that

are unseen in training data. Table 10 shows some

examples of generated utterances with novel dialog

acts. In practice, it is desirable for an NLG system

to deal with an extending domain whose dialog

acts change dynamically. We simulate the setting

by editing the original input dialog acts, such as

inserting or deleting a slot, or substituting a slot

value.

Since SC-LSTM is infeasible in the setting of

an extending domain, we compare SC-GPT with

GPT-2. Results show that SC-GPT produces bet-

ter utterances than GPT-2. SC-GPT can generate

reasonably good natural language responses with

different combinations of editing operations, show-

ing its high flexibility to generalize to new dialog

acts with very limited training data, and produce

8https://github.com/RasaHQ/rasa/tree/master
/examples/restaurantbot
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Original DA ack makereservation ( price = moderate ; restaurantcusine = chinese ; location = center ; peoplecount = 2 )

Reference ok making a reservation for restaurant moderate chinese in center for two people?

1 Input DA ack makereservation ( price = moderate ; restaurantcusine = japanese ; location = lincoln square ; peoplecount = 2 )

GPT-2 ok making reservation for moderate japanese restaurant in lincoln square for 2 people?

SC-GPT ok making a reservation for a moderate japanese cuisine restaurant in lincoln square for 2 people?

2 Input DA ack makereservation ( restaurantname = sakura ; price = moderate ; restaurantcusine = japanese ; location =

lincoln sqare ; peoplecount = 2 )

GPT-2 ok making a reservation for 2 people sakura moderate japanese restaurant located lincoln sqare for 10 minutes?

SC-GPT ok making a reservation for sakura, moderate japanese cuisine in lincoln square for 2 people?

3 Input DA ack makereservation ( price = expensive ; restaurantcusine = japanese ; location = center ; peoplecount = 2 )

GPT-2 ok making reservation for japanese cuisine expensive?

SC-GPT ok making reservation for expensive japanese cuisine?

# Model Generated Responses from Different Models

Original DA ack makereservation ( childrenfriendly = true )

Reference make reservation for a children friendly restaurant ?

1 Input DA ack makereservation ( restaurantname = sakura ; childrenfriendly = true ; price = moderate )

GPT-2 make reservation at sakura child friendly restaurant and make table moderate price?

SC-GPT make reservation for restaurant sakura moderate price and children friendly restaurant?

Table 10: Examples of generated utterances with novel dialog acts. SC-GPT produces better utterances than

GPT-2 for with edited dialog acts. Since both models produce similar responses to references for the origi-

nal dialog act, the results are not shown here. (Better viewed in color. insert a slot , substitute a slot value ,

delete a slot ).

controllable responses.

7 Conclusion

In this paper, we have made two major contribu-

tions towards developing a more pragmatic NLG

module for task-oriented dialog systems: (i) A new

benchmark FEWSHOTWOZ is introduced to sim-

ulate the few-shot learning scenarios with scarce

labelled data in real-world applications. (ii) A new

model SC-GPT is proposed to endow the NLG

module with strong semantically controlling and

generalization ability. Empirical results on both

FEWSHOTWOZ and MultiWOZ show that SC-

GPT achieves the best overall performance in both

automatic and human evaluations.

There are two interesting directions for future

work. The first is to design mechanisms to gener-

ate more interpersonal responses which are proven

to help improve user experiences (Li et al., 2016;

Zhou et al.). The other is to generalize the gen-

erative pre-training idea to all four modules in

the dialog system pipeline for end-to-end train-

ing. Since these four modules process informa-

tion in order, one may organize their input/output

as segments, and pre-train a segment-level auto-

regressive model.
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